

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 800 065

51 Int. Cl.:

C12N 15/113 (2010.01) A61K 31/7125 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 16.11.2012 E 17184486 (3)
 Fecha y número de publicación de la concesión europea: 25.03.2020 EP 3301177

(54) Título: Agentes de iARN, composiciones y métodos de uso de los mismos para tratar enfermedades asociadas con transtiretina (TTR)

(30) Prioridad:

18.11.2011 US 201161561710 P 26.03.2012 US 201261615618 P 06.08.2012 US 201261680098 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 23.12.2020

(73) Titular/es:

ALNYLAM PHARMACEUTICALS, INC. (100.0%) 300 Third Street, 3rd Floor Cambridge, MA 02142, US

(72) Inventor/es:

KALLANTHOTTATHIL, RAJEEV G.; ZIMMERMANN, TRACY; MANOHARAN, MUTHIAH; MAIER, MARTIN; KUCHIMANCHI, SATYANARAYANA Y CHARISSE, KLAUS

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Agentes de iARN, composiciones y métodos de uso de los mismos para tratar enfermedades asociadas con transtiretina (TTR)

5 Antecedentes de la invención

10

15

30

35

40

55

La transtiretina (TTR) (también conocida como prealbúmina) se encuentra en el suero y fluido cerebroespinal (FCE). La TTR transporta proteína de unión a retinol (RBP) y tiroxina (T4) y también actúa como portadora de retinol (vitamina A) a través de su asociación con RBP en la sangre y el FCE. La transtiretina recibe su nombre por su transporte de tiroxina y retinol. La TTR también funciona como una proteasa y puede escindir proteínas, incluida apoA-I (la principal apolipoproteína HDL), péptido β amiloide y neuropéptido Y. Ver Liz, M.A. *et al.* (2010) *IUBMB Life*, 62(6):429-435.

La TTR es un tetrámero de cuatro subunidades idénticas de 127 aminoácidos (monómeros) que son ricas en estructura de lámina beta. Cada monómero tiene dos láminas beta de 4 hebras y la forma de un elipsoide prolato. Interacciones de láminas beta antiparalelas unen a los monómeros para formar dímeros. Un bucle corto de cada monómero forma la principal interacción dímero-dímero. Estos dos pares de bucles separan las láminas betas opuestas convexas de los dímeros para formar un canal interno.

El hígado es el sitio principal de expresión de la TTR. Otros sitios importantes de expresión incluyen el plexo carotídeo, la retina (en particular el epitelio pigmentario retiniano) y el páncreas.

La transtiretina es uno de al menos 27 tipos distintos de proteínas que son proteínas precursoras en la formación de fibrillas amiloides. Ver Guan, J. et al. (Nov. 4, 2011) Current perspectives on cardiac amyloidosis, Am J Physiol Corazón Circ Physiol, doi:10.1152/ajpcorazón.00815.2011. La acumulación extracelular de fibrillas amiloides en órganos y tejidos es el distintivo de la amiloidosis. Las fibrillas amiloides están compuestas por acumulaciones de proteínas plegadas incorrectamente, lo cual puede ser el resultado de la producción en exceso de proteínas precursoras de mutaciones específicas de las mismas El potencial amiloidogénico de la TTR puede relacionarse con su extensa estructura de láminas beta; estudios cristalográficos por rayos X indican que ciertas mutaciones amiloidogénicas destabilizan la estructura tetramérica de la proteína. Ver, por ejemplo, Saraiva M.J.M. (2002) Expert Reviews in Molecular Medicine, 4(12):1-11.

La amiloidosis es un término general para el grupo de enfermedades amiloides que se caracterizan por depósitos amiloides. Las enfermedades amiloides se clasifican en base a su proteína precursora; por ejemplo, el nombre comienza con "A" de amiloide y sigue con una abreviación de la proteína precursora. Por ejemplo, ATTR se refiere a transtiretina amloidogénica. *Ibid*.

Existen numerosas enfermedades asociadas a la TTR, la mayoría de las cuales son enfermedades amiloides. La TTR de secuencia normal se asocia con la amiloidosis cardíaca en personas de edad avanzada y se denomina amiloidosis sistémica senil (ASS) (también denominada amiloidosis cardíaca senil (ACS) o amiloidosis cardíaca). La ASS a menudo viene acompañada de depósitos microscópicos en muchos otros órganos. La amiloidosis con TTR se manifiesta de varias formas. Cuando el sistema nervioso periférico se ve afectado más prominentemente, la enfermedad se denomina polineuropatía amiloidótica familiar (PAF). Cuando el corazón está implicado principalmente pero no el sistema nervioso, la enfermedad se denomina cardiomiopatía amiloidótica familiar (CAF). Un tercer tipo principal de amiloidosos con TTR es la amiloidosis leptomeníngea, también conocida como amiloidosis leptomeníngea o meningocerebrovascular, amiloidosis del sistema nervioso central (SNC) o amiloidosis de forma VII. Las mutaciones en la TTR también pueden provocar opacidades vítreas amiloidóticas, síndrome del túnel carpiano e hipertiroxinemia eutiroidea, que es una enfermedad no amiloidótica que se cree es secundaria a una mayor asociación de tiroxina con TTR debido a una molécula de TTR mutante con mayor afinidad por la tiroxina. Ver, por ejemplo, Moses *et al.* (1982) *J. Clin. Invest.*, 86, 2025-2033.

Las proteínas amiloidogénicas anormales pueden heredarse o adquirirse a través de mutaciones somáticas. Guan, J. et al. (Nov. 4, 2011) Current perspectives on cardiac amyloidosis, Am J Physiol Corazón Circ Physiol, doi:10.1152/ajpcorazón.00815.2011. La ATTR asociada a la transtiretina es la forma de amiloidosis sitémica hereditaria más frecuente. Lobato, L. (2003) J. Nephrol., 16:438-442. Las mutaciones en la TTR aceleran el proceso de formación amiloide de TTR y constituyen el factor de riesgo más importante para el desarrollo de ATTR. Se sabe que más de 85 variantes de TTR amiloidogénica provocan amiloidosis familar sistémica. Las mutaciones de TTR a menudo provocan la acumulación amiloide sistémica, con participación particular del sistema nervioso central, aunque algunas mutaciones se asocian con cardiomiopatía u opacidades vítreas. Ibid.

La mutación V30M es la mutación de TTR más prevalerte. Ver, por ejemplo, Lobato, L. (2003) *J Nephrol*, 16:438-442. La mutación V122I es portada por el 3.9% de la población afroamericana y es la causa más común de CAF. Jacobson, D.R. et al. (1997) *N. Engl. J. Med.* 336 (7): 466–73. Se estima que la ASS afecta a más del 25% de la población mayor de 80. Westermark, P. et al. (1990) *Proc. Natl. Acad. Sci. U.S.A.* 87 (7): 2843–5. El documento WO 2011/056883 describe agentes de iARN de doble hebra que se dirigen a la transtiretina.

Por lo tanto, existe una necesidad en la técnica de tratamientos efectivos para enfermedades asociadas con la TTR.

Compendio

5

10

15

20

25

30

35

40

45

La invención está definida por las reivindicaciones. Se refiere a un agente de iARN de doble hebra que comprende una hebra sentido complementaria a una hebra antisentido, donde dicha hebra antisentido comprende una región complementaria a parte de un ARNm que codifica transtiretina (TTR), en donde cada hebra tiene de aproximadamente 14 a aproximadamente 30 nucleótidos, en donde dicho agente de iARN de hebra doble está representado por la fórmula (III): sentido: 5' n_p - N_a - $(X X X)_i$ - N_b -Y Y Y - N_b - $(Z Z Z)_j$ - N_a - n_q 3' antisentido: 3' n_p '- N_a '- $(X'X'X')_k$ - N_b '-Y'Y'Y'- N_b '- $(Z'Z'Z')_i$ - N_a '- n_q ' 5' (III) en donde:i, j, k y 1 son cada uno independientemente 0 o 1, en donde i es 0, j es 1; p, p', q y q' son cada uno independientemente 0-6; cada N_a y N_a ' representa independientemente una secuencia oligonucleotídica que comprende 0-25 nucleótidos modificados, comprendiendo cada secuencia al menos dos nucleótidos modificados de manera diferente; en donde cada N_b y N_b ' representa independientemente una secuencia oligonucleotídica que comprende 0-10 nucleótidos modificados; en donde cada n_p , n_p ', n_q y n_q ' representa independientemente un nucleótido saliente; XXX, YYY, ZZZ, X'X'X', Y'Y'Y' y Z'Z'Z' representan cada uno independientemente un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos; en donde los nucleótidos Y contienen una modificación 2'-fluoro y los nucleótidos Y' contienen una modificación 2'-O-metilo; en donde dicho motivo YYY ocurre en las posiciones 9, 10 y 11 cuando la región dúplex tiene 21 nucleótidos; y en donde la hebra sentido está conjugada con al menos un ligando.

La presente divulgación proporciona agentes de iARN, por ejemplo, agentes de iARN de doble hebra, que se dirigen al gen de transtiretina (TTR). La presente divulgación también proporciona métodos para inhibir la expresión de TTR y métodos para tratar o prevenir una enfermedad asociada a TTR en un sujeto utilizando los agentes de iARN, por ejemplo, agentes de iARN de doble hebra, de la invención. La presente invención se basa, al menos en parte, en el descubrimiento de agentes de iARN que comprenden modificaciones químicas particulares que muestran una habilidad superior para inhibir la expresión de TTR. Los agentes que incluyen un cierto patrón de modificaciones químicas (por ejemplo, un agente alternado) y un ligando se muestran en la presente como efectivos para silenciar la actividad del gen de la TTR. Adicionalmente, los agentes que incluyen uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos, incluido uno de dichos motivos en o cerca del sitio de escisión de los agentes, muestran una actividad de silenciamiento del gen de la TTR sorprendentemente mejorada. Cuando en el agente está presente un motivo químico simple, es preferible que esté en o cerca de la región de escisión para mejorar la actividad de silenciamiento del gen. La región de escisión es la región alrededor del sitio de escisión, es decir, el sitio en el ARNm objetivo en el cual ocurre la escisión.

De esta forma, en un aspecto, la presente divulgación presenta agentes de iARN, por ejemplo, agentes de iARN de doble hebra, para inhibir la expresión de una transtiretina (TTR). El agente de iARN de doble hebra incluye una hebra sentido complementaria a una hebra antisentido. La hebra antisentido incluye una región complementaria a una parte de una transtiretina que codifica ARNm. Cada hebra tiene 14 a 30 nucleótidos y el agente de iARN de mediante doble hebra se representa la fórmula (III): Ζ sentido: 5' -(X X) i-Nb Υ -Nb Z)i -Na 3' n_{q} antisentido: 3' $n_{p}'-N_{a}'-(X'X'X')_{k}-N_{b}'-Y'Y'Y'-N_{b}'-(Z'Z'Z')_{l}-N_{a}'-n_{o}'$ 5'

(III).

En la fórmula III, i, j, k y l son cada uno independientemente 0 o 1; p, p', q y q' son cada uno independientemente 0-6; cada N_a y N_a' independientemente representa una secuencia de oligonucleótidos incluidos 0-25 nucleótidos que son modificados o no modificados o combinaciones de los mismos, incluyendo cada secuencia al menos dos nucleótidos modificados de diferente forma; cada N_b y N_b' independientemente representa una secuencia de oligonucleótidos incluidos 0-10 nucleótidos que son modificados o no modificados o combinaciones de los mismos; cada n_p, n_p', n_q y n_q' independientemente representa un nucleótido saliente; cada XXX, YYY, ZZZ, X'X'X', Y'Y'Y' y Z'Z'Z' independientemente representa un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos; modificaciones en N_b difieren de la modificación en Y y modificaciones en N_b' difieren de la modificación en Y'. En algunas realizaciones, la hebra sentido se conjuga con al menos un ligando, por ejemplo, al menos un ligando unido al extremo 3' de la hebra sentido. En otras realizaciones, el ligando puede conjugarse con la hebra antisentido.

50 En algunos casos, i es 1; j es 1; o tanto i como j son 1.

En algunos casos, k es 1; l es 1; o tanto k como l son 1.

Según la invención, i es 0; j es 1.

En algunos casos, i es 1, j es 0.

Según la invención, k es 0; l es 1.

55 En algunos casos, k es 1; l es 0.

En algunos casos, XXX es complementario a X'X'X', YYY es complementario a Y'Y'Y' y ZZZ es complementario a Z'Z'Z'.

En algunos casos, el motivo YYY se encuentra en o cerca del sitio de escisión de la hebra sentido.

En algunas realizaciones, el motivo Y'Y'Y' se encuentra en las posiciones 11, 12 y 13 de la hebra antisentido del extremo 5'.

Según la invención, el Y' es 2'-O-metilo.

En algunos casos, el Y' es 2'-fluoro.

En algunos casos, la fórmula (III) se representa como la fórmula (IIIa): sentido: 5'
$$n_p$$
 -Na -Y Y Y -Nb -Z Z Z -Na-nq 3' antisentido: 3' n_p '-Na'-Y'Y'Y'-Nb'-Z'Z'Z'-Na'nq' 5' (IIIa).

En la fórmula IIIa, cada N_b y $N_{b'}$ independientemente representa una secuencia de oligonucleótidos incluidos 1-5 nucleótidos modificados.

En la fórmula IIIb cada N_b y N_b ' independientemente representa una secuencia de oligonucleótidos incluidos 1-5 nucleótidos modificados.

(IIIc).

25

35

5

10

En la fórmula IIIc, cada N_b y -N_b′ independientemente representa una secuencia de oligonucleótidos incluidos 1-5 nucleótidos modificados y cada N_a y N_a′ independientemente representa una secuencia de oligonucleótidos incluidos 2-10 nucleótidos modificados.

En muchos casos, las regiones dúplex tienen 15-30 pares de nucleótidos de longitud. En algunos casos, la región de dúplex tiene 17-23 pares de nucleótidos de longitud, 17-25 pares de nucleótidos de longitud, 23-27 pares de nucleótidos de longitud, 19-21 pares de nucleótidos de longitud, o 21-23 pares de nucleótidos de longitud.

30 En algunos casos, cada hebra tiene 15-30 nucleótidos.

En algunos casos, las modificaciones en los nucleótidos se seleccionan del grupo que consiste en LNA, HNA, CeNA, 2'-metoxietilo, 2'-O-alquilo, 2'-O-alilo, 2'-C- alilo, 2'-fluoro, 2'-desoxi, 2'-hidroxilo y combinaciones de los mismos. En algunos casos preferidos, las modificaciones en los nucleótidos son 2'-O-metilo o 2'-fluoro.

En algunas realizaciones, el ligando es uno o más derivados de N-acetilgalactosamina (GalNAc) unidos a través de un enlazante ramificado bivalente o trivalente. En realizaciones particulares, el ligando es

En algunas realizaciones, el ligando está unido al extremo 3' de la hebra sentido.

En algunas realizaciones, el agente de iARN se conjuga con el ligando tal como se muestra en el siguiente esquema

5 en donde X es O o S.

20

En algunas realizaciones, el agente de iARN se conjuga con el ligando tal como se muestra en el siguiente esquema

En algunos casos, el agente de iARN adicionalmente incluye al menos una conexión internucleótidos de fosforotioato o metilfosfonato. En algunos casos, la conexión internucleótidos de fosforotioato o metilfosfonato está en el extremo terminal 3' de una hebra. En algunos casos, la hebra es la hebra antisentido. En otros casos, la hebra es la hebra sentido.

En algunos casos, el par de bases en la posición 1 del extremo 5' del dúplex es un par de bases AU.

Según la invención, los nucleótidos Y contienen una modificación 2'-fluoro.

15 Según la invención, los nucleótidos Y' contienen una modificación 2'-O-metilo.

En algunos casos, p'>0. En algunos de dichos casos, cada n es complementario al ARNm objetivo. En dichos otros casos, cada n es no complementario al ARNm objetivo. En algunos casos, p, p', q y q' son 1-6. En algunos casos preferidos, p' = 1 o 2. En algunos casos preferidos, p'=2. En algunos de dichos casos, q'=0, p=0, q=0 y los nucleótidos salientes p' son complementarios al ARNm objetivo. En dichos otros casos, q'=0, p=0, q=0 y los nucleótidos salientes p' son no complementarios al ARNm objetivo.

Según la invención, la hebra sentido tiene un total de 21 nucleótidos y la hebra antisentido tiene un total de 23 nucleótidos.

En algunos casos, conexiones entre n_p ' incluyen conexiones de fosforotioato. En algunos de dichos casos, las conexiones entre n_p ' son conexiones de fosforotioato.

25 En algunos casos, el agente de iARN se selecciona del grupo de agentes que figuran en la Tabla 1.

En casos preferidos, el agente de iARN se selecciona del grupo que consiste en AD-51544, AD-51545, AD-51546 y AD-51547.

En un caso aun más preferido, el agente de iARN es AD-51547 que tiene la siguiente estructura:

5

20

30

40

45

50

sentido: 5'- UfgGfgAfuUfuCfAfUfgUfaacCfaAfgAfL96-3' (SEQ ID NO:2) antisentido: 5'- uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc-3' (SEQ ID NO:3)

en donde los nucleótidos en minúscula (a, u, g, c) indican nucleótidos 2'-O-metilo; Nf (por ejemplo, Af) indica un nucleótido 2'-fluoro; s indica una conexión de fosfotiorato; L96 indica un ligando GalNAc₃.

En otro aspecto, la presente invención presenta una célula in vitro que contiene el agente de iARN para inhibir la expresión de TTR de la invención.

En un aspecto adicional, la presente invención presenta una composición farmacéutica que comprende un agente de iARN para inhibir la expresión de TTR de la invención. En algunos casos, la composición farmacéutica es una solución que comprende el agente de iARN. En algunas realizaciones, la solución que comprende el agente de iARN es una solución sin tamponar, por ejemplo, solución salina o agua. En otras realizaciones, la solución es una solución tamponadora, por ejemplo, una solución de solución salina tamponada con fosfato (PBS). En otras realizaciones, la composición farmacéutica es un liposoma o una formulación lipídica. En algunos casos, la formulación lipídica comprende XTC o MC3.

En otro aspecto adicional, la presente invención presenta métodos in vitro para inhibir la expresión de transtiretina (TTR) en una célula. Los métodos incluyen poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, en una cantidad efectiva para inhibir la expresión de TTR en la célula, inhibiendo así la expresión de TTR en la célula.

En algunas realizaciones, la expresión de TTR se inhibe al menos aproximadamente 10%, al menos aproximadamente 20%, al menos aproximadamente 30%, al menos aproximadamente 40%, al menos aproximadamente 50%, al menos aproximadamente 60%, al menos aproximadamente 70%, al menos aproximadamente 80% o al menos aproximadamente 90%.

Según la invención, la célula se pone en contacto in vitro con el agente de iARN. En otros casos, la célula está presente dentro de un sujeto. En casos preferidos, el sujeto es un humano.

En casos adicionales, el sujeto es un sujeto que padece una enfermedad asociada a TTR y la cantidad efectiva es una cantidad terapéuticamente efectiva. En otros casos, el sujeto es un sujeto que corre el riesgo de desarrollar una enfermedad asociada a TTR y la cantidad efectiva es una cantidad profilácticamente efectiva. En algunos casos, un sujeto que corre el riesgo de desarrollar una enfermedad asociada a TTR es un sujeto que porta un gen de la mutación de TTR que se asocia con el desarrollo de una enfermedad asociada a TTR.

En algunas realizaciones, la enfermedad asociada a TTR se selecciona del grupo que consiste en amiloidosis sistémica senil (ASS), amiloidosis familiar sistémica, polineuropatía amiloidótica familiar (PAF), cardiomiopatía amiloidótica familiar (CAF), amiloidosis leptomeníngea/del Sistema Nervioso Central (SNC) e hipertiroxinemia.

En algunos casos, el sujeto tiene una amiloidosis asociada a TTR y el método reduce un depósito de TTR amiloide en el sujeto.

En otros casos, el agente de iARN se administra al sujeto mediante un medio de administración que se selecciona del grupo que consiste en subcutánea, intravenosa, intramuscular, intrabronquial, intrapleural, intraperitoneal, intraarterial, linfática, cerebroespinal y cualquier combinación de las mismas. En algunos casos, el agente de iARN se administra al sujeto mediante administración subcutánea o intravenosa. En casos preferidos, el agente de iARN se administra al sujeto mediante administración subcutánea. En algunos de dichos casos, la administración subcutánea incluye administración mediante bomba subcutánea o depósito subcutáneo.

En algunos casos, el agente de iARN se administra al sujeto de forma tal que el agente de iARN se libera en un sitio específico dentro del sujeto. En algunos casos, el sitio se selecciona del grupo que consiste en hígado, plexo coroideo, retina y páncreas. En casos preferidos, el sitio es el hígado. En algunos casos, la liberación del agente de iARN es mediada por el receptor de asialoglucoproteína (ASGP-R) presente en hepatocitos.

En algunos casos, el agente de iARN se administra a una dosis de entre aproximadamente 0.25 mg/kg y aproximadamente 50 mg/kg, por ejemplo, entre aproximadamente 0.25 mg/kg y aproximadamente 0.5 mg/kg, entre aproximadamente 0.25 mg/kg y aproximadamente 5 mg/kg, entre aproximadamente 1 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 10 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 15 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 20 mg/kg, entre aproximadamente 25 mg/kg y aproximadamente 25 mg/kg, entre aproximadamente 25 mg/kg, entre aproximadamente 35 mg/kg, entre aproximadamente 40 mg/kg y aproximadamente 50 mg/kg.

En algunos casos, el agente de iARN se administra a una dosis de aproximadamente 0.25 mg/kg, aproximadamente 0.5 mg/kg, aproximadamente 1 mg/kg, aproximadamente 2 mg/kg, aproximadamente 3 mg/kg, aproximadamente 4 mg/kg, aproximadamente 5 mg/kg, aproximadamente 6 mg/kg, aproximadamente 7 mg/kg, aproximadamente 8 mg/kg, aproximadamente 9 mg/kg, aproximadamente 10 mg/kg, aproximadamente 11 mg/kg, aproximadamente 12 mg/kg, aproximadamente 13 mg/kg, aproximadamente 14 mg/kg, aproximadamente 15 mg/kg, aproximadamente 16 mg/kg, aproximadamente 17 mg/kg, aproximadamente 18 mg/kg, aproximadamente 19 mg/kg, aproximadamente 20 mg/kg, aproximadamente 21 mg/kg, aproximadamente 22 mg/kg, aproximadamente 23 mg/kg, aproximadamente 24 mg/kg, aproximadamente 25 mg/kg, aproximadamente 26 mg/kg, aproximadamente 27 mg/kg, aproximadamente 28 mg/kg, aproximadamente 30 mg/kg, aproximadamente 31 mg/kg, aproximadamente 32 mg/kg, aproximadamente 33 mg/kg, aproximadamente 34 mg/kg, aproximadamente 35 mg/kg, aproximadamente 36 mg/kg, aproximadamente 41 mg/kg, aproximadamente 42 mg/kg, aproximadamente 43 mg/kg, aproximadamente 44 mg/kg, aproximadamente 45 mg/kg, aproximadamente 46 mg/kg, aproximadamente 47 mg/kg, aproximadamente 48 mg/kg, aproximadamente 49 mg/kg, aproximadamente 48 mg/kg, aproximadamente 49 mg/kg, aproximadamente 49 mg/kg, aproximadamente 49 mg/kg, aproximadamente 40 mg/kg, aproximadam

En algunos casos, el agente de iARN se administra en dos o más dosis. En realizaciones particulares, el agente de iARN se administra a intervalos que se seleccionan del grupo que consiste en una vez cada aproximadamente 2 horas, una vez cada aproximadamente 3 horas, una vez cada aproximadamente 4 horas, una vez cada aproximadamente 12 horas, una vez cada aproximadamente 12 horas, una vez cada aproximadamente 24 horas, una vez cada aproximadamente 48 horas, una vez cada aproximadamente 72 horas, una vez cada aproximadamente 96 horas, una vez cada aproximadamente 120 horas, una vez cada aproximadamente 144 horas, una vez cada aproximadamente 168 horas, una vez cada aproximadamente 240 horas, una vez cada aproximadamente 672 horas y una vez cada aproximadamente 720 horas.

En otros casos, el método adicionalmente incluye evaluar el nivel de expresión de ARNm de TTR o expresión de 25 proteína TTR en una muestra derivada del sujeto.

En casos preferidos, la administración del agente de iARN no resulta en una respuesta inflamatoria en el sujeto tal como se evalúa en base al nivel de una citoquina o quimioquina seleccionada del grupo que consiste en G-CSF, IFN- γ , IL-10, IL-12 (p70), IL1 β , IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1 α , MIP-1 β , TNF α y cualquier combinación de las mismas, en una muestra del sujeto.

30 En algunos casos, el agente de iARN se administra utilizando una composición farmacéutica.

En casos preferidos, el agente de iARN se administra en una solución. En algunos de dichos casos, el ARNip se administra en una solución sin tamponar. En un caso, el ARNip se administra en agua. En otros casos, el ARNip se administra con una solución tamponadora, tal como un tampón de acetato, un tampón de citrato, un tampón de prolamina, un tampón de carbonato, o un tampón de fosfato o cualquier combinación de las mismas. En algunos casos, la solución tamponadora es solución salina tamponada con fosfato (PBS).

En otro caso, la composición farmacéutica es un liposoma o una formulación lipídica que comprende SNALP o XTC. En un caso, la formulación lipídica comprende un MC3.

En otro aspecto, la divulgación proporciona métodos para tratar o prevenir una enfermedad asociada a TTR en un sujeto. Los métodos incluyen administrar al sujeto una cantidad terapéuticamente efectiva o cantidad profilácticamente efectiva de un agente de iARN, por ejemplo, un agente de iARN de doble hebra, tratando o previniendo así la enfermedad asociada a TTR en el sujeto.

En algunos casos, la expresión de TTR en una muestra derivada del sujeto se inhibe al menos aproximadamente 10%, al menos aproximadamente 20%, al menos aproximadamente 30%, al menos aproximadamente 50%, al menos aproximadamente 60% o al menos aproximadamente 70% al menos aproximadamente 80% o al menos aproximadamente 90%.

En algunos casos, el sujeto es un humano.

5

10

35

40

45

50

55

En algunos casos, el sujeto es un sujeto que padece una enfermedad asociada a TTR. En otros casos, el sujeto es un sujeto que corre el riesgo de desarrollar una enfermedad asociada a TTR.

En algunos casos, el sujeto es un sujeto que porta un gen de la mutación de TTR que se asocia con el desarrollo de una enfermedad asociada a TTR.

En algunas realizaciones, la enfermedad asociada a TTR se selecciona del grupo que consiste en amiloidosis sistémica senil (ASS), amiloidosis familiar sistémica, polineuropatía amiloidótica familiar (PAF), cardiomiopatía amiloidótica familiar (CAF), amiloidosis leptomeníngea/del Sistema Nervioso Central (SNC) e hipertiroxinemia.

En algunos casos, el sujeto tiene una amiloidosis asociada a TTR y el método reduce un depósito de TTR amiloide en el sujeto.

En algunos casos, el agente de iARN se administra al sujeto mediante un medio de administración que se selecciona del grupo que consiste en subcutánea, intravenosa, intramuscular, intrabronquial, intrapleural, intraperitoneal, intraarterial, linfática, cerebroespinal y cualquier combinación de las mismas. En algunos casos, el agente de iARN se administra al sujeto mediante administración subcutánea o intravenosa. En casos preferidos, el agente de iARN se administra al sujeto mediante administración subcutánea. En algunos de dichos casos, la administración subcutánea incluye administración mediante bomba subcutánea o depósito subcutáneo.

5

10

15

35

40

En algunos casos, el agente de iARN se administra al sujeto de forma tal que el agente de iARN se libera en un sitio específico dentro del sujeto. En algunos de dichos casos, el sitio se selecciona del grupo que consiste en hígado, plexo coroideo, retina y páncreas. En casos preferidos, el sitio es el hígado. En algunos casos, la liberación del agente de iARN es mediada por el receptor de asialoglucoproteína (ASGP-R) presente en hepatocitos.

En algunos casos, el agente de iARN se administra a una dosis de entre aproximadamente 0.25 mg/kg y aproximadamente 50 mg/kg, por ejemplo, entre aproximadamente 0.25 mg/kg y aproximadamente 0.5 mg/kg, entre aproximadamente 0.25 mg/kg y aproximadamente 5 mg/kg, entre aproximadamente 1 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 10 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 15 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 15 mg/kg y aproximadamente 15 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 20 mg/kg, entre aproximadamente 25 mg/kg y aproximadamente 25 mg/kg y aproximadamente 25 mg/kg y aproximadamente 35 mg/kg, o entre aproximadamente 40 mg/kg y aproximadamente 50 mg/kg.

En algunos casos, el agente de iARN se administra a una dosis de aproximadamente 0.25 mg/kg, aproximadamente 20 0.5 mg/kg, aproximadamente 1 mg/kg, aproximadamente 2 mg/kg, aproximadamente 3 mg/kg, aproximadamente 4 mg/kg, aproximadamente 5 mg/kg, aproximadamente 6 mg/kg, aproximadamente 7 mg/kg, aproximadamente 8 mg/kg, aproximadamente 9 mg/kg, aproximadamente 10 mg/kg, aproximadamente 11 mg/kg, aproximadamente 12 mg/kg, aproximadamente 13 mg/kg, aproximadamente 14 mg/kg, aproximadamente 15 mg/kg, aproximadamente 16 mg/kg, aproximadamente 17 mg/kg, aproximadamente 18 mg/kg, aproximadamente 19 mg/kg, aproximadamente 20 mg/kg, aproximadamente 21 mg/kg, aproximadamente 22 mg/kg, aproximadamente 23 mg/kg, aproximadamente 24 25 mg/kg, aproximadamente 25 mg/kg, aproximadamente 26 mg/kg, aproximadamente 27 mg/kg, aproximadamente 28 mg/kg, aproximadamente 29 mg/kg, 30 mg/kg, aproximadamente 31 mg/kg, aproximadamente 32 mg/kg, aproximadamente 33 mg/kg, aproximadamente 34 mg/kg, aproximadamente 35 mg/kg, aproximadamente 36 mg/kg, aproximadamente 37 mg/kg, aproximadamente 38 mg/kg, aproximadamente 39 mg/kg, aproximadamente 40 mg/kg, aproximadamente 41 mg/kg, aproximadamente 42 mg/kg, aproximadamente 43 mg/kg, aproximadamente 44 mg/kg, 30 aproximadamente 45 mg/kg, aproximadamente 46 mg/kg, aproximadamente 47 mg/kg, aproximadamente 48 mg/kg, aproximadamente 49 mg/kg o aproximadamente 50 mg/kg.

En algunos casos, el agente de iARN se administra en dos o más dosis. En realizaciones particulares, el agente de iARN se administra a intervalos que se seleccionan del grupo que consiste en una vez cada aproximadamente 2 horas, una vez cada aproximadamente 3 horas, una vez cada aproximadamente 4 horas, una vez cada aproximadamente 12 horas, una vez cada aproximadamente 12 horas, una vez cada aproximadamente 24 horas, una vez cada aproximadamente 48 horas, una vez cada aproximadamente 72 horas, una vez cada aproximadamente 96 horas, una vez cada aproximadamente 120 horas, una vez cada aproximadamente 144 horas, una vez cada aproximadamente 168 horas, una vez cada aproximadamente 240 horas, una vez cada aproximadamente 672 horas y una vez cada aproximadamente 720 horas.

En otros casos, el método adicionalmente incluye evaluar el nivel de expresión de ARNm de TTR o expresión de proteína TTR en una muestra derivada del sujeto.

En casos preferidos, la administración del agente de iARN no resulta en una respuesta inflamatoria en el sujeto tal como se evalúa en base al nivel de una citoquina o quimioquina seleccionada del grupo que consiste en G-CSF, IFN-γ, IL-10, IL-12 (p70), IL1β, IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, TNFα y cualquier combinación de las mismas, en una muestra del sujeto.

En algunos casos, el agente de iARN se administra utilizando una composición farmacéutica, por ejemplo, un liposoma.

En algunos casos, el agente de iARN se administra en una solución. En algunos de dichos casos, el ARNip se administra en una solución sin tamponar. En un caso, el ARNip se administra en solución salina o agua. En otros casos, el ARNip se administra con una solución tamponadora, tal como un tampón de acetato, un tampón de citrato, un tampón de prolamina, un tampón de carbonato, o un tampón de fosfato o cualquier combinación de los mismos. En algunos casos, la solución tamponadora es solución salina tamponada con fosfato (PBS).

En otro aspecto, la presente divulgación proporciona un método para inhibir la expresión de transtiretina (TTR) en una célula que incluye poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, en una cantidad efectiva para inhibir la expresión de TTR en la célula. En un aspecto, el agente de

iARN de doble hebra se selecciona del grupo de agentes que figuran en la Tabla 1, inhibiendo así la expresión de transtiretina (TTR) en la célula.

En otro aspecto, la presente divulgación proporciona un método para inhibir la expresión de transtiretina (TTR) en una célula que incluye poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, en una cantidad efectiva para inhibir la expresión de TTR en la célula. En un aspecto, el agente de iARN de doble hebra se selecciona del grupo que consiste en AD-51544, AD-51545, AD-51546 y AD-51547, inhibiendo así la expresión de transtiretina (TTR) en la célula.

En un aspecto adicional, la presente divulgación proporciona un método para tratar o prevenir una enfermedad asociada a TTR en un sujeto que incluye administrar al sujeto una cantidad terapéuticamente efectiva o una cantidad profilácticamente efectiva de un agente de iARN, por ejemplo, un agente de iARN de doble hebra. En un aspecto, el agente de iARN de doble hebra se selecciona del grupo de agentes que figuran en la Tabla 1, tratando o previniendo así una enfermedad asociada a TTR en el sujeto.

En otro aspecto adicional, la presente divulgación proporciona un método para tratar o prevenir una enfermedad asociada a TTR en un sujeto que incluye administrar al sujeto una cantidad terapéuticamente efectiva o una cantidad profilácticamente efectiva de un agente de iARN, por ejemplo, un agente de iARN de doble hebra. En un aspecto, el agente de iARN de doble hebra se selecciona del grupo que consiste en AD-51544, AD-51545, AD-51546 y AD-51547, tratando o previniendo así una enfermedad asociada a TTR en el sujeto.

En aspectos adicionales, la divulgación proporciona kits para llevar a cabo los métodos de la invención. En un aspecto, la divulgación proporciona un kit para llevar a cabo un método para inhibir la expresión de transtiretina (TTR) en una célula que comprende poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, en una cantidad efectiva para inhibir la expresión de dicha TTR en dicha célula, inhibiendo así la expresión de TTR en la célula. El kit comprende un agente de iARN e instrucciones para su uso y, opcionalmente, medios para administrar el agente de iARN al sujeto.

La presente invención se ilustrará adicionalmente mediante la siguiente descripción detallada y los dibujos.

25 Breve descripción de los dibujos

5

10

15

20

30

La Figura 1 es una gráfica que ilustra que administrar a ratones una sola dosis subcutánea de un agente de iARN conjugado con GalNAc que se dirige a TTR resultó en una supresión dependiente de la dosis de ARNm de TTR.

La Figura 2 es una gráfica que ilustra que administrar a ratones una sola dosis subcutánea de 7.5 mg/kg o 30 mg/kg de un agente de iARN conjugado con GalNAc que se dirige a TTR resultó en una supresión de larga duración de ARNm de TTR.

La Figura 3 ilustra la secuencia de ARNm de TTR humana.

La Figura 4 es una gráfica que ilustra la actividad de silenciamiento mejorada de agentes de iARN modificados con respecto al AD-45163 base.

La Figura 5 es una gráfica que ilustra la actividad de silenciamiento mejorada de agentes de iARN modificados con respecto al AD-45165 base.

La Figura 6 es una gráfica que ilustra el silenciamiento de captación libre mejorada tras la incubación de 4 horas con agentes de iARN modificados con respecto al AD-45163 base.

La Figura 7 es una gráfica que ilustra el silenciamiento de captación libre mejorada tras la incubación de 24 horas con agentes de iARN modificados con respecto al AD-45163 base.

40 La Figura 8 es una gráfica que ilustra el silenciamiento de captación libre mejorada tras la incubación de 4 horas con agentes de iARN modificados con respecto al AD-45165 base.

La Figura 9 es una gráfica que ilustra el silenciamiento de captación libre mejorada tras la incubación de 24 horas con agentes de iARN modificados con respecto al AD-45165 base.

La Figura 10 es una gráfica que ilustra el silenciamiento de ARNm de TTR en ratones transgénicos que expresan V30M de TTRh tras la administración de una sola dosis subcutánea de agentes de iARN AD-51544, AD-51545, AD-45163, AD-51546, AD-51547 o AD-45165.

La Figura 11 es una gráfica que ilustra la supresión de la proteína TTR en ratones transgénicos que expresan V30M de TTRh tras la administración de una sola dosis subcutánea de 5 mg/kg o 1mg/kg de agentes de iARN AD-51544, AD-51545 o AD-45163.

La Figura 12 es una gráfica que ilustra la supresión de la proteína TTR en ratones transgénicos que expresan V30M de TTRh tras la administración de una sola dosis subcutánea de 5 mg/kg o 1mg/kg de agentes de iARN AD-51546, AD-51547 o AD-45165.

La Figura 13 ilustra el protocolo para extracciones de sangre post-dosis en monos que recibieron 5x5mg/kg de agente de iARN (línea superior) o 1x25 mg/kg de agente de iARN (línea inferior).

La Figura 14 es una gráfica que ilustra la supresión de la proteína TTR en primates no humanos tras la administración subcutánea de cinco dosis de 5 mg/kg (panel superior) o una sola dosis de 25 mg/kg (panel inferior) de AD-45163, AD-51544, AD-51545, AD-51546 o AD-51547.

La Figura 15 es una gráfica que ilustra la supresión de la proteína TTR en primates no humanos tras la administración subcutánea de AD-51547 a 2.5 mg/kg (cuadrados blancos), 5 mg/kg (cuadrados negros) o 10 mg/kg (cuadrados estampados) por dosis, o administración de PBS como un testigo negativo (cuadrados grises).

Descripción detallada

5

15

20

25

30

35

40

45

55

La presente divulgación proporciona agentes de iARN, por ejemplo, agentes de iARN de doble hebra, y composiciones que se dirigen al gen de la transtiretina (TTR). La presente invención también proporciona métodos para inhibir la expresión de TTR y métodos para tratar o prevenir una enfermedad asociada a TTR en un sujeto que utiliza los agentes de iARN, por ejemplo, agentes de iARN de doble hebra, de la invención. La presente invención se basa, al menos en parte, en el descubrimiento de que agentes de iARN que comprenden modificaciones químicas particulares muestran una capacidad superior para inhibir la expresión de TTR. Los agentes que incluyen un cierto patrón de modificaciones químicas (por ejemplo, un patrón alterno) y un ligando demostraron en la presente ser efectivos en silenciar la actividad del gen de la TTR. Más aun, los agentes que incluyen uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos, incluyendo uno de dichos motivos en o cerca del sitio de escisión de los agentes, muestran sorprendentemente la actividad silenciadora del gen de la TTR mejorada. Cuando un solo motivo químico está presente en el agente, se prefiere que esté en o cerca de la región de escisión para mejorar la actividad de silenciamiento de genes. La región de escisión es la región que rodea el sitio de escisión, es decir, el sitio en el ARNm objetivo en el cual ocurre la escisión.

I. Definiciones

Tal como se utiliza en la presente, cada uno de los siguientes términos tiene el significado asociado al mismo en esta sección.

La expresión "que incluye" se utiliza en la presente para referirse a la frase "que incluye a modo no taxativo" y se utiliza de manera intercambiable con ésta.

El término "o" se utiliza en la presente para referirse al término "y/o", y se utiliza de manera intercambiable con éste,a menos que el contexto indique lo contrario.

Tal como se utiliza en la presente, una "transtiretina" ("TTR") se refiere al gen y la proteína bien conocidos. TTR también se conoce como prealbúmina, HsT2651, PALB y TBPA. La TTR funciona como transportador de la proteína de unión a retinol (RBP), tiroxina (T4) y retinol y también actúa como una proteasa. El hígado secreta TTR en la sangre y el plexo coroideo secreta TTR en el fluido cerebroespinal. La TTR también se expresa en el páncreas y el epitelio de pigmento retinal. La mayor relevancia clínica de la TTR es que la proteína TTR normal y mutante puede formar fibrillas amiloides que se acumulan en depósitos extracelulares, provocando amiloidosis. Ver una reseña, por ejemplo, en Saraiva M.J.M. (2002) Expert Reviews in Molecular Medicine, 4(12):1-11. La clonación molecular y la secuencia de nucleótidos de transtiretina de rata, así como la distribución de la expresión de ARNm, fueron descrita por Dickson, P.W. et al. (1985) J. Biol. Chem. 260(13)8214-8219. La estructura de cristal de rayos X de TTR humana se describió en Blake, C.C. et al. (1974) J Mol Biol 88, 1-12. La secuencia de un transcripto de ARNm de TTR humana puede encontrarse en el número de acceso RefSeq NM_000371 del Centro Nacional de Información de Biotecnología (NCBI). La secuencia de ARNm de TTR de ratón puede encontrarse en el número de acceso de RefSeq NM_013697.2, y la secuencia de ARNm de TTR de rata puede encontrarse en el número de acceso de RefSeq NM_012681.1.

Tal como se utiliza en la presente, "secuencia objetivo" se refiere a una porción contigua de la secuencia de nucleótidos de una molécula de ARNm formada durante la transcripción de un gen de la TTR, incluyendo ARNm que es un producto del procesamiento de ARN de un producto de transcripción primario.

Tal como se utiliza en la presente, la expresión "hebra que comprende una secuencia" se refiere a un oligonucleótido que comprende una cadena de nucleótidos que se describe mediante la secuencia denominada utilizando la nomenclatura de nucleótidos estándar.

"G," "C," "A" y "U" cada uno significa generalmente un nucleótido que contiene guanina, citosina, adenina y uracilo como una base, respectivamente. "T" y "dT" se utilizan de manera intercambiable en la presente y se refieren a un desoxirribonucleótido en donde la nucleobase es timina, por ejemplo, desoxirribotimina, 2'-desoxitimidina o timidina.

Sin embargo, se comprenderá que el término "ribonucleótido" o "nucleótido" o "desoxirribonucleótido" también puede referirse a un nucleótido modificado, como se detalla adicionalmente a continuación, o un resto de reemplazo sustituto. El experto en la técnica es bien consciente de que la guanina, citosina, adenina y uracilo pueden reemplazarse por otros restos sin alterar básicamente las propiedades de apareamiento de bases de un oligonucleótido que comprende un nucleótido que tiene dicho resto de reemplazo. Por ejemplo, a modo no taxativo, un nucleótido que comprende inosina como su base puede aparear bases con nucleótidos que contienen adenina, citosina o uracilo. Por lo tanto, los nucleótidos que contienen uracilo, guanina o adenina pueden reemplazarse en las secuencias de nucleótidos de la invención mediante un nucleótido que contiene, por ejemplo, inosina. Se consideran secuencias que comprenden dichos restos de reemplazo.

Un "agente de iARN de doble hebra", una molécula de ARN de doble hebra (ARNdh), también denominado "agente de ARNdh", "ARNdh", "ARNip", "agente de ARNi", tal como se utiliza de forma intercambiable en la presente, se refiere a un complejo de moléculas de ácido ribonucleico que tiene una estructura de dúplex que comprende dos hebras de ácido nucleico antiparalelas y básicamente complementarias, como se define a continuación. En general, la mayoría de los nucleótidos de cada hebra son ribonucleótidos, pero como se describe en detalle en la presente, cada una de las hebras o ambas pueden incluir uno o más no ribonucleótidos, por ejemplo, un desoxirribonucleótido y/o un nucleótido modificado. Además, tal como se utiliza en la presente memoria descriptiva, un "agente de iARN" puede incluir ribonucleótidos con modificaciones químicas; un agente de iARN puede incluir modificaciones sustanciales en múltiples nucleótidos. Dichas modificaciones pueden incluir todo tipo de modificaciones divulgadas en la presente o conocidas en la técnica. Cualquiera de dichas modificaciones, tal como se utilizan en una molécula de tipo ARNip, abarcan el "agente de iARN".

En otro caso, el agente de iARN puede ser un ARNip de una sola hebra que se introduce en una célula u organismo para inhibir un ARNm objetivo. Agentes de iARN de una sola hebra se unen a la endonucleasa Argonauta 2 de RISC, que escinde entonces el ARNm objetivo. Los ARNip de una sola hebra son generalmente 15-30 nucleótidos y están químicamente modificados. El diseño y la evaluación de los ARNip de una sola hebra se describen en la Patente de los Estados Unidos No. 8,101,348 y en Lima et al., (2012) Cell 150: 883-894, cuyo contenido se incorpora a la presente a modo de referencia. Cualquiera de las secuencias de nucleótidos antisentido descritas en la presente pueden utilizarse como un ARNip de una sola hebra como se describe en la presente o químicamente modificadas por los métodos descritos en Lima et al., (2012) Cell 150;:883-894.

25

30

35

50

Las dos hebras que forman la estructura de dúplex pueden ser porciones diferentes de una molécula de ARN más grande o pueden ser moléculas de ARN separadas. Cuando las dos hebras son parte de una molécula más grande y de este modo están conectadas por una cadena ininterrumpida de nucleótidos entre el extremo 3' de una hebra y el extremo 5' de la otra hebra respectiva que forma la estructura de dúplex, la cadena de ARN de conexión se denomina un "bucle de horquilla". Cuando las dos hebras están conectadas covalentemente por medios diferentes a una cadena ininterrumpida de nucleótidos entre el extremo 3' de una hebra y el extremo 5' de la otra hebra respectiva que forma la estructura de dúplex, la estructura de conexión se denomina un "enlazante". Las hebras de ARN pueden tener el mismo o un diferente número de nucleótidos. El número máximo de pares de base es el número de nucleótidos en la hebra más corta del ARNdh menos cualquier saliente presente en el dúplex. Además de la estructura de dúplex, un agente de iARN puede comprender una o más salientes de nucleótido. El término "ARNip" también se utiliza en la presente para referirse a un agente de iARN como se describió anteriormente.

En otro aspecto, el agente es una molécula de ARN antisentido de una sola hebra. Una molécula de ARN antisentido es complementaria a una secuencia dentro del ARNm objetivo. El ARN antisentido puede inhibir la traducción de un modo estequiométrico mediante apareamiento de bases al ARNm y mediante la obstrucción física de la máquina de traducción, ver Dias, N. et al., (2002) Mol Cancer Ther 1:347-355. La molécula de ARN antisentido puede tener aproximadamente 15-30 nucleótidos que son complementarios al ARNm objetivo. Por ejemplo, la molécula de ARN antisentido puede tener una secuencia de al menos 15, 16 17, 18, 19, 20 o más nucleótidos contiguos de una de las secuencias antisentido de la Tabla 1.

Tal como se utiliza en la presente, una "saliente de nucleótidos" se refiere a un nucleótido o nucleótidos no apareados que sobresalen de la estructura de dúplex de un agente de iARN cuando un extremo de una hebra del agente de iARN se extiende más allá del extremo 5' de la otra hebra, o viceversa. "Romo" o "extremo romo" significa que no hay nucleótidos no apareados en ese extremo del agente de iARN de doble hebra, es decir, ninguna saliente de nucleótidos. Un agente de iARN de "extremo romo" es un ARNdh que es de doble hebra sobre su longitud entera, es decir, ninguna saliente de nucleótidos en ninguno de los extremos de la molécula. Los agentes de iARN de la invención incluyen agentes de iARN con salientes de nucleótidos en un extremo (es decir, agentes con una saliente y un extremo romo) o con salientes de nucleótidos en ambos extremos.

La expresión "hebra antisentido" se refiere a la hebra de un agente de iARN de doble hebra que incluye una región que es básicamente complementaria a una secuencia objetivo (por ejemplo, un ARNm de TTR humana). Tal como se utiliza en la presente, la expresión "región complementaria a parte de un ARNm que codifica transtiretina" se refiere a una región en la hebra antisentido que es básicamente complementaria a parte de una secuencia de ARNm de TTR. Cuando la región de complementariedad no es completamente complementaria a la secuencia objetivo, los apareamientos incorrectos se toleran más en las regiones terminales y, si están presentes, están generalmente en una región o regiones terminales, por ejemplo, dentro de 6, 5, 4, 3 o 2 nucleótidos del extremo 5' y/o 3'.

La expresión "hebra sentido", tal como se utiliza en la presente, se refiere a la hebra de ARNdh que incluye una región que es básicamente complementaria a una región de la hebra antisentido.

Tal como se utiliza en la presente, la expresión "región de escisión" se refiere a una región que se ubica inmediatamente adyacente al sitio de escisión. El sitio de escisión es el sitio en el objetivo en el cual ocurre la escisión. En algunos casos, la región escindible comprende tres bases en cualquier extremo de, e inmediatamente adyacente al sitio de escisión. En algunas realizaciones, la región escindible comprende dos bases en cualquier extremo de, e inmediatamente adyacente al sitio de escisión. En algunos casos, el sitio de escisión se encuentra específicamente en el sitio unido por los nucleótidos 10 y 11 de la hebra antisentido, y la región escindible comprende nucleótidos los 11, 12 y 13.

5

35

40

45

50

- Tal como se utiliza en la presente, y a menos que se indique lo contrario, el término "complementario", cuando se utiliza para describir una primera secuencia de nucleótidos con relación a una segunda secuencia de nucleótidos, se refiere a la capacidad de un oligonucleótido o polinucleótido que comprende la primera secuencia de nucleótidos para hibridarse y formar una estructura de dúplex en ciertas condiciones con un oligonucleótido o polinucleótido que comprende la segunda secuencia de nucleótidos, como comprenderá un experto en la técnica. Dichas condiciones pueden, por ejemplo, ser condiciones rigurosas, donde las condiciones rigurosas pueden incluir: 400 mM de NaCl, 40 mM de PIPES pH 6.4, 1 mM de EDTA, 50°C o 70°C durante 12-16 horas tras un lavado. Otras condiciones, tales como condiciones fisiológicamente relevantes como las que pueden encontrarse dentro de un organismo, pueden aplicarse. Un experto en la técnica será capaz de determinar el conjunto de condiciones más apropiadas para una prueba de complementariedad de dos secuencias de acuerdo con la última aplicación de los nucleótidos hibridados.
- 20 Las secuencias puede ser "completamente complementarias" con respecto a la otra cuando hay apareamiento de bases de los nucleótidos de la primera secuencia de nucleótidos con los nucleótidos de la segunda secuencia de nucleótidos en la longitud total de la primera y la segunda secuencia de nucleótidos. Sin embargo, cuando una primera secuencia se denomina "básicamente complementaria" con respecto a una segunda secuencia en la presente, las dos secuencias pueden ser completamente complementarias o pueden formar una o más, pero 25 generalmente no más de 4, 3 o 2, pares de bases no coincidentes tras la hibridación, reteniendo a la vez la capacidad de hibridarse en las condiciones más relevantes a su última aplicación. Sin embargo, cuando dos oligonucleótidos se diseñan para formar, tras la hibridación, una o más salientes de una sola hebra, tales salientes no deberán considerarse como apareamientos incorrectos con respecto a la determinación de la complementariedad. Por ejemplo, un ARNdh que comprende un oligonucleótido de 21 nucleótidos de longitud y otro oligonucleótido de 23 nucleótidos de largo, en donde el oligonucleótido más largo comprende una secuencia de 21 nucleótidos que es 30 completamente complementaria al oligonucleótido más corto, puede igualmente denominarse "completamente complementaria" a los efectos descritos en la presente.

Secuencias "complementarias", tal como se utiliza en la presente, también pueden incluir, o formarse completamente de, pares de bases no Watson-Crick y/o pares de bases formados de nucleótidos no naturales y modificados, en la medida en que se cumplan los requisitos anteriores con respecto a su capacidad para hibridarse. Dichos pares de bases no Watson-Crick incluyen, a modo no taxativo, apareamiento de bases de balanceo G-U o Hoogstein.

Las expresiones "complementaria", "completamente complementaria" y "básicamente complementaria" en la presente pueden utilizarse con respecto a la coincidencia de bases entre la hebra sentido y la hebra antisentido de un ARNdh, o entre la hebra antisentido de un ARNdh y una secuencia objetivo, como se comprenderá del contexto de su uso.

Tal como se utiliza en la presente, un polinucleótido que es "básicamente complementario a al menos parte de" un ARN mensajero (ARNm) se refiere a un polinucleótido que es básicamente complementario a una porción contigua del ARNm de interés (por ejemplo, una ARNm que codifica TTR) incluyendo una UTR 5', un marco de lectura abierto (ORF) o una UTR 3'. Por ejemplo, un polinucleótido es complementario a al menos una parte de un ARNm de TTR si la secuencia es básicamente complementaria a una porción no interrumpida de un ARNm que codifica TTR.

La expresión "que inhibe", tal como se utiliza en la presente, se utiliza de manera intercambiable con "que reduce", "que silencia", "que regula hacia abajo", "que suprime" y otros términos similares, e incluye cualquier nivel de inhibición.

- La frase "expresión inhibidora de una TTR", tal como se utiliza en la presente, incluye la inhibición de la expresión de cualquier gen de la TTR (tal como, por ejemplo, un gen de la TTR de ratón, un gen de la TTR de rata, un gen de la TTR de mono o un gen de la TTR de humano) así como variantes o mutantes de un gen de la TTR. Por lo tanto, el gen de la TTR puede ser un gen de la TTR natural, un gen de la TTR mutante (tal como un gen de la TTR mutante que dio lugar a deposición amiloide sistémica) o un gen de la TTR transgénico en el contexto de una célula, grupo de células, u organismos genéticamente manipulados.
- "Expresión de inhibición de un gen de la TTR" incluye cualquier nivel de inhibición de un gen de la TTR, por ejemplo, al menos supresión parcial de la expresión de un gen de la TTR, tal como una inhibición de al menos aproximadamente 5%, al menos aproximadamente 10%, al menos aproximadamente 15%, al menos aproximadamente 20%, al menos aproximadamente 20%, al menos aproximadamente 30%, al menos

aproximadamente 35%, al menos aproximadamente 40%, al menos aproximadamente 45%, al menos aproximadamente 50%, al menos aproximadamente 55%, al menos aproximadamente 60%, al menos aproximadamente 65%, al aproximadamente 70%, al aproximadamente 75%, al menos menos menos aproximadamente 90%, al menos aproximadamente 80%, al menos aproximadamente 85%, al menos aproximadamente 91%, al menos aproximadamente 92%, al menos aproximadamente 93%, al menos aproximadamente 94%. al menos aproximadamente 95%, al menos aproximadamente 96%, al menos aproximadamente 97%, al menos aproximadamente 98%, o al menos aproximadamente 99%.

5

10

25

30

35

40

45

50

La expresión de un gen de la TTR puede evaluarse en base al nivel de cualquier variable asociada con la expresión del gen de la TTR, por ejemplo, nivel del ARNm de la TTR, nivel de proteína de la TTR, nivel de la proteína de unión a retinol, nivel de vitamina A, o el número o alcance de los depósitos amiloides. La inhibición puede evaluarse mediante una disminución en un nivel absoluto o relativo de una o más de estas variables en comparación con un nivel testigo. El nivel testigo puede ser cualquier tipo de nivel testigo que se utiliza en la técnica, por ejemplo, un nivel de base de pre-dosis o un nivel determinado de un sujeto similar, célula o muestra que es tratada o no tratada con un testigo (tal como, por ejemplo, testigo sólo con solución amortiquadora o testigo de agente inactivo).

La frase "poner en contacto una célula con un agente de iARN", tal como se utiliza en la presente, incluye poner en contacto una célula mediante cualquier medio posible. Poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra incluye poner en contacto una célula in vitro con el agente de iARN o poner en contacto una célula in vivo con el agente de iARN. El hecho de poner en contacto puede realizarse directamente o indirectamente. Por lo tanto, por ejemplo, el agente de iARN se puede poner en contacto físico con la célula por el individuo que realiza el método, o alternativamente, el agente de iARN se puede poner en una situación que permitirá o causará que se ponga en contacto posteriormente con la célula.

El hecho de poner en contacto una célula in vitro puede realizarse, por ejemplo, mediante la incubación de la célula con el agente de iARN. El hecho de poner en contacto una célula in vivo puede realizarse, por ejemplo, mediante la inyección del agente de iARN en o cerca del tejido donde está ubicada la célula, o mediante la inyección del agente de iARN en otra área, por ejemplo, el torrente sanguíneo o el espacio subcutáneo, de modo que el agente alcanzará posteriormente el tejido donde se encuentra la célula que se pondrá en contacto. Por ejemplo, el agente de iARN puede contener y/o estar acoplado a un ligando, por ejemplo, un ligando GalNAc3, que dirige el agente de iARN a un sitio de interés, por ejemplo, el hígado. También son posibles combinaciones de métodos para poner en contacto in vitro e in vivo. En conexión con los métodos de la invención, una célula podría ponerse en contacto in vitro con un agente de iARN y posteriormente trasplantarse en un sujeto.

Un "paciente" o "sujeto" tal como se utiliza en la presente, pretende incluir un animal humano o no humano, preferiblemente un mamífero, por ejemplo, un mono. Más preferiblemente, el sujeto o paciente es un humano.

Una "enfermedad asociada a TTR", tal como se utiliza en la presente, pretende incluir cualquier enfermedad asociada con el gen o proteína TTR. Dicha enfermedad puede ser causada, por ejemplo, mediante la producción en exceso de la proteína TTR, mediante mutaciones del gen de la TTR, mediante escisión anormal de la proteína TTR, mediante interacciones anormales entre TTR y otras proteínas u otras sustancias endógenas o exógenas. Una "enfermedad asociada a TTR" incluye cualquier tipo de amiloidosis por TTR (ATTR) en donde la TTR juega un rol en la formación de agregados extracelulares anormales o depósitos amiloides. Las enfermedades asociadas a TTR incluyen amiloidosis sistémica senil (ASS), amiloidosis sistémica familiar, polineuropatía amiloidótica familiar (PAF), cardiomiopatía amiloidótica familiar (CAF), amiloidosis leptomeníngea/del Sistema Nervioso Central (SNC), opacidades vítreas amiloidóticas, síndrome del túnel carpiano e hipertiroxinemia. Síntomas de amiloidosis por TTR incluyen neuropatía sensorial (por ejemplo, parestesia, hipoestesia en miembros distales), neuropatía autonómica (por ejemplo, disfunción gastrointestinal, tal como úlcera gástrica, o hipotensión ortostática), neuropatía motora, crisis, demencia, mielopatía, polineuropatía, síndrome del túnel carpiano, insuficiencia autonómica, cardiomiopatía, opacidades vítreas, insuficiencia renal, nefropatía, IMCm (Índice de Masa Corporal modificado) sustancialmente reducido, disfunción del disfunción de los nervios craneales y distrofia corneal reticular.

"Cantidad terapéuticamente efectiva", tal como se utiliza en la presente, pretende incluir la cantidad de un agente de iARN que, cuando se administra a un paciente para tratar una enfermedad asociada a TTR, es suficiente para efectuar el tratamiento de la enfermedad (por ejemplo, disminuyendo, aliviando o manteniendo la enfermedad existente o uno o más síntomas de enfermedad). La "cantidad terapéuticamente efectiva" puede variar dependiendo del agente de iARN, cómo se administra el agente, la enfermedad y su gravedad y el antecedente, edad, peso, antecedente familiar, conformación genética, etapa de procesos patológicos mediados por la expresión de TTR, los tipos de tratamientos precedentes o concomitantes, si existieron, y otras características individuales del paciente a tratar.

"Cantidad profilácticamente efectiva", tal como se utiliza en la presente, pretende incluir la cantidad de un agente de iARN que, cuando se administra a un sujeto que no experimenta o presenta síntomas de una enfermedad asociada a TTR, pero que puede estar predispuesto a la enfermedad, es suficiente para prevenir o aliviar la enfermedad o uno o más síntomas de la enfermedad. Síntomas que pueden aliviarse incluyen neuropatía sensorial (por ejemplo, parestesia, hipoestesia en miembros distales), neuropatía autonómica (por ejemplo, disfunción gastrointestinal, tal
 como úlcera gástrica, o hipotensión ortostática), neuropatía motora, crisis, demencia, mielopatía, polineuropatía,

síndrome del túnel carpiano, insuficiencia autonómica, cardiomiopatía, opacidades vítreas, insuficiencia renal, nefropatía, IMCm (Índice de Masa Corporal modificado) sustancialmente reducido, disfunción del disfunción de los nervios craneales y distrofia corneal reticular. Aliviar la enfermedad incluye ralentizar el curso de la enfermedad o reducir la gravedad de una enfermedad desarrollada posteriormente. La "cantidad profilácticamente efectiva" puede variar dependiendo del agente de iARN, cómo se administra el agente, el grado de riesgo de enfermedad, y el antecedente, edad, peso, antecedente familiar, conformación genética, los tipos de tratamientos precedentes o concomitantes, si existieron, y otras características individuales del paciente a tratar.

Una "cantidad terapéuticamente efectiva" o "cantidad profilácticamente efectiva" también incluye una cantidad de un agente de iARN que produce algo de efecto local o sistémico deseado a una relación beneficio/riesgo razonable para cualquier tratamiento. Los agentes de iARN empleados en los métodos de la presente invención pueden administrarse en una cantidad suficiente para producir una relación beneficio/riesgo razonable aplicable a dicho tratamiento.

El término "muestra", tal como se utiliza en la presente, incluye una colección de fluidos, células o tejidos similares aislados de un sujeto, así como fluidos, células o tejidos presentes dentro de un sujeto. Ejemplos de fluidos biológicos incluyen sangre, suero y fluidos serosas, plasma, fluido cerebroespinal, fluidos oculares, linfa, orina, saliva y similares. Muestras tisulares pueden incluir muestras de tejidos, órganos o regiones localizadas. Por ejemplo, las muestras pueden derivar de órganos particulares, partes de órganos o fluidos o células dentro de aquellos órganos. En ciertas realizaciones, las muestras pueden derivar del hígado (por ejemplo, hígado entero o ciertos segmentos del hígado o ciertos tipos de células en el hígado, tales como, por ejemplo, hepatocitos), la retina o partes de la retina (por ejemplo, epitelio de pigmento retinal), el sistema nervioso central o partes del sistema nervioso central (por ejemplo, ventrículos o plexo coroideo), o el páncreas o ciertas células o partes del páncreas. En algunos casos, una "muestra derivada de un sujeto" se refiere a fluido cerebroespinal obtenido del sujeto. En realizaciones preferidas, una "muestra derivada de un sujeto" se refiere a sangre o plasma extraído del sujeto. En casos adicionales, una "muestra derivada de un sujeto" se refiere a tejido del hígado (o subcomponentes del mismo) o tejido retinal (o subcomponentes del mismo) derivado del sujeto.

II. Agentes de iARN

5

10

15

20

25

30

35

50

La presente divulgación proporciona agentes de iARN con actividad de silenciamiento de genes superior. Se muestra en la presente y en la Solicitud provisional No. 61/561,710 (de la cual la presente solicitud reivindica prioridad) que puede obtenerse un resultado superior mediante la introducción de uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos en una hebra sentido y/o hebra antisentido de un agente de iARN, particularmente en o cerca del sitio de escisión. La hebra sentido y la hebra antisentido del agente de iARN puede de otro modo modificarse completamente. La introducción de estos motivos interrumpe el patrón de modificación, si está presente, de la hebra sentido y/o antisentido. El agente de iARN también se conjuga opcionalmente con un ligando derivado GalNAc, por ejemplo en la hebra sentido. Los agentes de iARN resultantes presentan una actividad silenciadora de genes superior.

Los inventores descubrieron sorprendentemente que cuando la hebra sentido y la hebra antisentido del agente de iARN se modifican completamente, tener uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos en o cerca del sitio de escisión de al menos una hebra de un agente de iARN mejoró superiormente la actividad silenciadora de genes del agente de iARN.

40 Por consiguiente, la divulgación proporciona agentes de iARN, por ejemplo, agentes de iARN de doble hebra, capaces de inhibir la expresión de un gen objetivo (es decir, un gen de la TTR) in vivo. El agente de iARN comprende una hebra sentido y una hebra antisentido. Cada hebra del agente de iARN puede estar en el rango de 12-30 nucleótidos de longitud. Por ejemplo, cada hebra puede tener de entre 14-30 nucleótidos de longitud, 17-30 nucleótidos de longitud, 25-30 nucleótidos de longitud, 27-30 nucleótidos de longitud, 17-23 nucleótidos de longitud, 17-21 nucleótidos de longitud, 17-19 nucleótidos de longitud, 19-25 nucleótidos de longitud, 19-23 nucleótidos de longitud, 19-21 nucleótidos de longitud, 21-25 nucleótidos de longitud o 21-23 nucleótidos de longitud.

La hebra sentido y la hebra antisentido típicamente forman un ARN de doble hebra dúplex ("ARNdh"), también denominado en la presente un "agente de iARN". La región de dúplex de un agente de iARN puede tener de 12-30 pares de nucleótidos de longitud. Por ejemplo, la región de dúplex puede tener 14-30 pares de nucleótidos de longitud, 17-30 pares de nucleótidos de longitud, 17-23 pares de nucleótidos de longitud, 17-21 pares de nucleótidos de longitud, 17-19 pares de nucleótidos de longitud, 19-25 pares de nucleótidos de longitud, 19-23 pares de nucleótidos de longitud, 19-21 pares de nucleótidos de longitud, 21-25 pares de nucleótidos de longitud o 21-23 pares de nucleótidos de longitud. En otro ejemplo, la región de dúplex se selecciona de 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 y 27.

En un caso, el agente de iARN puede contener una o más regiones salientes y/o grupos protectores del agente de iARN en el extremo 3' o extremo 5' o ambos extremos de una hebra. La saliente puede ser de 1-6 nucleótidos de longitud, por ejemplo 2-6 nucleótidos de longitud, 1-5 nucleótidos de longitud, 2-5 nucleótidos de longitud, 1-4 nucleótidos de longitud, 2-4 nucleótidos de longitud, 1-3 nucleótidos de longitud, 2-3 nucleótidos de longitud o 1-2 nucleótidos de longitud. Las salientes pueden ser el resultado de una hebra que es más larga que la otra o el

resultado de dos hebras de la misma longitud que son escalonadas. La saliente puede formar un apareamiento incorrecto con el ARNm objetivo o puede ser complementaria a las secuencias del gen al que se dirige o puede ser otra secuencia. La primera y segunda hebra también pueden unirse, por ejemplo, mediante bases adicionales para formar una horquilla o mediante otros enlazantes no base.

- Los agentes de iARN proporcionados por la presente invención incluyen agentes con modificaciones químicas como se divulga, por ejemplo, en la Solicitud provisional de los Estados Unidos No. 61/561,710, presentada el 18 de noviembre de 2011, Solicitud internacional No. PCT/US2011/051597, presentada el 15 de setiembre de 2010, y Publicación PCT WO 2009/073809.
- En un caso, los nucleótidos en la región saliente del agente de iARN pueden ser cada uno independientemente un nucleótido modificado o sin modificar incluyendo, a modo no taxativo 2'-modificado por azúcar, tal como, 2-F, 2'-O-metilo, timidina (T), 2'-O-metoxietil-5-metiluridina (Teo), 2'-O-metoxietiladenosina (Aeo), 2'-O-metoxietil-5-metilcitidina (m5Ceo) y cualquier combinación de los mismos. Por ejemplo, TT puede ser una secuencia saliente para cualquier extremo en cualquier hebra. La saliente puede formar un apareamiento incorrecto con el ARNm objetivo o puede ser complementaria a las secuencias del gen al que se dirige o puede ser otra secuencia.
- Las salientes 5' o 3' en la hebra sentido, hebra antisentido o ambas hebras del agente de iARN pueden fosforilarse. En algunos casos, la región saliente contiene dos nucleótidos que tienen un fosforotioato entre los dos nucleótidos, donde los dos nucleótidos pueden ser el mismo o diferente. En un caso, la saliente está presente en el extremo 3' de la hebra sentido, hebra antisentido o ambas hebras. En una realización, esta saliente 3' está presente en la hebra antisentido. En una realización, esta saliente 3' está presente en la hebra sentido.
- El agente de iARN puede contener sólo una sola saliente, que puede fortalecer la actividad de interferencia de la iARN, sin afectar su estabilidad general. Por ejemplo, la saliente de una sola hebra se ubica en el extremo 3' terminal de la hebra sentido o, alternativamente, en el extremo 3' terminal de la hebra antisentido. La iARN también puede tener un extremo romo, ubicado en el extremo 5' de la hebra antisentido (o el extremo 3' de la hebra sentido) o viceversa. Generalmente, la hebra antisentido de la iARN tiene una saliente de nucleótido en el extremo 3' y el extremo 5' es romo. Si bien los solicitantes no pretenden ceñirse a teoría alguna, el mecanismo teórico es que el extremo romo asimétrico en el extremo 5' de la hebra antisentido y una saliente del extremo 3' de la hebra antisentido favorecen la carga de la hebra guía en el proceso RISC.
 - En un caso, el agente de iARN es un oligonucleótido de dos extremos romos de 19 nt de longitud, en donde la hebra sentido contiene al menos un motivo de tres modificaciones 2'-F en tres nucleótidos consecutivos en las posiciones 7, 8, 9 del extremo 5'. La hebra antisentido contiene al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en las posiciones 11, 12, 13 del extremo 5'.

30

35

50

55

En un caso, el agente de iARN es un oligonucleótido de dos extremos romos de 20 nt de longitud, en donde la hebra sentido contiene al menos un motivo de tres modificaciones 2'-F en tres nucleótidos consecutivos en las posiciones 8, 9, 10 del extremo 5'. La hebra antisentido contiene al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en las posiciones 11, 12, 13 del extremo 5'.

En un caso, el agente de iARN es un oligonucleótido de dos extremos romos de 21 nt de longitud, en donde la hebra sentido contiene al menos un motivo de tres modificaciones 2'-F en tres nucleótidos consecutivos en las posiciones 9, 10, 11 del extremo 5'. La hebra antisentido contiene al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en las posiciones 11, 12, 13 del extremo 5'.

- 40 En un caso, el agente de iARN comprende una hebra sentido de 21 nucleótidos (nt) y una hebra antisentido de 23 nucleótidos (nt), en donde la hebra sentido contiene al menos un motivo de tres modificaciones 2'-F en tres nucleótidos consecutivos en las posiciones 9,10,11 del extremo 5'; la hebra antisentido contiene al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en las posiciones 11, 12, 13 del extremo 5', en donde un extremo del agente de iARN es romo, mientras el otro extremo comprende una saliente de 2 nt. Preferiblemente, la saliente de 2 nt está en el extremo 3' de la antisentido. Opcionalmente, el agente de iARN comprende además un ligando (preferiblemente GalNAc₃).
 - En un caso, el agente de iARN comprende una hebra sentido y una antisentido, en donde la hebra sentido es de 25-30 residuos de nucleótido de longitud, en donde comenzando en el nucleótido terminal 5' (posición 1) las posiciones 1 a 23 de la primera hebra comprenden al menos 8 ribonucleótidos; la hebra antisentido es de 36-66 residuos de nucleótidos de longitud y, comenzando en el nucleótido terminal 3', comprende al menos 8 ribonucleótidos en las posiciones apareadas con las posiciones 1- 23 de la hebra sentido para formar un dúplex; en donde al menos el nucleótido terminal 3' de la hebra antisentido no está apareado con la hebra sentido, y hasta 6 nucleótidos terminales 3' consecutivos no están apareados con la hebra sentido, formando así una saliente de una sola hebra 3' de 1-6 nucleótidos; en donde el extremo 5' de la hebra antisentido comprende de 10-30 nucleótidos consecutivos que no están apareados con la hebra sentido, formando así una saliente 5' de una sola hebra de 10-30 nucleótidos; en donde al menos los nucleótidos de 5' terminal y 3' terminal de la hebra sentido se aparean en bases con nucleótidos de la hebra antisentido cuando las hebras sentido y antisentido están alineadas para una complementariedad máxima, formando así una región sustancialmente de dúplex entre las hebras sentido y

antisentido; y la hebra antisentido es suficientemente complementaria a un ARN objetivo junto con al menos 19 ribonucleótidos de la longitud de la hebra antisentido para reducir la expresión de genes objetivo cuando el ácido nucleico de doble hebra se introduce en una célula de mamífero; y en donde la hebra sentido contiene al menos un motivo de tres modificaciones 2'-F en tres nucleótidos consecutivos, donde al menos uno de los motivos se encuentra en o cerca del sitio de escisión. La hebra antisentido contiene al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en o cerca del sitio de escisión.

5

10

15

25

40

45

50

En un caso, el agente de iARN comprende hebras sentido y antisentido, en donde el agente de iARN comprende una primera hebra que tiene una longitud que es al menos 25 y a lo sumo 29 nucleótidos y una segunda hebra que tiene una longitud que es a lo sumo 30 nucleótidos con al menos un motivo de tres modificaciones 2'-O-metilo en tres nucleótidos consecutivos en la posición 11,12,13 del extremo 5'; en donde el extremo 3' de la primera hebra y el extremo 5' de la segunda hebra forman un extremo romo y la segunda hebra es 1-4 nucleótidos más larga en su extremo 3' que la primera hebra, en donde la región de dúplex que es de al menos 25 nucleótidos de longitud, y la segunda hebra es suficientemente complementaria a un ARNm objetivo junto al menos 19 nt de la longitud de la segunda hebra para reducir la expresión de genes objetivo cuando el agente de iARN se introduce en una célula de mamífero, y en donde escisión cortadora del agente de iARN preferentemente resulta in un ARNip que comprende el extremo 3' de la segunda hebra, reduciendo así la expresión del gen objetivo en el mamífero. Opcionalmente, el agente de iARN comprende además un ligando.

En un caso, la hebra sentido del agente de iARN contiene al menos un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos, donde uno de los motivos se encuentra en el sitio de escisión en la hebra sentido.

20 En un caso, la hebra antisentido del agente de iARN también puede contener al menos un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos, donde uno de los motivos se encuentra en o cerca del sitio de escisión en la hebra antisentido.

Para el agente de iARN que tiene una región de dúplex de 17-23 nt de longitud, el sitio de escisión de la hebra antisentido es típicamente alrededor de 10, 11 y 12 posiciones del extremo 5'. Por lo tanto, los motivos de tres modificaciones idénticas pueden encontrarse en las posiciones 9, 10, 11; posiciones 10, 11, 12; posiciones 11, 12, 13; posiciones 12, 13, 14; o posiciones 13, 14, 15 de la hebra antisentido, comenzando el recuento desde el 1^{er} nucleótido del extremo 5' de la hebra antisentido o comenzando el recuento desde el 1^{er} nucleótido apareado dentro de la región de dúplex del extremo 5' de la hebra antisentido. El sitio de escisión en la hebra antisentido también puede cambiar de acuerdo con la longitud de la región de dúplex de la iARN del extremo 5'.

La hebra sentido del agente de iARN puede contener al menos un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos en el sitio de escisión de la hebra; y la hebra antisentido puede tener al menos un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos en o cerca del sitio de escisión de la hebra. Cuando la hebra sentido y la hebra antisentido forman un dúplex de ARNdh, la hebra sentido y la hebra antisentido pueden alinearse de modo que un motivo de los tres nucleótidos en la hebra sentido y un motivo de los tres nucleótidos en la hebra antisentido tienen al menos una superposición de nucleótidos, es decir, al menos uno de los tres nucleótidos del motivo en la hebra sentido forma un par de bases con al menos uno de los tres nucleótidos del motivo en la hebra antisentido. Alternativamente, al menos dos nucleótidos pueden superponerse, o los tres nucleótidos pueden superponerse.

En un caso, la hebra sentido del agente de iARN puede contener más de un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos. El primer motivo debe encontrarse en o cerca del sitio de escisión de la hebra y los otros motivos pueden ser modificaciones de alas. La expresión "modificación de ala" en la presente se refiere a un motivo que ocurre en otra porción de la hebra que está separada del motivo en o cerca del sitio de escisión de la misma hebra. La modificación de ala es adyacente al primer motivo o está separada por al menos uno o más nucleótidos. Cuando los motivos son inmediatamente adyacentes entre sí la química de los motivos son distintas entre sí y cuando los motivos se separan por uno o más nucleótidos que las químicas pueden ser los mismos o diferentes. Dos o más modificaciones de alas pueden estar presentes. Por ejemplo, cuando dos modificaciones de alas están presentes, cada modificación de alas puede encontrarse en un extremo con respecto al primer motivo que está en o cerca del sitio de escisión o en cualquier lado del motivo principal.

Al igual que la hebra sentido, la hebra antisentido del agente de iARN puede contener al menos dos motivos de tres modificaciones idénticas en tres nucleótidos consecutivos, encontrándose al menos uno de los motivos en o cerca del sitio de escisión de la hebra. Esta hebra antisentido también puede contener una o más modificaciones de alas en una alineación similar a las modificaciones de alas que están presentes en la hebra sentido.

En un caso, la modificación de ala en la hebra sentido o hebra antisentido del agente de iARN típicamente no incluye el primero o dos primeros nucleótidos terminales en el extremo 3', extremo 5' o ambos extremos de la hebra.

En otro caso, la modificación de ala en la hebra sentido o hebra antisentido del agente de iARN típicamente no incluye el primero o dos nucleótidos apareados dentro de la región de dúplex en el extremo 3', extremo 5' o ambos extremos de la hebra.

Cuando la hebra sentido y la hebra antisentido del agente de iARN contienen cada una al menos una modificación de ala, las modificaciones de alas pueden encontrarse en el mismo extremo de la región de dúplex y tener una superposición de uno, dos o tres nucleótidos.

Cuando la hebra sentido y la hebra antisentido del agente de iARN contienen cada una al menos dos modificaciones de alas, la hebra sentido y la hebra antisentido pueden alinearse de modo que dos modificaciones cada una de una hebra se encuentran en un extremo de la región de dúplex, que tiene una superposición de uno, dos o tres nucleótidos; dos modificaciones cada una de una hebra se encuentran en el otro extremo de la región de dúplex, que tiene una superposición de uno, dos o tres nucleótidos; dos modificaciones de una hebra se encuentran en cada lado del motivo principal, que tiene una superposición de uno, dos o tres nucleótidos en la región de dúplex.

5

20

25

40

45

50

55

En un caso, puede modificarse cada nucleótido en la hebra sentido y la hebra antisentido del agente de iARN, incluyendo los nucleótidos que son parte de los motivos. Cada nucleótido puede modificarse con la misma o diferente modificación, que puede incluir una o más alteraciones de uno o ambos oxígenos de fosfato no de unión y/o uno o más de los oxígenos de fosfato que no son de unión; alteración de un constituyente del azúcar ribosa, por ejemplo, del 2' hidroxilo en el azúcar ribosa; reemplazo general del resto de fosfato con enlazantes "defosfo"; modificación o reemplazo de una base natural; y reemplazo o modificación de la estructura principal de ribosafosfato.

Dado que los ácidos nucleicos son polímeros de subunidades, muchas de las modificaciones ocurren en una posición que está repetida dentro de un ácido nucleico, por ejemplo, una modificación de una base, o un resto de fosfato, o un O no enlazante de un resto de fosfato. En algunos casos la modificación ocurrirá en todas las posiciones del sujeto en el ácido nucleico pero en muchos casos no. A modo de ejemplo, una modificación puede ocurrir solamente en la posición terminal 3' o 5' en una región terminal, por ejemplo, en una posición en un nucleótido terminal o en los últimos 2, 3, 4, 5 o 10 nucleótidos de una hebra. Una modificación puede ocurrir en una región de doble hebra, una región de una sola hebra o en ambas. Una modificación puede ocurrir solamente en la región de doble hebra de un ARN o puede ocurrir en una región de una sola hebra de un ARN. Por ejemplo, una modificación de fosforotioato en una posición O no enlazante puede ocurrir solamente en uno o ambos extremos terminales, puede ocurrir en una región terminal, por ejemplo, en una posición en un nucleótido terminal o en los últimos 2, 3, 4, 5 o 10 nucleótidos de una hebra, o puede ocurrir en las regiones de doble hebra y de una sola hebra, particularmente en los extremos terminales. El extremo o extremos 5' pueden estar fosforilados.

Puede que sea posible, por ejemplo, mejorar la estabilidad, para incluir bases particulares en salientes, o para incluir nucleótidos modificados o sustitutos de nucleótidos en salientes de una sola hebra, por ejemplo, en una saliente 5' o 3', o en ambas. Por ejemplo, puede ser deseable incluir nucleótidos de purina en salientes. En algunos casos todas o algunas de las bases en una saliente 3' o 5' pueden modificarse, por ejemplo, con una modificación descrita en la presente. Modificaciones pueden incluir, por ejemplo, el uso de modificaciones en la posición 2' del azúcar ribosa con modificaciones que son conocidas en la técnica, por ejemplo, el uso de desoxirribonucleótidos, 2'-desoxi-2'-fluoro (2'-F) o 2'-O-metilo modificados en lugar del riboazúcar de la nucleobase, y modificaciones en el grupo fosfato, por ejemplo, modificaciones de fosforotioato. Las salientes no necesitan ser homólogas con la secuencia objetivo.

En un caso, cada residuo de la hebra sentido y la hebra antisentido se modifica independientemente con ANB, HNA, CeNA, 2'-metoxietilo, 2'-O-metilo, 2'-O-alilo, 2'-C-alilo, 2'-desoxi, 2'-hidroxilo o 2'-fluoro. Las hebras pueden contener más de una modificación. En un caso, cada residuo de la hebra sentido y la hebra antisentido se modifica independientemente con 2'-O-metilo o 2'-fluoro.

Al menos dos modificaciones diferentes se presentan típicamente en la hebra sentido y la hebra antisentido. Dichas dos modificaciones pueden ser las modificaciones 2'-O-metilo o 2'-fluoro, u otras.

En un caso, el Na y/o N₀ comprenden modificaciones de un patrón alternado. La expresión "motivo alternado", tal como se utiliza en la presente, se refiere a un motivo que tiene una o más modificaciones, ocurriendo cada modificación en nucleótidos alternados de una hebra. El nucleótido alternado puede referirse a uno por cada otro nucleótido o uno por cada tres nucleótidos o un patrón similar. Por ejemplo, si A, B y C representan cada una un tipo de modificación del nucleótido, el motivo alternado puede ser "ABABABABABABAB", "AABBAABAABA.", "AAABAABAABAAB...", "AAABBBAAABBA...", "AAABBAABAABB...", etc.

Los tipos de modificaciones contenidas en el motivo alternado pueden ser iguales o diferentes. Por ejemplo, si A, B, C, D representan cada una un tipo de modificación en el nucleótido, el patrón alternado, es decir, las modificaciones en cada otro nucleótido, puede ser igual, pero cada una de la hebra sentido o hebra antisentido puede seleccionarse de varias posibilidades de modificaciones dentro del motivo alternado, tal como "ABABAB...", "ACACAC..." "BDBDBD..." o "CDCDCD...", etc.

En un caso, el agente de iARN de la invención comprende el patrón de modificación para el motivo alternado en la hebra sentido con respecto al patrón de modificación para el motivo alternado en la hebra antisentido se cambia. El cambio puede ser de forma tal que el grupo modificado de nucleótidos de la hebra sentido corresponde a un grupo modificado de modo diferente de nucleótidos de la hebra antisentido y viceversa. Por ejemplo, la hebra sentido cuando se aparea con la hebra antisentido en el ARNdh dúplex, el motivo alternado en la hebra sentido puede

comenzar con "ABABAB" de 5'-3' de la hebra y el motivo alternado en la hebra antisentido puede comenzar con "BABABA" de 5'-3' de la hebra dentro de la región de dúplex. Como otro ejemplo, el motivo alternado en la hebra sentido puede comenzar con "AABBAABB" de 5'-3' de la hebra y el motivo alternado en la hebra antisentido puede comenzar con "BBAABBAA" de 5'-3' de la hebra dentro de la región de dúplex, de modo que existe un cambio completo o parcial de los patrones de modificación entre la hebra sentido y la hebra antisentido.

5

10

15

20

35

40

En un caso, el agente de iARN comprende el patrón del motivo alternado de la modificación 2'-O-metilo y la modificación 2'-F en la hebra sentido inicialmente tiene un cambio con respecto al patrón del motivo alternado de la modificación 2'-O-metilo y la modificación 2'-F en la hebra antisentido inicialmente, es decir, el nucleótido 2'-O-metilo modificado en los pares de bases de hebra sentido con un nucleótido 2'-F modificado en la hebra antisentido y viceversa. La posición 1 de la hebra sentido puede comenzar con la modificación 2'-F, y la posición 1 de la hebra antisentido puede comenzar con la modificación 2'-O-metilo.

La introducción de uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos a la hebra sentido y/o hebra antisentido interrumpe el patrón de modificación inicial presente en la hebra sentido y/o hebra antisentido. La interrupción del patrón de modificación de la hebra sentido y/o antisentido mediante la introducción de uno o más motivos de tres modificaciones idénticas en tres nucleótidos consecutivos a la hebra sentido y/o antisentido mejora sorprendentemente la actividad silenciadora de genes al gen objetivo.

En un caso, cuando el motivo de tres modificaciones idénticas en tres nucleótidos consecutivos se introduce en cualquiera de las hebras, la modificación del nucleótido junto al motivo es una modificación diferente de la modificación del motivo. Por ejemplo, la porción de la secuencia que contiene el motivo es "... N_aYYYN_b ...", donde "Y" representa la modificación del motivo de tres modificaciones idénticas en tres nucleótidos consecutivos, y " N_a " y " N_b " representan una modificación al nucleótido junto al motivo "YYY" que es diferente a la modificación de Y, y donde N_a y N_b pueden ser las mismas o diferentes modificaciones. Alternativamente, N_a y/o N_b pueden estar presentes o ausentes cuando hay una modificación de la presente.

El agente de iARN puede comprender además al menos una conexión internucleotídica de fosforotioato o metilfosfonato. La modificación de la conexión internucleotídica de fosforotioato o metilfosfonato puede ocurrir en cualquier nucleótido de la hebra sentido o hebra antisentido o ambas en cualquier posición de la hebra. Por ejemplo, la modificación de la conexión internucleotídica puede ocurrir en todos los nucleótidos en la hebra sentido o hebra antisentido; cada modificación de la conexión internucleotídica puede ocurrir en un patrón alternado en la hebra sentido o hebra antisentido pueden contener las modificaciones de la conexión internucleotídica en un patrón alternado. El patrón alternado de la modificación de la conexión internucleotídica en la hebra sentido puede ser la misma o diferente de la hebra antisentido, y el patrón alternado de la modificación de la conexión internucleotídica en la hebra sentido puede tener un cambio con respecto al patrón alternado de la modificación de la conexión internucleotídica en la hebra antisentido.

En un caso, la iARN comprende la modificación de la conexión internucleotídica de fosforotioato o metilfosfonato en la región de saliente. Por ejemplo, la región saliente puede contener dos nucleótidos que tienen una conexión internucleotídica de fosforotioato o metilfosfonato entre los dos nucleótidos. Las modificaciones de la conexión internucleotídica también pueden realizarse para unir los nucleótidos salientes con los nucleótidos apareados terminales dentro de la región de dúplex. Por ejemplo, al menos 2, 3, 4 o todos los nucleótidos salientes pueden unirse a través de una conexión internucleotídica de fosforotioato o metilfosfonato y opcionalmente, puede haber conexiones internucleotídicas de fosforotioato o metilfosfonato adicionales que unen el nucleótido saliente con un nucleótido apareado que está junto al nucleótido saliente. Por ejemplo, puede haber al menos dos conexiones internucleotídicas de fosforotioato entre los tres nucleótidos terminales, en los cuales dos de los tres nucleótidos son nucleótidos salientes y el tercero es un nucleótido apareado junto al nucleótido saliente. Preferiblemente, estos tres nucleótidos terminales pueden estar en el extremo 3' de la hebra antisentido.

En un caso, el agente de iARN comprende uno o más apareamientos incorrectos con el objetivo, dentro del dúplex, o combinaciones de los mismos. El apareamiento incorrecto puede ocurrir en la región saliente o la región de dúplex. El par de bases puede puntuarse en base a su propensión para promover la disociación o fusión (por ejemplo, en la energía libre de asociación o disociación de un apareamiento particular, el abordaje más simple es para examinar los pares en un par de bases individual, aunque también puede utilizarse el vecino siguiente o un análisis similar).

En términos de promover la disociación: Se prefiere A:U a G:C; se prefiere G:U a G:C; y se prefiere I:C a G:C (I=inosina). Los apareamientos incorrectos, por ejemplo, apareamientos no canónicos u otros que no son canónicos (como se describe en otra parte de la presente) se prefieren a apareamientos canónicos (A:T, A:U, G:C); y se prefieren los apareamientos que incluyen una base universal a apareamientos canónicos.

En un caso, el agente de iARN comprende al menos uno de los primeros 1, 2, 3, 4 o 5 pares de bases dentro de las regiones de dúplex del extremo 5' de la hebra antisentido pueden seleccionarse independientemente del grupo de: A:U, G:U, I:C, y pares no coincidentes, por ejemplo, apareamientos no canónicos u otros que no son canónicos o apareamientos que incluyen una base universal, para promover la disociación de la hebra antisentido en el extremo 5' del dúplex.

En un caso, el nucleótido en la posición 1 dentro de la región de dúplex del extremo 5' en la hebra antisentido se selecciona del grupo que consiste en A, dA, dU, U y dT. Alternativamente, al menos uno de los primeros 1, 2 o 3 pares de bases dentro de la región de dúplex del extremo 5' de la hebra antisentido es un par de bases AU. Por ejemplo, el primer par de bases dentro de la región de dúplex del extremo 5' de la hebra antisentido es un par de bases AU.

En un caso, la secuencia de la hebra sentido puede representarse mediante la fórmula (I):

5'
$$n_p-N_a-(X X X)_i-N_b-Y Y Y -N_b-(Z Z Z)_i-N_a-n_q 3'$$
 (I)

en donde:

i y j son cada uno independientemente 0 o 1;

10 p y q son cada uno independientemente 0-6;

cada N_a independientemente representa una secuencia de oligonucleótidos que comprende 0-25 nucleótidos modificados, comprendiendo cada secuencia al menos dos nucleótidos modificados de diferente forma;

cada N_b independientemente representa una secuencia de oligonucleótidos que comprende 0-10 nucleótidos modificados;

15 cada n_p y n_q independientemente representan un nucleótido saliente;

en donde Nb e Y no tienen la misma modificación; y

cada XXX, YYY y ZZZ independientemente representa un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos. Preferiblemente YYY es todo de nucleótidos 2'-F modificados.

En un caso, el Na y/o Nb comprenden modificaciones de un patrón alternado.

- En un caso, el motivo YYY se encuentra en o cerca del sitio de escisión de la hebra sentido. Por ejemplo, cuando el agente de iARN tiene una región de dúplex de 17-23 nucleótidos de longitud, el motivo YYY puede estar en o cerca del sitio de escisión (por ejemplo, puede estar en las posiciones 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11,12 u 11, 12, 13) de la hebra sentido, comenzando la cuenta desde el primer nucleótido a partir del extremo 5'; u opcionalmente, comenzando la cuenta en el primer nucleótido apareado dentro de la región de dúplex, a partir del extremo 5'.
- En un caso, i es 1 y j es 0, o i es 0 y j es 1, o tanto i como j son 1. La hebra sentido puede, por lo tanto, estar representada mediante las siguientes fórmulas:

```
5'\ n_p\text{-}N_a\text{-}YYY\text{-}N_b\text{-}ZZZ\text{-}N_a\text{-}n_q\ 3'\ (Ia);
```

5' n_p - N_a -XXX- N_b -YYY- N_a - n_q 3' (Ib); o

5' n_p-N_a-XXX-N_b-YYY-N_b-ZZZ-N_a-n_q 3' (Ic).

30 Cuando la hebra sentido se representa mediante la fórmula (Ia), N₀ representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N₃ independientemente puede representar una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando la hebra sentido se representa como la fórmula (lb), N_b representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N_a independientemente puede representar una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando la hebra sentido se representa como la fórmula (Ic), cada N_b independientemente representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Preferiblemente, N_b es 0, 1, 2, 3, 4, 5 o 6. Cada N_a independientemente puede representar una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cada uno de X, Y y Z pueden ser iguales o diferentes entre sí.

En un caso, la hebra antisentido secuencia de la iARN puede representarse mediante la fórmula (II):

5'
$$n_{q'}$$
- $N_{a'}$ - $(Z'Z'Z')_k$ - $N_{b'}$ - $Y'Y'Y'$ - $N_{b'}$ - $(X'X'X')_l$ - N'_a - n_p' 3' (II)

en donde:

35

k y I son cada uno independientemente 0 o 1;

45 p' y q' son cada uno independientemente 0-6;

cada N_a′ independientemente representa una secuencia de oligonucleótidos que comprende 0-25 nucleótidos modificados, comprendiendo cada secuencia al menos dos nucleótidos modificados de diferente forma;

cada N_b ' independientemente representa una secuencia de oligonucleótidos que comprende 0-10 nucleótidos modificados:

5 cada n_o' y n_o' independientemente representan un nucleótido saliente;

en donde N_b' e Y' no tienen la misma modificación;

У

15

25

cada X'X'X', Y'Y'Y' y Z'Z'Z' independientemente representa un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos.

10 En una realización, el Na' y/o N₀' comprenden modificaciones de un patrón alternado.

El motivo Y'Y'Y' se encuentra en o cerca del sitio de escisión de la hebra antisentido. Por ejemplo, cuando el agente de iARN tiene una región de dúplex de 17-23 nt de longitud, el motivo Y'Y'Y' puede estar en las posiciones 9, 10, 11; 10, 11, 12; 11, 12, 13; 12, 13, 14; o 13, 14, 15 de la hebra antisentido, comenzando la cuenta desde el primer nucleótido a partir del extremo 5'; u opcionalmente, comenzando la cuenta en el primer nucleótido apareado dentro de la región de dúplex, a partir del extremo 5'. Preferiblemente, el motivo Y'Y'Y' se encuentra en las posiciones 11, 12, 13.

En una realización, un motivo Y'Y'Y' es todo de nucleótidos 2'-OMe modificados.

En una realización, k es 1 y l es 0, o k es 0 y l es 1, o tanto k como l son 1.

La hebra antisentido puede, por lo tanto, estar representada mediante las siguientes fórmulas:

20 5' $n_{a'}$ - $N_{a'}$ -Z'Z'Z'- $N_{b'}$ -Y'Y'Y'- $N_{a'}$ - $n_{p'}$ 3' (IIa);

5' $n_{q'}$ - N_a' -Y'Y'Y'- N_b' -X'X'X'- $n_{p'}$ 3' (IIb); o

5' $n_{q'}$ - $N_{a'}$ -Z'Z'Z'- $N_{b'}$ -Y'Y'Y'- $N_{b'}$ -X'X'X'- $N_{a'}$ - $n_{p'}$ 3' (IIc).

Cuando la hebra antisentido se representa mediante la fórmula (IIa), Nb representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada Na independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando la hebra antisentido se representa como la fórmula (IIb), N_b ' representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N_a ' independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando la hebra antisentido se representa como la fórmula (IIc), cada N_b ' independientemente representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N_a ' independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados. Preferiblemente, N_b es 0, 1, 2, 3, 4, 5 o 6.

Cada uno de X', Y' y Z' pueden ser iguales o diferentes entre sí.

- Cada nucleótido de la hebra sentido y la hebra antisentido puede modificarse independientemente con LNA, HNA, CeNA, 2'-metoxietilo, 2'-O-metilo, 2'-O-alilo, 2'-C- alilo, 2'-hidroxilo, 2'-desoxi o 2'-fluoro. Por ejemplo, cada nucleótido de la hebra sentido y la hebra antisentido se modifica independientemente con 2'-O-metilo o 2'-fluoro. Cada X, Y, Z, X', Y' y Z', en particular, puede representar una modificación 2'-O-metilo o una modificación 2'-fluoro.
- Según la invención, la hebra sentido del agente de iARN contiene un motivo YYY en las posiciones 9, 10 y 11 de la hebra cuando la región de dúplex es de 21 nt, comenzando la cuenta desde el primer nucleótido a partir del extremo 5', u opcionalmente, comenzando la cuenta en el primer nucleótido apareado dentro de la región de dúplex, a partir del extremo 5'; e Y representa una modificación 2'-F. La hebra sentido adicionalmente puede contener un motivo XXX o motivos ZZZ como modificaciones de ala en el extremo opuesto de la región de dúplex; y cada XXX y ZZZ independientemente representa una modificación 2'-OMe o modificación 2'-F.
- En una realización la hebra antisentido puede contener un motivo Y'Y'Y' en las posiciones 11, 12, 13 de la hebra, comenzando la cuenta desde el primer nucleótido a partir del extremo 5', u opcionalmente, comenzando la cuenta en el primer nucleótido apareado dentro de la región de dúplex, a partir del extremo 5'; e Y' representa una modificación 2'-O-metilo. La hebra antisentido adicionalmente puede contener un motivo X'X'X' o motivos Z'Z'Z' como modificaciones de ala en el extremo opuesto de la región de dúplex; y cada X'X'X' y Z'Z'Z' independientemente representa una modificación 2'-OMe o modificación 2'-F.

La hebra sentido representada mediante cualquiera de las fórmulas precedentes (Ia), (Ib) y (Ic) forma un dúplex con una hebra antisentido representada mediante cualquiera de las fórmulas (IIa), (IIb) y (IIc), respectivamente.

De esta forma, los agentes de iARN pueden comprender una hebra sentido y una hebra antisentido, teniendo cada hebra 14 a 30 nucleótidos, estando el dúplex de iARN representado por la fórmula (III):

5 sentido: 5' $n_p - N_a - (X X X)_i - N_b - e Y Y - N_b - (Z Z Z)_j - N_a - n_q 3'$

antisentido: 3' n_p '- N_a '- $(X'X'X')_k$ - N_b '-Y'Y'Y'- N_b '- $(Z'Z'Z')_l$ - N_a '- n_q ' 5'

(III)

en donde:

i, j, k y I son cada uno independientemente 0 o 1;

p, p', q y q' son cada uno independientemente 0-6;

cada Na y Na independientemente representa una secuencia de oligonucleótidos que comprende 0-25 nucleótidos modificados, comprendiendo cada secuencia al menos dos nucleótidos modificados de diferente forma;

cada N_b y N_b independientemente representa una secuencia de oligonucleótidos que comprende 0-10 nucleótidos modificados;

15 en donde

cada np', np, nq' y nq independientemente representa un nucleótido saliente; y

cada XXX, YYY, ZZZ, X'X'X', Y'Y'Y' y Z'Z'Z' independientemente representa un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos.

En un caso, i es 1 y j es 0; o i es 0 y j es 1; o tanto i como j son 1. En otro caso, k es 1 y l es 0; k es 0 y l es 1; o tanto 20 k como l son 1.

Combinaciones ejemplares de la hebra sentido y la hebra antisentido que forman un dúplex de iARN incluyen las siguientes fórmulas:

$$5' n_p - N_a - Y Y Y - N_b - Z Z Z - N_a - n_q 3'$$

25 (IIIa)

3'
$$n_p$$
'- N_a '- $X'X'X'-N_b$ '- $Y'Y'Y'-N_a$ '- n_q ' 5'

(IIIb)

5'
$$n_p$$
 - N_a - X X X - N_b - Y Y Y - N_b - Z Z Z - N_a - n_q 3 '

30 3' n_p '- N_a '- $X'X'X'-N_b$ '- $Y'Y'Y'-N_b$ '- $Z'Z'Z'-N_a-n_q$ ' 5'

(IIIc)

35

Cuando el agente de iARN se representa mediante la fórmula (IIIa), cada N_b independientemente representa una secuencia de oligonucleótidos que comprende 1-10, 1-7, 1-5 o 1-4 nucleótidos modificados. Cada N_a independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando el agente de iARN se representa como la fórmula (IIIb), cada N_b , N_b ' independientemente representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N_a independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados.

Cuando el agente de iARN se representa como la fórmula (IIIc), cada N_b, N_b' independientemente representa una secuencia de oligonucleótidos que comprende 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 o 0 nucleótidos modificados. Cada N_a, N_a' independientemente representa una secuencia de oligonucleótidos que comprende 2-20, 2-15 o 2-10 nucleótidos modificados. Cada uno de N_a, N_a', N_b y N_b' independientemente comprende modificaciones de un patrón alternado.

Cada X, Y y Z en la fórmulas (III), (IIIa), (IIIb) y (IIIc) pueden ser iguales o diferentes entre sí.

5

20

25

30

35

40

45

50

55

Cuando el agente de iARN se representa mediante la fórmula (III), (IIIa), (IIIb) o (IIIc), al menos uno de los nucleótidos Y puede formar un par de bases con uno de los nucleótidos Y'. De forma alternativa, al menos dos de los nucleótidos Y forman pares de bases con los correspondientes nucleótidos Y'; o los tres nucleótidos Y todos forman pares de bases con los correspondientes nucleótidos Y'.

Cuando el agente de iARN se representa mediante la fórmula (IIIa) o (IIIc), al menos uno de los nucleótidos Z puede formar un par de bases con uno de los nucleótidos Z'. De forma alternativa, al menos dos de los nucleótidos Z forman pares de bases con los correspondientes nucleótidos Z'; o los tres nucleótidos Z forman pares de bases con los correspondientes nucleótidos Z'.

Cuando el agente de iARN se representa como la fórmula (IIIb) o (IIIc), al menos uno de los nucleótidos X puede formar un par de bases con uno de los nucleótidos X'. De forma alternativa, al menos dos de los nucleótidos X forman pares de bases con los correspondientes nucleótidos X'; o los tres nucleótidos X todos forman pares de bases con los correspondientes nucleótidos X'.

En un caso, la modificación en el nucleótido Y es diferente de la modificación en el nucleótido Y', la modificación en el nucleótido Z' y/o la modificación en el nucleótido X es diferente de la modificación en el nucleótido X'.

En un caso, el agente de iARN es un multímero que contiene al menos dos dúplex representados por la fórmula (III), (IIIa), (IIIb) o (IIIc), en donde los dúplex están conectados mediante un enlazante. El enlazante puede ser escindible o no escindible. Opcionalmente, el multímero adicionalmente comprende un ligando. Cada uno de los dúplex puede dirigirse al mismo gen o dos genes diferentes; o cada uno de los dúplex puede dirigirse al mismo gen en dos sitios objetivo diferentes.

En un caso, el agente de iARN es un multímero que contiene tres, cuatro, cinco, seis o más dúplex representados por la fórmula (III), (IIIa), (IIIb) o (IIIc), en donde los dúplex están conectados mediante un enlazante. El enlazante puede ser escindible o no escindible. Opcionalmente, el multímero adicionalmente comprende un ligando. Cada uno de los dúplex puede dirigirse al mismo gen o dos genes diferentes; o cada uno de los dúplex puede dirigirse al mismo gen en dos sitios objetivo diferentes.

En un caso, dos agentes de iARN representados mediante la fórmula (III), (IIIa), (IIIb) o (IIIc) están enlazados entre sí en el extremo 5', y uno o ambos de los extremos 3' se conjugan opcionalmente con un ligando. Cada uno de los agentes puede dirigirse al mismo gen o dos genes diferentes; o cada uno de los agentes puede dirigirse al mismo gen en dos sitios objetivo diferentes.

Varias publicaciones describen agentes de iARN multiméricos. Dichas publicaciones incluyen los documentos WO2007/091269, Patente de los Estados Unidos No. 7858769, WO2010/141511, WO2007/117686, WO2009/014887 y WO2011/031520.

El agente de iARN que contiene conjugaciones de uno o más restos de carbohidratos con un agente de iARN puede optimizar una o más propiedades del agente de iARN. En muchos casos, el resto de carbohidrato estará unido a una subunidad modificada del agente de iARN. Por ejemplo, el azúcar ribosa de una o más subunidades de ribonucleótidos de un agente de ARNdh puede reemplazarse por otro resto, por ejemplo, un portador no carbohidrato (preferiblemente cíclico) al cual se une un ligando de carbohidrato. Una subunidad de ribonucleótidos en la cual el azúcar ribosa de la subunidad se ha reemplazado de este modo se denomina en la presente como una subunidad de modificación de reemplazo de ribosa (SMRR). Un portador cíclico puede ser un sistema de anillos carbocíclico, es decir, todos los átomos del anillo son átomos de carbono, o un sistema de anillos heterocíclico, es decir, uno o más átomos del anillo pueden ser un heteroátomo, por ejemplo, nitrógeno, oxígeno, azufre. El portador cíclico puede ser un sistema de anillos monocíclico, o puede contener dos o más anillos, por ejemplo, anillos fusionados. El portador cíclico puede ser un sistema de anillos completamente saturados, o puede contener uno o más enlaces dobles.

El ligando puede estar unido al polinucleótido a través de un portador. Los portadores incluyen (i) al menos un "punto de unión de estructura principal", preferiblemente dos "puntos de unión de estructura principal" y (ii) al menos un "punto de unión de conexión". Un "punto de unión a estructura principal" tal como se utiliza en la presente se refiere a un grupo funcional, por ejemplo, un grupo hidroxilo o, generalmente, un enlace disponible para, y que es adecuado para la incorporación del portador en la estructura principal, por ejemplo, el fosfato, o fosfato modificado, por ejemplo, azufre que contiene, estructura principal, de un ácido ribonucleico. Un "punto de unión de conexión" (TAP) en algunas realizaciones se refiere a un átomo de anillo constituyente del portador cíclico, por ejemplo, un átomo de carbono o un heteroátomo (distinto de un átomo que proporciona un punto de unión de estructura principal) que conecta un resto seleccionado. El resto puede ser, por ejemplo, un carbohidrato, por ejemplo, monosacárido, disacárido, tetrasacárido, oligosacárido y polisacárido. Opcionalmente, el resto seleccionado se conecta mediante una conexión interviniente al portador cíclico. Por lo tanto, el portador cíclico a menudo incluirá un grupo funcional, por ejemplo, un grupo amino, o generalmente proporcionará un enlace que es adecuado para la incorporación o conexión de otra entidad química, por ejemplo, un ligando al anillo constituyente.

Los agentes de iARN pueden conjugarse con un ligando mediante un portador, en donde el portador puede ser un grupo cíclico o acíclico; preferiblemente, el grupo cíclico se selecciona de pirrolidinilo, pirazolinilo, pirazolidinilo, imidazolinilo, imidazolidinilo, piperidinilo, piperazinilo, [1,3]dioxolano, oxazolidinilo, isoxazolidinilo, morfolinilo, tiazolidinilo, isotiazolidinilo, quinoxalinilo, piridazinonilo, tetrahidrofurilo y decalino; preferiblemente, el grupo acíclico se selecciona de estructura principal de serinol o estructura principal dietanolamina.

```
En algunas realizaciones específicas, el agente de iARN de la invención es un agente que se selecciona del grupo
       de agentes que figuran en la Tabla 1 y consiste en D1000, D1001, D1002, D1003, D1004, D1005, D1006, D1007.
       D1008, D1009, D1010, D1011, D1012, D1013, D1014, D1015, D1016, D1017, D1018, D1019, D1020, D1021, D1022, D1023, D1024, D1025, D1026, D1027, D1028, D1029, D1030, D1031, D1032, D1033, D1034, D1035,
10
       D1036, D1037, D1038, D1039, D1040, D1041, D1042, D1043, D1044, D1045, D1046, D1047, D1048, D1049,
       D1050, D1051, D1052, D1053, D1054, D1055, D1056, D1057, D1058, D1059, D1060, D1061, D1062, D1063,
       D1064, D1065, D1066, D1067, D1068, D1069, D1070, D1071, D1072, D1073, D1074, D1075, D1076, D1077,
       D1078, D1079, D1080, D1081, D1082, D1083, D1084, D1085, D1086, D1087, D1088, D1089, D1090, D1091, D1092, D1093, D1094, D1095, D1096, D1097, D1098, D1099, D1100, D1101, D1102, D1103, D1104, D1105, D1106, D1107, D1108, D1109, D1111, D1112, D1113, D1114, D1115, D1116, D1117, D1118, D1119,
15
       D1120, D1121, D1122, D1123, D1124, D1125, D1126, D1127, D1128, D1129, D1130, D1131, D1132, D1133,
       D1134, D1135, D1136, D1137, D1138, D1139, D1140, D1141, D1142, D1143, D1144, D1145, D1146, D1147,
       D1148, D1149, D1150, D1151, D1152, D1153, D1154, D1155, D1156, D1157, D1158, D1159, D1160, D1161,
       D1162, D1163, D1164, D1165, D1166, D1167, D1168, D1169, D1170, D1171, D1172, D1173, D1174, D1175,
       D1176, D1177, D1178, D1179, D1180, D1181, D1182, D1183, D1184, D1185, D1186, D1187, D1188, D1189,
20
       D1190, D1191, D1192, D1193, D1194, D1195, D1196, D1197, D1198, D1199, D1200, D1201, D1202, D1203, D1204, D1205, D1206, D1207, D1208, D1209, D1210, D1211, D1212, D1213, D1214, D1215, D1216, D1217,
       D1218, D1219, D1220, D1221, D1222, D1223, D1224, D1225, D1226, D1227, D1228, D1229, D1230, D1231,
       D1232, D1233, D1234, D1235, D1236, D1237, D1238, D1239, D1240, D1241, D1242, D1243, D1244, D1245,
25
       D1246, D1247, D1248, D1249, D1250, D1251, D1252, D1253, D1254, D1255, D1256, D1257, D1258, D1259,
       D1260, D1261, D1262, D1263, D1264, D1265, D1266, D1267, D1268, D1269, D1270, D1271, D1272, D1273, D1274, D1275, D1276, D1277, D1278, D1279, D1280, D1281, D1282, D1283, D1284, D1285, D1286, D1287,
       D1288, D1289, D1290, D1291, D1292, D1293, D1294, D1295, D1296, D1297, D1298, D1299, D1300, D1301,
       D1302, D1303, D1304, D1305, D1306, D1307, D1308, D1309, D1310, D1311, D1312, D1313, D1314, D1315,
       D1316, D1317, D1318, D1319, D1320, D1321, D1322, D1323, D1324, D1325, D1326, D1327, D1328, D1329,
30
       D1330, D1331, D1332, D1333, D1334, D1335, D1336, D1337, D1338, D1339, D1340, D1341, D1342, D1343,
       D1344, D1345, D1346, D1347, D1348, D1349, D1350, D1351, D1352, D1353, D1354, D1355, D1356, D1357,
       D1358, D1359, D1360, D1361, D1362, D1363, D1364, D1365, D1366, D1367, D1368, D1369, D1370, D1371,
       D1372, D1373, D1374, D1375, D1376, D1377, D1378, D1379, D1380, D1381, D1382, D1383, D1384, D1385, D1386, D1387, D1388, D1389, D1390, D1391, D1392, D1393, D1394, D1395, D1396, D1397, D1398, D1399,
35
       D1400, D1401, D1402, D1403, D1404, D1405, D1406, D1407, D1408, D1409, D1410, D1411, D1412, D1413,
       D1414, D1415, D1416, D1417, D1418, D1419, D1420, D1421, D1422, D1423, D1424, D1425, D1426, D1427,
       D1428, D1429, D1430, D1431, D1432, D1433, D1434, D1435, D1436, D1437, D1438, D1439, D1440, D1441, D1442, D1443, D1444, D1445, D1446, D1447, D1448, D1449, D1450, D1451, D1452, D1453, D1454, D1455, D1456, D1457, D1458, D1459, D1460, D1461, D1462, D1463, D1464, D1465, D1466, D1467, D1468, D1469,
       D1470, D1471, D1472, D1473, D1474, D1475, D1476, D1477, D1478, D1479, D1480, D1481, D1482, D1483,
       D1484, D1485, D1486, D1487, D1488, D1489, D1490, D1491, D1492, D1493, D1494, D1495, D1496, D1497,
       D1498, D1499, D1500, D1501, D1502, D1503, D1504, D1505, D1506, D1507, D1508, D1509, D1510, D1511,
       D1512, D1513, D1514, D1515, D1516, D1517, D1518, D1519, D1520, D1521, D1522, D1523, D1524, D1525,
       D1526, D1527, D1528, D1529, D1530, D1531, D1532, D1533, D1534, D1535, D1536, D1537, D1538, D1539, D1540, D1541, D1542, D1543, D1544, D1545, D1546, D1547, D1548, D1549, D1550, D1551, D1552, D1553, D1554, D1555, D1556, D1557, D1558, D1559, D1560, D1561, D1562, D1563, D1564, D1565, D1566, D1567,
45
       D1568, D1569, D1570, D1571, D1572, D1573, D1574, D1575, D1576, D1577, D1578, D1579, D1580, D1581,
       D1582, D1583, D1584, D1585, D1586, D1587, D1588, D1589, D1590, D1591, D1592, D1593, D1594, D1595,
50
       D1596, D1597, D1598, D1599, D1600, D1601, D1602, D1603, D1604, D1605, D1606, D1607, D1608, D1609,
       D1610, D1611, D1612, D1613, D1614, D1615, D1616, D1617, D1618, D1619, D1620, D1621, D1622, D1623,
       D1624, D1625, D1626, D1627, D1628, D1629, D1630, D1631, D1632, D1633, D1634, D1635, D1636, D1637,
       D1638, D1639, D1640, D1641, D1642, D1643, D1644, D1645, D1646, D1647, D1648, D1649, D1650, D1651,
       D1652, D1653, D1654, D1655, D1656, D1657, D1658, D1659, D1660, D1661, D1662, D1663, D1664, D1665,
       D1666, D1667, D1668, D1669, D1670, D1671, D1672, D1673, D1674, D1675, D1676, D1677, D1678, D1679,
55
       D1680, D1681, D1682, D1683, D1684, D1685, D1686, D1687, D1688, D1689, D1690, D1691, D1692, D1693,
       D1694, D1695, D1696, D1697, D1698, D1699, D1700, D1701, D1702, D1703, D1704, D1705, D1706, D1707,
       D1708, D1709, D1710, D1711, D1712, D1713, D1714, D1715, D1716, D1717, D1718, D1719, D1720, D1721,
       D1722, D1723, D1724, D1725, D1726, D1727, D1728, D1729, D1730, D1731, D1732, D1733, D1734, D1735, D1736, D1737, D1738, D1739, D1740, D1741, D1742, D1743, D1744, D1745, D1746, D1747, D1748, D1749,
60
       D1750, D1751, D1752, D1753, D1754, D1755, D1756, D1757, D1758, D1759, D1760, D1761, D1762, D1763,
       D1764, D1765, D1766, D1767, D1768, D1769, D1770, D1771, D1772, D1773, D1774, D1775, D1776, D1777,
       D1778, D1779, D1780, D1781, D1782, D1783, D1784, D1785, D1786, D1787, D1788, D1789, D1790, D1791,
       D1792, D1793, D1794, D1795, D1796, D1797, D1798, D1799, D1800, D1801, D1802, D1803, D1804, D1805,
       D1806, D1807, D1808, D1809, D1810, D1811, D1812, D1813, D1814, D1815, D1816, D1817, D1818, D1819,
65
```

```
D1820, D1821, D1822, D1823, D1824, D1825, D1826, D1827, D1828, D1829, D1830, D1831, D1832, D1833,
       D1834, D1835, D1836, D1837, D1838, D1839, D1840, D1841, D1842, D1843, D1844, D1845, D1846, D1847,
       D1848, D1849, D1850, D1851, D1852, D1853, D1854, D1855, D1856, D1857, D1858, D1859, D1860, D1861,
       D1862, D1863, D1864, D1865, D1866, D1867, D1868, D1869, D1870, D1871, D1872, D1873, D1874, D1875, D1876, D1877, D1878, D1879, D1880, D1881, D1882, D1883, D1884, D1885, D1886, D1887, D1888, D1889,
       D1890, D1891, D1892, D1893, D1894, D1895, D1896, D1897, D1898, D1899, D1900, D1901, D1902, D1903,
       D1904, D1905, D1906, D1907, D1908, D1909, D1910, D1911, D1912, D1913, D1914, D1915, D1916, D1917,
       D1918, D1919, D1920, D1921, D1922, D1923, D1924, D1925, D1926, D1927, D1928, D1929, D1930, D1931,
       D1932, D1933, D1934, D1935, D1936, D1937, D1938, D1939, D1940, D1941, D1942, D1943, D1944, D1945,
       D1946, D1947, D1948, D1949, D1950, D1951, D1952, D1953, D1954, D1955, D1956, D1957, D1958, D1959, D1960, D1961, D1962, D1963, D1964, D1965, D1966, D1967, D1968, D1969, D1970, D1971, D1972, D1973,
10
       D1974, D1975, D1976, D1977, D1978, D1979, D1980, D1981, D1982, D1983, D1984, D1985, D1986, D1987,
       D1988, D1989, D1990, D1991, D1992, D1993, D1994, D1995, D1996, D1997, D1998, D1999, D2000, D2001,
       D2002, D2003, D2004, D2005, D2006, D2007, D2008, D2009, D2010, D2011, D2012, D2013, D2014, D2015,
       D2016, D2017, D2018, D2019, D2020, D2021, D2022, D2023, D2024, D2025, D2026, D2027, D2028, D2029,
15
       D2030, D2031, D2032, D2033, D2034, D2035, D2036, D2037, D2038, D2039, D2040, D2041, D2042, D2043,
       D2044, D2045, D2046, D2047, D2048, D2049, D2050, D2051, D2052, D2053, D2054, D2055, D2056, D2057, D2058, D2059, D2060, D2061, D2062, D2063, D2064, D2065, D2066, D2067, D2068, D2069, D2070, D2071,
       D2072, D2073, D2074, D2075, D2076, D2077, D2078, D2079, D2080, D2081, D2082, D2083, D2084, D2085,
20
       D2086, D2087, D2088, D2089, D2090 y D2091.
```

Estos agentes pueden comprender, además, un ligando, tal como un ligando GalNAc.

Ligandos

Los agentes de iARN de la divulgación, por ejemplo, agentes de iARN de doble hebra, pueden estar conjugados opcionalmente a uno o más ligandos. El ligando puede estar unido a la hebra sentido, hebra antisentido o ambas hebras, en el extremo 3', extremo 5' o ambos extremos. Por ejemplo, el ligando puede estar conjugado con la hebra sentido. En realizaciones preferidas, el ligando se conjuga al extremo 3' de la hebra sentido. En los agentes de iARN de la invención, el ligando es un ligando GalNAc. En realizaciones particularmente preferidas, el ligando es GalNAc3:

30

25

Una amplia variedad de entidades pueden acoplarse a los agentes de iARN de la presente invención. Restos preferidos son ligandos, que están acoplados, preferiblemente covalentemente, ya sea directamente o indirectamente a través de una conexión interviniente.

35 p

Un ligando puede alterar la distribución, objetivo o vida de la molécula a la cual está incorporada. En casos preferidos un ligando proporciona una afinidad mejorada para un objetivo seleccionado, por ejemplo, molécula, célula o tipo de célula, compartimiento, receptor, por ejemplo, un compartimiento celular o de órgano, tejido, órgano o región del cuerpo, como, por ejemplo, en comparación con una especie ausente tal como un ligando. Los ligandos que proporcionan afinidad mejorada para un objetivo seleccionado también se denominan ligandos dirigidos.

40

Algunos ligandos pueden tener propiedades endosomolíticas. Los ligandos endosomolíticos promueven la lisis del endosoma y/o transporte de la composición de la invención, o sus componentes, del endosoma al citoplasma de la célula. El ligando endosomolítico puede ser un péptido polianiónico o peptidomimético que muestra una actividad de membrana dependiente de pH y fusogenecidad. En una realización, el ligando endosomolítico asume su conformación activa en el pH endosomal. La conformación "activa" es la conformación en la cual el ligando endosomolítico promueve la lisis del endosoma y/o el transporte de la composición de la invención, o sus

componentes, del endosoma al citoplasma de la célula. Ligandos endosomolíticos ejemplares incluyen el péptido GALA (Subbarao *et al.*, *Biochemistry*, 1987, 26: 2964-2972), el péptido EALA (Vogel *et al.*, *J. Am. Chem. Soc.*, 1996, 118: 1581-1586) y sus derivados (Turk *et al.*, *Biochem. Biophys. Acta*, 2002, 1559: 56-68). En una realización, el componente endosomolítico puede contener un grupo químico (por ejemplo, un aminoácido) que se someterá a un cambio en la carga o protonación en respuesta a un cambio en el pH. El componente endosomolítico puede ser lineal o ramificado.

5

10

30

50

55

Los ligandos pueden mejorar el transporte, hibridación y propiedades de especificidad y pueden mejorar también la resistencia de nucleasa del oligorribonucleótido modificado o natural resultante o una molécula polimérica que comprende cualquier combinación de monómeros descrita en la presente y/o ribonucleótidos modificados o naturales.

Los ligandos en general pueden incluir modificantes terapéuticos, por ejemplo, para mejorar la captación; compuestos diagnósticos o grupos reporteros por ejemplo, para monitorear la distribución; agentes de reticulación y restos que confieren resistencia a la nucleasa. Ejemplos generales incluyen lípidos, esteroides, vitaminas, azúcares, proteínas, péptidos, poliaminas e imitaciones de péptidos.

Los ligandos pueden incluir una sustancia natural, tal como una proteína (por ejemplo, albúmina de suero humano (HSA), lipoproteína de baja densidad (LDL), lipoproteína de alta densidad (HDL) o globulina); un carbohidrato (por ejemplo, un dextrano, pululano, quitina, quitosano, inulina, ciclodextrina o ácido hialurónico); o un lípido. El ligando también puede ser una molécula recombinante o sintética, tal como un polímero sintético, por ejemplo, un ácido de poliamina sintético, un oligonucleótido (por ejemplo, un aptámero). Ejemplos de ácidos de poliamina incluyen ácido de poliamina es una polilisina (PLL), poli L-ácido aspártico, poli L-ácido glutámico, copolímero de anhídrido de estireno-ácido maleico, copolímero poli(L-láctido-co-glicólido), copolímero de anhídrido de éter maleico, copolímero de N-(2-hidroxipropil)metacrilamida (HMPA), polietilenglicol (PEG), alcohol polivinílico (PVA), poliuretano, poli(2-ácido etilacrílico), polímeros de N-isopropilacrilamida o polifosfazina. Ejemplo de poliaminas incluye: polietilenimina, polilisina (PLL), espermina, espermidina, poliamina, pseudopéptido-poliamina, poliamina peptidomimética, poliamina de dendrímero, arginina, amidina, protamina, lípido catiónico, porfirina catiónica, sal cuaternaria de una poliamina o un péptido helicoidal alfa.

Los ligandos también pueden incluir grupos dirigidos, por ejemplo, un agente que se dirige a células o tejido, por ejemplo, una lectina, glicoproteína, lípido o proteína, por ejemplo, un anticuerpo, que se une a un tipo de célula específico tal como una célula de riñón. Un grupo dirigido puede ser una tirotropina, melanotropina, lectina, glicoproteína, proteína A tensioactiva, carbohidrato de mucina, lactosa multivalente, galactosa multivalente, N-acetilgalactosamina, manosa multivalente de N-acetil-gulucosamina, fucosa multivalente, poliaminoácidos glicosilados, galactosa multivalente, transferrina, bifosfonato, poliglutamato, poliaspartato, un lípido, colesterol, un esteroide, ácido biliar, folato, vitamina B12, biotina, un péptido RGD, una imitación de un péptido RGD o un aptámero.

Otros ejemplos de ligandos incluyen tintes, agentes intercalantes (por ejemplo, acridinas), reticuladores (por ejemplo, psoraleno, mitomicina C), porfirinas (TPPC4, texafirina, Sapphirina), hidrocarburos aromáticos policíclicos (por ejemplo, fenazina, dihidrofenazina), endonucleasas artificiales o un quelante (por ejemplo, EDTA), moléculas lipofílicas, por ejemplo, colesterol, ácido cólico, ácido adamantano acético, 1-ácido butírico de pireno, dihidrotestosterona, 1,3-Bis-O(hexadecil)glicerol, grupo geraniloxihexilo, hexadecilglicerol, borneol, mentol, 1,3-propanediol, grupo heptadecilo, ácido palmítico, ácido mirístico, ácido O3-(oleoil)litocólico, ácido O3-(oleoil)colénico, dimetoxitritilo, o fenoxazina) y conjugados peptídicos (por ejemplo, péptido antennapedia, péptido Tat), agentes alquilantes, fosfato, amino, mercapto, PEG (por ejemplo, PEG-40K), MPEG, [MPEG]₂, poliamino, alquilo, alquilo sustituido, marcadores radioetiquetados, enzimas, haptenos (por ejemplo, biotina), facilitadores de transporte/absorción (por ejemplo, aspirina, vitamina E, ácido fólico), ribonucleasas sintéticas (por ejemplo, imidazol, bisimidazol, histamina, agrupamientos de imidazol, conjugados acridina-imidazol, complejos Eu3+ de tetraazamacrociclos), dinitrofenilo, HRP o AP.

Los ligandos pueden ser proteínas, por ejemplo, glicoproteínas o péptidos, por ejemplo, moléculas que tienen una afinidad específica para un co-ligando, o anticuerpos por ejemplo, un anticuerpo, que se une a un tipo de célula específica tal como una célula cancerosa, célula endotelial o célula ósea. Los ligandos también incluyen hormonas y receptoras de hormonas. Ellos también pueden incluir especies no peptídicas, tales como lípidos, lectinas, carbohidratos, vitaminas, cofactores, lactosa multivalente, galactosa multivalente, N-acetil-galactosamina, manosa multivalente de N-acetil-gulucosamina, fucosa multivalente o aptámeros. El ligando puede ser, por ejemplo, un lipopolisacárido, un activador de quinasa p38 MAP o un activador de NF-kB.

El ligando puede ser una sustancia, por ejemplo, un fármaco, que puede aumentar la captación del agente de iARN en la célula, por ejemplo, mediante la alteración del citoesqueleto de la célula, por ejemplo, mediante la alteración de los microtúbulos, microfilamentos y/o filamentos intermedios de la célula. El fármaco puede ser, por ejemplo, taxón, vincristina, vinblastina, citocalasina, nocodazol, japlakinólido, latrunculina A, faloidina, swinholida A, indanocina o mioservina.

El ligando puede aumentar la captación del oligonucleótido en la célula mediante, por ejemplo, la activación de una respuesta inflamatoria. Ligandos ejemplares que tendrían dicho efecto incluyen el factor de necrosis tumoral alfa (TNFalfa), interleuquina-1 beta o interferón gamma.

En un aspecto, el ligando es un lípido o molécula en base a lípidos. Dicho lípido o molécula a base de lípidos se une preferiblemente a una proteína de suero, por ejemplo, albúmina de suero humano (HSA). Un ligando de unión a HSA permite la distribución del conjugado a un tejido objetivo, por ejemplo, un tejido objetivo no renal del cuerpo. Por ejemplo, el tejido objetivo puede ser el hígado, incluyendo células parenquimales del hígado. Otras moléculas que pueden unirse a HSA también pueden utilizarse como ligandos. Por ejemplo, también puede utilizarse naproxeno o aspirina. Un lípido o ligando en base a lípidos puede (a) aumentar la resistencia a la degradación del conjugado, (b) aumentar el direccionamiento o transporte en una célula objetivo o membrana celular y/o (c) puede utilizarse para ajustar la unión a una proteína de suero, por ejemplo, HSA.

5

10

15

25

30

35

40

45

50

55

60

Un ligando en base a lípidos puede utilizarse para modular, por ejemplo, controlar la unión del conjugado a un tejido objetivo. Por ejemplo, será menos probable que un lípido o ligando en base a lípidos que se une a HSA más fuertemente sea dirigido al riñón y de este modo menos probable que sea eliminado del cuerpo. Un lípido o ligando en base a lípidos que se une a HSA menos fuertemente puede utilizarse para dirigir el conjugado al riñón.

En un caso preferido, el ligando en base a lípidos se une a HSA. Preferiblemente, se une a HSA con una afinidad suficiente de modo que el conjugado se distribuirá preferiblemente a un tejido no renal. Sin embargo, se prefiere que la afinidad no sea tan fuerte que la unión HSA-ligando no pueda revertirse.

En otro caso preferido, el ligando en base a lípidos se une a HSA levemente o no se une en absoluto, de modo que el conjugado se distribuirá preferiblemente al riñón. Otros restos que se dirigen a las células de riñón también pueden utilizarse en lugar o además del ligando en base a lípidos.

En otro aspecto, el ligando es un resto, por ejemplo, una vitamina, que es captado por una célula objetivo, por ejemplo, una célula proliferante. Estas son particularmente útiles para tratar trastornos caracterizados por la proliferación de células no deseadas, por ejemplo, del tipo maligno o no maligno, por ejemplo, células cancerosas. Vitaminas ejemplares incluyen vitamina A, E y K. Otras vitaminas ejemplares incluyen vitaminas B, por ejemplo, ácido fólico, B12, riboflavina, biotina, piridoxal u otras vitaminas o nutrientes captados por células cancerosas. También se incluyen HAS, lipoproteína de baja densidad (LDL) y lipoproteína de alta densidad (HDL).

En otro aspecto, el ligando es un agente de permeación de células, preferiblemente un agente de permeación de células helicoidales. Preferiblemente, el agente es anfipático. Un agente ejemplar es un péptido tal como tat o antennopedia. Si el agente es un péptido, puede modificarse, incluyendo un peptidomimético, invertómeros, conexiones no peptídicas o pseudo-peptídicas, y el uso de D-aminoácidos. El agente helicoidal es preferiblemente un agente alfa-helicoidal, que preferiblemente tiene una fase lipofílica y una fase lipófoba.

El ligando puede ser un péptido o peptidomimético. Un peptidomimético (también denominado en la presente como un oligopeptidomimético) es una molécula capaz de plegarse en una estructura tridimensional definida similar a un péptido natural. El péptido o resto peptidomimético puede ser de aproximadamente 5-50 aminoácido de longitud, por ejemplo, aproximadamente 5, 10, 15, 20, 25, 30, 35, 40, 45 o 50 aminoácidos de longitud. Un péptido o peptidomimético puede ser, por ejemplo, un péptido de permeación de células, péptido catiónico, péptido anfipático o péptido hidrófobo (por ejemplo, que consiste principalmente en Tyr, Trp o Phe). El resto peptídico puede ser un péptido dendrímero, péptido restringido o péptido reticulado. En otra alternativa, el resto peptídico puede incluir una secuencia de translocación de membrana hidrófoba (MTS). Un péptido que contiene MTS hidrófoba ejemplar es RFGF que tiene la secuencia de aminoácidos AAVALLPAVLLALLAP (SEQ ID NO:4). Un análogo RFGF (por ejemplo, secuencia de aminoácidos AALLPVLLAAP) (SEQ ID NO:5) que contiene una MTS hidrófoba también puede ser un resto dirigido. El resto peptídico puede ser un péptido "de suministro", que puede portar moléculas polares grandes, incluyendo péptidos, oligonucleótidos y proteína en las membranas celulares. Por ejemplo, se ha encontrado que las secuencias de la proteína Tat VIH (GRKKRRQRRRPPQ) (SEQ ID NO:6) y la proteína Drosophila Antennapedia (RQIKIWFQNRRMKWKK) (SEQ ID NO:7) son capaces de funcionar como péptidos de suministro. Un péptido o peptidomimético puede codificarse mediante una secuencia aleatoria de ADN, de modo que un péptido identificado de una biblioteca que expresa bacteriófagos o una biblioteca combinatoria una-perla-un-compuesto (OBOC) (Lam et al., Nature, 354:82-84, 1991). Preferiblemente el péptido o peptidomimético conectado a un agente de iARN a través de una unidad de monómero incorporado es un péptido que se dirige a una célula tal como un péptido arginina-glicina-ácido aspártico (RGD) o imitación de RGD. Un resto peptídico puede estar en el rango de longitud de aproximadamente 5 aminoácidos a aproximadamente 40 aminoácidos. Los restos de péptido pueden tener una modificación estructural, tal como para aumentar la estabilidad o dirigir propiedades conformacionales. Puede utilizarse cualquiera de las modificaciones estructurales descritas más adelante. Un resto peptídico RGD puede utilizarse para dirigirse a una célula tumoral, tal como una célula tumoral endotelial o una célula tumoral de cáncer de mama (Zitzmann et al., Cancer Res., 62:5139-43, 2002). Un péptido RGD puede facilitar el direccionamiento de un agente de iARN a tumores de una variedad de otros tejidos, incluyendo el pulmón, riñón, bazo o hígado (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Preferiblemente, el péptido RGD facilitará el direccionamiento de un agente de iARN al riñón. El péptido RGD puede ser lineal o cíclico y se puede modificar, por ejemplo, glicosilar o metilar, para facilitar el direccionamiento a tejidos específicos. Por ejemplo, un péptido RGD

glicosilado puede suministrar un agente de iARN a una célula tumoral que expresa ανβ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001). Pueden utilizarse los péptidos que los marcadores objetivos enriquecieron en células proliferantes. Por ejemplo, el RGD que contiene péptidos y peptidomiméticos puede dirigirse a células cancerosas, en particular células que exhiben una integrina. Por lo tanto, uno puede utilizar péptidos RGD, péptidos cíclicos que contienen RGD, péptidos RGD que incluyen D-aminoácidos, así como imitaciones RGD sintéticas. Además de RGD, uno puede utilizar restos que se dirigen al ligando de integrina. Generalmente, dichos ligandos pueden utilizarse para controlar células proliferantes y angiogénesis. Conjugados preferidos de este tipo de ligando se dirigen a PECAM-1, VEGF u otro gen canceroso, por ejemplo, un gen canceroso descrito en la presente.

Un "péptido de permeación celular" es capaz de permear una célula, por ejemplo, una célula microbiana, tal como una célula bacteriana o fúngica, o una célula de mamífero, tal como una célula humana. Un péptido de permeación celular microbiana puede ser, por ejemplo, un péptido lineal α-helicoidal (por ejemplo, LL-37 o Ceropina P1), un péptido que contiene un enlace de disulfuro (por ejemplo, α -defensina, β-defensina o bactenecina), o un péptido que contiene solamente uno o dos aminoácidos dominantes (por ejemplo, PR-39 o indolicidina). Un péptido de permeación celular también puede incluir una señal de localización nuclear (NLS). Por ejemplo, un péptido de permeación celular puede ser un péptido anfipático bipartita, tal como MPG, que se deriva del dominio de péptido de fusión de VIH-1 gp41 y la NLS del antígeno T grande SV40 (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).

En un caso, un péptido dirigido puede ser un péptido α -helicoidal anfipático. Péptidos α -helicoidales anfipáticos ejemplares incluyen, a modo no taxativo, cecropinas, licotoxinas, paradaxinas, buforina, CPF, péptido similar a bombinina (BLP), catelicidinas, ceratotoxinas, péptidos S. clava, péptidos antimicrobianos intestinales de mixinos (HFIAPs), magaininas, brevininas-2, dermaseptinas, melitinas, pleurocidina, péptidos H_2A , péptidos Xenopus, esculentinis-1 y caerinas. Una cantidad de factores se considerarán preferiblemente para mantener la integridad de la estabilidad de la hélice. Por ejemplo, se utilizará una cantidad máxima de residuos de estabilización de hélice (por ejemplo, leu, ala o lys) y se utilizará una cantidad mínima de residuos de desestabilización de hélice (por ejemplo, prolina o unidades monoméricas cíclicas). Se considerará el residuo protector (por ejemplo Gly es un residuo protector de N ejemplar y/o puede utilizarse la amidación del extremo C para proporcionar un enlace H extra para estabilizar la hélice. La formación de puentes salinos entre los residuos con cargas opuestas, separados por las posiciones i ± 3 o i ± 4 pueden proporcionar estabilidad. Por ejemplo, residuos catiónicos tales como lisina, arginina, homo-arginina, ornitina o histidina pueden formar puentes salinos con los residuos aniónicos glutamato o aspartato.

20

25

30

35

40

Los ligandos de péptido y peptidomimético incluyen aquellos que tienen péptidos naturales o modificados, por ejemplo, péptidos D o L; péptidos α, β o γ; péptidos N-metilos; azapéptidos; péptidos que tienen una o más amidas, es decir, péptido, conexiones reemplazadas con uno o más urea, tiourea, carbamato o conexiones de urea sulfonilo; o péptidos cíclicos.

El ligando dirigido puede ser cualquier ligando que es capaz de dirigirse a un receptor específico. Ejemplos son los siguientes: folato, GalNAc, galactosa, manosa, manosa-6P, agrupamientos de azúcares tales como agrupamiento de GalNAc, agrupamiento de manosa, agrupamiento de galactosa o un aptámero. Un agrupamiento es una combinación de dos o más unidades de azúcar. Los ligandos dirigidos también incluyen ligandos del receptor de integrina, ligandos del receptor de quimioquina, transferrina, biotina, ligandos del receptor de serotonina, PSMA, endotelina, GCPII, somatostatina, ligandos LDL y HDL. Los ligandos también pueden basarse en ácido nucleico, por ejemplo, un aptámero. El aptámero puede no estar modificado o tener cualquier combinación de modificaciones divulgadas en la presente.

Agentes de liberación endosomal incluyen imidazoles, poli u oligoimidazoles, PEIs, péptidos, péptidos fusogénicos, policaboxilatos, policationes, oligo o poli cationes o aniones enmascarados, acetales, poliacetales, cetales/poliacetales, ortoésteres, polímeros con cargas catiónicas o aniónicas enmascaradas o no enmascaradas, dendrímeros con cargas catiónicas o aniónicas enmascaradas.

Modulador FC significa modulador farmacocinético. Moduladores de la FC incluyen lipófilos, ácidos biliares, esteroides, análogos fosfolípidos, péptidos, agentes de unión a proteínas, PEG, vitaminas etc. Moduladores de la FC ejemplares incluyen, a modo no taxativo, colesterol, ácidos grasos, ácido cólico, ácido litocólico, dialquilglicéridos, diacilglicérido, fosfolípidos, esfingolípidos, naproxeno, ibuprofeno, vitamina E, biotina, etc. También se conoce que los oligonucleótidos que comprenden una cantidad de conexiones de fosforotioato se unen a la proteína de suero, por lo tanto los oligonucleótidos cortos, por ejemplo, oligonucleótidos de aproximadamente 5 bases, 10 bases, 15 bases o 20 bases, que comprenden múltiples conexiones de fosforotioato en la estructura principal también son abordables para la presente invención como ligandos (por ejemplo, como ligandos moduladores de la FC).

Además, los aptámeros que se unen a componentes de suero (por ejemplo, proteínas de suero) también son abordables para la presente invención como ligandos moduladores de la FC.

Otros conjugados de ligandos abordables para la invención se describen en las Solicitudes de Patente de los Estados Unidos USSN: 10/916,185, presentada el 10 de agosto de 2004; USSN: 10/946,873, presentada el 21 de setiembre 2004; USSN: 10/833,934, presentada el 3 de agosto de 2007; USSN: 11/115,989 presentada el 27 de abril de 2005 y USSN: 11/944,227 presentada el 21 de noviembre de 2007.

Cuando dos o más ligandos están presentes, los ligandos pueden tener las mismas propiedades, todos tienen propiedades diferentes o algunos ligandos tienen las mismas propiedades mientras que otros tienen diferentes propiedades. Por ejemplo, un ligando puede tener propiedades de direccionamiento, tener actividad endosomolítica o tener propiedades moduladoras FC. En una realización preferida, todos los ligandos tienen propiedades diferentes.

Los ligandos pueden acoplarse a los oligonucleótidos en varios lugares, por ejemplo, extremo 3', extremo 5' y/o en una posición interna. En realizaciones preferidas, el ligando está unido a los oligonucleótidos a través de una conexión interviniente, por ejemplo, un portador descrito en la presente. El ligando o ligando conectado puede estar presente en un monómero cuando el monómero se incorpora en la hebra en crecimiento. En algunas realizaciones, el ligando puede incorporarse a través del acoplamiento a un monómero "precursor" después de que el monómero "precursor" se ha incorporado en la hebra de crecimiento. Por ejemplo, un monómero que tiene, por ejemplo, una conexión amino-terminada (es decir, que tiene un ligando no asociado), por ejemplo, TAP-(CH₂)nNH₂ puede incorporarse en una hebra de oligonucleótido de crecimiento. En una operación posterior, es decir, después de la incorporación del monómero precursor en la hebra, un ligando que tiene un grupo electrofílico, por ejemplo, un éster pentafluorofenilo o grupo aldehído, puede estar unido posteriormente al monómero precursor mediante el acoplamiento del grupo electrofílico del ligando con el grupo nucleofílico de la conexión del monómero precursor.

En otro ejemplo, puede incorporarse un monómero que tiene un grupo químico adecuado para tomar parte en la reacción de una química "clic", por ejemplo, una conexión/enlazante terminado de azida o alquino. En una operación posterior, es decir, después de la incorporación del monómero precursor en la hebra, un ligando que tiene un grupo químico complementario, por ejemplo, un alquino o azida puede unirse al monómero precursor mediante el acoplamiento del alquino y la azida juntos.

20

40

Para los oligonucleótidos de doble hebra, los ligandos pueden unirse a una o ambas hebras. En algunas realizaciones, un agente de iARN de doble hebra contiene un ligando conjugado con la hebra sentido. En otras realizaciones, un agente de iARN de doble hebra contiene un ligando conjugado con la hebra antisentido.

En algunos casos, el ligando puede conjugarse a nucleobases, restos de azúcar o conexiones internucleosídicas de 25 moléculas de ácido nucleico. La conjugación a nucleobases de purina o derivados de las mismas pueden ocurrir en cualquier posición incluyendo, átomos endocíclicos y exocíclicos. En algunos casos, las posiciones 2-, 6-, 7- u 8- de una nucleobase de purina se unen a un resto de conjugado. La conjugación a nucleobases de pirimidina o derivados de la misma también puede ocurrir en cualquier posición. En algunos casos, las posiciones 2-, 5- y 6- de una nucleobase de pirimidina pueden sustituirse con un resto de conjugado. La conjugación a restos de azúcar de 30 nucleósidos puede ocurrir en cualquier átomo de carbono. Átomos de carbono ejemplares de un resto de azúcar que puede unirse a un resto de conjugado incluyen los átomos de carbono 2', 3' y 5'. La posición 1' también puede unirse a un resto de conjugado, tal como en un residuo abásico. Las conexiones internucleosídicas también pueden contener restos conjugados. Para las conexiones que contienen fósforo (por ejemplo, fosfodiéster, fosforotioato, fosforoditiotato, fosforoamidato y similares), el resto conjugado puede estar unido directamente al átomo de fósforo o 35 a un átomo O, N o S unido al átomo de fósforo. Para las conexiones internucleosídicas que contienen amina o amida (por ejemplo, APN), el resto conjugado puede estar unido al átomo de nitrógeno de la amina o amida o a un átomo de carbono advacente.

Puede utilizarse cualquier ligando adecuado en el campo de la interferencia de ARN, aunque el ligando es típicamente un carbohidrato, por ejemplo monosacárido (tal como GalNAc), disacárido, trisacárido, tetrasacárido, polisacárido.

Las conexiones que conjugan el ligando al ácido nucleico incluyen aquellas descritas anteriormente. Por ejemplo, el ligando puede ser uno o más derivados de GalNAc (*N*-acetilglucosamina) unidos a través de enlazantes ramificados bivalentes o trivalentes.

En un caso, el ARNdh está conjugado con enlazantes ramificados bivalentes y trivalentes incluyen las estructuras que se muestran en cualquiera de las fórmulas (IV) - (VII):

en donde:

 q^{2A} , q^{2B} , q^{3A} , q^{3B} , q^{4A} , q^{4B} , q^{5A} , q^{5B} y q^{5C} representan independientemente para cada caso 0-20 y en donde la unidad de repetición puede ser la misma o diferente;

 $\begin{array}{lll} 5 & & P^{2A},\, P^{2B},\, P^{3A},\, P^{3B},\, P^{4A},\, P^{4B},\, P^{5A},\, P^{5B},\, P^{5C},\, T^{2A},\, T^{2B},\, T^{3A},\, T^{3B},\, T^{4A},\, T^{4B},\, T^{4A},\, T^{5B},\, T^{5C} \,\, \text{son cada una independientemente para cada caso ausente, CO, NH, O, S, OC(O), NHC(O), CH₂, CH₂NH o CH₂O; \end{array}$

 Q^{2A} , Q^{2B} , Q^{3A} , Q^{3B} , Q^{4A} , Q^{4B} , Q^{5A} , Q^{5B} , Q^{5C} son independientemente para cada caso ausente, alquileno, alquileno sustituido en donde uno o más metilenos pueden interrumpirse o terminarse por uno o más de O, S, S(O), SO₂, N(R^N), C(R')=C(R''), C=C o C(O);

10 R^{2A}, R^{2B}, R^{3A}, R^{3B}, R^{4A}, R^{4B}, R^{5A}, R^{5B}, R^{5C} son cada uno independientemente para cada caso ausente, NH, O, S, CH₂,

C(O)O, C(O)NH, NHCH(Ra)C(O), -C(O)-CH(Ra)-NH-, CO, CH=N-O,
$$\frac{H}{N}$$
 NHCH(Ra)C(O), $\frac{S-S}{N}$ $\frac{S-S$

L²A, L²B, L³A, L³B, L⁴A, L⁴B, L⁵A, L⁵B y L⁵C representan el ligando; es decir, cada uno independientemente para cada caso un monosacárido (tal como GalNAc), disacárido, trisacárido, tetrasacárido, oligosacárido o polisacárido; y

15 Ra es H o una cadena lateral de aminoácidos.

Los derivados de GalNAc de conjugación trivalentes son particularmente útiles para su uso con agentes de iARN para inhibir la expresión de un gen objetivo, tal como aquellos de la fórmula (VII):

$$\begin{array}{c|c} P^{5A} - Q^{5A} - R^{5A} & T^{5A} - L^{5A} \\ \hline P^{5B} - Q^{5B} - R^{5B} & q^{5B} - T^{5B} - L^{5B} \\ \hline P^{5C} - Q^{5C} - R^{5C} & q^{5C} - T^{5C} - L^{5C} \\ \hline F \acute{o} mula (VII) \end{array}$$

en donde L^{5A} , L^{5B} y L^{5C} representan un monosacárido, tal como un derivado de GalNAc.

Ejemplos de derivados de GalNAc que conjugan grupos enlazantes ramificados bivalentes y trivalentes adecuados incluyen, a modo no taxativo, los siguientes compuestos:

5 En otras realizaciones, el agente de iARN de la invención es un agente seleccionado del grupo que consiste en AD-45163, AD-45165, AD-51544, AD-51545, AD-51546 y AD-51547.

III. Composiciones farmacéuticas

10

15

20

25

30

Los agentes de iARN de la invención pueden formularse para administración en cualquier forma conveniente para su uso en medicamentos para humanos o animales, por analogía con otros productos farmacéuticos. Las composiciones farmacéuticas que comprenden agentes de iARN de la invención pueden ser, por ejemplo, soluciones con o sin un tampón o composiciones que contienen portadores farmacéuticamente aceptables. Dichas composiciones incluyen, por ejemplo, composiciones acuosas o cristalinas, formulaciones liposomales, formulaciones micelares, emulsiones y vectores para terapia de genes.

En los métodos, el agente de iARN puede administrarse en una solución. Un agente de iARN libre puede administrarse en una solución sin tamponar, por ejemplo, en solución salina o en agua. Alternativamente, el ARNip libre puede administrarse también en una solución tamponadora adecuada. La solución tamponadora puede comprender acetato, citrato, prolamina, carbonato o fosfato, o cualquier combinación de las mismas. En una realización preferida, la solución tamponadora es solución salina tamponada con fosfato (PBS). El pH y la osmolaridad de la solución tamponadora que contiene el agente de iARN pueden ajustarse de manera tal que sea adecuado para administrar a un sujeto.

En algunos casos, la solución tamponadora comprende además un agente para controlar la osmolaridad de la solución, de forma tal que la osmolaridad se mantenga en un valor deseado, por ejemplo, en los valores fisiológicos del plasma humano. Las solutos que pueden agregarse a la solución tamponadora para controlar la osmolaridad incluyen, a modo no taxativo, proteínas, péptidos, aminoácidos, polímeros no metabolizados, vitaminas, iones, azúcares, metabolitos, ácidos orgánicos, lípidos o sales. En algunos casos, el agente para controlar la osmolaridad de la solución es una sal. En ciertas realizaciones, el agente para controlar la osmolaridad de la solución es cloruro de sodio o cloruro de potasio.

En otros casos, el agente de iARN se formula como una composición que incluye uno o más agentes de iARN y un portador farmacéuticamente aceptable. Tal como se utiliza en la presente, la expresión "portador farmacéuticamente aceptable" incluye todos los disolventes, medios de dispersión, recubrimientos, agentes antibacterianos y antifúngicos, agentes de retraso de absorción e isotónicos y similares, que sean compatibles con la administración farmacéutica. El uso de dichos medios y agentes para sustancias farmacéuticamente activas es bien conocido en la técnica. Excepto en la medida en que cualquier medio o agente convencional sea incompatible con el principio activo,

se contempla el uso del mismo en las composiciones de la invención. Los compuestos activos complementarios también pueden incorporarse en las composiciones.

En un caso, la preparación del agente de iARN incluye al menos un segundo agente terapéutico (por ejemplo, un agente que no sea un ARN o un ADN). Por ejemplo, la composición del agente de iARN para el tratamiento de una enfermedad asociada con la TTR, por ejemplo, una amiloidosis hereditaria relacionada con la transtiretina (polineuropatía amiloidótica familiar, PAF), puede incluir un fármaco conocido para la mejora de la PAF, por ejemplo, Tafamidis (INN, o Fx-1006A o Vyndagel).

5

10

15

25

30

35

40

45

Una composición del agente de iARN formulada puede asumir una variedad de estados. En algunos ejemplos, la composición es al menos parcialmente cristalina, uniformemente cristalina y/o anhidra (por ejemplo, contiene menos de 80, 50, 30, 20 o 10% de agua). En otro ejemplo, el agente de iARN se encuentra en una fase acuosa, por ejemplo, en una solución que incluye agua.

La fase acuosa o las composiciones cristalinas pueden incorporarse a un vehículo de administración, por ejemplo, un liposoma (particularmente para la fase acuosa) o una partícula (por ejemplo, una micropartícula que puede ser apropiada para una composición cristalina). En general, la composición del agente de iARN se formula de forma tal que sea compatible con el método pretendido de administración, tal como se describe en la presente. Por ejemplo, en realizaciones particulares, la composición se prepara mediante al menos uno de los siguientes métodos: secado por pulverización, liofilización, secado al vacío, evaporación, secado en lecho fluido o una combinación de estas técnicas; o sonicación con un lípido, secado por congelación, condensación y otro autoensamblado.

Una preparación de un agente de iARN puede formularse en combinación con otro agente, por ejemplo, otro agente terapéutico o un agente que estabiliza un agente de iARN, por ejemplo, una proteína que forma un ejemplo con agente de iARN para formar un RNPi. Otros agentes adicionales incluyen quelantes, por ejemplo, EDTA (por ejemplo, para quitar cationes divalentes tales como Mg²+), sales, inhibidores de RNasa tales como RNAsin), etc.

En un caso, la preparación del agente de iARN incluye otro compuestos de ARNip, por ejemplo, un segundo agente de iARN que puede mediar iARN con respecto a un segundo gen, o con respecto al mismo gen. Otras preparaciones adicionales pueden incluir al menos 3, 5, diez, veinte, cincuenta o cien o más especies de agente de iARN diferentes. Dichos agentes de iARN pueden mediar la iARN con respecto a un número similar de genes diferentes.

Los agentes de iARN de la invención pueden formularse para uso farmacéutico. Las composiciones farmacéuticamente aceptables comprenden una cantidad terapéutica o profilácticamente efectiva de uno o más de los agentes de ARNdh en cualquiera de las realizaciones precedentes, cuando se toman solas o se formulan junto con uno o más de portadores (aditivos), excipientes y/o diluyentes farmacéuticamente aceptables.

Los métodos para preparar composiciones farmacéuticas de la invención incluyen la etapa de asociar un agente de iARN de la presente invención con el portador y, opcionalmente, uno o más ingredientes secundarios. En general, las composiciones se preparan asociando de manera uniforme y profunda un agente de iARN de la presente invención con portadores líquidos o portadores sólidos finamente divididos o ambos y luego, si es necesario, dar forma al producto.

Las composiciones farmacéuticas pueden formularse específicamente para administración en forma sólida o líquida, incluidas aquellas adaptadas para los siguiente casos: (1) administración oral, por ejemplo, líquidos para emparar (soluciones o suspensiones acuosas o no acuosas), comprimidos, por ejemplo, aquellas dirigidas a absorción bucal, sublingual y sistémica, bolos, polvos, gránulos, pastas para aplicación a la lengua; (2) administración parenteral, por ejemplo, por vía subcutánea, intramuscular, intravenosa o inyección epidural como, por ejemplo, una solución o suspensión estéril o formulación de liberación sostenida; (3) aplicación tópica, por ejemplo, como una crema, ungüento o parche de liberación controlada o pulverización aplicada a la piel; (4) por vía intravaginal o intrarrectal, por ejemplo, como un pesario, crema o espuma; (5) por vía sublingual; (6) por vía ocular; (7) por vía transdérmica; o (8) nasal. La administración mediante el uso de métodos subcutáneos o intravenosos puede ser particularmente ventajosa.

La expresión "farmacéuticamente aceptable" se emplea en la presente para referirse a aquellos compuestos, materiales, composiciones y/o formas de dosificación que, dentro del alcance de una opinión médica sólida, son adecuados para uso en contacto con los tejidos de seres humanos y animales sin toxicidad, irritación, respuesta alérgica excesivos u otro problema o complicación, proporcionales con la relación beneficio/riesgo.

La frase "portador farmacéuticamente aceptable", tal como se utiliza en la presente, significa un material, composición o vehículo farmacéuticamente aceptable, tal como una carga líquida o sólida, diluyente, excipiente, asistente de fabricación (por ejemplo, lubricante, magnesio de talco, calcio o estearato de cinc o ácido estérico), o un material que encapsula un disolvente, que participa en el transporte del compuesto en cuestión de un órgano o porción del cuerpo a otro órgano o porción del cuerpo. Cada portador debe ser "aceptable" en el sentido que es compatible con los otros ingredientes de las composiciones y no es perjudicial para el paciente. Algunos ejemplos de materiales que pueden servir como portadores farmacéuticamente aceptables incluyen: (1) azúcares, tales como lactosa, glucosa y sacarosa; (2) almidones, tales como almidón de maíz y almidón de papa; (3) celulosa, y sus derivados, tales como carboximetilcelulosa sódica, etil celulosa y acetato de celulosa; (4) tragacanto en polvo; (5)

malta; (6) gelatina; (7) agentes lubricantes, tales como estearato de magnesio, laurilsulfato de sodio y talco; (8) excipientes, tales como manteca de cacao y ceras de supositorios; (9) aceites, tales como aceite de maní, aceite de colza, aceite de girasol, aceite de sésamo, aceite de oliva, aceite de maíz y aceite de soja; (10) glicoles, tales como propilenglicol; (11) polioles, tales como glicerina, sorbitol, manitol y poletilenglicol; (12) ésteres, tales como oleato de etilo y laurato de etilo; (13) agar; (14) agentes tamponadores, tales como hidróxido de magnesio e hidróxido de aluminio; (15) ácido algínico; (16) agua libre de pirógenos; (17) solución salina isotónica; (18) solución de Ringer; (19) alcohol etílico; (20) soluciones tamponadas de pH; (21) poliésteres, policarbonatos y/o polianhídridos; (22) agentes espesantes, tales como polipéptidos y aminoácidos (23) componente de suero, tales como albúmina de suero, HDL y LDL; y (22) otras sustancias compatibles no tóxicas empleadas en composiciones farmacéuticas.

Las composiciones pueden presentarse, de manera conveniente, en una forma de dosificación unitaria y pueden prepararse mediante cualquier método bien conocido en la técnica farmacéutica. La cantidad de agente de iARN que se puede combinar con los materiales portadores para producir una forma de dosificación única variará dependiendo del huésped tratado y el modo particular de administración. El agente de iARN que puede combinarse con un material portador para producir una forma de dosificación única generalmente será la cantidad del agente de iARN que produce un efecto deseado, por ejemplo, un efecto terapéutico o profiláctico. En general, de un cien por ciento, esta cantidad estará en el rango de aproximadamente 0.1 por ciento a aproximadamente noventa y nueve por ciento de agente de iARN, preferiblemente de aproximadamente 5 por ciento a aproximadamente 70 por ciento, más preferiblemente de aproximadamente 10 por ciento a aproximadamente 30 por ciento.

En ciertos casos, una composición de la presente invención comprende un excipiente seleccionado del grupo que consiste en ciclodextrinas, celulosas, liposomas, agentes de formación de micelas, por ejemplo, ácidos biliares y portadores poliméricos, por ejemplo, poliésteres y polianhidridos; y un agente de iARN de la presente invención. En ciertos casos, una composición mencionada anteriormente hace que un agente de iARN de la presente invención esté biodisponible oralmente.

En algunos casos, con el fin de prolongar el efecto de un agente de iARN, es deseable ralentizar la absorción del agente a partir de una inyección subcutánea o intramuscular. Esto puede lograrse por medio del uso de una suspensión líquida de material cristalino o amorfo con poca solubilidad en agua. La tasa de absorción del agente de iARN depende entonces de su tasa de disolución que, a su vez, puede depender del tamaño de cristal y la forma cristalina. Alternativamente, la absorción retardada de una forma de agente de iARN administrada parenteralmente puede lograrse disolviendo o suspendiendo el agente en un vehículo oleoso.

30 Liposomas

35

40

45

50

55

Un agente de iARN de la invención puede formularse para administración en un ensamblado molecular membranoso, por ejemplo, un liposoma o una micela. Tal como se utiliza en la presente, el término "liposoma" se refiere a una vesícula de lípidos anfílicos dispuestos en al menos una bicapa, por ejemplo, una bicapa o una pluralidad de bicapas. Los liposomas incluyen vesículas unilamerales o multilamelares que tienen una membrana formada de un material lipofílico y un interior acuoso. La porción acuosa contiene la composición del agente de iARN. El material lipolífico aísla el interior acuoso de un exterior acuoso, que normalmente no incluye la composición del agente de iARN, a pesar de que en algunos ejemplos, puede hacerlo. Los liposomas son útiles para la transferencia y administración de ingredientes activos al sitio de acción. Dado que la membrana liposomal es estructuralmente similar a las membranas biológicas, cuando se aplican los liposomas a un tejido, la bicapa liposomal se fusiona con la bicapa de las membranas celulares. A medida que avanza la fusión del liposoma y la célula, el contenido acuoso interno que incluye el agente de iARN se administra a la célula donde el agente de iARN puede unirse específicamente con un ARN objetivo y puede mediar iARN. En algunos casos, los liposomas también están específicamente dirigidos, por ejemplo, para dirigir el agente de iARN a tipos de células particulares.

Un liposoma contiene un agente de iARN que puede prepararse mediante una variedad de métodos. En un ejemplo, el componente lípido de un liposoma se disuelve en un detergente de forma que se formen micelas con el componente líquido. Por ejemplo, el componente lípido puede ser un lípido catiónico anfipático o un conjugado lípido. El detergente puede tener una concentración de micelas crítica y puede ser no iónico. Detergentes ejemplares incluyen colato, octilglucósido, desoxicolato y lauroil sarcosina. La preparación de agente de iARN se agrega luego a las micelas que incluyen el componente lípido. Los grupos catiónicos en el lípido interactúan con el agente de iARN y se condensan alrededor del agente de iARN para formar un liposoma. Después de la condensación, se quita el detergente, por ejemplo, mediante diálisis, para proporcionar una preparación liposomal de agente de iARN.

En caso de que sea necesario, un compuesto portador que asiste en la condensación puede agregarse durante la reacción de condensación, por ejemplo, mediante adición controlada. Por ejemplo, el compuesto portador puede ser un polímero que no sea un ácido nucleico (por ejemplo, espermina o espermidina). El pH también puede ajustarse para favorecer la condensación.

Los métodos para la producción de vehículos de administración de polinucleótidos estables, que incorporan un complejo de polinucleótidos/lípidos catiónicos como componentes estructurales del vehículo de administración, se describen además, por ejemplo, en el documento WO 96/37194. La formación de liposomas también puede incluir uno o más aspectos de métodos ejemplares descritos en Felgner, P. L. et al., Proc. Natl. Acad. Sci., Estados Unidos

8:7413-7417, 1987; Pat. de los Estados Unidos No. 4,897,355; Patente de los Estados Unidos No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys. Acta 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194, 1978; Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984; Kim, et al. Biochim. Biophys. Acta 728:339, 1983; y Fukunaga, et al. Endocrinol. 115:757, 1984. Las técnicas comúnmente utilizadas para preparar aglomerados lípidos de tamaño apropiado para utilizar como vehículos de administración incluyen sonicación y congelado-descongelado más extrusión (ver, por ejemplo, Mayer, et al. Biochim. Biophys. Acta 858:161, 1986). Se puede utilizar microfluidización cuando se deseen aglomerados consistentemente pequeños (50 a 200 nm) y relativamente uniformes (Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984). Estos métodos se adaptan fácilmente al empaquetado de las preparaciones de agente de iARN en liposomas.

Los liposomas que son sensibles al pH o de carga negativa atrapan a las moléculas de ácidos nucleicos en vez de formar complejos con éstos. Dado que tanto las moléculas de ácidos nucleicos como el lípido tienen carga similar, ocurre repulsión en vez de formación de complejos. Sin embargo, parte de las moléculas de ácidos nucleicos son atrapadas dentro del interior acuoso de estos liposomas. Los liposomas sensibles a pH se han utilizado para administrar el ADN que codifica el gen de quinasa de timidina a monocapas celulares en cultivo. La expresión del gen exógeno se detectó en las células objetivo (Zhou et al., Journal of Controlled Release, 19, (1992) 269-274).

Un tipo principal de composición liposomal incluye fosfolípidos que no sean fosfatidilcolina derivada de medios naturales. Las composiciones de los liposomas neutros, por ejemplo, pueden formarse de fosfatidilcolina de dimiristoilo (DMPC) o fosfatidilcolina de dipalmitoilo (DPPC). Las composiciones de liposomas aniónicos generalmente se forman de fosfatidilglicerol de dimiristoilo, mientras que liposomas fusogénicos aniónicos se forman principalmente de fosfatidiletanolamina de dioleoilo (DOPE). Otro tipo de composición liposomal se forma a partir de fosfatidilcolina (PC) tal como, por ejemplo PC de soja y PC de huevo. Otro tipo se forma a partir de mezclas de fosfolípido y/o fosfatidilcolina y/o colesterol.

20

25

30

35

40

45

50

Ejemplos de otros métodos para introducir liposomas en células in vitro e in vivo incluyen la Pat. de los Estados Unidos No. 5,283,185; la Pat. de los Estados Unidos No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, *J. Biol. Chem.* 269:2550, 1994; Nabel, *Proc. Natl. Acad. Sci.* 90:11307, 1993; Nabel, *Human Gene Ther.* 3:649, 1992; Gershon, *Biochem.* 32:7143, 1993; y Strauss *EMBO J.* 11:417, 1992.

En un caso, se utilizan liposomas catiónicos. Los liposomas catiónicos poseen la ventaja de ser capaces de fusionarse con la membrana celular. Los liposomas no catiónicos, aunque no son capaces de fusionarse tan eficientemente con la membrana de plasma, son captados por los macrófagos in vivo y pueden utilizarse para administrar agentes de iARN a macrófagos.

Otras ventajas de liposomas incluyen: los liposomas obtenidos de fosfolípidos naturales son biocompatibles y biodegradables; los liposomas pueden incorporar una amplia gama de fármacos solubles en agua y lípidos; los liposomas pueden proteger los agentes de iARN encapsulados en sus compartimientos internos del metabolismo y la degradación (Rosoff, en "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volumen 1, pág. 245). Consideraciones importantes en la preparación de formulaciones de liposomas son la carga de la superficie de lípidos, el tamaño de la vesícula y el volumen acuoso de los liposomas.

Un lípido catiónico sintético de carga positiva, cloruro de N-[1-(2,3-dioleiloxi)propil]-N,N,N-trimetilamonio (DOTMA), puede utilizarse para formar pequeños liposomas que interactúan de manera espontánea con el ácido nucleico para formar complejos de lípidos-ácidos nucleicos que son capaces de fusionarse con los lípidos de carga negativa de las membranas celulares de células de cultivo tisular, resultando en la administración de un agente de iARN (ver, por ejemplo, Felgner, P. L. *et al.*, Proc. Natl. Acad. Sci., Estados Unidos 8:7413-7417, 1987 y la Pat. de los Estados Unidos No. 4,897,355 para una descripción de DOTMA y su uso con ADN).

Un análogo de DOTMA, 1,2-bis(oleoiloxi)-3-(trimetilamonio)propano (DOTAP), puede utilizarse en combinación con un fosfolípido para formar vesículas que forman complejos con ADN. Lipofectin™ de Bethesda Research Laboratories, Gaithersburg, Md. es un agente efectivo para la administración de ácidos nucleicos a células de cultivo de tejido que comprenden liposomas de DOTMA con carga positiva que interactúan espontáneamente con polinucleótidos de caga negativa para formar complejos. Cuando se utilizan suficientes liposomas con carga positiva, la carga neta en los complejos resultantes es positiva. Los complejos de carga positiva preparados de este modo se unen de manera espontánea a las superficies celulares de carga negativa, se fusionan con la membrana de plasma y entregan los ácidos nucleicos funcionales a, por ejemplo, células de cultivo de tejido. Otro lípido catiónico disponible en el mercado, 1,2-bis(oleoiloxi)-3,3-(trimetilamonio)propano ("DOTAP") (Boehringer Mannheim, Indianápolis, Indiana) difiere de DOTMA en que los restos de oleilo están unidos por éster, en vez de por conexiones de éter.

Otros compuestos lipídicos catiónicos reportados incluyen aquellos que se han conjugado con una variedad de restos que incluyen, por ejemplo, la carboxiespermina que se ha conjugado con uno de dos tipos de lípidos e incluye compuestos tales como 5-carboxiespermilglicina dioctaoleoilamida ("DOGS") (Transfectam™, Promega, Madison, Wisconsin) y dipalmitoilfosfatidiletanolamina 5-carboxiespermil-amida ("DPPES") (ver, por ejemplo, la Pat. de los Estados Unidos No. 5,171,678).

Otro conjugado lípido catiónico incluye la derivatización del lípido con colesterol ("DC-Col") que se ha formulado en liposomas en combinación con DOPE (Ver Gao, X. y Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Se ha informado que la lipopolilisina, realizada conjugando la polilisina con DOPE, es efectiva para la transfección en presencia de suero (Zhou, X. et al., Biochim. Biophys. Acta 1065:8, 1991). Para ciertas líneas celulares, se dice que estos liposomas que contienen lípidos catiónicos exhiben toxicidad y proporcionan una transfección más eficiente que las composiciones que contienen DOTMA. Otros productos lípidos catiónicos disponibles en el mercado incluyen DMRIE y DMRIE-HP (Vical, La Jolla, California) y Lipofectamina (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Otros lípidos catiónicos adecuados para la administración de oligonucleótidos se describen en el documento WO 98/39359 y WO 96/37194.

Las formulaciones liposomales son particularmente adecuadas para administración tópica, los liposomas presentan varias ventajas con respecto a otras formulaciones. Dichas ventajas incluyen menos efectos secundarios relacionados con la absorción sistémica alta del fármaco administrado, mayor acumulación del fármaco administrado en el objetivo deseado y la capacidad de administrar un agente de iARN a la piel. En algunas implementaciones, los liposomas se utilizan para administrar el agente de iARN a células epidérmicas y también para mejorar la penetración del agente de iARN a los tejidos dérmicos, por ejemplo, a la piel. Por ejemplo, los liposomas pueden aplicarse tópicamente. La administración tópica de los fármacos como liposomas a la piel se ha documentado (ver, por ejemplo, Weiner et al., Journal of Drug Targeting, 1992, vol. 2,405-410 y du Plessis et al., Antiviral Research, 18, 1992, 259-265; Mannino, R. J. y Fould-Fogerite, S., Biotechniques 6:682-690, 1988; Itani, T. et al. Gene 56:267-276. 1987; Nicolau, C. et al. Meth. Enz. 149:157-176, 1987; Straubinger, R. M. y Papahadjopoulos, D. Meth. Enz. 101:512-527, 1983; Wang, C. Y. y Huang, L., Proc. Natl. Acad. Sci. Estados Unidos 84:7851-7855, 1987).

Los sistemas liposomales no iónicos también han sido examinados para determinar su utilidad en la administración de fármacos a la piel, en particular sistemas que comprenden tensioactivo no iónico y colesterol. Las formulaciones liposomales no iónicas que comprenden Novasome I (dilaurato de glicerilo/colesterol/éter polioxietilen-10-estearílico) y Novasome II (diestearato de glicerilo/colesterol/éter polioxietilen-10-estearílico) se utilizaron para administrar un fármaco a la dermis de la piel de ratón. Dichas formulaciones con el agente de iARN son útiles para tratar un trastorno dermatológico.

Los liposomas que incluyen un agente de iARN pueden hacerse altamente deformables. Dicha deformabilidad puede hacer que los liposomas penetren a través de los poros que son más pequeños que el radio promedio del liposoma. Por ejemplo, las transferosomas son un tipo de liposomas deformables. Los transferosomas pueden hacerse agregando activadores de borde de superficie, normalmente tensioactivos, a una composición liposomal estándar. Los transferosomas que incluyen el agente de iARN pueden administrarse, por ejemplo, por vía subcutánea por infección con el fin de administrar un agente de iARN a queratinocitos en la piel. Para cruzar la piel de mamífero intacta, las vesículas lipídicas pasan a través de una serie de poros finos, cada uno con un diámetro de menos de 50 nm, bajo la influencia de un gradiente transdérmico adecuado. Adicionalmente, debido a las propiedades lipídicas, estas transferosomas pueden autooptimizarse (adaptables a la forma de los poros, por ejemplo, en la piel), autorrepararse y pueden frecuentemente alcanzar sus objetivos sin fragmentarse, y a menudo pueden ser autocargables.

Otras formulaciones aplicables a la presente invención se describen en las solicitudes provisionales de los Estados Unidos Nos. de serie: 61/018,616, presentada el 2 de enero de 2008; 61/018,611, presentada el 2 de enero de 2008; 61/039,748, presentada el 26 de marzo de 2008; 61/047,087, presentada el 22 de abril de 2008 y 61/051,528, presentada el 8 de mayo de 2008. La solicitud PCT no. PCT/US2007/080331, presentada el 3 de octubre de 2007 también describe formulaciones que son aplicables a la presente invención.

Tensioactivos

25

30

35

40

45

50

55

60

Los tensioactivos tienen un amplio campo de aplicabilidad en formulaciones tales como emulsiones (incluidas las microemulsiones) y liposomas (ver anteriormente). Las composiciones de agente de iARN (o un precursor, por ejemplo un ARNidh que se puede procesar para obtener ARNip, o un ADN que codifica un precursor de ARNip) pueden incluir un tensioactivo. En una realización, el ARNip se formula como una emulsión que incluye un tensioactivo. La forma más común de clasificar y jerarquizar las propiedades de muchos tipos diferentes de tensioactivos, tanto naturales como sintéticos, consiste en utilizar el balance de hidrófilos/lipófilos (BHL). La naturaleza del grupo hidrófilo proporciona el medio más útil para categorizar los distintos tensioactivos utilizados en formulaciones (Rieger, en "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., Nueva York, Nueva York, 1988, pág. 285).

Si la molécula tensioactiva no se ioniza, se clasifica como un tensioactivo no iónico. Los tensioactivos no iónicos tienen un amplio campo de aplicabilidad en productos farmacéuticos y se pueden utilizar en un gran rango de valores de pH. En general, sus valores de BHL varían de 2 a aproximadamente 18 dependiendo de su estructura. Los tensioactivos no iónicos incluyen ésteres no iónicos tales como ésteres de etilenglicol, ésteres de propilenglicol, ésteres de glicerilo, ésteres de poliglicerilo, ésteres de sorbitol, ésteres de sacarosa y ésteres etoxilados. Los alcanolamidas y éteres no iónicos tales como etoxilatos de alcohol graso, alcoholes propoxilados y polímeros de bloques etoxilados/propoxilados también se incluyen en esta clase. Los tensioactivos de polioxietileno son los integrantes más populares de la clase de tensioactivos no iónicos.

Si la molécula tensioactiva contiene una carga negativa cuando se disuelve o se dispersa en agua, el tensioactivo se clasifica como aniónico. Los tensioactivos aniónicos incluyen carboxilatos tales como jabones, acil lactilatos, acilamidas de aminoácidos, ésteres de ácido sulfúrico tales como alquil sulfatos y alquil sulfatos etoxilados, sulfonatos tales como sulfonatos de alquilbenceno, acil isetionatos, acil tauratos y sulfosuccinatos y fosfatos. Los miembros más importantes de la clase de tensioactivos anióicos son los alquil sulfatos y los jabones.

Si la molécula tensioactiva contiene una carga positiva cuando se disuelve o se dispersa en agua, el tensioactivo se clasifica como catiónico. Los tensioactivos catiónicos incluyen sales de amonio cuaternarias y aminas etoxiladas. Las sales de amonio cuaternarias son los miembros más utilizados de esta clase.

Si la molécula tensioactiva tiene la capacidad para cargar ya sea una carga positiva o negativa, el tensioactivo se clasifica como anfótero. Los tensioactivos anfóteros incluyen derivados de ácido acrílico, alquilamidas sustituidas, Nalquilbetaínas y fosfátidos.

El uso de tensioactivos en productos, formulaciones y emulsiones farmacéuticas ha sido reseñado (Rieger, en "Pharmaceutical Dosage Forms", Marcel Dekker, Inc., Nueva York, Nueva York, 1988, pág. 285).

Micelas y otras formulaciones membranosas

- Los agentes de iARN de la invención también se pueden proporcionar como formulaciones de micelas. Las "micelas" se definen por la presente como un tipo particular de montaje molecular en el cual las moléculas anfipáticas se disponen en una estructura esférica, de forma que todas las porciones hidrófobas de las moléculas quedan dispuestas hacia adentro, con las porciones hidrófilas en contacto con la fase acuosa que lo rodea. Se produce un montaje inverso si el entorno es hidrófobo.
- Se puede preparar una formulación de micelas mixta adecuada para administrarse a través de membranas transdérmicas al mezclar una solución acuosa de la composición de ARNip, un alquil sulfato de metal alcalino de C₈ a C₂₂ y un compuesto formador de micelas. Entre los ejemplos de compuestos formadores de micelas se incluyen lecitina, ácido hialurónico, sales farmacéuticamente aceptables de ácido hialurónico, ácido glicólico, ácido láctico, extracto de manzanilla, extracto de pepino, acido oleico, ácido linoleico, ácido linolénico, monoleína, monoleatos, monolauratos, aceite de borrajas, aceite de onagra, mentol, trihidroxi oxo colanil glicina y sales farmacéuticamente aceptables de los mismos, glicerina, poliglicerina, lisina, polilisina, trioleina, éteres de polioxietileno y análogos de los mismos, éteres de polidocanol alquilo y análogos, quenodesoxicolato, desoxicolato y sus mezclas. Los compuestos formadores de micelas se pueden agregar al mismo tiempo o después de agregar el alquilsulfato de metal alcalino. Las micelas mixtas se formarán básicamente con cualquier tipo de mezcla de ingredientes pero debe producirse un mezclado vigoroso para lograr micelas más pequeñas.

En un primer método se prepara una primera composición de micelas que contiene la composición de ARNip y al menos el alquilsulfato de metal alcalino. La primera composición de micelas se mezcla entonces con al menos tres compuestos formadores de micelas para formar una composición de micelas mixtas. En otro método, la composición de micelas se prepara al mezclar la composición de ARNip, el alquilsulfato de metal alcalino y al menos uno de los compuestos formadores de micelas, seguido de la incorporación del resto de los compuestos formadores de micelas, con un mezclado vigoroso.

Se puede agregar fenol y/o m-cresol a la composición de micelas mixta para estabilizar la formulación y protegerla contra el crecimiento de bacterias. Alternativamente, el fenol y/o el m-cresol se pueden agregar con los ingredientes formadores de micelas. Un agente isotónico tal como glicerina también se puede agregar luego de la formación de la composición de micelas mixta.

Para administrar la formulación de micelas como pulverización, la formulación se puede introducir en un dispensador de aerosol, y el dispensador se carga con propulsor. El propulsor, que está bajo presión, se encuentra en forma líquida en el dispensador. La relaciones entre los ingredientes se ajustan de forma que las fases acuosa y propulsora se conviertan en una, es decir, que haya una sola fase. Si hay dos fases, es necesario agitar el dispensador antes de dispensar una porción del contenido, por ejemplo, a través de una válvula medida. La dosis dispensada de agente farmacéutico es propulsada desde la válvula medida en una pulverización fina.

Los propulsores pueden incluir clorofluorocarbonos que contengan hidrógeno, fluorocarbonos que contengan hidrógeno, éter dimetílico y éter dietílico. En ciertas realizaciones se puede utilizar HFA 134a (1,1,1,2 tetrafluoroetano).

Las concentraciones específicas de los ingredientes esenciales se pueden determinar mediante experimentación relativamente sencilla. Para la absorción a través de las cavidades orales, suele ser deseable aumentar, por ejemplo, al menos duplicar o triplicar, la dosis que se utiliza para la inyección o administración a través del tracto intestinal.

Partículas

35

40

45

55

En otro casos, un agente iARN de la invención se puede incorporar en una partícula, por ejemplo, una micropartícula. Las micropartículas se pueden producir mediante secado por pulverizado, pero se pueden producir

también por otros métodos que incluyen la liofilización, evaporación, secado por lecho fluidizado, secado al vacío o una combinación de dichas técnicas.

IV. Métodos para inhibir la expresión de TTR

30

35

40

45

50

55

La presente divulgación también proporciona métodos para inhibir la expresión de una transtiretina (TTR) en una célula. Los métodos incluyen poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, en una cantidad suficiente para inhibir la expresión de TTR en la célula y, por lo tanto, inhibir la expresión de TTR en la célula.

Poner en contacto una célula con un agente de iARN, por ejemplo, un agente de iARN de doble hebra, puede realizarse in vitro o in vivo. Poner en contacto una célula in vivo con el agente de iARN comprende poner en contacto una célula o grupo de células dentro de un sujeto, por ejemplo, un sujeto humano, con el agente de iARN. Las combinaciones de métodos in vitro e in vivo para poner en contacto una célula también son posibles. Poner en contacto una célula puede ser un proceso directo o indirecto, tal y como se describió anteriormente. Además, el contacto de una célula se puede lograr dirigiéndose a un ligando, incluido cualquier ligando descrito en la presente o conocido en la técnica. En casos preferidos, el ligando de direccionamiento es un resto de carbohidratos, por ejemplo un ligando GalNAc₃ o cualquier otro ligando que dirija el agente de iARN al sitio de interés, por ejemplo, el hígado del suieto.

El término "inhibir", tal como se utiliza en la presente, se utiliza indistintamente con "reducir", "silenciar", "regular por disminución", "eliminar" y otros términos similares, e incluye cualquier nivel de inhibición.

La frase "inhibir la expresión de un TTR" se refiere a la inhibición de la expresión de cualquier gen de la TTR (tal como, por ejemplo, un gen TTR de ratón, un gen de la TTR de rata, un gen de la TTR de ratón o un gen de la TTR humana), así como las variantes o mutantes de un gen de la TTR. Por lo tanto, el gen de la TTR puede ser un gen de la TTR natural, un gen de la TTR mutante (como ser un gen de la TTR mutante que dé lugar a una deposición amiloide) o un gen de la TTR transgénico en el contexto de una célula, grupo de células u organismo manipulado genéticamente.

"Expresión inhibidora de un gen de la TTR" incluye cualquier nivel de inhibición de un gen de la TTR, por ejemplo, al menos una eliminación parcial de la expresión de un gen de la TTR. La expresión del gen de la TTR se puede evaluar en relación al nivel o cambio en el nivel de cualquier variable asociada con la expresión genética de la TTR, por ejemplo, nivel de ARNm de la TTR, nivel proteico de la TTR o el número o extensión de los depósitos amiloides. Este nivel se puede evaluar en una célula individual o en un grupo de células, incluida, por ejemplo, una muestra extraída de un sujeto.

La inhibición se puede evaluar mediante un descenso en el nivel absoluto o relativo de una o más variables asociadas con la expresión de la TTR, comparado con un nivel de control. El nivel de control puede ser cualquier tipo de nivel de control que se utilice en la técnica, por ejemplo, nivel de base de referencia predosis o un nivel determinado a partir de un sujeto, célula o muestra similar que no haya sido tratado o que haya sido tratado con un testigo (como ser, por ejemplo, testigo únicamente de tampón o testigo de agente inactivo).

En algunos casos de los métodos, la expresión de un gen de la TTR es inhibida al menos aproximadamente 5%, al menos aproximadamente 10%, al menos aproximadamente 15%, al menos alrededor de un 20%, al menos aproximadamente 25%, al menos aproximadamente 30%, al menos aproximadamente 35%, al menos aproximadamente 40%, al menos aproximadamente 45%, al menos aproximadamente 50%, al menos aproximadamente 55%, al menos aproximadamente 60%, al menos aproximadamente 65%, al menos aproximadamente 70%, al menos aproximadamente 75%, al menos aproximadamente 80%, al menos aproximadamente 85%, al menos aproximadamente 90%, al aproximadamente 91%, al menos menos aproximadamente 92%, al menos aproximadamente 93%, al menos aproximadamente 94%, al menos aproximadamente 95%, al menos aproximadamente 96%, al menos aproximadamente 97%, al menos aproximadamente 98% o al menos aproximadamente 99%.

La inhibición de la expresión de un gen de la TTR se puede manifestar mediante una reducción de la cantidad de ARNm expresado por una primera célula o grupo de células (dichas células pueden estar presentes, por ejemplo, en una muestra extraída de un sujeto) en el cual un gen de la TTR se transcribe y que se trata o se ha tratado (por ejemplo, mediante el contacto de la célula o células con un agente de iARN de la invención, o mediante la administración de un agente de iARN de la invención a un sujeto en el que las células están o estuvieron presentes) de forma que la expresión de un gen de la TTR se vea inhibida, en comparación con un segundo grupo de células básicamente idénticas a la primera célula o grupo de células, pero que no ha o han sido tratados (célula(s) testigo). En realizaciones preferidas, la inhibición se evalúa mediante la expresión del nivel de ARNm en células tratadas como porcentaje del nivel de ARNm en células testigo, mediante el uso de la siguiente fórmula:

(ARNm en células testigo) - (ARNm en células tratadas) (ARNm en células testigo) • 100%

20

25

30

45

50

55

Alternativamente, la inhibición de la expresión de un gen de la TTR se puede evaluar en términos de una reducción de un parámetro ligado funcionalmente a la expresión genética de la TTR, por ejemplo, expresión proteica de la TTR, nivel de proteína de unión de retinol, nivel de vitamina A o presencia de depósitos amiloides que comprendan TTR. El silenciamiento del gen de la TTR puede determinarse en cualquier célula que exprese TTR, ya sea constitutivamente o mediante ingeniería genómica, y por cualquier ensayo conocido en la técnica. El hígado es el mayor sitio de expresión de la TTR. Otros sitios significativos de expresión incluyen el plexo coroideo, la retina y el páncreas.

La inhibición de la expresión de una proteína TTR se puede manifestar mediante una reducción en el nivel de la proteína TTR que es expresada por una célula o grupo de células (por ejemplo, el nivel de proteína expresada en una muestra extraída de un sujeto). Como se explicó anteriormente para la evaluación de la eliminación de ARNm, la inhibición de los niveles de expresión proteíca en una célula o grupo de células tratadas puede expresarse de forma similar al porcentaje del nivel de proteína en una célula o grupo de células testigo.

Se puede utilizar una célula o un grupo de células testigo para evaluar la inhibición de la expresión de un gen de la TTR, e incluye una célula o grupo de células que no se ha puesto en contacto aún con un agente de iARN de la invención. Por ejemplo, la célula o grupo de células testigo se puede extraer de un sujeto individual (por ejemplo, un sujeto humano o animal) previo al tratamiento del sujeto con un agente de iARN.

El nivel de ARNm de la TTR expresado por una célula o grupo de células, o el nivel de ARNm de la TTR en circulación se puede determinar mediante el uso de cualquier método conocido en la técnica para evaluar la expresión de ARNm. En una realización, el nivel de expresión de la TTR en una muestra se determina mediante la detección de un polinucleótido transcrito, o una porción de él, por ejemplo, ARNm del gen de la TTR. Se puede extraer el ARN de las células mediante técnicas de extracción de ARN que incluyen, por ejemplo, el uso de extracción ácida por isotiocianato de fenol/guanidina (ARNzol B; Biogenesis), kits de preparación de ARN RNeasy (Qiagen) o PAXgene (PreAnalytix, Suiza). Los formatos típicos de ensayos que utilizan hibridación de ácido ribonucleico incluyen ensayos de ejecución nuclear (Melton et al., Nuc. Acids Res. 12:7035), transferencia Northern, hibridación in situ y análisis de microarreglo. El ARNm de TTR en circulación se puede detectar mediante el uso de métodos descritos en PCT/US2012/043584, cuyo contenido completo se incorpora a la presente a modo de referencia

En un caso, el nivel de expresión de la TTR se determina mediante el uso de una sonda de ácido nucleico. El término "sonda", tal como se utiliza en la presente se refiere a cualquier molécula capaz de enlazarse selectivamente a una TTR específica. Un experto en la técnica puede sintetizar una sonda, o derivarla de preparaciones biológicas apropiadas. Las sondas se pueden diseñar específicamente para ser etiquetadas. Los ejemplos de moléculas que pueden utilizarse como sondas incluyen, a modo no taxativo, ARN, ADN, proteínas, anticuerpos y moléculas orgánicas.

El ARNm aislado se puede utilizar en ensayos de hibridación o amplificación que incluyen, a modo no taxativo, análisis Southern y Northern, análisis de reacción en cadena de polimerasa (PCR) y arreglos de sondas. Un método para la determinación de los niveles de ARNm involucra el contacto del ARNm aislado con una molécula de ácido nucleico (sonda) que se puede hibridar a ARNm de TTR. En una realización, el ARNm se inmoviliza en una superficie sólida y se pone en contacto con una sonda, por ejemplo al introducir el ARNm aislado en un gel de agarosa y transferir el ARNm del gel a una membrana, como ser nitrocelulosa. En una realización alternativa, la(s) sonda(s) se inmoviliza(n) en una superficie sólida y el ARNm se pone en contacto con la(s) sonda(s), por ejemplo, en un arreglo de chip de genes Affymetrix. El experto en la materia puede adaptar fácilmente los métodos conocidos de detección de ARNm para su utilización a la hora de determinar el nivel de ARNm de TTR.

Un método alternativo para determinar el nivel de expresión de la TTR en una muestra involucra el proceso de amplificación de ácido nucleico y/o trasncriptasa inversa (para preparar ADNc) o por ejemplo ARNm en la muestra, por ejemplo, mediante RT-PCR (la realización experimental presentada en Mullis, 1987, Patente de los Estados Unidos No. 4,683,202), reacción en cadena de ligasa (Barany (1991) *Proc. Natl. Acad. Sci. USA* 88:189-193), autorreplicación de secuencia sostenida (Guatelli et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:1874-1878), sistema de amplificación transcripcional (Kwoh *et al.* (1989) *Proc. Natl. Acad. Sci. USA* 86:1173-1177), Q-Beta Replicasa (Lizardi *et al.* (1988) *Bio/Technology* 6:1197), replicación de círculo rodante (Lizardi et al., Pat. de los Estados Unidos No. 5,854,033) o cualquier otro método de amplificación de ácido nucleico, seguido de la detección de las moléculas amplificadas mediante el uso de técnicas conocidas para los expertos en la técnica. Estos esquemas de detección son especialmente útiles para la detección de moléculas de ácido nucleico si dichas moléculas están presentes en cantidades muy bajas. En aspectos particulares de la invención, el nivel de expresión de la TTR se determina mediante RT-PCR fluorogénica cuantitativa (es decir, el sistema TagMan™).

Los niveles de expresión de ARNm de la TTR se pueden monitorear mediante el uso de una transferencia de membrana (tal como la que se utiliza en análisis de hibridación tales como Northern, Southern, de punto y similares) o micropocillos, tubos de ensayo, geles, perlas o fibras (o cualquier soporte sólido que comprende ácidos nucleicos unidos). Ver las Pat. de los Estados Unidos Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 y 5,445,934, que se incorporan a la presente a modo de referencia. La determinación de la expresión del nivel de la TTR también puede comprender el uso de sondas de ácido nucleico en solución.

En casos preferidos, el nivel de la expresión de ARNm se evalúa mediante el uso de ensayos de ADN ramificado o PCR en tiempo real (qPCR). El uso de estos métodos se describe y ejemplifica en los Ejemplos presentados en la presente.

El nivel de expresión de la proteína TTR se puede determinar mediante el uso de cualquier método conocido en la técnica para la medición de niveles de proteína. Dichos métodos incluyen, por ejemplo, electrofóresis, electrofóresis capilar, cromatografía líquida de alto rendimiento (HPLC), cromatografía en capa fina (TLC), cromatografía de hiperdifusión, reacciones de precipitación de fluido o gel, espectroscopía de absorción, ensayos colorimétricos, inmunoelectrofóresis, técnica de transferencia Western, radioinmunoensayo (RIA), ensayos inmunoabsorbentes ligados a enzimas (ELISA), ensayos inmunofluorescentes, ensayos de electroquimioluminiscencia y similares.

En algunos casos, la eficacia de los métodos se puede monitorear mediante la detección o monitoreo de una reducción en un depósito de TTR amiloide. Reducir un depósito de TTR amiloide, tal como se utiliza en la presente, incluye cualquier reducción en el tamaño, número o gravedad de los depósitos de TTR, o a una prevención o reducción en la formación de depósitos de TTR, dentro de un órgano o área de un sujeto, tal y como se puede evaluar in vitro o in vivo mediante el uso de cualquier método conocido en la técnica. Por ejemplo, algunos métodos de evaluación de depósitos amiloides se describen en Gertz, M.A. & Rajukumar, S.V. (Editores) (2010), *Amyloidosis: Diagnosis and Treatment*, Nueva York: Humana Press. Los métodos para evaluar los depósitos amiloides pueden incluir análisis bioquímicos, así como evaluaciones visuales o computarizadas de depósitos amiloides, tal como se hace visible, por ejemplo, mediante el uso de la tinción inmunohistoquímica, etiquetado fluorescente, microscopía óptica, microscopía electrónica, microscopía fluorescente u otros tipos de microscopía. Se pueden emplear modalidades de imagen invasivas o no invasivas, incluidas, por ejemplo, formación de imágenes mediante TC, PET o NMR/MRI para evaluar los depósitos amiloides.

Los métodos pueden llegar a reducir los depósitos de TTR en cualquier cantidad de tejidos o regiones del cuerpo que incluyen, a modo no taxativo, corazón, hígado, bazo, esófago, estómago, intestino (íleon, duodeno y colon), cerebro, nervio ciático, ganglio de la raíz dorsal, riñón y retina.

El término "muestra", tal como se usa en la presente, se refiere a una recolección de fluidos, células o tejidos similares aislados de un sujeto, así como fluidos, células o tejidos presentes dentro de un sujeto. Ejemplos de fluidos biológicos incluyen sangre, suero y fluidos serosos, de plasma, linfáticos, orina, fluido cerebroespinal, saliva, fluidos oculares y similares. Las muestras de tejidos pueden incluir muestras de tejidos, órganos o regiones localizadas. Por ejemplo, las muestras pueden derivar particularmente de órganos, partes de órganos o fluidos o células dentro de esos órganos. En ciertas realizaciones, las muestras se pueden derivar del hígado (por ejemplo, el hígado completo o ciertos segmentos del hígado o ciertos tipos de células en el hígado, tal como, por ejemplo, hepatocitos), la retina o partes de la retina (por ejemplo, epitelio pigmentario retinal), el sistema nervioso central o partes del sistema nervioso central (por ejemplo, ventrículos o plexo coroideo) o el páncreas o ciertas células o partes del páncreas. En casos preferidos, una "muestra derivada de un sujeto" refiere a sangre o plasma extraídos del sujeto. En realizaciones posteriores, una "muestra derivada de un sujeto" se refiere a tejido hepático o tejido de la retina derivado del sujeto.

En algunos casos de los métodos, el agente de iARN se administra a un sujeto de forma que el agente de iARN se lleve a un lugar específico dentro del sujeto. La inhibición de la expresión de la TTR se puede evaluar mediante la medición del nivel o cambio en el nivel de ARNm de TTR o proteína TTR en una muestra derivada de un fluido o tejido del lugar específico dentro del sujeto. En realizaciones preferidas, el lugar se selecciona del grupo que consiste en hígado, plexo coroideo, retina y páncreas. El lugar puede ser también una subsección o subgrupo de células de cualquiera de los lugares ya mencionados (por ejemplo, hepatocitos o epitelio pigmentario retinal). El lugar también incluye células que expresan un tipo particular de receptor (por ejemplo, hepatocitos que expresan el receptor de asialoglicoproteínas).

V. Métodos para tratar o prevenir una enfermedad asociada a TTR

20

25

30

35

40

45

50

La presente divulgación también proporciona métodos para tratar o prevenir una enfermedad asociada a TTR en un sujeto. Los métodos incluyen la administración al sujeto de una cantidad terapéutica o profilácticamente efectiva de un agente de iARN de la invención.

Tal como se utiliza en la presente, un "sujeto" incluye ya sea a un humano o a un animal no humano, preferiblemente un vertebrado, y más preferiblemente un mamífero. Un sujeto puede incluir un organismo transgénico. Más preferiblemente, el sujeto es un humano, tal como un humano que padece de o está predispuesto a desarrollar una enfermedad asociada a TTR.

En algunos casos, el sujeto sufre de una enfermedad asociada a TTR. En otras realizaciones, el sujeto es un sujeto con riesgo de desarrollar una enfermedad asociada a TTR, por ejemplo, un sujeto con una mutación del gen de la TTR asociada con el desarrollo de una enfermedad asociada a TTR, un sujeto con un historial familiar de enfermedades asociadas a TTR o un sujeto que presenta signos o síntomas que sugieren el desarrollo de una amiloidosis por TTR.

5

10

25

30

35

45

50

55

Una "enfermedad asociada a TTR", tal como se utiliza en la presente, incluye cualquier enfermedad provocada por o asociada a la formación de depósitos amiloides en el que los precursores fibrilares consisten en proteínas de TTR variantes o tipo salvaje. Los TTR mutantes o tipo salvaje dan lugar a varias formas de deposición amiloide (amiloidosis). La amiloidosis implica la formación y agregado de proteínas mal plegadas, que resulta en depósitos extracelulares que obstaculizan las funciones de los órganos. Los síndromes clínicos asociados con la aglomeración de TTR incluyen, por ejemplo, amiloidosis sistémica senil (ASS); amiloidosis sistémica familiar; polineuropatía amiloidótica familiar (PAF); cardiomiopatía amiloidótica familiar (CAF); y amiloidosis leptomeníngea, también conocida como amiloidosis meningo cerebrovascular, amiloidosis del sistema nervioso central (CNS) o amiloidosis tipo VII.

En algunas implementaciones de los métodos de la invención, los agentes de iARN de la invención se administran a sujetos que padecen cardiomiopatía amiloidótica familiar (CAF) y amiloidosis sistémica senil (ASS). La TTR de secuencia normal provoca amiloidosis cardíaca en personas de edad avanzada, y se llama amiloidosis sistémica senil (ASS) (también llamada amiloidosis cardíaca senil (ACS) o amiloidosis cardíaca). La ASS suele estar acompañada de depósitos microscópicos en muchos otros órganos. Las mutaciones de TTR aceleran el proceso de formación de amiloidos de TTR y son el factor de riesgo más importante para el desarrollo de amiloidosis por TTR clínicamente significativa (también llamada ATTR (amiloidosis de tipo transtiretina)). Se sabe que hay más de 85 variantes amiloidogénicas de TTR que provocan amiloidosis familiar.

En algunos casos de los métodos de la invención, los agentes de iARN de la invención se administran a sujetos que sufren polineuropatía amiloidótica familiar (PAF) asociada a la transtiretina (TTR). Dichos sujetos pueden sufrir manifestaciones oculares, tales como opacidad vítrea y glaucoma. Los expertos en la materia saben que la transtiretina amiloidogénica (ATTR) sintetizada por el epitelio pigmentario retinal (EPR) tiene un papel importante en la evolución de la amiloidosis ocular. En estudios previos se ha demostrado que la fotocoagulación panretiniana con láser, que reduce las células de EPR, previene la evolución de la deposición amiloide en el vítreo, lo que indica que la supresión efectiva de la expresión de ATTR en EPR puede convertirse en una nueva terapia para la amiloidosis ocular (ver, por ejemplo, Kawaji, T., y otros, Ophtalmology. (2010) 117: 552-555). Los métodos de la invención son útiles para el tratamiento de manifestaciones oculares de PAF relacionada con TTR, por ejemplo, amiloidosis ocular. El agente de iARN puede llevar de forma apropiada para dirigirse a un tejido en particular, tal como el ojo. Entre los modos de administración ocular se incluye la inyección en los párpados retrobulbar y subcutánea, subconjuntival, bajo la cápsula de Tenon, de la cámara anterior o intravítrea (o inyección o infusión interna). Las formulaciones específicas para la administración ocular incluyen gotas para los ojos o pomadas.

Otra enfermedad asociada a TTR es la hipertiroxinemia, también conocida como "hipertiroxinemia distranstiretinémica" o "hipertiroxinemia disprealbuminémica". Este tipo de hipertiroxinemia puede ser secundario a un aumento en la asociación de tiroxina con TTR debido a una molécula mutante de TTR con afinidad aumentada por la tiroxina. Ver, por ejemplo, Moses et al. (1982) *J. Biol. Chem.* 86, 2025-2033.

40 Los agentes de iARN de la invención se pueden administrar a un sujeto mediante cualquier modo de administración conocido en la técnica, que incluye pero no se limita al subcutáneo, intravenoso, intramuscular, intraocular, intrabronquial, intrapleural, intraperitoneal, intrarterial, linfático, cerebroespinal y cualquier combinación de los mismos. En realizaciones preferidas, los agentes se administran de forma subcutánea.

En algunos casos, la administración se produce a través de una inyección en depósito. Una inyección en depósito puede liberar el agente de iARN de forma consistente en un período de tiempo prolongado. De esta forma, una inyección de depósito puede reducir la frecuencia de las dosis necesarias para obtener un efecto deseado, por ejemplo, una inhibición deseada de la TTR o un efecto terapéutico o profiláctico. Una inyección de depósito también puede proporcionar concentraciones de suero más consistentes. Las inyecciones de depósito pueden incluir inyecciones subcutáneas o inyecciones intramusculares. En casos preferidos, la inyección de depósito es una inyección subcutánea.

En algunos casos, la administración se realiza a través de una bomba. La bomba puede ser una bomba exterior o una bomba implantada quirúrgicamente. En determinados casos, la bomba es una bomba osmótica implantada subcutáneamente. En otros casos, la bomba es una bomba de infusión. Una bomba de infusión se puede utilizar para infusiones intravenosas, subcutáneas, arteriales o epidurales. En casos preferidos, la bomba de infusión es una bomba de infusión subcutánea. En otros casos, la bomba es una bomba implantada quirúrgicamente que lleva el agente de iARN al hígado.

Otros modos de administración incluyen la administración epidural, intracerebral, intracerebroventricular, administración nasal, intrarterial, intracardíaca, infusión intraósea, intratecal, intravítrea y pulmonar. El modo de

administración se puede elegir en base a si se desea un tratamiento local o sistémico y en base al área que se va a tratar. La vía y el sitio de administración se pueden elegir para mejorar la determinación del objetivo.

En algunos casos, el agente de iARN se administra a un sujeto en una cantidad efectiva para inhibir la expresión de TTR en una célula dentro del sujeto. La cantidad efectiva para inhibir la expresión de TTR en una célula dentro de un sujeto se puede evaluar mediante el uso de los métodos descritos anteriormente, incluidos los métodos que involucran la evaluación de la inhibición de ARNm de TTR, proteína de TTR o las variables relacionadas, tales como los depósitos amiloides.

5

20

25

30

35

40

45

50

55

En algunos casos, el agente de iARN se administra a un sujeto en una cantidad terapéutica o profilácticamente efectiva.

"Cantidad terapéuticamente efectiva", tal como se utiliza en la presente, incluye la cantidad de agente de iARN que, cuando es proporcionado a un paciente para tratar una enfermedad asociada a TTR, es suficiente para efectuar el tratamiento de la enfermedad (por ejemplo, mediante disminución, mejora o mantenimiento de la enfermedad existente o uno o más síntomas de la enfermedad). La "cantidad terapéuticamente efectiva" puede variar dependiendo del agente de iARN, cómo se administra el agente, la enfermedad y su gravedad y la historia, edad, peso, historia familiar, composición genética, etapa del proceso patológico mediado por la expresión de TTR, los tipos de tratamientos precedentes o concomitantes, si los hubiera, y otras características individuales del paciente a tratar.

"Cantidad profilácticamente efectiva", tal como se utiliza en la presente, incluye la cantidad de un agente de iARN que, cuando se administra a un sujeto que no ha experimentado o mostrado aún síntomas de una enfermedad asociada a TTR, pero que puede estar predispuesto a la enfermedad, es suficiente para prevenir o mejorar la enfermedad o uno o más síntomas de la enfermedad. Los síntomas que se pueden mejorar incluyen neuropatía sensorial (por ejemplo, parestesia, hipoestesia en extremidades distales), neuropatía autonómica (por ejemplo disfunción gastrointestinal, como ser úlcera gástrica o hipotensión ortostática), neuropatía motora, convulsiones, demencia, mielopatía, polineuropatía, síndrome del túnel carpiano, insuficiencia autonómica, cardiomiopatía, opacidades vítreas, insuficiencia renal, nefropatía, IMCm (Índice de Masa Corporal modificado) considerablemente reducido, disfunción del nervio craneano y distrofia corneal reticular. La mejora de la enfermedad incluye la ralentización del curso de la enfermedad o la reducción de la gravedad de la enfermedad que se desarrolla posteriormente. La "cantidad profilácticamente efectiva" puede variar dependiendo del agente de iARN, de cómo se administra el agente, del grado o riesgo de la enfermedad y de la historia, edad, peso, historia familiar, composición genética, los tipos de tratamientos precedentes o concomitantes, si hubiera, y otras características individuales del paciente a tratar.

Una "cantidad terapéuticamente efectiva" o una "cantidad profilácticamente efectiva" también incluye una cantidad de agente de iARN que produce efectos locales o sistémicos deseados en un relación entre beneficio/riesgo razonable y aplicable a cualquier tratamiento. Los agentes de iARN aplicados en los métodos de la presente invención se pueden administrar en una cantidad suficiente para producir una relación entre beneficio/riesgo razonable aplicable a dicho tratamiento.

Tal como se utiliza en la presente, las frases "cantidad terapéuticamente efectiva" y "cantidad profilácticamente efectiva" también incluyen una cantidad que proporciona un beneficio en el tratamiento, la prevención o la gestión de los procesos patológicos o de los síntomas de procesos patológicos mediados por la expresión de TTR. Los síntomas de la amiloidosis por TTR incluyen neuropatía sensorial (por ejemplo, parestesia, hipoestesia en extremidades distales), neuropatía autonómica (por ejemplo disfunción gastrointestinal, como ser úlcera gástrica o hipotensión ortostática), neuropatía motora, convulsiones, demencia, mielopatía, polineuropatía, síndrome del túnel carpiano, insuficiencia autonómica, cardiomiopatía, opacidades vítreas, insuficiencia renal, nefropatía, IMCm (Índice de Masa Corporal modificado) considerablemente reducido, disfunción del nervio craneano y distrofia corneal reticular.

La dosis de agente de iARN que se administra a un sujeto se puede adaptar para equilibrar los riesgos y beneficios de una dosis determinada, por ejemplo, para lograr un nivel deseado de supresión del gen TTR (como se evalúa, por ejemplo, en base a la supresión de ARNm de TTR, expresión de proteína TTR, o una reducción en el depósito amiloide, tal y como se lo define anteriormente) o un efecto terapéutico o profiláctico deseado, mientras que al mismo tiempo se evitan los efectos secundarios no deseados.

En un caso, el agente de iARN se administra en una dosis de entre aproximadamente 0.25 mg/kg a aproximadamente 50 mg/kg, por ejemplo, entre aproximadamente 0.25 mg/kg y aproximadamente 0.5 mg/kg, entre aproximadamente 0.25 mg/kg y aproximadamente 5 mg/kg, entre aproximadamente 1 mg/kg, entre aproximadamente 1 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 10 mg/kg, entre aproximadamente 1 mg/kg y aproximadamente 15 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 10 mg/kg, entre aproximadamente 20 mg/kg, entre aproximadamente 15 mg/kg y aproximadamente 25 mg/kg, entre aproximadamente 25 mg/kg, entre aproximadamente 25 mg/kg y aproximadamente 35 mg/kg o entre aproximadamente 40 mg/kg y aproximadamente 50 mg/kg.

En algunos casos, el agente de iARN se administra a una dosis de aproximadamente 0.25 mg/kg, aproximadamente 0.5 mg/kg, aproximadamente 1 mg/kg, aproximadamente 2 mg/kg, aproximadamente 3 mg/kg, aproximadamente 4 mg/kg, aproximadamente 5 mg/kg, aproximadamente 6 mg/kg, aproximadamente 7 mg/kg, aproximadamente 8 mg/kg, aproximadamente 9 mg/kg, aproximadamente 10 mg/kg, aproximadamente 11 mg/kg, aproximadamente 12 mg/kg, aproximadamente 13 mg/kg, aproximadamente 15 mg/kg, aproximadamente 16 mg/kg, aproximadamente 17 mg/kg, aproximadamente 18 mg/kg, aproximadamente 19 mg/kg, aproximadamente 20 mg/kg, aproximadamente 21 mg/kg, aproximadamente 22 mg/kg, aproximadamente 23 mg/kg, aproximadamente 24 mg/kg, aproximadamente 25 mg/kg, aproximadamente 26 mg/kg, aproximadamente 27 mg/kg, aproximadamente 28 mg/kg, aproximadamente 29 mg/kg, aproximadamente 31 mg/kg, aproximadamente 32 mg/kg, aproximadamente 33 mg/kg, aproximadamente 34 mg/kg, aproximadamente 35 mg/kg, aproximadamente 36 mg/kg, aproximadamente 41 mg/kg, aproximadamente 42 mg/kg, aproximadamente 43 mg/kg, aproximadamente 44 mg/kg, aproximadamente 45 mg/kg, aproximadamente 45 mg/kg, aproximadamente 46 mg/kg, aproximadamente 47 mg/kg, aproximadamente 48 mg/kg, aproximadamente 49 mg/kg, aproximadamente 49 mg/kg, aproximadamente 40 mg/kg, aproximadamente 49 mg/kg, aproximadamente 40 mg/kg, aproximadamente 49 mg/kg, aproximadamente 50 mg/kg.

10

15

20

25

30

35

40

45

50

55

60

En algunos casos, el agente de iARN se administra en dos o más dosis. Si se desea facilitar las infusiones repetidas o frecuentes, se puede aconsejar la implantación de un dispositivo de administración, por ejemplo, una bomba, un stent semipermanente (por ejemplo, intravenoso, intraperitoneal, intracisternal o intracapsular) o un depósito. En algunos casos, el número o cantidad de las dosis posteriores depende de si se logra logro un efecto deseado, por ejemplo, la supresión de un gen TTR, o si se logra un efecto terapéutico o profiláctico, por ejemplo, la reducción de un depósito amiloide o la reducción de un síntoma de una enfermedad asociada a TTR. En algunas realizaciones, el agente de iARN se administra de acuerdo con un esquema. Por ejemplo, se puede administrar el agente de iARN dos veces por semana, tres veces por semana, cuatro veces por semana o cinco veces por semana. En algunos casos, el esquema involucra administraciones espaciadas regularmente, por ejemplo, cada hora, cada cuatro horas, cada seis horas, cada ocho horas, cada doce horas, cada día, cada dos días, cada tres días cada cuatro días cada cinco días, semanalmente, cada dos semanas o mensualmente. En otros casos, el esquema involucra administraciones cada intervalos de tiempo muy cortos, seguidos de un período más largo de tiempo durante el cual el agente no se administra. Por ejemplo, el programa puede involucrar un conjunto inicial de dosis que se administran en un período relativamente corto de tiempo (por ejemplo, cada 6 horas aproximadamente, cada 12 horas aproximadamente, cada 24 horas aproximadamente, cada 48 horas aproximadamente o cada 72 horas aproximadamente) seguido de un período de tiempo más largo (por ejemplo, una semana aproximadamente, dos semanas aproximadamente, tres semanas aproximadamente, cuatro semanas aproximadamente, cinco semanas aproximadamente, seis semanas aproximadamente, siete semanas aproximadamente u ocho semanas aproximadamente) durante el cual el agente de iARN no se administra. En un caso, el agente de iARN se administra a cada hora inicialmente y luego se administra cada intervalos más largos de tiempo (por ejemplo, a diario, semanalmente, cada dos semanas o mensualmente). En otro caso, el agente de iARN se administra a diario y luego se administra cada intervalos más largos de tiempo (por ejemplo, semanalmente, cada dos semanas, mensualmente). En algunos casos, el intervalo más largo aumenta con el tiempo o se determina en base al logro de un efecto deseado. En un caso específico, el agente de iARN se administra una vez, a diario, durante una primera semana, seguido de dosis semanales que comienzan en el octavo día de la administración. En otro caso específico, el agente de iARN se administra cada dos días durante una primera semana, seguido de dosis semanales que comienzan en el octavo día de la administración.

Cualquiera de estos esquemas puede repetirse opcionalmente para una o más iteraciones. El número de iteraciones puede depender del logro de un efecto deseado, por ejemplo, la eliminación de un gen de la TTR, el nivel de proteína de unión de retinol, el nivel de vitamina A y/o si se logra un efecto terapéutico o profiláctico, por ejemplo, la reducción de un depósito amiloide o la reducción de un síntoma asociado a TTR.

En algunos casos, el agente de iARN se administra con otros agentes terapéuticos u otros regímenes terapéuticos. Por ejemplo, otros agentes u otros regímenes terapéuticos apropiados para el tratamiento de una enfermedad asociada a TTR pueden incluir trasplante de hígado, que puede reducir los niveles de TTR mutante en el cuerpo; Tafamidis (Vyndaqel), que estabiliza cinéticamente el tetrámero de TTR, mediante la prevención de la disociación del tetrámero necesaria para la amiloidogénesis de TTR; y los diuréticos, que pueden emplearse, por ejemplo, para reducir edemas en amiloidosis por TTR con compromiso cardíaco.

En un caso, se le administra a un sujeto una dosis inicial y una o más dosis de mantenimiento de un agente de iARN. Las dosis de mantenimiento pueden ser iguales o más bajas que la dosis inicial, por ejemplo, la mitad de la dosis inicial. Un régimen de mantenimiento puede incluir tratar el sujeto con una o más dosis que están en el rango de 0.01 µg a 15 mg/kg de peso corporal por día, por ejemplo, 10 mg/kg, 1 mg/kg, 0.1 mg/kg, 0.01 mg/kg, 0.001 mg/kg o 0.00001 mg/kg de peso corporal por día. Las dosis de mantenimiento se administran, por ejemplo, no más de una vez cada dos días, una vez cada cinco días, una vez cada siete días, una vez cada diez días, una vez cada catorce días, una vez cada veintiún días o una vez cada treinta días. Además, el régimen de tratamiento puede durar por un período de tiempo que variará de acuerdo con la naturaleza de la enfermedad específica, su gravedad y la condición general del paciente. En algunos casos la dosis se puede administrar no más de una vez por día, por ejemplo, no más de una vez cada 24, 36, 48 o más horas, por ejemplo, no más de una vez cada 5 u 8 días. Luego del tratamiento, se puede monitorear al paciente para evaluar los cambios en su condición. La dosis de agente de iARN puede aumentar en el caso de que el paciente no responda significativamente a esos niveles de dosis, o reducirse si

se observa un alivio en los síntomas del estado de enfermedad, si el estado de enfermedad ha sido eliminado o si se observan efectos secundarios no deseados.

VI. Kits

La presente divulgación proporciona también kits para poner en práctica cualquiera de los métodos de la invención. Dichos kits incluyen uno o más agentes de iARN e instrucciones para su uso, por ejemplo, instrucciones para inhibir la expresión de una TTR en una célula al poner en contacto la célula con el o los agente(s) de iARN en una cantidad efectiva para inhibir la expresión del TTR. Los kits pueden además comprender medios para poner en contacto la célula con el agente de iARN (por ejemplo, un dispositivo de inyección) o medios para medir la inhibición de TTR (por ejemplo, medios para medir la inhibición de ARNm de TTR o proteína de TTR). Dichos medios para medir la inhibición de TTR pueden comprender un medio para obtener una muestra de un sujeto, tal como, por ejemplo, una muestra de plasma. Los kits pueden además, opcionalmente, comprender medios para administrar los agentes de iARN a un sujeto o medios para determinar la cantidad terapéuticamente efectiva o profilácticamente efectiva.

Se ilustra la invención además a través de los siguientes ejemplos, que no deben interpretarse como restrictivos.

EJEMPLOS

10

15

20

25

Ejemplo 1: Inhibición de TTR con conjugados de TTR-GalNAc

Se administró por vía subcutánea a los ratones una sola dosis del agente de iARN de la TTR AD-43527 y los niveles del ARNm de la TTR se determinaron 72 horas después de la administración.

El conjugado con GalNAc de reacción cruzada de ratón/rata, AD-43527, se eligió para evaluación in vivo en ratones C57BL/6 tipo salvaje para silenciar el ARNm de la TTR en el hígado. La secuencia de cada hebra de AD-43527 se muestra a continuación.

Hebra: s= sentido; as=antisentido

No. de Dúplex	Hebra	No. de oligo	Secuencia 5' a 3'
AD-43527	S	A-89592	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfaAfL96 (SEQ ID NO: 8)
	as	A-83989	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu (SEQ ID NO: 9)
			L96 = GalNAc3; nts en minúscula (a,u,g,c) son nucleótidos 2'-O-metilo, Nf (es decir, Af) es un nucleótido 2'-fluoro

El ligando utilizado fue GalNAc3:

Este ligando GalNAc₃ se conjugó con el extremo 3' de la hebra sentido usando el enlazante y enlace tal como se muestra a continuación:

La estructura de la hebra sentido conjugada de GalNAc3 resultante se muestra en el siguiente esquema:

5 Se sintetizaron y ensayaron agentes de iARN adicionales que se dirigen a la TTR y tienen las siguientes secuencias y modificaciones.

Agentes de iARN de la TTR de reacción cruzada de ratón/rata

20

No. de Dúplex	Hebra sentido 5'-3'	Hebra antisentido 5'-3'
	AfaCfaGfuGfuUfcUfuGfcUfcUfaUfaAfQ11L96	uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu
AD-43528	(SEQ ID NO:10)	(SEQ ID NO:11)

Agentes de iARN de la TTR de reacción cruzada de humano/cynomolgus; el dúplex base es AD-18328 [que tiene una secuencia 5'-3' de hebra sentido de GuAAccAAGAGuAuuccAudTdT (SEQ ID NO: 12) y secuencia 5' a 3' de hebra antisentido de AUGGAAuACUCUUGGUuACdTdT (SEQ ID NO: 13) con las siguientes modificaciones: 2'F/2'OMe w/2 PS en AS alternas.

No. de Dúplex	Hebra sentido 5'-3'	Hebra antisentido 5'-3'
	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa
AD-45163	(SEQ ID NO: 14)	(SEQ ID NO: 16)
	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfQ11L96	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa
	(SEQ ID NO: 15)	(SEQ ID NO:17)

L96 = GalNAc3; nts en minúscula (a,u,g,c) son nucleótidos 2'-O-metilo, Nf (es decir, Af) es un nucleótido 2'-fluoro; Q11 es colesterol; s es fosforotioato.

AD-43527 se administró a ratones hembra C57BL/6 (6-10 semanas, 5 por grupo) por inyección subcutánea a un volumen de dosis de 10µl/g a una dosis de 30, 15, 7.5, 3.5, 1.75 o 0.5 mg/kg de AD-43527. Los animales testigo recibieron PBS por inyección subcutánea al mismo volumen de dosis.

Después de aproximadamente setenta y dos horas, los ratones se anestesiaron con 200 µl de cetamina, y luego se desangraron al cortarse la arteria caudal derecha. Se recolectó el tejido del hígado, se congeló rápidamente y se almacenó a -80°C hasta su procesamiento.

La eficacia del tratamiento se evaluó mediante medición del ARNm de la TTR en el hígado a las 72 horas post-dosis. Los niveles de ARNm de TTR en el hígado se ensayaron utilizando los ensayos de ADN Ramificado- QuantiGene 1.0 (Panomics). En resumen, las muestras de hígado de ratón se molieron y se prepararon lisados de tejido. La mezcla de lisis de hígado (una mezcla de 1 volumen de mezcla de lisis, 2 volúmenes de agua libre de nucleasa y 10µl de Proteinasa-K/ml para una concentración final de 20mg/ml) se incubó a 65°C durante 35 minutos. 5µl de lisado de hígado y 95µl de un conjunto de sonda funcional (sonda de TTR para direccionamiento de genes y GAPDH para control endógeno) se agregaron a la Placa de Captura. Las Placas de Captura se incubaron a 53ºC ± 1ºC (aprox. 16-20hrs). Al día siguiente, las Placas de Captura se lavaron 3 veces con 1X de Tampón de Lavado (agua libre de nucleasa, Componente de Tampón 1 y Componente de Tampón de Lavado 2), luego se secaron mediante centrifugado durante 1 minuto a 240g. Se agregaron 100µl de mezcla de Sonda Amplificadora por pocillo a la Placa de Captura, que se selló con una lámina de aluminio y se incubó durante 1 hora a 46°C ± 1°C. Luego de 1 hora de incubación, se repitió la etapa de lavado, luego se agregaron 100µl de la mezcla de Sonda de Etiqueta por pocillo. Las Placas de Captura se incubaron a 46°C ± 1°C durante 1 hora. Luego se lavaron las placas con 1X de Tampón de Lavado, se secaron y se agregaron 100µl de sustrato por pocillo a las Placas de Captura. Las Placas de Captura se incubaron durante 30 minutos a 46°C seguida por incubación durante 30 minutos a temperatura ambiente. Las placas se leyeron usando el Luminómetro SpectraMax luego de la incubación. Se analizaron los datos del ADNb restando el fondo promedio de cada muestra por duplicado, promediando los valores resultantes de GAPDH por duplicado (sonda testigo) y la TTR (sonda experimental) y luego se computó la relación: (sonda experimental-fondo)/(sonda testigo-fondo). El nivel de ARNm de la TTR promedio se calculó para cada grupo y se normalizó al grupo de PBS promedio para proporcionar el ARNm de la TTR relativo como un % del grupo testigo de PBS.

Los resultados se muestran en la Figura 1. El agente de iARN conjugado con GalNAc que se dirige a la TTR tuvo una DE₅₀ de aproximadamente 5 mg/kg para la desactivación del ARNm de la TTR. Estos resultados demuestran que los agentes de iARN conjugados de GalNAc que se dirigen a la TTR son efectivos para inhibir la expresión del ARNm de la TTR.

Ejemplo 2: La inhibición de TTR con conjugados de TTR-GalNAc es durable

Se les administró a los ratones una dosis subcutánea (7.5 o 30.0 mg/kg) de AD-43527, un agente de iARN conjugado con GalNAc que se dirige a la TTR. Los niveles de ARNm de la TTR en el hígado se evaluaron 1, 3, 5, 7, 10, 13, 15, 19, 26, 33 y 41 días después del tratamiento mediante el uso del método que se describe en el Ejemplo 1.

Los resultados se muestran en la Figura 2. El día 19, la administración de 30.0 mg/kg de agentes de iARN conjugados con GalNAc aún demostraba aproximadamente 50% de silenciamiento. La recuperación total de la expresión ocurrió el día 41.

Estos resultados demostraron que la inhibición proporcionada por el ARNip conjugado con GalNAc que se dirige a la TTR es durable, con una duración de hasta 3, 5, 7, 10, 13, 15, 19, 26 o 33 días después del tratamiento.

Ejemplo 3. Síntesis de ARN y apareamiento de dúplex

1. Síntesis de oligonucleótidos

5

10

15

20

25

30

40

45

50

55

Los oligonucleótidos se sintetizaron en un sintetizador AKTAoligopilot o un sintetizador ABI 394. Se utilizó para la síntesis de oligonucleótidos un soporte sólido de vidrio de poro controlado disponible en el mercado (dT-CPG, 500Å, Síntesis de Cebador) y fosforamiditas de ARN con grupos protectores estándar, 5'-*O*-dimetoxitritil N6-benzoil-2'-*t*-butildimetilsilil-adenosina-3'-*O*-N,N'-diisopropil-2-cianoetilfosforamidita, 5'-*O*-dimetoxitritil-N4-acetil-2'-*t*-butildimetilsilil-citidina-3'-*O*-N,N'-diisopropil-2-cianoetilfosforamidita y 5'-*O*-dimetoxitritil-N2--isobutril-2'-*t*-butildimetilsilil-guanosina-3'-*O*-N,N'-diisopropil-2-cianoetilfosforamidita (Pierce Nucleic Acids Technologies), a menos que se especifique lo contrario. Las 2'-F fosforamiditas, 5'-*O*-dimetoxitritil-N4-acetil-2'-fluro-citidina-3'-*O*-N,N'-diisopropil-2-cianoetil-fosforamidita y 5'-*O*-dimetoxitritil-2'-fluro-uridina-3'-O-N,N'-diisopropil-2-cianoetil-fosforamidita se adquirieron en (Promega). Todas las fosforoamiditas se utilizaron a una concentración de 0.2M en acetonitrilo (CH₃CN), excepto la guanosina que se utilizó a una concentración de 0.2M en 10% de THF/ANC (v/v). Se utilizó un tiempo de acoplamiento/reciclaje de 16 minutos. El activador fue 5-etil tiotetrazol (0.75M, American International Chemicals); para la oxidación de PO se utiliza Yodo/Agua/Piridina y para la oxidación de PS se utilizó PADS en 2,6-lutidina/ACN (1:1 v/v).

Las hebras conjugadas con ligandos se sintetizaron usando un soporte sólido que contenía el ligando correspondiente. Por ejemplo, la introducción de un resto de carbohidrato/ligando (por ejemplo, GalNAc) en el extremo 3' de una secuencia se logró comenzando la síntesis con el soporte sólido de carbohidrato correspondiente. De manera similar, se introdujo un resto de colesterol en el extremo 3' comenzando la síntesis sobre el soporte de colesterol. En general, el resto de ligando se tituló en *trans*-4-hidroxiprolinol por medio de un enlace de elección tal como se describe en los ejemplos precedentes para obtener un resto de hidroxiprolinol-ligando. El resto de hidroxiprolinol-ligando se acopló luego con un soporte sólido por medio de un enlazante de succinato o se convirtió

en fosforamidita por medio de las condiciones de fosfitilación estándar para obtener los bloques de construcción de conjugados de carbohidratos deseados. Los ARNip etiquetados con fluoróforos se sintetizaron a partir de la fosforamidita correspondiente o soporte sólido, que se adquirió en Biosearch Technologies. El soporte de polímero oleil litocólico (GalNAc)₃ se realizó internamente a una carga de 38.6 µmol/gramo. El soporte de polímero de Manosa (Man)₃ se realizó internamente a una carga de 42.0 µmol/gramo.

La conjugación del ligando de elección en la posición deseada, por ejemplo, en el extremo 5' de la secuencia, se logró acoplando la fosforamidita correspondiente a la cadena creciente en condiciones de acoplamiento de fosforamidita estándar a menos que se especifique lo contrario. Un acoplamiento de 15 min extendido de 0.1M de solución de fosforamidita en CH₃CN anhidro en presencia del activador de 5-(etiltio)-1*H*-tetrazol a un oligonucleótido unido sólido. La oxidación de la fosfita de internucleótidos al fosfato se realizó usando yodo-agua estándar, tal como se informó en Beaucage, S.L. (2008) Solid-phase synthesis of siRNA oligonucleotides. *Curr. Opin. Drug Discov. Devel.*, 11, 203–216; Mueller, S., Wolf, J. e Ivanov, S.A. (2004) Current Strategies for the Synthesis of RNA. *Curr. Org. Synth.*, 1, 293–307; Xia, J., Noronha, A., Toudjarska, I., Li, F., Akinc, A., Braich, R., Frank-Kamenetsky, M., Rajeev, K.G., Egli, M. y Manoharan, M. (2006) Gene Silencing Activity of siRNAs with a Ribo-difluorotoluyl Nucleotide. *ACS Chem. Biol.*, 1, 176–183, o mediante tratamiento con *terc*-butil hidroperóxido/acetonitrilo/agua (10:87:3) con un oligonucleótido conjugado a un tiempo de espera de oxidación de 10 minutos. El fosforotioato se introduce mediante oxidación de fosfito a fosforotioato usando un reactivo de la transferencia de azufre tal como DDTT (adquirido en AM Chemicals), PADS y/o reactivo Beaucage. La fosforamidita de colesterol se sinterizó internamente y se utilizó a una concentración de 0.1 M en diclorometano. El tiempo de acoplamiento para la fosforamidita de colesterol fue 16 minutos.

2. Desprotección- I (Desprotección de nucleobases)

Después de completarse la síntesis, el soporte se transfirió a una botella de vidrio de 100 mL (VWR). El oligonucleótido se escindió del soporte con desprotección simultánea de los grupos base y de fosfato con 80 mL de una mezcla de amoníaco [amoníaco: etanol (3:1] durante 6.5h a 55°C. La botella se enfrió brevemente sobre hielo y luego la mezcla de amoníaco etanólico se filtró en una nueva botella de 250 ml. EL CPG se lavó con porciones de 2 x 40 mL de etanol/agua (1:1 v/v). El volumen de la mezcla se redujo luego a ~ 30 mL por evaporador rotativo. La mezcla se congeló luego sobre hielo seco y se seca al vacío sobre un Speed Vac.

3. Desprotección-II (Eliminación del grupo 2'-TBDMS)

El residuo seco se resuspendió en 26 mL de trietilamina, trihidrofluoruro de trietilamina (TEA•3HF) o piridina-HF y DMSO (3:4:6) y se calentó a 60°C durante 90 minutos para quitar los grupos de *terc*-butildimetilsililo (TBDMS) en la posición 2'. Luego se aplacó la reacción con 50 ml de acetato de sodio 2mM y pH ajustado a 6.5, y se almacenó en congelador hasta su purificación.

4 Δnálisis

5

10

15

20

25

35

40

Los oligonucleótidos se analizaron por cromatografía líquida de alto rendimiento (HPLC) antes de la purificación y la selección de tampón y columna depende de la naturaleza de la secuencia y/o ligando conjugado.

5. Purificación por HPLC

Los oligonucleótidos conjugados con ligandos se purificaron por HPLC preparativa de fase inversa. Los oligonucleótidos no conjugados se purificaron por HPLC de intercambio de aniones sobre una columna de gel de TSK cargada en el lugar. Los tampones fueron fosfato de sodio 20 mM (pH 8.5) en 10% de CH₃CN (tampón A) y fosfato de sodio 20 mM (pH 8.5) en 10% de CH₃CN, NaBr 1M (tampón B). Las fracciones que contienen los oligonucleótidos de longitud completa se agruparon, desalinizaron y liofilizaron. Aproximadamente 0.15 OD de oligonucleótidos desalinizados se diluyeron en agua hasta 150 µL y luego se colocaron en pipetas en viales especiales para CGE y análisis de LC/MS. Los compuestos se analizaron finalmente mediante LC-ESMS y CGE.

6. Preparación del agente de iARN

Para la preparación de una iARN, cantidades equimolares de hebras sentido y antisentido se calentaron en 1xPBS a 95°C durante 5 minutos y se enfriaron lentamente hasta temperatura ambiente. La integridad del dúplex se confirmó mediante análisis por HPLC. La Tabla 1 a continuación refleja los agentes de iARN que se dirigen a ARNm de la TTR de humano o roedor.

Tabla 1: Agentes de iARN y resultados de detección sistemática in vitro

CI50 (nM)			9000	0.0065	0.0068	0.0073	0.008	0.0093	0.0095	0.0098	0.010	0.0101
ente		0.01 nM	0.47	0.49	0.46	0.56	0.44	0.53	0.55	0.48	0.33	0.56
% de ARNm remanente	ARNip	0.1 nM	0.1	0.10	0.10	0.12	0.13	0.11	0.16	0.14	0.11	0.14
% de ARI	conc. de ARNip	1 nM	0.03	0.03	0.04	0.05	0.07	90.0	0.05	0.05	0.07	0.03
Hebra antisentido (AS)			AfUfgGfaAfuAfcUfcuuGf gUfuAfcAfusGfsa	aUfsgGfAfAfuAfcUfcuuG fgUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcuuGf gsUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcuuGf gUfsuAfcAfusGfsa	AUggAAuaCUcuUGguU AcaUsGsa	aUfgGfAfAfuAfcUfcuuGf gsUfsuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGf GfuuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGfg uuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	uCfuugGfuUfaCfaugAfa
SEQ ID	Ž		1110	1111	1112	1113	1114	1115	1116	1117	1118	1119
ID AS			AS1000	AS1001	AS1002	AS1003	AS1004	AS1005	AS1006	AS1007	AS1008	AS1009
Hebra sentido (S)			AfuGfuAfaCfcAfAfGfaGf uAfuUfcCfasu	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	AfuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	AfuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	aUGuaACccAGagUAuu CCasu	AfuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	AfuGfuAfAfccAfAfGfaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfAfGfaGf uAfuUfcCfasUf	auguaaccaadGadGudAu dAcdGasu	UfgGfGfAfuUfuCfAfUfgU
SEQ.			18	19	20	21	22	23	24	25	26	27
S QI			S1000	S1001	S1002	S1003	S1004	S1005	S1006	S1007	S1008	S1009
ID Dúplex			D1000	D1001	D1002	D1003	D1004	D1005	D1006	D1007	D1008	D1009

	0.0101	0.011	0.0114	0.011	0.013	0.013	0.013	0.0133	0.014	0.014	0.0156	0.016
	0.65	0.55	0.54	0.49	0.59	0.51	0.64	0.74	0.61	0.7	0.67	0.64
	0.14	0.10	0.13	0.19	0.16	0.15	0.14	0.41	0.14	0.2	0.16	0.24
	0.03	90.0	0.04	0.11	0.04	0.07	0.05	60.0	0.03	0.02	0.04	0.11
AfuccCfasUfsc	uCfuUfgGfuUfaCfaugAfa AfUfCfcCfasUfsc	aUfgGfaAfuAfcUfcuuGf GfuuAfcaUfsgsa	uCfuUfgGfUfUfaCfaugAf aAfuCfcCfasUfsc	aUfgGfaAfuAfcUfcUfugd GudTadCadTsgsa	aUfgGfaAfuAfcUfcuuGfg UfUfAfcAfusGfsa	dAUdGgdAadTAfdCUfc UfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcuuGfg UfuAfcAfUfsGfsa	uCfuUfgGfuuaCfaugAfa AfuCfCfcasUfsc	aUfgGfaAfuAfcUfcuuGfg UfuAfCfAfusGfsa	aUfgGfaAfuAfcUfcuuGf GfUfuAfcAfusGfsa	asUfsgGfAfAfuAfcUfcuu GfgUfuAfcAfusGfsa	aUfGfgAfaUfaCfUfCfuu GfGfuuAfCfaUfsgsa
	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131
	AS1010	AS1011	AS1012	AS1013	AS1014	AS1015	AS1016	AS1017	AS1018	AS1019	AS1020	AS1021
faAfcCfAfAfgsAf	UfgGfgauUfuCfAfUfgUfa AfcCfaAfgsAf	aUfGfuAfAfccAfAfGfaGfu AfuUfcCfasUf	UfgGfgAfuUfuCfAfUfgUf aacCfaAfgsAf	auguaaccaadGadGudAu dAcdGasu	AfuGfuaaCfcAfAfGfaGfu AfuUfcCfasUf	AfuguAfaccAfaGfdAGfdT AdTudCcdAsu	auGfuAfaCfcAfAfGfaGfu AfuUfcCfasUf	UfGfggAfuUfuCfAfUfgUf AfAfcCfaAfgsAf	AfuguAfaCfcAfAfGfaGfu AfuUfcCfasUf	AfuGfuAfaccAfAfGfaGfu AfuUfcCfasUf	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	aUfguAfAfccAfAfgagUfa UfuCfcasUf
	28	59	30	31	32	33	34	35	36	37	38	39
	S1010	S1011	S1012	S1013	S1014	S1015	S1016	S1017	S1018	S1019	S1020	S1021
	D1010	D1011	D1012	D1013	D1014	D1015	D1016	D1017	D1018	D1019	D1020	D1021

	1	ı	1	ı	ı	1	1	1	1	1	, ,
0.0161	0.0163	0.0164	0.0166	0.0178	0.018	0.018	0.018	0.0187	0.019	0.021	0.0212
0.64	0.63	69.0	0.75	99.0	69.0	0.72	0.61	0.64	0.62	0.78	0.57
0.27	0.19	0.25	0.18	0.19	0.19	0.29	0.27	0.21	0.15	0.34	0.26
80.0	0.03	0.05	0.04	0.04	0.04	0.15	0.1	0.04	90.0	60.0	90.0
udCdTugdGdTuadCdAu gdAdAaudCdCcasdTsc	aUfgsGfAfAfuAfcUfcuuG fgUfuAfcAfusGfsa	uCfuUfgGfuUfAfCfaugAf aAfuCfcCfasUfsc	uCfuUfgGfuuaCfaugAfa AfuCfcCfasUfsc	uCfuUfgGfuUfaCfaugAfa AfuCfcCfasUfsc	uCfuUfGfGfuUfaCfaugAf aAfuCfcCfasUfsc	adTdGgadAdTacdTdCu udGdGuudAdCausdGsa	dAUdGGdAAdTAdCUdC UdTGdGUdTAdCAdTsG sdA	uCfuUfgGfuUfaCfaugAf AfAfuccCfasUfsc	AfUfGfGfAfAfuAfCfUfCf UfuGfGfuuAfcAfusGfsa	asUfgGfAfAfuAfcUfcuuG fgUfsuAfcAfusGfsa	uCfuUfgGfUfUfacaUfgAf aAfuCfcCfasUfsc
1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143
AS1022	AS1023	AS1024	AS1025	AS1026	AS1027	AS1028	AS1029	AS1030	AS1031	AS1032	AS1033
dTdGggdAdTuudCdAug dTdAacdCdAagsdA	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	UfgGfgAfuUfuCfAfUfgua AfcCfaAfgsAf	UfgGfgAfuUfuCfAfUfgUf AfAfcCfaAfgsAf	UfgGfgAfuUfuCfAfUfgUf aAfcCfaAfgsAf	UfgGfgAfuUfuCfAfUfgUf aAfccaAfgsAf	dAdTgudAdAccdAdAgad GdTaudTdCcasdT	AdTGdTAdACdCAdAGd AGdTAdTUdCCdAsU	UfgGfGfAfuuuCfAfUfgUf aAfcCfaAfgsAf	AfuGfuAfAfccAfAfGfAfGf uAfuuccAfsu	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	UfgGfgAfuUfuCfaUfGfUf aacCfaAfgsAf
40	41	42	43	44	45	46	47	48	49	20	51
S1022	S1023	S1024	S1025	S1026	S1027	S1028	S1029	S1030	S1031	S1032	S1033
D1022	D1023	D1024	D1025	D1026	D1027	D1028	D1029	D1030	D1031	D1032	D1033

0.0216	0.0222	0.0234	0.0235	0.0239	0.025	0.025	0.0252	0.0259	0.027	0.0271	0.028	0:030
0.82	0.56	0.78	0.62	0.78	0.59	0.56	0.79	0.67	0.63	0.81	0.8	0.59
0.39	0.16	0.31	0.14	0.39	0.14	0.13	0.27	0.27	0.16	0:30	0.29	0.15
0.11	0.04	90:0	0.03	60:0	0.03	0.03	90:0	0.05	0.02	90:0	0.12	0.03
aUfgGfaAfuAfcUfcUfuGf GfuuAfcAfusGfsa	uCfuUfgGfuUfaCfaugAf AfAfuCfcCfasUfsc	uCfuugGfuUfaCfaUfgAfa AfuccCfasUfsc	uCfuUfgGfuUfaCfaugAfa AfuccCfasUfsc	uCfUfugGfUfuaCfAfugAf AfauCfCfcasUfsc	aUfgGfAfAfuAfcUfcuuGf gUfuAfcAfusGfsa	aUfGfGfaAfuAfcUfcuuGf gUfuAfcAfusGfsa	asUfgGfAfAfuAfcUfcuuG fgUfuAfcAfusGfsa	uCfuUfgGfuuaCfaugAfAf AfuCfcCfasUfsc	aUfgGfaAfUfAfcUfcuuGf gUfuAfcAfusGfsa	asUfgGfAfAfuAfcUfcuuG fgsUfsuAfcAfusGfsa	aUfGfgaAfUfacUfCfuuGf GfuuAfCfaUfsgsa	aUfgGfaAfuAfCfUfcuuGf
1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156
AS1034	AS1035	AS1036	AS1037	AS1038	AS1039	AS1040	AS1041	AS1042	AS1043	AS1044	AS1045	AS1046
AfuGfuAfAfccAfaGfaGfu AfuUfcCfasUf	UfgGfgAfuuuCfAfUfgUfa AfcCfaAfgsAf	UfgGfGfAfuUfuCfaUfgUf aAfcCfAfAfgsAf	UfgGfGfAfuUfuCfAfUfgU faAfcCfaAfgsAf	UfGfggAfUfuuCfAfugUfA facCfAfagsAf	AfuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	AfuGfuAfaCfcAfAfGfaGf uAfuUfccasUf	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	UfgGfgAfuuuCfAfUfgUfA fAfcCfaAfgsAf	AfuGfuAfaCfcAfAfGfaGf uauUfcCfasUf	AfsuGfuAfaCfcAfAfGfaGf uAfuucCfasUf	aUfguAfAfccAfAfgaGfGf auUfCfcasUf	AfuGfuAfaCfcAfAfGfagu
52	53	54	55	26	27	28	29	09	19	62	63	64
S1034	S1035	S1036	S1037	S1038	S1039	S1040	S1041	S1042	S1043	S1044	S1045	S1046
D1034	D1035	D1036	D1037	D1038	D1039	D1040	D1041	D1042	D1043	D1044	D1045	D1046

	1		1				1	1		1	1	1
	0.0324	0.036	0.037	0.0372	0.040	0.042	0.044	0.047	0.049	0:050	0.051	0.053
	0.83	0.67	0.73	0.78	0.86	0.72	69.0	0.75	0.7	0.65	0.62	0.86
	0.44	0.23	0.23	0.29	0.41	0.22	0.31	0.45	0.26	0.24	0.42	0.36
	0.08	0.07	0.08	90.0	0.12	0.1	60.0	0.1	0.12	0.08	0.14	0.12
gUfuAfcAfusGfsa	uCfuUfgGfuuaCfaUfgAfa AfuccCfasUfsc	aUfgGfaAfuAfcUfcuuGfg UfuAfcAfusGfsa	AfUfGfGfAfAfuAfCfUfCf UfUfGfGfUfuAfCfAfusGf sa	uCfuugGfuUfaCfaUfgAf AfAfuCfcCfasUfsc	aUfgGfaAfudAcdTcdTud GgdTuAfcAfusgsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	dAUdGGdAAfuAfcUfcUf uGfGfUfuAfCfAfusGfsa	adTdGGfaAfudAdCUfcU fuGfgUfuAfcAfusGfsa	dAUdGGdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	aUgGaAuAcUcUuGgUu AcAusGsa	aUfGfGfaAfUfAfcUfCfUf uGfGfUfuAfCfAfusGfsa	aUfgGfaAfudAcdTcdTud
	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168
	AS1047	AS1048	AS1049	AS1050	AS1051	AS1052	AS1053	AS1054	AS1055	AS1056	AS1057	AS1058
AfuUfcCfasUf	UfgGfGfAfuUfuCfaUfgUf AfAfcCfaAfgsAf	AfuGfuAfaCfcAfAfGfaGf uAfuUfcCfasUf	AfuGfuAfafccAfAfGfAfGf uAfuuccAfsu	UfgGfgAfuuuCfaUfgUfaA fcCfAfAfgsAf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfuguAfaccAfaGfdAGfdT AdTUdCcdAsu	AfuguAfaccAfaGfdAGfdT AdTUdCcdAsu	AfuGfuAfaCfcAfaGfadGd TAfuUfcdCdAsUf	AfuguAfaccAfaGfaGfdTA dTUdCcdAsu	AuGuAaCcAaGaGuAuU cCasU	AfuguAfaccAfagaGfuauU fccasUf	AfuGfuAfaccaagaguAfuU
	65	99	29	89	69	70	71	72	73	74	75	92
	S1047	S1048	S1049	S1050	S1051	S1052	S1053	S1054	S1055	S1056	S1057	S1058
	D1047	D1048	D1049	D1050	D1051	D1052	D1053	D1054	D1055	D1056	D1057	D1058

	0.054	0.056	0.059	0.059	0.064	0.064	990.0	0.067	0.070	0.072	0.074
	0.7	0.66	0.77	0.65	0.82	0.83	0.72	0.72	0.62	0.64	0.73
	0.27	0.37	0.31	0.27	0.44	0.32	0.34	0.33	0.37	0.33	0.43
	60.0	0.11	0.1	0.1	0.12	0.12	0.13	0.11	0.11	0.16	0.14
GgdTuAfcAfusGfsa	dAUdGGdAadTAfdCUfc UfuGfgUfuAfcAfusGfsa	adTdGgdAadTadCdTdC uudGdGuudAdCadTsgs a	adTdGGfaAfuAfdCdTcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	dAdTggdAdAuadCdTcu dTdGgudTdAcadTsdGs a	adTdGGfaAfdTdAcUfcUf uGfgUfuAfcAfusGfsa	dAUdGgdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	adTdGGfadAdTAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	dAUdGGdAAuAfcUfcUfu GfGfUfuAfCfAfusGfsa	AfUfggAfAfuaCfUfcuUfG fguUfAfcaUfsGfsa
	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179
	AS1059	AS1060	AS1061	AS1062	AS1063	AS1064	AS1065	AS1066	AS1067	AS1068	AS1069
fcCfasUf	AfuguAfaccAfaGfdAGfdT AdTUdCcdAsu	adTgudAdAccdAdAgagd TadTudCcasdT	AfuGfuAfaCfcAfaGfdAd GuAfuUfcdCdAsUf	AfuguAfaccAfaGfdAGfdT AdTudCcdAsu	adTdGuadAdCccdAdGa gdTdAuudCdCasu	AfuGfuAfaCfcAfaGfaGfd TdAuUfcdCdAsUf	AfuguAfaccAfaGfaGfdTA dTudCcdAsu	AfuGfuAfaCfcAfaGfaGfu dAdTUfcdCdAsUf	AfuguAfaccAfaGfaGfdTA dTUdCcdAsu	AfuguAfaccAfaGfaGfdTA dTUdCcdAsu	aUfGfuaAfCfccAfGfagUf AfuuCfCfasu
	77	78	79	80	8	85	83	84	82	98	87
	S1059	S1060	S1061	S1062	S1063	S1064	S1065	S1066	S1067	S1068	S1069
	D1059	D1060	D1061	D1062	D1063	D1064	D1065	D1066	D1067	D1068	D1069

0.075	0.0797	0.082	0.083	0.086	0.088	0.088	0.092	0.093	0.095	660.0	0.105	0.106
0.94	0.83	8:0	0.73	0.75	0.72	0.86	0.95	0.76	0.76	0.86	6.0	0.83
0.42	0.28	0.26	0.41	0.44	0.41	0.45	0.46	0.32	0.38	0.42	0.47	0.44
0.08	0.14	0.05	0.12	0.14	0.1	0.15	0.08	60.0	0.14	0.05	0.17	0.12
aUfgGfaAfuAfCfUfcUfug gUfuAfcAfusGfsa	uCfuUfgGfuUfaCfaUfgAf AfAfuCfcCfasUfsc	aUfgGfaAfUfAfcucUfuGf gUfuAfcAfusGfsa	aUfgGfadAdTdAdCUfcU fuGfgUfuAfcAfusGfsa	aUfGfgaAfUfacUfCfuuGf GfuuAfCfausGfsa	aUfgGfdAdAdTdAcUfcUf uGfgUfuAfcAfusGfsa	aUfgdGdAdAdTAfcUfcUf uGfgUfuAfcAfusGfsa	AfUfgGfaAfuAfcUfcUfuG fgUfuAfcAfusGfsa	dAUdGGdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	dAudGgdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfAfAfuAfcucUfuGf gUfuAfcAfusGfsa	dAdTdGdGaAfuAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfudACfudCUfu
1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192
AS1070	AS1071	AS1072	AS1073	AS1074	AS1075	AS1076	AS1077	AS1078	AS1079	AS1080	AS1081	AS1082
AfuGfuAfaCfCfAfaGfagu AfuUfcCfasUf	UfgGfgAfuuuCfaUfgUfaA fcCfaAfgsAf	AfuGfuAfaCfcAfaGfAfGf uauUfcCfasUf	AfuGfuAfaCfcAfaGfadGd TdAdTUfcCfasUf	AfUfguAfAfccAfAfgaGfUf auUfCfcasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu dAdTdTdCCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuguAfaccAfaGfaGfdTa dTudCcdAsu	AfuGfuAfaCfcAfaGfAfGf uAfuucCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfdCdCdAsdT	AfuGfuAfaccaagaguAfuU
88	88	06	91	92	93	94	95	96	97	86	66	100
S1070	S1071	S1072	S1073	S1074	S1075	S1076	S1077	S1078	S1079	S1080	S1081	S1082
D1070	D1071	D1072	D1073	D1074	D1075	D1076	D1077	D1078	D1079	D1080	D1081	D1082

												1
	0.109	0.117	0.120	0.1197	0.120	0.120	0.122	0.125	0.125	0.126	0.135	0.142
	0.74	0.93	0.78	0.83	0.7	0.8	0.85	0.85	0.77	0.93	6.0	0.85
	0.34	0.45	0.42	0.45	0.3	0.46	0.49	0.41	0.38	0.31	0.33	0.39
	0.11	0.1	0.07	0.17	0.05	0.11	0.14	0.1	0.16	0.05	90.0	0.07
dGGfudTAfcAfusgsa	adTdGGfaAfdTdAcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfUfAfcUfcUfuG fguuAfcAfusGfsa	aUfgGfaAfUfAfcUfcUfuG fgUfuacAfusGfsa	aUfgGfaAfuAfcUfCfuuGf GfuuAfCfaUfsgsa	AfUfgGfaAfuacUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusgsa	aUfgGfaAfuacUfcUfuGfg UfuAfcAfusGfsa	aUfgGfaAfUfAfcUfcUfuG fgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	AfUfgGfaAfuAfcucUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcucUfuGfg UfuAfcAfUfsGfsa	aUfGfGfaAfuacUfcUfuGf gUfuAfcAfusGfsa
	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204
	AS1083	AS1084	AS1085	AS1086	AS1087	AS1088	AS1089	AS1090	AS1091	AS1092	AS1093	AS1094
fcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGf uauUfcCfasUf	AfuGfUfAfaCfcAfaGfaGf uauUfcCfasUf	aUfguAfAfccAfAfgaGfuAf uUfcCfasUf	AfuGfuAfaCfcAfaGfaGfU fAfuUfcCfasu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfU fAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu auUfcCfasUf	AfuguAfaccAfaGfaGfdTA dTudCcdAsu	AfuGfuAfaCfcAfaGfAfGf uAfuUfcCfasu	auGfuAfaCfcAfaGfAfGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfU fAfuUfccasUf
	101	102	103	104	105	106	107	108	109	110	111	112
	S1083	S1084	S1085	S1086	S1087	S1088	S1089	S1090	S1091	S1092	S1093	S1094
	D1083	D1084	D1085	D1086	D1087	D1088	D1089	D1090	D1091	D1092	D1093	D1094

		1	1	1	1	1	1	1	1	1	1	
0.146	0.147	0.147	0.151	0.152	0.152	0.158	0.162	0.163	0.163	0.167	0.170	0.171
0.76	0.85	0.87	0.85	0.85	0.72	0.94	0.89	0.95	0.92	0.84	0.91	-
0.39	0.38	0.47	0.42	0.41	0.48	0.38	0.45	0.49	0.36	0.45	0.43	0.46
60.0	90.0	0.12	90.0	0.16	0.15	90.0	0.21	0.14	90.0	0.1	60.0	60.0
aUfgGfaAfuAfcucUfuGfg UfuAfcAfusGfsa	aUfgGfAfAfuacUfcUfuGf gUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcUfuG fgUfuacAfusGfsa	aUfGfGfaauAfcUfcUfuGf gUfuAfcAfusGfsa	dAUdGGdAadTAfdCUfc UfuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfGfGfaAfuAfcucUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfdCuCfdTu GfdGuUfacAfusGfsa	aUfgGfaAfuAfcUfcUfugg UfUfAfcAfusGfsa	aUfgGfaAfuacUfcUfuGf GfUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcUfuG fgUfuAfcAfusGfsa	aUfgGfaAfuAfcucUfuGfg UfUfAfcAfusGfsa	aUfgGfaAfuAfcucUfuGf
1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217
AS1095	AS1096	AS1097	AS1098	AS1099	AS1100	AS1101	AS1102	AS1103	AS1104	AS1105	AS1106	AS1107
AfuGfuAfaCfcAfaGfAfGf uAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfU fAfuucCfasUf	AfuGfUfAfaCfcAfaGfaGf uAfuucCfasUf	AfuGfuAfaCfcAfaGfaGfu AfUfUfccasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuguAfaccAfaGfaGfuAf uUfcCfasUf	AfuGfuAfaCfcAfaGfAfGf uAfuUfccasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfuGfuaaCfCfAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaccAfaGfaGfUf AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuucCfasUf	AfuGfuaaCfcAfaGfAfGfu AfuUfcCfasUf	AfuGfuAfaccAfaGfAfGfu
113	114	115	116	117	118	119	120	121	122	123	124	125
S1095	S1096	S1097	S1098	S1099	S1100	S1101	S1102	S1103	S1104	S1105	S1106	S1107
D1095	D1096	D1097	D1098	D1099	D1100	D1101	D1102	D1103	D1104	D1105	D1106	D1107

			I	I							1	1 1
	0.176	0.180	0.182	0.183	0.195	0.201	0.201	0.204	0.208	0.224	0.303	
	0.71	6.0	0.88	0.79	0.85	0.85	0.94	96.0	0.79	0.92	0.87	0.89
	0.39	0.43	0.42	0.49	0.48	0.41	0.44	0.41	0.47	0.42	0.5	0.55
	0.11	0.1	90.0	0.18	0.14	60.0	0.05	0.08	0.15	0.08	0.19	0.14
GfUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfGfGfaAfuAfcUfcUfuG fgUfuacAfusGfsa	aUfgGfaauAfCfUfcUfuGf gUfuAfcAfusGfsa	dAUdGGdAAuAfcUfcUfu GfGfUfuAfCfAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuacAfusGfsa	aUfgGfaAfuAfCfUfcUfuG fgUfuAfcAfusGfsa	aUfgGfaAfuacUfcUfuGfg UfuAfcAfUfsGfsa	aUfgGfaAfuacUfcUfuGfg UfuAfCfAfusGfsa	adTdGGfadAdTAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfuacUfcUfuGfg UfUfAfcAfusGfsa	Afufgigiafafufafcfufcf Ufufgigfufufafcfafufsg sa	aUfgGfaAfuAfcUfcUfuGf
	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229
	AS1108	AS1109	AS1110	AS1111	AS1112	AS1113	AS1114	AS1115	AS1116	AS1117	AS1118	AS1119
AfuUfcCfasUf	AfuguAfaccAfaGfaGfdTa dTudCcdAsu	AfuGfUfAfaCfcAfaGfaGf uAfuUfccasUf	AfuGfuAfaCfcAfaGfaguA fUfUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfUfAfaccAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaguA fuUfcCfasUf	auGfuAfaCfcAfaGfaGfUf AfuUfcCfasUf	AfuguAfaCfcAfaGfaGfUf AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuaaCfcAfaGfaGfUf AfuUfcCfasUf	auguaaccaagaguauucca su	AfuGfuAfaCfcAfaGfaGfu
	126	127	128	129	130	131	132	133	134	135	136	137
	S1108	S1109	S1110	S1111	S1112	S1113	S1114	S1115	S1116	S1117	S1118	S1119
	D1108	D1109	D1110	D1111	D1112	D1113	D1114	D1115	D1116	D1117	D1118	D1119

	0.72	0.91	0.95	76.0	0.94	0.95	0.91	96.0	0.85	86.0	6.0	1.01
	0.63	0.61	0.54	0.61	0.56	0.74	69.0	0.7	0.62	9.76	0.64	0.7
	0.19	0.14	0.14	0.13	0.14	0.21	0.2	0.17	0.19	0.23	0.21	0.17
gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuAfcAfusGfsa	aUfGfGfaAfuAfcUfcUfuG fgUfuAfcausGfsa	aUfgGfaAfuAfcUfcUfuGf guuAfcAfUfsGfsa	aUfgGfaauAfcUfcUfuGfg UfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfUfG fgUfuAfcAfusGfsa	aUfgGfAfAfuAfcUfcUfuG fgUfuAfcausGfsa	aUfgGfaAfuAfcUfcUfuGf guuAfCfAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcausGfsa	aUfggaAfuAfcUfcUfuGfg UfuAfcAfusGfsa	aUfgGfaAfuAfcUfCfUfuG fgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfUfG fguuAfcAfusGfsa
	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241
	AS1120	AS1121	AS1122	AS1123	AS1124	AS1125	AS1126	AS1127	AS1128	AS1129	AS1130	AS1131
AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaccAfaGfaGfuA fuUfcCfasUf	AfUfGfuAfaCfcAfaGfaGf uAfuUfccasUf	auGfuAfAfCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfUfUfcCfasUf	AfuGfuAfaCfcaaGfaGfuA fuUfcCfasUf	AfUfGfuAfaCfcAfaGfaGf uAfuucCfasUf	AfuguAfAfCfcAfaGfaGfu AfuUfcCfasUf	AfUrGfuAfaCfcAfaGfaGf uAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfCfCfasUf	AfuGfuAfaCfcAfagaGfuA fuUfcCfasUf	AfuGfuAfAfCfcaaGfaGfu AfuUfcCfasUf
	138	139	140	141	142	143	144	145	146	147	148	149
	S1120	S1121	S1122	S1123	S1124	S1125	S1126	S1127	S1128	S1129	S1130	S1131
	D1120	D1121	D1122	D1123	D1124	D1125	D1126	D1127	D1128	D1129	D1130	D1131

0.87	1.05	96.0	96.0	0.98	0.91	0.91	0.98	6.0	1.05	0.89	0.89	0.95
0.58	0.89	0.64	0.53	0.58	9.0	0.54	0.68	0.75	0.52	99.0	0.51	0.71
0.17	0.33	0.16	0.12	0.16	0.16	0.1	0.24	0.13	0.15	0.16	0.12	0.25
aUfgGfaAfuAfcUfcUfuGf gUfuacAfusGfsa	augGfaAfuAfcUfcUfuGfg UfuAfcAfusGfsa	aUfgGfaAfuAfCfUfcUfuG fgUfuAfcausGfsa	aUfgGfaAfuAfCfUfcUfuG fgUfuacAfusGfsa	aUfgGfaAfuAfcUfCfUfuG fguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf guuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsAf	aUfgGfaAfuAfcUfCfUfuG fgUfuAfcausGfsa	aUfgGfaAfuAfcUfCfUfuG fgUfuacAfusGfsa	aUfgGfaAfuAfCfUfcUfuG fguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfugg UfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfUfsGfsa	aUfgGfaAfuAfcUfcUfUfG
1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254
AS1132	AS1133	AS1134	AS1135	AS1136	AS1137	AS1138	AS1139	AS1140	AS1141	AS1142	AS1143	AS1144
AfuGfUfAfaCfcAfaGfaGf uAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfAfsUf	AfUfGfuAfaCfcAfaGfagu AfuUfcCfasUf	AfuGfUfAfaCfcAfaGfagu AfuUfcCfasUf	AfuGfuAfAfCfcAfagaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGf uAfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfUfGfuAfaCfcAfagaGfu AfuUfcCfasUf	AfuGfUfAfaCfcAfagaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfaGfagu AfuUfcCfasUf	AfuGfuAfaCfCfAfaGfaGf uAfuUfcCfasUf	auGfuAfaCfcAfaGfaGfuA fuUfcCfasUf	AfUfGfuAfaCfcaaGfaGfu
150	151	152	153	154	155	156	157	158	159	160	161	162
S1132	S1133	S1134	S1135	S1136	S1137	S1138	S1139	S1140	S1141	S1142	S1143	S1144
D1132	D1133	D1134	D1135	D1136	D1137	D1138	D1139	D1140	D1141	D1142	D1143	D1144

	86.0	0.86	0.83	0.98	0.88	0.94	0.94	76.0	96.0	0.78	0.89	0.85
	0.74	0.51	0.52	0.63	0.58	0.62	0.73	0.53	0.53	0.5	0.62	0.65
	0.17	0.11	0.1	0.14	0.13	0.15	0.18	0.13	0.13	60.0	0.13	0.12
fgUfuAfcausGfsa	aUfgGfaAfuAfcUfcUfUfG fgUfuacAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfCfAfusGfsa	aUfGfGfaAfuAfcUfcUfuG fgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuAfcausGfsa	aUfgGfAfAfuAfcUfcUfuG fguuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfUfAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfUfAfcausGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuacAfUfsGfsa	aUfGfGfaAfuAfcUfcUfuG fguuAfcAfusGfsa	uCfuUfgGfuUfaCfaUfgAf aAfuCfcCfasUfsc	uCfuUfgGfuuaCfaUfgAf AfAfuccCfasUfsc	uCfuUfgGfuUfacaUfgAfA fAfuCfcCfasUfsc
	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266
	AS1145	AS1146	AS1147	AS1148	AS1149	AS1150	AS1151	AS1152	AS1153	AS1154	AS1155	AS1156
AfuUfcCfasUf	AfuGfUfAfaCfcaaGfaGfu AfuUfcCfasUf	AfuguAfaCfcAfaGfaGfuA fuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfccasUf	AfUfGfuAfaccAfaGfaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGf uAfuucCfasUf	AfuGfuaaCfcAfaGfaGfuA fuUfcCfasUf	AfUfGfuaaCfcAfaGfaGfu AfuUfcCfasUf	auGfUfAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfAfCfcAfaGfaGf uAfuUfccasUf	UfgGfgAfuUfuCfaUfgUfa AfcCfaAfgsAf	UfgGfGfAfuuuCfaUfgUfA fAfcCfaAfgsAf	UfgGfgAfuuuCfaUfGfUfa AfcCfaAfgsAf
	163	164	165	166	167	168	169	170	171	172	173	174
	S1145	S1146	S1147	S1148	S1149	S1150	S1151	S1152	S1153	S1154	S1155	S1156
	D1145	D1146	D1147	D1148	D1149	D1150	D1151	D1152	D1153	D1154	D1155	D1156

0.85	8.0	0.81	6.0	0.86	0.95	1.02	-	0.97	0.91	-	0.94	6:0
0.54	0.53	0.89	0.72	69.0	9.0	0.56	0.55	9.0	0.59	0.59	0.57	0.5
0.11	0.13	0.59	0.16	0.27	0.12	0.05	0.13	60.0	0.15	0.11	0.13	80.0
uCfuUfgGfuuaCfaUfgAfa AfuCfcCfasUfsc	uCfuUfgGfuuaCfaUfgAf AfAfuCfcCfasUfsc	uCfuuGfGfuuAfcAfuGaA fauCfCfcasUfsc	uCfuUfgGfuuaCfaUfgAf AfauCfCfcasUfsc	uCfuUfgGfuUfacaUfGfAf aAfuCfcCfasUfsc	aUfgGfaAfuacUfcUfUfGf gUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGf GfUfuAfcAfusGfsa	aUfgGfaAfuacUfCfUfuGf gUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfUfGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfugg UfuAfCfAfusGfsa	aUfgGfaauAfcUfCfUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfCfUfug gUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGfg
1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
AS1157	AS1158	AS1159	AS1160	AS1161	AS1162	AS1163	AS1164	AS1165	AS1166	AS1167	AS1168	AS1169
UfgGfgAfuUfuCfaUfgUfA fAfcCfaAfgsAf	UfgGfgAfuuuCfaUfgUfAf AfcCfaAfgsAf	UfGfggAfUfuUfcAfuGfuA fAfccAfAfgsAf	UfGfggAfUfuuCfaUfgUfA fAfcCfaAfgsAf	UfgGfgAfuUfucaUfGfUfa AfcCfaAfgsAf	AfuGfuAfaCfcaaGfaGfUf AfuUfcCfasUf	AfuGfuAfaccAfaGfaGfuA fUfUfcCfasUf	AfuGfuAfaCfcAfagaGfUf AfuUfcCfasUf	AfuGfuAfaCfcaaGfaGfuA fUfUfcCfasUf	AfuguAfaCfCfAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfagaGfuA fUfUfcCfasUf	AfuGfuAfaCfCfAfagaGfu AfuUfcCfasUf	auGfuAfaCfcAfaGfaGfuA
175	176	177	178	179	180	181	182	183	184	185	186	187
S1157	S1158	S1159	S1160	S1161	S1162	S1163	S1164	S1165	S1166	S1167	S1168	S1169
D1157	D1158	D1159	D1160	D1161	D1162	D1163	D1164	D1165	D1166	D1167	D1168	D1169

	0.91	0.89	0.98	1.03	0.95	0.76	0.81	0.88	0.81	0.73	8.0	0.78
	0.53	0.56	0.59	0.65	0.51	0.53	96.0	0.64	0.49	0.65	1.09	0.78
	90.0	0.07	0.13	0.2	0.07	0.2	0.74	0.43	0.17	0.22	9.0	0.3
UfuAfcAfUfsGfsa	aUfgGfaauAfcUfcUfuGfg UfuAfCfAfusGfsa	aUfggaAfuAfcUfcUfuGfg UfuAfcAfUfsGfsa	aUfgGfAfAfuAfcUfcUfug gUfuAfcAfusGfsa	aUfgGfaAfuAfcucUfUfGf gUfuAfcAfusGfsa	aUfgGfaauAfcUfcUfuGfg UfUfAfcAfusGfsa	aUfggaAfuAfcUfcUfuGfg UfuAfCfAfusGfsa	augGfaAfuAfcUfcUfuGfg UfuAfcAfusGfsa	augGfAfAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfggaAfuAfcUfcUfuGfg UfUfAfcAfusGfsa	augGfaAfuAfcUfcUfuGfg UfuAfcAfUfsGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa
	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291
	AS1170	AS1171	AS1172	AS1173	AS1174	AS1175	AS1176	AS1177	AS1178	AS1179	AS1180	AS1181
fUfUfcCfasUf	AfuguAfaCfcAfaGfaGfuA fUfUfcCfasUf	auGfuAfaCfcAfaGfaGfuA fuUfCfCfasUf	AfuGfuAfaCfCfAfaGfaGf uAfuucCfasUf	AfuGfuAfaCfcaaGfAfGfu AfuUfcCfasUf	AfuGfuaaCfcAfaGfaGfuA fUfUfcCfasUf	AfuguAfaCfcAfaGfaGfuA fuUfCfCfasUf	auGfuAfaCfcAfaGfaGfuA fuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfu AfuucCfAfsUf	auguaaccAfaGfaGfuAfu UfcCfasUf	AfuGfuaaCfcAfaGfaGfuA fuUfCfCfasUf	AfuguAfaCfcAfaGfaGfuA fuUfcCfAfsUf	auGfuAfaCfcAfaGfaGfuA fuUfccasu
	188	189	190	191	192	193	194	195	196	197	198	199
	S1170	S1171	S1172	S1173	S1174	S1175	S1176	S1177	S1178	S1179	S1180	S1181
	D1170	D1171	D1172	D1173	D1174	D1175	D1176	D1177	D1178	D1179	D1180	D1181

0.84	0.94	0.8	0.72	0.74	0.85	1.02	0.85	0.78	0.64	0.83	0.92	0.77
0.73	9.0	1.08	0.52	0.53	99.0	0.98	0.73	69.0	0.88	0.64	0.82	0.62
0.35	0.19	0.61	0.16	0.2	0.34	0.61	0.3	0.28	0.33	0.31	0.64	0.21
aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfggaAfuAfcUfcUfuGfG fUfuAfcAfusGfsa	augGfaAfuAfcUfcUfuGfg UfuAfCfAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfggaAfuAfcUfcUfUfGf gUfuAfcAfusGfsa	augGfaAfuAfcUfcUfuGfg UfUfAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfugd GudTadCadTsgsa	aUfggaAfuAfcUfCfUfuGf gUfuAfcAfusGfsa	augGfaAfuAfcUfcUfuGf GfUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf
1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304
AS1182	AS1183	AS1184	AS1185	AS1186	AS1187	AS1188	AS1189	AS1190	AS1191	AS1192	AS1193	AS1194
auguaaccaaGfaGfuAfuUf cCfasUf	AfuGfuAfaccAfaGfaGfuA fuUfCfCfasUf	AfuGfuaaCfcAfaGfaGfuA fuUfcCfAfsUf	auGfuAfaCfcAfaGfaGfuA fuuccasu	auguaaccaagaGfuAfuUfc CfasUf	AfuGfuAfaCfcaaGfaGfuA fuUfCfCfasUf	AfuGfuAfaccAfaGfaGfuA fuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfu Afuuccasu	auguaaccaagaguauucca su	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfagaGfuA fuUfCfCfasUf	AfuGfuAfaCfcaaGfaGfuA fuUfcCfAfsUf	AfuGfuAfaCfcAfaGfaGfu
200	201	202	203	204	205	206	207	208	209	210	211	212
S1182	S1183	S1184	S1185	S1186	S1187	S1188	S1189	S1190	S1191	S1192	S1193	S1194
D1182	D1183	D1184	D1185	D1186	D1187	D1188	D1189	D1190	D1191	D1192	D1193	D1194

	0.95	0.65	0.93	0.72	0.64	0.92	0.77	0.85	0.76	0.89	6.0	0.89
	0.7	0.71	0.82	0.65	0.52	0.74	0.71	69.0	0.61	0.56	0.57	0.73
	0.17	0.19	0.64	0.19	0.15	0.48	0.17	0.43	0.14	0.16	0.13	0.29
gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuAfCfAfusGfsa	aUfggaAfuAfCfUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfcUfcUfUfGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfggaAfUfAfcUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfcUfCfUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfCfUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	adTdGGfaAfudAdCUfcU fuGfgUfuAfcAfusGfsa	aUfgGfdAdAdTdAcUfcUf uGfgUfuAfcAfusGfsa	adTdGdGdAAfuAfcUfcUf uGfgUfuAfcAfusGfsa
	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316
	AS1195	AS1196	AS1197	AS1198	AS1199	AS1200	AS1201	AS1202	AS1203	AS1204	AS1205	AS1206
auuccasu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaguA fuUfCfCfasUf	AfuGfuAfaCfcAfagaGfuA fuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAf uUfccasu	AfuGfuAfaCfcAfaGfaGfu auUfCfCfasUf	AfuGfuAfaCfcAfaGfaguA fuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAf uUfcCfasu	AfuGfuAfaCfcAfaGfaGfu auUfcCfAfsUf	auguaaCfcAfaGfaGfuAfu UfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfd TdAdTdTcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf
	213	214	215	216	217	218	219	220	221	222	223	224
	S1195	S1196	S1197	S1198	S1199	S1200	S1201	S1202	S1203	S1204	S1205	S1206
	D1195	D1196	D1197	D1198	D1199	D1200	D1201	D1202	D1203	D1204	D1205	D1206

	0.95	0.65	0.93	0.72	0.64	0.92	0.77	0.85	92.0	0.89	6.0	0.89
	0.7	0.71	0.82	0.65	0.52	0.74	0.71	69.0	0.61	0.56	0.57	0.73
	0.17	0.19	0.64	0.19	0.15	0.48	0.17	0.43	0.14	0.16	0.13	0.29
gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuAfCfAfusGfsa	aUfggaAfuAfCfUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfcUfcUfUfGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfggaAfUfAfcUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfcUfCfUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	augGfaAfuAfCfUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	adTdGGfaAfudAdCUfcU fuGfgUfuAfcAfusGfsa	aUfgGfdAdAdTdAcUfcUf uGfgUfuAfcAfusGfsa	adTdGdGdAAfuAfcUfcUf uGfgUfuAfcAfusGfsa
	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316
	AS1195	AS1196	AS1197	AS1198	AS1199	AS1200	AS1201	AS1202	AS1203	AS1204	AS1205	AS1206
auuccasu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaguA fuUfCfCfasUf	AfuGfuAfaCfcAfagaGfuA fuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAf uUfccasu	AfuGfuAfaCfcAfaGfaGfu auUfCfCfasUf	AfuGfuAfaCfcAfaGfaguA fuUfcCfAfsUf	auguAfaCfcAfaGfaGfuAf uUfcCfasu	AfuGfuAfaCfcAfaGfaGfu auUfcCfAfsUf	auguaaCfcAfaGfaGfuAfu UfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfd TdAdTdTcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf
	213	214	215	216	217	218	219	220	221	222	223	224
	S1195	S1196	S1197	S1198	S1199	S1200	S1201	S1202	S1203	S1204	S1205	S1206
	D1195	D1196	D1197	D1198	D1199	D1200	D1201	D1202	D1203	D1204	D1205	D1206

0.78	0.89	0.78	0.84	0.72	0.77	0.91	0.87	0.97	1.07	1.03	0.84	1.03
0.56	0.67	0.55	0.5	0.59	0.74	0.53	0.71	0.67	0.87	0.73	0.42	0.71
0.16	0.22	0.14	0.14	0.14	0.21	0.15	0.12	0.18	0.36	0.37	0.23	0.43
adTdGGfaAfuAfdCdTcUf uGfgUfuAfcAfusGfsa	aUfdGdGdAdAuAfcUfcU fuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf GfUfuAfCfAfusGfsa	aUfgdGdAdAdTAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfadAdTdAdCUfcU fuGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfugd GudTadCadTsgsa	adTdGdGdAAfuAfcUfcUf uGfgUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfdGdGdAdAuAfcUfcU fuGfgUfuAfcAfusGfsa	aUfgGfaAfuacucuuggUf uAfcAfusgsa	aUfgGfaAfuAfCfUfCfUfu GfGfuuAfcAfusgsa	aUfGfgaAfUfacUfCfuuGf GfuuAfCfausGfsa	aUfgGfaAfuaCfUfcUfUfg
1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329
AS1207	AS1208	AS1209	AS1210	AS1211	AS1212	AS1213	AS1214	AS1215	AS1216	AS1217	AS1218	AS1219
AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuguAfaccAfaGfaGfuAf uUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	auguaaccaaGfaGfuAfuUf cCfasUf	AfuGfuAfaCfcAfaGfaGfu AfudTdCdCdAsUf	aUfgUfaAfcCfaAfgAfgUf aUfuCfcAfsu	AfuGfuAfaCfcAfaGfaGfu AfdTdTdCdCasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfUfguAfAfccAfAfgaGfUf auUfCfcasUf	AfuGfuAfaccaagaguAfuU
225	226	227	228	229	230	231	232	233	234	235	236	237
S1207	S1208	S1209	S1210	S1211	S1212	S1213	S1214	S1215	S1216	S1217	S1218	S1219
D1207	D1208	D1209	D1210	D1211	D1212	D1213	D1214	D1215	D1216	D1217	D1218	D1219

	66.0	0.88	66.0	0.82	-	0.84	0.87	0.81	0.978	1.178	1.151	1.07
	0.63	0.84	0.8	0.52	0.79	92.0	0.64	0.79	0.932	1.047	0.967	0.5
	0.37	0.29	0.31	60.0	0.22	0.31	0.26	0.33	0.464	0.453	0.831	0.09
GfuuAfcAfusgsa	aUfgGfaAfuAfcUfCfUfuG fGfuuAfcAfusgsa	aUfgGfaAfuAfcUfCfUfuG fGfuUfacAfusgsa	aUfgGfaAfuaCfuCfuUfg GfuuAfcAfusgsa	aUfgGfaaUfaCfUfcUfuGf GfuuAfcAfAfsgsa	aUfgGfaAfuadCudCudT gdGuuAfcAfusgsa	aUfGfgAfAfuAfCfuCfUfu GfGfuUfAfcAfUfsGfsa	aUfgGfaAfuadCUfcdTUf gdGuuAfcAfusgsa	aUfgGfAfaUfAfCfuCfUfU fgGfUfUfaCfAfUfsGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	aUfgGfaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	AfUfgGfaAfuAfcUfcUfuG fguuAfcAfUfsGfsa
	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341
	AS1220	AS1221	AS1222	AS1223	AS1224	AS1225	AS1226	AS1227	AS1228	AS1229	AS1230	AS1231
fcCfasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	auGfuAfAfccAfaGfagUfa UfUfcCfasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	auGfuaAfccAfagAfguAfu uCfcasUf	AfuGfuAfaccaagaguAfuU fcCfasUf	augUfaacCfaagAfguaUfu ccAfsu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	auGfuAfAfCfcAfaGfaGfu AfuUfcCfasu
	238	239	240	241	242	243	244	245	246	247	248	249
	S1220	S1221	S1222	S1223	S1224	S1225	S1226	S1227	S1228	S1229	S1230	S1231
	D1220	D1221	D1222	D1223	D1224	D1225	D1226	D1227	D1228	D1229	D1230	D1231

1.1	0.74	0.98	0.92	0.8	0.79	0.88	0.85	0.68	0.78	0.84	0.87	8.0
0.54	0.61	0.61	69.0	1.08	0.61	9.0	0.67	0.58	0.65	0.64	0.72	0.55
0.11	0.19	0.22	0.27	0.54	0.29	0.31	0.2	0.23	0.25	0.18	0.19	0.16
AfUfgGfaAfuAfcUfcUfug gUfuAfcAfusGfsa	AfUfggaAfuAfcUfcUfuGf gUfuAfcAfusGfsa	AfuGfgAfaUfaCfuCfuUfg GfuUfaCfaUfsgsAf	AfuGfgAfaUfaCfuCfuUfg GfuUfaCfaUfsgsAf	AfuGfgAfaUfaCfuCfuUfg GfuUfaCfaUfsgsAf	AfUfGfgAfaUfAfCfuCfuU fGfGfuUfaCfAfUfsgsa	AfUfGfgAfaUfAfCfuCfuU fGfGfuUfaCfAfusgsa	dAUdGGdAauAfcUfcUfu GfgUfuAfcAfusGfsa	dAUdGgdAauAfcUfcUfu GfgUfuAfcAfusGfsa	dAudGgdAauAfcUfcUfu GfgUfuAfcAfusGfsa	dAUdGgdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	dAUdGGdAAfuAfcUfcUf uGfGfUfuAfCfAfusGfsa	dAUdGgdAadTAfdCUfc
1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354
AS1232	AS1233	AS1234	AS1235	AS1236	AS1237	AS1238	AS1239	AS1240	AS1241	AS1242	AS1243	AS1244
AfuGfuAfaCfCfAfaGfaGf uAfuUfcCfasu	AfuGfuAfaCfcAfaGfaGfu AfuUfCfCfasu	aUfgUfaAfcCfaAfgAfgUf aUfuCfcAfsu	aUfgUfaAfcCfaAfgAfgUf aUfuCfcAfsu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	augUfaAfccaAfgAfguaUf uCfcasu	AfugUfaAfccaAfgAfguaU fuCfcasu	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu
250	251	252	253	254	255	256	257	258	259	260	261	262
S1232	S1233	S1234	S1235	S1236	S1237	S1238	S1239	S1240	S1241	S1242	S1243	S1244
D1232	D1233	D1234	D1235	D1236	D1237	D1238	D1239	D1240	D1241	D1242	D1243	D1244

				21	10	10	(0	(0		(0		
				0.0047	0.005	0.005	9000	9000	9000	9000	0.007	0.007
	6:0	99.0	0.97	0.36	0.47	0.55	0.49		0.43	0.39	0.48	0.40
	0.51	0.78	0.57	60.0	0.10	0.14	0.14		0.12	0.13	0.17	0.14
	0.22	0.27	0.16	90.0	90.0	0.07	0.07		0.05	90.0	0.08	0.08
UfuGfgUfuAfcAfusGfsa	dAUdGGdAAuAfcUfcUfu GfgUfuAfcAfusGfsa	dAudGgdAadTAfcUfcUf uGfgUfuAfcAfusGfsa	dAdTdGdGaAfuAfcUfcUf uGfgUfuAfcAfusGfsa	dTUdAudAgdAGfcAfaGf aAfcAfcUfgUfusUfsu	UfUfaUfaGfagcAfaGfaAf cAfcUfgUfusUfsu	uUfauaGfaGfCfAfaGfaAf cAfcUfgUfusUfsu	uUfauaGfAfGfcAfaGfaAf cAfcUfgUfusUfsu	UuAuAGAGcAAGAAcA CUGdTdT	uUfaUfagaGfCfAfaGfaAf cAfcUfgUfusUfsu	UfUfaUfaGfaGfcAfagaAf cAfcUfgUfusUfsu	UfUfaUfagaGfcAfaGfaAf cAfcUfgUfusUfsu	UfUfaUfaGfaGfcaaGfaAf cAfcUfgUfusUfsu
	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366
	AS1245	AS1246	AS1247	AS1248	AS1249	AS1250	AS1251	AS1252	AS1253	AS1254	AS1255	AS1256
AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfuGfuAfaCfcAfaGfaGfu AfuUfcCfasUf	AfacaAfuguUfcUfuGfdC UdCudAudAsa	AfaCfaGfuGfuUfcUfuGfC fUfcUfaUfasa	AfaCfaGfuGfuUfcUfugcU fcUfAfUfasAf	AfaCfaGfuGfuUfcUfuGfc ucUfAfUfasAf	cAGuGuucuuGcucuAuA AdTdT	AfaCfaGfuGfuUfcUfugcU fCfUfaUfasAf	AfaCfaGfuGfuUfCfUfuGf cUfcUfaUfasa	AfaCfaGfuGfuUfcUfuGfc UfCfUfaUfasa	AfaCfaGfuGfuUfcUfUfGf cUfcUfaUfasa
	263	264	265	266	267	268	269	270	271	272	273	274
	S1245	S1246	S1247	S1248	S1249	S1250	S1251	S1252	S1253	S1254	S1255	S1256
	D1245	D1246	D1247	D1248	D1249	D1250	D1251	D1252	D1253	D1254	D1255	D1256

	1	1	1	1	1	1	1	1	1	1	1	_
200.0	0.007	800.0	800.0	800.0	800.0	800.0	800.0	600.0	600.0	0.0088	600.0	600.0
0.40	0.41	0.35	0.40	0.42	0.37		0.50	0.48	0.51	0.48	0.35	
0.12	0.13	0.11	0.12	0.13	0.13		0.12	0.13	0.15	0.14	60.0	
0.07	0.08	0.05	90.0	90.0	90.0		0.07	0.12	0.07	90.0	0.05	
uUfaUfagaGfcAfaGfaAfc AfcUfgUfusUfsUf	uUfaUfaGfaGfcAfagaAfc AfCfUfgUfusUfsu	uUfaUfaGfAfGfcAfaGfaA fcAfcugUfusUfsu	uUfaUfaGfaGfcAfagaAfc AfcUfGfUfusUfsu	uUfaUfagaGfcAfaGfaAfc AfcUfGfUfusUfsu	uUfaUfaGfAfGfcAfaGfaA fcAfcUfgUfusUfsu	UuAuAGAGcAAGAAcA CUGdTdT	uUfAfUfaGfagcAfaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfagaAf CfAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfc AfcUfGfUfusUfsu	dTudAudAgdAGfcAfaGf aAfcAfcAfgUfusUfsu	uUfaUfaGfAfGfcAfagaAf cAfcUfgUfusUfsu	UuAuAGAGcAAGAAcA
1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379
AS1257	AS1258	AS1259	AS1260	AS1261	AS1262	AS1263	AS1264	AS1265	AS1266	AS1267	AS1268	AS1269
AfaCfaGfuGfuUfcUfuGfc UfCfUfaUfasAf	AfaCfaguGfuUfCfUfuGfc UfcUfaUfasAf	AfaCfAfGfuGfuUfcUfuGf cucUfaUfasAf	AfacaGfuGfuUfCfUfuGfc UfcUfaUfasAf	AfacaGfuGfuUfcUfuGfcU fCfUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc ucUfaUfasAf	cAGuGuucuuGcucuAuA AdTdT	AfaCfaGfuGfuUfcUfuGfC fUfcUfauasAf	AfaCfaGfuguUfCfUfuGfc UfcUfaUfasAf	AfacaGfuGfuUfcUfuGfcU fcUfAfUfasAf	AfacaAfuguUfcUfuGfdCu dCudAudAsa	AfaCfaGfuGfuUfCfUfuGf cucUfaUfasAf	cAGuGuucuuGcucuAuA
275	276	277	278	279	280	281	282	283	284	285	286	287
S1257	S1258	S1259	S1260	S1261	S1262	S1263	S1264	S1265	S1266	S1267	S1268	S1269
D1257	D1258	D1259	D1260	D1261	D1262	D1263	D1264	D1265	D1266	D1267	D1268	D1269

	600.0	600.0	600.0	600.0	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.011
	0.49	0.36		0.51	0.46		0.47	0.50	0.43		0.45	0.46
	0.14	0.10		0.13	0.12		0.14	0.15	0.13		0.14	0.18
	0.07	90.0		90.0	90.0		90.0	0.07	90.0		90.0	0.07
CUGdTdT	uUfaUfagaGfcAfaGfaAfc AfcUfgUfUfsUfsu	uUfaUfaGfAfGfcAfaGfaA fcacUfgUfusUfsu	UuAuAGAGcAAGAAcA CUGdTdT	uUfaUfaGfaGfcAfaGfaAf cacUfgUfusUfsUf	uUfaUfAfGfaGfcAfagaAf cAfcUfgUfusUfsu	UuAuAGAGcAAGAAcA CUGdTdT	uUfAfUfaGfaGfcAfagaAf cAfcUfgUfusUfsu	uUfaUfagaGfcAfaGfaAfc AfCfUfgUfusUfsu	uUfaUfaGfaGfCfAfagaAf cAfcUfgUfusUfsu	UuAuAGAGcAAGAAcA CUGdTdT	UfUfaUfaGfaGfcAfaGfaA fcAfcUfgUfususu	UfUfaUfaGfaGfcAfaGfaA fcAfcugUfusUfsu
	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391
	AS1270	AS1271	AS1272	AS1273	AS1274	AS1275	AS1276	AS1277	AS1278	AS1279	AS1280	AS1281
AdTdT	aaCfaGfuGfuUfcUfuGfc UfCfUfaUfasAf	AfaCfaGfUfGfuUfcUfuGf cucUfaUfasAf	cAGuGuucuuGcucuAuA AdTdT	AfaCfaGfUfGfuUfcUfuGf cUfcUfaUfasAf	AfaCfaGfuGfuUfCfUfuGf cUfcuaUfasAf	cAGuGuucuuGcucuAuA AdTdT	AfaCfaGfuGfuUfCfUfuGf cUfcUfauasAf	AfaCfaguGfuUfcUfuGfcU fCfUfaUfasAf	AfaCfaGfuGfuUfCfUfugc UfcUfaUfasAf	cAGuGuucuuGcucuAuA AdTdT	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasa	AfaCfAfGfuGfuUfcUfuGf cUfcUfaUfasa
	288	289	290	291	292	293	294	295	296	297	298	299
	S1270	S1271	S1272	S1273	S1274	S1275	S1276	S1277	S1278	S1279	S1280	S1281
	D1270	D1271	D1272	D1273	D1274	D1275	D1276	D1277	D1278	D1279	D1280	D1281

0.011	0.011	0.011	0.011	0.011	0.012	0.012	0.012	0.013	0.013	0.013	0.013	0.014
0.55	0.45	0.48	0.40	0.47	0.46	0.46	0.31	0.49	0.32	0.44	0.39	0.41
0.15	0.12	0.13	0.11	0.16	0.19	0.17	60.0	0.16	0.11	0.14	0.16	0.18
0.07	0.07	90.0	90.0	90.0	0.07	90.0	0.05	90.0	90.0	90.0	0.07	0.07
uUfaUfaGfaGfcAfaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfAfGfcAfaGfaA fcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAf cAfcUfGfUfusUfsu	uUfaUfaGfAfGfcAfaGfaA fcAfcUfguusUfsu	uUfAfUfaGfaGfcAfaGfaA fcAfcugUfusUfsu	uUfaUfaGfaGfCfAfaGfa AfcAfcUfgUfususu	uUfaUfaGfaGfCfAfaGfa AfcAfcUfgUfusUfsu	uUfaUfaGfAfGfcaaGfaAf cAfcUfgUfusUfsu	UfUfaUfaGfaGfcAfaGfaA fcAfcUfguusUfsu	uUfaUfaGfaGfcAfagaAfc AfcUfgUfusUfsUf	uUfaUfaGfaGfCfAfaGfa AfcAfcugUfusUfsu	UfUfaUfaGfaGfcAfaGfaA fcacUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaA
1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404
AS1282	AS1283	AS1284	AS1285	AS1286	AS1287	AS1288	AS1289	AS1290	AS1291	AS1292	AS1293	AS1294
AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc ucUfaUfasAf	AfacaGfuGfuUfcUfuGfcU fcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGf cucUfaUfasAf	AfaCfAfGfuGfuUfcUfuGf cUfcUfauasAf	AfaCfaGfuGfuUfcUfugcU fcUfaUfasAf	AfaCfaGfuGfuUfcUfugcU fcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGf cucUfaUfasAf	AfAfCfaGfuGfuUfcUfuGf cUfcUfaUfasa	AfaCfaGfuGfuUfCfUfuGf cUfcUfaUfasAf	AfaCfAfGfuGfuUfcUfugc UfcUfaUfasAf	AfaCfaGfUfGfuUfcUfuGf cUfcUfaUfasa	AfaCfAfGfuGfuUfcUfuGf
300	301	302	303	304	305	306	307	308	309	310	311	312
S1282	S1283	S1284	S1285	S1286	S1287	S1288	S1289	S1290	S1291	S1292	S1293	S1294
D1282	D1283	D1284	D1285	D1286	D1287	D1288	D1289	D1290	D1291	D1292	D1293	D1294

	0.014	0.0146	0.016	0.016	0.018	0.020	0.021	0.021	0.022	0.033	0.045	
	0.47	0.68	0.50	0.50	0.50	0.43	0.45	0.49	0.51	0.47	0.86	0.61
	0.18	0.21	0.15	0.17	0.16	0.12	0.17	0.14	0.24	0.27	0.36	0.22
	0.07	0.12	90.0	0.08	0.07	90.0	0.07	90.0	0.07	60.0	0.19	0.08
fcAfcugUfusUfsu	uUfaUfAfGfaGfcAfaGfaA fcacUfgUfusUfsu	dTdTaudAdGagdCdAag dAdAcadCdTgudTsdTsu	uUfaUfaGfaGfcAfaGfaAf cacUfGfUfusUfsu	uUfAfUfaGfaGfcAfaGfaA fcacUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfCfUfgUfususu	uUfAfUfaGfaGfcaaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfaGfCfAfaGfa AfcacUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAf CfAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfCfUfguusUfsu	uUfaUfaGfaGfcAfaGfAfA fcAfcUfgUfususu	udTadTdAgadGdCaadG dAacdAdCugdTdTsusu	dTUdAUdAGfaGfcAfaGf aAfCfAfcUfGfUfusUfsu
	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416
	AS1295	AS1296	AS1297	AS1298	AS1299	AS1300	AS1301	AS1302	AS1303	AS1304	AS1305	AS1306
cUfcuaUfasAf	AfaCfaGfUfGfuUfcUfuGf cUfcuaUfasAf	adAdCagdTdGuudCdTu gdCdTcudAdTasa	AfacaGfUfGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfUfGfuUfcUfuGf cUfcUfauasAf	AfaCfaguGfuUfcUfuGfcU fcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGf cUfcUfauasAf	AfaCfaGfUfGfuUfcUfugc UfcUfaUfasAf	AfaCfaGfuguUfcUfUfGfc UfcUfaUfasAf	AfAfCfaguGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuucUfuGfcU fcUfaUfasAf	aadCdAgudGdTucdTdTg cdTdCuadTdAsa	AfacaGfuguUfcUfuGfdC UdCUdAudAsa
	313	314	315	316	317	318	319	320	321	322	323	324
	S1295	S1296	S1297	S1298	S1299	S1300	S1301	S1302	S1303	S1304	S1305	S1306
	D1295	D1296	D1297	D1298	D1299	D1300	D1301	D1302	D1303	D1304	D1305	D1306

0.84	0.48	0.58	0.55	99.0	0.48	0.74	0.54	0.55	0.53	0.55	0.61	0.53
0.39	0.13	0.13	0.14	0:30	0.13	0.38	0.19	0.15	0.16	0.16	0.32	0.16
0.13	60.0	0.07	0.07	0.10	60.0	0.14	0.07	0.07	0.07	0.07	0.10	0.08
dTUdAUdAGfaGfcAfaGf aAfCfAfcUfGfUfusUfsu	dTUdAUdAgdAGfcAfaGf aAfcAfcUfgUfusUfsu	dTUdAUdAgdAGfdCAfa GfaAfcAfcUfgUfusUfsu	dTUdAudAgdAGfdCAfa GfaAfcAfcAfgUfusUfsu	dTdTdAdTaGfaGfcAfaGf aAfcAfcAfgUfusUfsu	dTUdAUdAgdAGfcAfaGf aAfcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfAfA fcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcUfgUfusUfsu	uUfAfUfaGfaGfcAfaGfaA fcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAf cAfcUfGfUfususu	uUfaUfaGfaGfcAfaGfaAf CfAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAf
1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429
AS1307	AS1308	AS1309	AS1310	AS1311	AS1312	AS1313	AS1314	AS1315	AS1316	AS1317	AS1318	AS1319
AfacaGfuguUfcUfdTGfd CUdCUdAudAsa	AfacaGfuguUfcUfuGfdC UdCUdAudAsa	AfacaGfuguUfcUfdTGfd CUdCUdAudAsa	AfacaAfuguUfcUfdTGfdC UdCudAudAsa	AfaCfaAfuGfuUfcUfuGfc UfcUfdAdTdAsdA	AfacaGfuguUfcUfuGfdC UdCUdAudAsa	AfAfCfaGfuGfuucUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfauasAf	AfacaGfuGfuUfcUfuGfcU fcUfaUfasAf	AfAfCfaGfuguUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc
325	326	327	328	329	330	331	332	333	334	335	336	337
S1307	S1308	S1309	S1310	S1311	S1312	S1313	S1314	S1315	S1316	S1317	S1318	S1319
D1307	D1308	D1309	D1310	D1311	D1312	D1313	D1314	D1315	D1316	D1317	D1318	D1319

	0.61	0.58	0.84	0.62	0.78	0.80	0.66	0.70	0.55	0.71	0.76	0.65
	0.16	0.14	0.49	0.20	0.25	0.18	0.21	0.31	0.15	0.19	0.27	0.21
	0.08	90.0	0.15	0.07	0.08	0.08	0.07	0.10	0.07	0.08	60:0	0.07
cAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAf cAfcUfgUfususu	uUfaUfagaGfcAfaGfaAfc AfcUfgUfusUfsu	uUfaUfaGfaGfcAfAfGfaA fcAfcUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaA fcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaAf cAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcUfguusUfsu	uUfauaGfaGfcAfaGfaAfc AfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfAfA fcAfcUfgUfusUfsu	uUfAfUfaGfaGfcAfaGfaA fcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcugUfusUfsu	uuaUfaGfaGfcAfaGfaAfc AfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf CfAfcUfgUfusUfsu
	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441
	AS1320	AS1321	AS1322	AS1323	AS1324	AS1325	AS1326	AS1327	AS1328	AS1329	AS1330	AS1331
UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfCfUfaUfasAf	AfaCfaGfuGfuUfcuuGfcU fcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcuaUfasAf	AfAfCfaGfuGfuUfcUfuGf cUfcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGf cUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfAfUfasAf	AfaCfaGfuGfuucUfuGfcU fcUfaUfasAf	AfAfCfaGfuGfuUfcUfuGf cUfcUfauasAf	AfaCfAfGfuGfuUfcUfuGf cUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfAfsAf	AfaCfaGfuguUfcUfuGfcU fcUfaUfasAf
	338	339	340	341	342	343	344	345	346	347	348	349
	S1320	S1321	S1322	S1323	S1324	S1325	S1326	S1327	S1328	S1329	S1330	S1331
	D1320	D1321	D1322	D1323	D1324	D1325	D1326	D1327	D1328	D1329	D1330	D1331

0.53	0.73	0.54	0.57	96.0	0.54	69.0	0.55	0.57	0.63	0.86	0.73	99.0
0.17	0.25	0.18	0.38	0.50	0.19	0.20	0.16	0.17	0.22	0.56	0.37	0.20
0.07	0.08	0.07	0.14	0.16	0.08	0.08	0.07	0.08	0.08	0.21	0.14	80.0
uUfaUfAfGfaGfcAfaGfaA fcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaAf cacUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfCfUfgUfusUfsu	uUfaUfaGfaGfcAfAfGfaA fcAfcUfgUfususu	uUfaUfaGfaGfcAfaGfaac AfcUfgUfusUfsu	uUfAfUfaGfaGfcAfaGfaA fcAfcUfgUfusUfsu	uUfaUfaGfaGfCfAfaGfa AfcAfcUfguusUfsu	uUfaUfaGfaGfcAfagaAfc AfcUfgUfusUfsu	uUfaUfAfGfaGfcAfaGfaA fcAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf CfAfcUfgUfususu	uUfaUfaGfaGfcAfAfGfaA fcAfcUfguusUfsu	uUfaUfaGfaGfcAfaGfaac AfcUfGfUfusUfsu	uUfaUfaGfaGfcaaGfAfAf
1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454
AS1332	AS1333	AS1334	AS1335	AS1336	AS1337	AS1338	AS1339	AS1340	AS1341	AS1342	AS1343	AS1344
AfAfCfaGfuGfuUfcUfuGf cUfcuaUfasAf	AfaCfaGfUfGfuUfcUfuGf cUfcUfaUfasAf	AfaCfaguGfuUfcUfuGfcU fcUfaUfasAf	AfaCfaGfuGfuUfcuuGfcU fcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGf cUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfauasAf	AfAfCfaGfuGfuUfcUfugc UfcUfaUfasAf	AfaCfaGfuGfuUfCfUfuGf cUfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcuaUfasAf	AfaCfaGfuguUfcUfuGfcU fcUfaUfasAf	AfAfCfaGfuGfuUfcuuGfc UfcUfaUfasAf	AfacaGfuGfUfUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuucUfUfGfc
350	351	352	353	354	355	356	357	358	359	360	361	362
S1332	S1333	S1334	S1335	S1336	S1337	S1338	S1339	S1340	S1341	S1342	S1343	S1344
D1332	D1333	D1334	D1335	D1336	D1337	D1338	D1339	D1340	D1341	D1342	D1343	D1344

	0.73	06:0	0.85	0.58	0.88	0.52	0.58	0.84	0.68	0.52	0.63	0.79
	0.34	0.42	0.43	0.21	0.39	0.13	0.21	0.49	0.25	0.15	0.26	0.33
	0.12	0.16	0.17	0.08	0.21	90.0	0.08	0.18	0.11	0.07	0.10	0.16
cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfAfGfaA fcAfcugUfusUfsu	uUfAfUfaGfaGfcAfaGfaa cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaac AfcUfgUfusUfsUf	uUfaUfaGfaGfcAfaGfAfA fcAfcugUfusUfsu	uUfaUfAfGfaGfcAfaGfaa cAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfc AfCfUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf CfAfcugUfusUfsu	uUfaUfaGfaGfcAfAfGfaA fcacUfgUfusUfsu	uUfaUfaGfAfGfcAfaGfaa cAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfc AfcUfGfUfusUfsu	uUfaUfaGfaGfcAfaGfAfA fcacUfgUfusUfsu	uUfaUfaGfaGfCfAfaGfaa cAfcUfgUfusUfsu
	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466
	AS1345	AS1346	AS1347	AS1348	AS1349	AS1350	AS1351	AS1352	AS1353	AS1354	AS1355	AS1356
UfcUfaUfasAf	AfaCfAfGfuGfuUfcuuGfc UfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGf cUfcUfauasAf	AfaCfaGfuGfUfUfcUfuGf cUfcUfaUfasAf	AfaCfAfGfuGfuucUfuGfc UfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGf cUfcuaUfasAf	AfaCfaguGfuUfcUfUfGfc UfcUfaUfasAf	AfaCfAfGfuguUfcUfuGfc UfcUfaUfasAf	AfaCfaGfUfGfuUfcuuGfc UfcUfaUfasAf	AfaCfaGfuGfUfUfcUfuGf cucUfaUfasAf	AfacaGfuGfuUfcUfUfGfc UfcUfaUfasAf	AfaCfaGfUfGfuucUfuGfc UfcUfaUfasAf	AfaCfaGfuGfUfUfcUfugc UfcUfaUfasAf
	363	364	365	366	367	368	369	370	371	372	373	374
	S1345	S1346	S1347	S1348	S1349	S1350	S1351	S1352	S1353	S1354	S1355	S1356
	D1345	D1346	D1347	D1348	D1349	D1350	D1351	D1352	D1353	D1354	D1355	D1356

0.51	0.71	0.61	0.87	0.52	0.81	0.68	0.67	0.95	0.53	0.53	0.54	0.89
0.19	0.48	0.17	0.40	0.14	0.28	0.16	0.26	0.59	0.13	0.16	0.15	0.56
60.0	0.22	0.10	0.14	0.07	0.10	90.0	60.0	0.20	90.0	0.08	0.07	0.23
uUfaUfaGfaGfcAfaGfaAf cAfcugUfusUfsUf	uUfaUfaGfaGfcAfAfGfaa cAfcUfgUfusUfsu	uUfaUfaGfaGfcaaGfaAfc AfcUfgUfusUfsUf	uUfaUfaGfaGfcAfaGfaac AfCfUfgUfusUfsu	uUfaUfAfGfaGfcaaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfaAfc AfcUfgUfUfsUfsu	uUfauaGfaGfcAfaGfAfAf cAfcUfgUfusUfsu	uuaUfaGfaGfCfAfaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcUfgUfusUfsu	uUfAfUfaGfagcAfaGfaAf cAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfaAfc AfcUfgUfusUfsUf	uUfauaGfaGfcAfaGfaAf CfAfcUfgUfusUfsu	uuaUfaGfaGfcAfAfGfaAf
1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479
AS1357	AS1358	AS1359	AS1360	AS1361	AS1362	AS1363	AS1364	AS1365	AS1366	AS1367	AS1368	AS1369
AfaCfAfGfuGfuUfcUfuGf cUfcUfaUfasAf	AfaCfaGfuGfUfUfcuuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGf cUfcUfaUfasAf	AfaCfaguGfUfUfcUfuGfc UfcUfaUfasAf	AfaCfaGfuGfuUfcUfUfGf cUfcuaUfasAf	aaCfaGfuGfuUfcUfuGfCf UfcUfaUfasAf	AfaCfaGfuGfuucUfuGfcU fcUfAfUfasAf	AfaCfaGfuGfuUfcUfugcU fcUfaUfAfsAf	aacaguguucuugcucuaua sa	AfaCfaGfuGfuUfcUfuGfC fUfcUfauasAf	AfaCfaGfuGfuUfcUfuGfC fUfcUfaUfasAf	AfaCfaGfuguUfcUfuGfcU fcUfAfUfasAf	AfaCfaGfuGfuUfcuuGfcU
375	376	377	378	379	380	381	382	383	384	385	386	387
S1357	S1358	S1359	S1360	S1361	S1362	S1363	S1364	S1365	S1366	S1367	S1368	S1369
D1357	D1358	D1359	D1360	D1361	D1362	D1363	D1364	D1365	D1366	D1367	D1368	D1369

	0.55	0.58	0.56	0.89	0.64	0.94	96.0	0.64	26:0	0.79	0.58	96.0
	0.12	0.18	0.15	0.51	0.21	0.40	0.40	0.17	0.50	0.24	0.14	0.34
	90.0	0.07	90.0	0.21	90.0	0.15	0.13	90.0	0.18	90.0	0.07	0.11
cAfcUfgUfusUfsu	uUfaUfAfGfagcAfaGfaAf cAfcUfgUfusUfsu	uUfaUfAfGfagcAfaGfaAf cAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfc AfCfUfgUfusUfsu	uuaUfaGfaGfcAfaGfAfAf cAfcUfgUfusUfsu	uUfaUfaGfaGfcAfaGfaAf CfAfcUfGfUfusUfsu	uUfaUfaGfagcAfAfGfaAf cAfcUfgUfusUfsu	uUfaUfaGfagcAfAfGfaAf cAfcUfgUfusUfsu	uUfAfUfagaGfcAfaGfaAf cAfcUfgUfusUfsu	uuaUfaGfaGfcAfaGfaAf CfAfcUfgUfusUfsu	uUfaUfaGfagcAfaGfAfAf cAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfc AfcUfgUfUfsUfsu	uuaUfaGfaGfcAfaGfaAfc AfCfUfgUfusUfsu
	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491
	AS1370	AS1371	AS1372	AS1373	AS1374	AS1375	AS1376	AS1377	AS1378	AS1379	AS1380	AS1381
fcUfaUfAfsAf	AfaCfaGfuGfuUfcUfuGfC fUfcuaUfasAf	AfaCfaGfuGfuUfcUfuGfC fUfcuaUfasAf	AfaCfaguGfuUfcUfuGfcU fcUfAfUfasAf	AfaCfaGfuGfuucUfuGfcU fcUfaUfAfsAf	AfacaGfuguUfcUfuGfcUf cUfaUfasAf	AfaCfaGfuGfuUfcuuGfCf UfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfCf UfcUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfCfUfauasAf	AfaCfaGfuguUfcUfuGfcU fcUfaUfAfsAf	AfaCfaGfuGfuucUfuGfCf UfcUfaUfasAf	aaCfaGfuGfuUfcUfuGfc UfcUfAfUfasAf	AfaCfaguGfuUfcUfuGfcU fcUfaUfAfsAf
	388	389	390	391	392	393	394	395	396	397	398	399
	S1370	S1371	S1372	S1373	S1374	S1375	S1376	S1377	S1378	S1379	S1380	S1381
	D1370	D1371	D1372	D1373	D1374	D1375	D1376	D1377	D1378	D1379	D1380	D1381

69.0	0.85	0.54	0.75	06.0	0.70	09:0	0.62	0.76	0.81	0.55	0.57	1.06
0.18	0.38	0.16	0.20	0.56	0.19	0.14	0.19	0.27	0.36	0.17	0.15	0.68
80:0	0.14	0.07	90.0	0.25	90.0	90.0	80.0	80.0	0.18	0.07	0.07	0.26
uUfaUfaGfagcAfaGfaAf CfAfcUfgUfusUfsu	uUfaUfagaGfcAfAfGfaAf cAfcUfgUfusUfsu	uUfauaGfaGfcAfaGfaAfc AfcUfgUfusUfsUf	uuaUfaGfaGfcAfaGfaAfc AfcUfGfUfusUfsu	uUfdAUdAGfaGfcAfaGfa adCadCudGdTdTsusu	uUfaUfaGfagcAfaGfaAfc AfCfUfgUfusUfsu	uUfaUfagaGfcAfaGfAfAf cAfcUfgUfusUfsu	uuaUfAfGfaGfcAfaGfaAf cAfcUfgUfusUfsu	uuaUfaGfaGfcAfaGfaAfc AfcUfgUfUfsUfsu	uUfdAUdAGfaGfcAfaGfa adCadCudGudTsusu	uUfaUfaGfagcAfaGfaAfc AfcUfGfUfusUfsu	uUfaUfagaGfcAfaGfaAf CfAfcUfgUfusUfsu	uUfauaGfaGfcAfAfGfaAf
1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504
AS1382	AS1383	AS1384	AS1385	AS1386	AS1387	AS1388	AS1389	AS1390	AS1391	AS1392	AS1393	AS1394
AfaCfaGfuguUfcUfuGfCf UfcUfaUfasAf	AfaCfaGfuGfuUfcuuGfcU fCfUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcUfAfUfasAf	AfacaGfuGfuUfcUfuGfcU fcUfaUfAfsAf	aacaguguucUfuGfcUcUa udAsa	AfaCfaguGfuUfcUfuGfCf UfcUfaUfasAf	AfaCfaGfuGfuucUfuGfcU fCfUfaUfasAf	AfaCfaGfuGfuUfcUfuGfc UfcuaUfAfsAf	aaCfaGfuGfuUfcUfuGfc UfcUfaUfAfsAf	aacaguguucdTudGcdTc dTadTasa	AfacaGfuGfuUfcUfuGfCf UfcUfaUfasAf	AfaCfaGfuguUfcUfuGfcU fCfUfaUfasAf	AfaCfaGfuGfuUfcuuGfcU
400	401	402	403	404	405	406	407	408	409	410	411	412
S1382	S1383	S1384	S1385	S1386	S1387	S1388	S1389	S1390	S1391	S1392	S1393	S1394
D1382	D1383	D1384	D1385	D1386	D1387	D1388	D1389	D1390	D1391	D1392	D1393	D1394

	0.58	0.73	0.73	0.86	0.82	0.78	0.85	0.80	0.77	0.79	0.77	0.89
	0.18	0.27	0.51	0.34	0.42	0.85	0.83	0.47	0.89	0.39	0.37	0.93
	90.0	60.0	0.20	0.13	0.24	0.49	0.67	0.18	0.73	0.12	0.12	0.59
cAfcUfgUfusUfsu	uuaUfaGfAfGfcAfaGfaAf cAfcUfgUfusUfsu	uuaUfaGfaGfcAfaGfaAfc AfcUfgUfusUfsUf	uUfadTdAdGdAGfcAfaG faGfcAfcAfgUfusUfsu	uUfAfUfaGfAfGfcAfAfGf aAfCfAfcUfGfUfusUfsu	udTdAdTadGdAdGcdAd AdGadAdCdAcdTdGdTu sdTsu	uUfaUfdAdGdAdGcAfaG faGfcAfcAfgUfusUfsu	uUfaUfadGdAdGdCAfa GfaGfcAfcAfgUfusUfsu	uUfaUfAfgaGfCfaaGfAfa cAfCfugUfUfsusu	udTdAUfadGdAGfcAfaG faGfcAfcAfgUfusUfsu	uUaUAgAGCaAGAaCA CuGUUsusu	uUAUaGAGcAAGaACA cUGUusUsu	udTdAUfaGfadGdCAfaG
	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516
	AS1395	AS1396	AS1397	AS1398	AS1399	AS1400	AS1401	AS1402	AS1403	AS1404	AS1405	AS1406
fcUfAfUfasAf	AfaCfaGfuGfuUfcUfuGfc ucUfaUfAfsAf	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfAfsAf	AfaCfaAfuGfuUfcUfuGfc dAdCdTdAUfasAf	AfacaGfuguUfcuuGfcuc UfauasAf	dAacadGugudTcuudGcu cdTauasdA	AfaCfaAfuGfuUfcUfuGfd CdAdCdTaUfasAf	AfaCfaAfuGfuUfcUfudGd CdAdCUfaUfasAf	aaCfAfguGfUfucUfUfgcU fCfuaUfAfsa	AfaCfaAfuGfuUfcUfuGfc dAdCUfadTdAsAf	aacAgugUucuUgcuCuau Asa	AacaGuguUcuuGcucUa uasA	AfaCfaAfuGfuUfcUfudGd
	413	414	415	416	417	418	419	420	421	422	423	424
	S1395	S1396	S1397	S1398	S1399	S1400	S1401	S1402	S1403	S1404	S1405	S1406
	D1395	D1396	D1397	D1398	D1399	D1400	D1401	D1402	D1403	D1404	D1405	D1406

	0.55	0.86	9.76	0.93	1.04	0.90	0.63	99.0	0.53	66.0	0.53
	0.16	0.64	0.31	0.94	0.53	0.64	0.19	0.28	0.13	0.53	0.17
	60.0	0.22	0.13	0.77	0.23	0:30	60.0	0.11	90.0	0.20	0.07
faGfcAfcAfgUfusUfsu	UUauAGagCAagAAcaC UguUsUsu	udTdAdTdAGfaGfcAfaGf aAfcAfcAfgUfusUfsu	uUaUAgaGCaaGAacAC ugUUsusu	udTdAdTdAdGaGfcAfaG faGfcAfcAfgUfusUfsu	uUfaUfAfgAfGfCfaAfGfA faCfAfCfuGfUfUfsusu	udTadTdAgdAdGdCadA dGdAadCdAdCudGdTd Tsusu	UfUfaUfaGfaGfcAfaGfaA fcAfcUfgUfusUfsu	UfUfaUfaGfaGfcAfaGfaa cAfcUfgUfusUfsu	UfUfaUfaGfagcAfaGfaAf cAfcUfgUfusUfsu	Ufufafufafgfafgfcfafaf GfafafcfafcfUfGfUfUfsu su	UfUfauaGfaGfcAfaGfaAf cAfcUfgUfusUfsu
	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527
	AS1407	AS1408	AS1409	AS1410	AS1411	AS1412	AS1413	AS1414	AS1415	AS1416	AS1417
CAfcUfadTdAsAf	aACagUGuuCUugCUcu AUasa	AfaCfaAfuGfuUfcUfuGfc AfcdTdAdTdAsAf	aaCAguGUucUUgcUCu aUAsa	AfaCfaAfuGfuUfcUfuGfc AfdCdTdAdTdAsAf	aacAfgugUfucuUfgcuCfu auAfsa	aacdAgugdTucudTgcud CuaudAsa	AfaCfaGfuGfuUfcUfuGfc UfcUfaUfasa	AfaCfaGfuGfUfUfcUfuGf cUfcUfaUfasa	AfaCfaGfuGfuUfcUfuGfC fUfcUfaUfasa	aacaguguucuugcucuaua sa	AfaCfaGfuGfuUfcUfuGfc UfcUfAfUfasa
	425	426	427	428	429	430	431	432	433	434	435
	S1407	S1408	S1409	S1410	S1411	S1412	S1413	S1414	S1415	S1416	S1417
	D1407	D1408	D1409	D1410	D1411	D1412	D1413	D1414	D1415	D1416	D1417

0.70	0.70											
0.20	0.20											
0.08	0.08											
UfUfauAfGfagCfAfagAfA fcaCfUfguUfsUfsu	uUfaUfaGfaGfcAfaGfaAf cAfcugUfusUfsUf	aGfgUfcCfAfCfuGfgagGf aGfaAfgUfcsCfsc	aGfgUfccaCfuGfgagGfa GfaAfgUfcsCfsc	cAfgGfuCfCfAfcUfggaGf gAfgAfaGfusCfsc	cAfgGfuccAfcUfggaGfgA fgAfaGfusCfsc	uCfaGfgUfCfCfaCfuggAf gGfaGfaAfgsUfsc	uCfaGfgucCfaCfuggAfg GfaGfaAfgsUfsc	uUfcAfgGfUfCfcAfcugGf aGfgAfgAfasGfsu	uUfcAfgguCfcAfcugGfa GfgAfgAfasGfsu	cUfuCfaGfGfUfcCfacuGf gAfgGfaGfasAfsg	cUfuCfaggUfcCfacuGfg AfgGfaGfasAfsg	cCfuUfcAfGfGfuCfcacUf
1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540
AS1418	AS1419	AS1420	AS1421	AS1422	AS1423	AS1424	AS1425	AS1426	AS1427	AS1428	AS1429	AS1430
aAfCfagUfGfuuCfUfugCf UfcuAfUfasa	AfaCfAfGfuGfuUfcUfuGf cUfcUfaUfasAf	GfaCfuUfcUfcCfUfCfcAfg ugGfaCfcUfL96	GfaCfuUfcUfcCfUfCfcAfg UfGfGfaCfcUfL96	AfcUfuCfuCfcUfCfaGf uggAfcCfuGfL96	AfcUfuCfuCfcUfCfaGf uGfGfAfcCfuGfL96	CfuUfcUfcCfuCfCfAfgUfg gaCfcUfgAfL96	CfuUfcUfcCfuCfCfAfgUfg GfAfCfcUfgAfL96	UfuCfuCfcUfcCfAfGfuGf gacCfuGfaAfL96	UfuCfuCfcUfcCfAfGfuGf gAfCfCfuGfaAfL96	UfcUfcCfuCfcAfGfUfgGf accUfgAfaGfL96	UfcUfcCfuCfcAfGfUfgGf aCfCfUfgAfaGfL96	CfuCfcUfcCfaGfUfGfgAf
436	437	438	439	440	441	442	443	444	445	446	447	448
S1418	S1419	S1420	S1421	S1422	S1423	S1424	S1425	S1426	S1427	S1428	S1429	S1430
D1418	D1419	D1420	D1421	D1422	D1423	D1424	D1425	D1426	D1427	D1428	D1429	D1430

gGfaGfgAfgsAfsa	cCfuUfcagGfuCfcacUfg GfaGfgAfgsAfsa	uCfcUfuCfAfGfgUfccaCf uGfgAfgGfasGfsa	uCfcUfucaGfgUfccaCfu GfgAfgGfasGfsa	gUtcCtuUtCfAfgGfuccAf cUfgGfaGfgsAfsg	gUfcCfuucAfgGfuccAfcU fgGfaGfgsAfsg	cGfuCfcUfUfCfaGfgucCf aCfuGfgAfgsGfsa	cGfuCfcuuCfaGfgucCfa CfuGfgAfgsGfsa	uCfgUfcCfUfUfcAfgguCf cAfcUfgGfasGfsg	uCfgUfccuUfcAfgguCfcA fcUfgGfasGfsg	cUfcGfuCfCfUfuCfaggUf cCfaCfuGfgsAfsg	cUfcGfuccUfuCfaggUfcC faCfuGfgsAfsg	cCfuCfgUfCfCfuUfcagGf uCfcAfcUfgsGfsa
	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552
	AS1431	AS1432	AS1433	AS1434	AS1435	AS1436	AS1437	AS1438	AS1439	AS1440	AS1441	AS1442
ccuGfaAfgGfL96	CfuCfcUfcCfaGfUfGfgAf cCfUfGfaAfgGfL96	UfcCfuCfcAfgUfGfGfaCf cugAfaGfgAfL96	UfcCfuCfcAfgUfGfGfaCf cUfGfAfaGfgAfL96	CfcUfcCfaGfuGfGfAfcCf ugaAfgGfaCfL96	CfcUfcCfaGfuGfGfAfcCf uGfAfAfgGfaCfL96	CfuCfcAfgUfgGfAfCfcUfg aaGfgAfcGfL96	CfuCfcAfgUfgGfAfCfcUfg AfAfGfgAfcGfL96	UfcCfaGfuGfgAfCfCfuGf aagGfaCfgAfL96	UfcCfaGfuGfgAfCfCfuGf aAfGfGfaCfgAfL96	CfcAfgUfgGfaCfCfUfgAf aggAfcGfaGfL96	CfcAfgUfgGfaCfCfUfgAf aGfGfAfcGfaGfL96	CfaGfuGfgAfcCfUfGfaAf ggaCfgAfgGfL96
	449	450	451	452	453	454	455	456	457	458	459	460
	S1431	S1432	S1433	S1434	S1435	S1436	S1437	S1438	S1439	S1440	S1441	S1442
	D1431	D1432	D1433	D1434	D1435	D1436	D1437	D1438	D1439	D1440	D1441	D1442

cCfuCfgucCfuUfcagGfu CfcAfcUfgsGfsa	cCfcUfcGfUfCfcUfucaGf gUfcCfaCfusGfsg	cCfcUfcguCfcUfucaGfgU fcCfaCfusGfsg	uCfcCfuCfGtUfcCfuucAf gGfuCfcAfcsUfsg	uCfcCfucgUfcCfuucAfgG fuCfcAfcsUfsg	aUfcCfcUfCfGfuCfcuuCf aGfgUfcCfasCfsu	aUfcCfcucGfuCfcuuCfa GfgUfcCfasCfsu	cAfuCfcCfUfCfgUfccuUf cAfgGfuCfcsAfsc	cAfuCfccuCfgUfccuUfcA fgGfuCfcsAfsc	cCfaUfcCfCfUfcGfuccUf uCfaGfgUfcsCfsa	cCfaUfcccUfcGfuccUfuC faGfgUfcsCfsa	cCfcAfuCfCfCfuCfgucCf uUfcAfgGfusCfsc	cCfcAfuccCfuCfgucCfuU
1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565
AS1443	AS1444	AS1445	AS1446	AS1447	AS1448	AS1449	AS1450	AS1451	AS1452	AS1453	AS1454	AS1455
CfaGfuGfgAfcCfUfGfaAf gGfAfCfgAfgGfL96	AfgUfgGfaCfcUfGfAfaGf gacGfaGfgGfL96	AfgUfgGfaCfcUfGfAfaGf gAfCfGfaGfgGfL96	GfuGfgAfcCfuGfAfAfgGf acgAfgGfgAfL96	GfuGfgAfcCfuGfAfAfgGf aCfGfAfgGfgAfL96	UfgGfaCfcUfgAfAfGfgAfc gaGfgGfaUfL96	UfgGfaCfcUfgAfAfGfgAfc GfAfGfgGfaUfL96	GfgAfcCfuGfaAfGfGfaCf gagGfgAfuGfL96	GfgAfcCfuGfaAfGfGfaCf gAfGfGfgAfuGfL96	GfaCfcUfgAfaGfGfAfcGf aggGfaUfgGfL96	GfaCfcUfgAfaGfGfAfcGf aGfGfGfaUfgGfL96	AfcCfuGfaAfgGfAfCfgAfg ggAfuGfgGfL96	AfcCfuGfaAfgGfAfCfgAfg
461	462	463	464	465	466	467	468	469	470	471	472	473
S1443	S1444	S1445	S1446	S1447	S1448	S1449	S1450	S1451	S1452	S1453	S1454	S1455
D1443	D1444	D1445	D1446	D1447	D1448	D1449	D1450	D1451	D1452	D1453	D1454	D1455

fcAfgGfusCfsc	uCfcCfaUfCfCfcUfcguCf cUfuCfaGfgsUfsc	uCfcCfaucCfcUfcguCfcU fuCfaGfgsUfsc	aUfcCfcAfUfCfcCfucgUf cCfuUfcAfgsGfsu	aUfcCfcauCfcCfucgUfcC fuUfcAfgsGfsu	aAfuCfcCfAfUfcCfcucGf uCfcUfuCfasGfsg	aAfuCfccaUfcCfcucGfuC fcUfuCfasGfsg	aAfaUfcCfCfAfuCfccuCf gUfcCfuUfcsAfsg	aAfaUfcccAfuCfccuCfgU fcCfuUfcsAfsg	gAfaAfuCfCfCfaUfcccUf cGfuCfcUfusCfsa	gAfaAfuccCfaUfcccUfcG fuCfcUfusCfsa	uGfaAfaUfCfCfcAfuccCf uCfgUfcCfusUfsc	uGfaAfaucCfcAfuccCfuC fgUfcCfusUfsc
	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577
	AS1456	AS1457	AS1458	AS1459	AS1460	AS1461	AS1462	AS1463	AS1464	AS1465	AS1466	AS1467
GfGfAfuGfgGfL96	CfcUfgAfaGfgAfCfGfaGf ggaUfgGfgAfL96	CfcUfgAfaGfgAfCfGfaGf gGfAfUfgGfgAfL96	CfuGfaAfgGfaCfGfAfgGf gauGfgGfaUfL96	CfuGfaAfgGfaCfGfAfgGf gAfUfGfgGfaUfL96	UfgAfaGfgAfcGfAfGfgGf augGfgAfuUfL96	UfgAfaGfgAfcGfAfGfgGf aUfGfGfgAfuUfL96	GfaAfgGfaCfgAfGfGfgAf uggGfaUfuUfL96	GfaAfgGfaCfgAfGfGfgAf uGfGfGfaUfuUfL96	AfaGfgAfcGfaGfGfGfaUf gggAfuUfuCfL96	AfaGfgAfcGfaGfGfGfaUf gGfGfAfuUfuCfL96	AfgGfaCfgAfgGfGfAfuGf ggaUfuUfcAfL96	AfgGfaCfgAfgGfGfAfuGf gGfAfUfuUfcAfL96
	474	475	476	477	478	479	480	481	482	483	484	485
	S1456	S1457	S1458	S1459	S1460	S1461	S1462	S1463	S1464	S1465	S1466	S1467
	D1456	D1457	D1458	D1459	D1460	D1461	D1462	D1463	D1464	D1465	D1466	D1467

aUfgAfaAfUfCfcCfaucCf cUfcGfuCfcsUfsu	aUfgAfaauCfcCfaucCfcU fcGfuCfcsUfsu	cAfuGfaAfAfUfcCfcauCf cCfuCfgUfcsCfsu	cAfuGfaaaUfcCfcauCfcC fuCfgUfcsCfsu	aCfaUfgAfAfAfuCfccaUf cCfcUfcGfusCfsc	aCfaUfgaaAfuCfccaUfcC fcUfcGfusCfsc	uAfcAfuGfAfAfaUfcccAfu CfcCfuCfgsUfsc	uAfcAfugaAfaUfcccAfuC fcCfuCfgsUfsc	uUfaCfaUfGfAfaAfuccCf aUfcCfcUfcsGfsu	uUfaCfaugAfaAfuccCfaU fcCfcUfcsGfsu	gUfuAfcAfUfGfaAfaucCf cAfuCfcCfusCfsg	gUfuAfcauGfaAfaucCfcA fuCfcCfusCfsg	gGfuUfaCfAfUfgAfaauCf
1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590
AS1468	AS1469	AS1470	AS1471	AS1472	AS1473	AS1474	AS1475	AS1476	AS1477	AS1478	AS1479	AS1480
GfgAfcGfaGfgGfAfUfgGf gauUfuCfaUfL96	GfgAfcGfaGfgGfAfUfgGf gAfUfUcfaUfL96	GfaCfgAfgGfgAfUfGfgGf auuUfcAfuGfL96	GfaCfgAfgGfgAfUfGfgGf aUfUfCAfuGfL96	AfcGfaGfgGfaUfGfGfgAf uuuCfaUfgUfL96	AfcGfaGfgGfaUfGfGfgAf uUfUfCfaUfgUfL96	CfgAfgGfgAfuGfGfGfaUf uucAfuGfuAfL96	CfgAfgGfgAfuGfGfGfaUf uUfCfAfuGfuAfL96	GfaGfgGfaUfgGfGfAfuUf ucaUfgUfaAfL96	GfaGfgGfaUfgGfGfAfuUf uCfAfUfgUfaAfL96	AfgGfgAfuGfgGfAfUfuUf cauGfuAfaCfL96	AfgGfgAfuGfgGfAfUfuUf cAfUfGfuAfaCfL96	GfgGfaUfgGfgAfUfUfuCf
486	487	488	489	490	491	492	493	494	495	496	497	498
S1468	S1469	S1470	S1471	S1472	S1473	S1474	S1475	S1476	S1477	S1478	S1479	S1480
D1468	D1469	D1470	D1471	D1472	D1473	D1474	D1475	D1476	D1477	D1478	D1479	D1480

cCfaUfcCfcsUfsc	gGfuUfacaUfgAfaauCfc CfaUfcCfcsUfsc	uGfgUfuAfCfAfuGfaaaUf cCfcAfuCfcsCfsu	uGfgUfuacAfuGfaaaUfc CfcAfuCfcsCfsu	uUfgGfuUfAfCfaUfgaaAf uCfcCfaUfcsCfsc	uUfgGfuuaCfaUfgaaAfu CfcCfaUfcsCfsc	cUfuGfgUfUfAfcAfugaAf aUfcCfcAfusCfsc	cUfuGfguuAfcAfugaAfaU fcCfcAfusCfsc	uCfuUfgGfUfUfaCfaugAf aAfuCfcCfasUfsc	uCfuUfgguUfaCfaugAfa AfuCfcCfasUfsc	cUfcUfuGfGfUfuAfcauGf aAfaUfcCfcsAfsu	cUfcUfuggUfuAfcauGfaA faUfcCfcsAfsu	aCfuCfuUfGfGfuUfacaUf gAfaAfuCfcsCfsa
	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602
	AS1481	AS1482	AS1483	AS1484	AS1485	AS1486	AS1487	AS1488	AS1489	AS1490	AS1491	AS1492
augUfaAfcCfL96	GfgGfaUfgGfgAfUfUfuCf aUfGfUfaAfcCfL96	GfgAfuGfgGfaUfUfUfcAf uguAfaCfcAfL96	GfgAfuGfgGfaUfUfUfcAf uGfUfAfaCfcAfL96	GfaUfgGfgAfuUfUfCfaUf guaAfcCfaAfL96	GfaUfgGfgAfuUfUfCfaUf gUfAfAfcCfaAfL96	AfuGfgGfaUfuUfCfAfuGf uaaCfcAfaGfL96	AfuGfgGfaUfuUfCfAfuGf uAfAfCfcAfaGfL96	UfgGfgAfuUfuCfAfUfgUf aacCfaAfgAfL96	UfgGfgAfuUfuCfAfUfgUf aAfCfCfaAfgAfL96	GfgGfaUfuUfcAfUfGfuAf accAfaGfaGfL96	GfgGfaUfuUfcAfUfGfuAf aCfCfAfaGfaGfL96	GfgAfuUfuCfaUfGfUfaAf ccaAfgAfgUfL96
	499	200	501	502	503	504	505	206	207	208	209	510
	S1481	S1482	S1483	S1484	S1485	S1486	S1487	S1488	S1489	S1490	S1491	S1492
	D1481	D1482	D1483	D1484	D1485	D1486	D1487	D1488	D1489	D1490	D1491	D1492

aCfuCfuugGfuUfacaUfg AfaAfuCfcsCfsa	uAfcUfcUfUfGfgUfuacAf uGfaAfaUfcsCfsc	uAfcUfcuuGfgUfuacAfu GfaAfaUfcsCfsc	aUfaCfuCfUfUfgGfuuaCf aUfgAfaAfusCfsc	aUfaCfucuUfgGfuuaCfa UfgAfaAfusCfsc	aAfuAfcUfCfUfuGfguuAf cAfuGfaAfasUfsc	aAfuAfcucUfuGfguuAfcA fuGfaAfasUfsc	gAfaUfaCfUfCfuUfgguUf aCfaUfgAfasAfsu	gAfaUfacuCfuUfgguUfa CfaUfgAfasAfsu	gGfaAfuAfCfUfcUfuggUf uAfcAfuGfasAfsa	gGfaAfuacUfcUfuggUfu AfcAfuGfasAfsa	uGfgAfaUfAfCfuCfuugGf uUfaCfaUfgsAfsa	uGfgAfauaCfuCfuugGfu
1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615
AS1493	AS1494	AS1495	AS1496	AS1497	AS1498	AS1499	AS1500	AS1501	AS1502	AS1503	AS1504	AS1505
GfgAfuUfuCfaUfGfUfaAf cCfAfAfgAfgUfL96	GfaUfuUfcAfuGfUfAfaCf caaGfaGfuAfL96	GfaUfuUfcAfuGfUfAfaCf cAfAfGfaGfuAfL96	AfuUfuCfaUfgUfAfAfcCfa agAfgUfaUfL96	AfuUfuCfaUfgUfAfAfcCfa AfGfAfgUfaUfL96	UfuUfcAfuGfuAfAfCfcAfa gaGfuAfuUfL96	UfuUfcAfuGfuAfAfCfcAfa GfAfGfuAfuUfL96	UfuCfaUfgUfaAfCfCfaAf gagUfaUfuCfL96	UfuCfaUfgUfaAfCfCfaAf gAfGfUfaUfuCfL96	UfcAfuGfuAfaCfCfAfaGf aguAfuUfcCfL96	UfcAfuGfuAfaCfCfAfaGf aGfUfAfuUfcCfL96	CfaUfgUfaAfcCfAfAfgAfg uaUfuCfcAfL96	CfaUfgUfaAfcCfAfAfgAfg
511	512	513	514	515	516	517	518	519	520	521	522	523
S1493	S1494	S1495	S1496	S1497	S1498	S1499	S1500	S1501	S1502	S1503	S1504	S1505
D1493	D1494	D1495	D1496	D1497	D1498	D1499	D1500	D1501	D1502	D1503	D1504	D1505

UfaCfaUfgsAfsa	aUfgGfaAfUfAfcUfcuuGf gUfuAfcAfusGfsa	aUfgGfaauAfcUfcuuGfg UfuAfcAfusGfsa	aAfuGfgAfAfUfaCfucuUf gGfuUfaCfasUfsg	aAfuGfgaaUfaCfucuUfg GfuUfaCfasUfsg	aAfaUfgGfAfAfuAfcucUf uGfgUfuAfcsAfsu	aAfaUfggaAfuAfcucUfuG fgUfuAfcsAfsu	aAfaAfuGfGfAfaUfacuCf uUfgGfuUfasCfsa	aAfaAfuggAfaUfacuCfuU fgGfuUfasCfsa	aAfaAfaUfGfGfaAfuacUf cUfuGfgUfusAfsc	aAfaAfaugGfaAfuacUfcU fuGfgUfusAfsc	uAfaAfaAfUfGfgAfauaCf uCfuUfgGfusUfsa	uAfaAfaauGfgAfauaCfu CfuUfgGfusUfsa
	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627
	AS1506	AS1507	AS1508	AS1509	AS1510	AS1511	AS1512	AS1513	AS1514	AS1515	AS1516	AS1517
UfAfUfuCfcAfL96	AfuGfuAfaCfcAfAfGfaGf uauUfcCfaUfL96	AfuGfuAfaCfcAfAfGfaGf uAfUfUfcCfaUfL96	UfgUfaAfcCfaAfGfAfgUfa uuCfcAfuUfL96	UfgUfaAfcCfaAfGfAfgUfa UfUfCfcAfuUfL96	GfuAfaCfcAfaGfAfGfuAf uucCfaUfuUfL96	GfuAfaCfcAfaGfAfGfuAf uUfCfCfaUfuUfL96	UfaAfcCfaAfgAfGfUfaUfu ccAfuUfuUfL96	UfaAfcCfaAfgAfGfUfaUfu CfCfAfuUfuUfL96	AfaCfcAfaGfaGfUfAfuUfc caUfuUfuUfL96	AfaCfcAfaGfaGfUfAfuUfc CfAfUfuUfuUfL96	AfcCfaAfgAfgUfAfUfuCfc auUfuUfuAfL96	AfcCfaAfgAfgUfAfUfuCfc AfUfUfuUfuAfL96
	524	525	526	527	528	529	530	531	532	533	534	535
	S1506	S1507	S1508	S1509	S1510	S1511	S1512	S1513	S1514	S1515	S1516	S1517
	D1506	D1507	D1508	D1509	D1510	D1511	D1512	D1513	D1514	D1515	D1516	D1517

gUfaAfaAfAfUfgGfaauAf cUfcUfuGfgsUfsu	gUfaAfaaaUfgGfaauAfc UfcUfuGfgsUfsu	aGfuAfaAfAfAfuGfgaaUf aCfuCfuUfgsGfsu	aGfuAfaaaAfuGfgaaUfa CfuCfuUfgsGfsu	uAfgUfaAfAfAfaUfggaAf uAfcUfcUfusGfsg	uAfgUfaaaAfaUfggaAfuA fcUfcUfusGfsg	uUfaGfuAfAfAfaAfuggAf aUfaCfuCfusUfsg	uUfaGfuaaAfaAfuggAfa UfaCfuCfusUfsg	uUfuAfgUfAfAfaAfaugGf aAfuAfcUfcsUfsu	uUfuAfguaAfaAfaugGfa AfuAfcUfcsUfsu	cUfuUfaGfUfAfaAfaauGf gAfaUfaCfusCfsu	cUfuUfaguAfaAfaauGfg AfaUfaCfusCfsu	gCfuUfuAfGfUfaAfaaaUf
1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640
AS1518	AS1519	AS1520	AS1521	AS1522	AS1523	AS1524	AS1525	AS1526	AS1527	AS1528	AS1529	AS1530
CfcAfaGfaGfuAfUfUfcCf auuUfuUfaCfL96	CfcAfaGfaGfuAfUfUfcCf aUfUfuUfaCfL96	CfaAfgAfgUfaUfUfCfcAfu uuUfuAfcUfL96	CfaAfgAfgUfaUfUfCfcAfu UfUfUfuAfcUfL96	AfaGfaGfuAfuUfCfCfaUf uuuUfaCfuAfL96	AfaGfaGfuAfuUfCfCfaUf uUfUfUfaCfuAfL96	AfgAfgUfaUfuCfCfAfuUfu uuAfcUfaAfL96	AfgAfgUfaUfuCfCfAfuUfu UfUfAfcUfaAfL96	GfaGfuAfuUfcCfAfUfuUf uuaCfuAfaAfL96	GfaGfuAfuUfcCfAfUfuUf uUfAfCfuAfaAfL96	AfgUfaUfuCfcAfUfUfuUfu acUfaAfaGfL96	AfgUfaUfuCfcAfUfUfuUfu AfCfUfaAfaGfL96	GfuAfuUfcCfaUfUfUfuUf
536	537	538	539	540	541	542	543	544	545	546	547	548
S1518	S1519	S1520	S1521	S1522	S1523	S1524	S1525	S1526	S1527	S1528	S1529	S1530
D1518	D1519	D1520	D1521	D1522	D1523	D1524	D1525	D1526	D1527	D1528	D1529	D1530

gGfaAfuAfcsUfsc	gCfuUfuagUfaAfaaaUfg GfaAfuAfcsUfsc	uGfcUfuUfAfGfuAfaaaAf uGfgAfaUfasCfsu	uGfcUfuuaGfuAfaaaAfu GfgAfaUfasCfsu	cUfgCfuUfUfAfgUfaaaAf aUfgGfaAfusAfsc	cUfgCfuuuAfgUfaaaAfa UfgGfaAfusAfsc	aCfuGfcUfUfUfaGfuaaAf aAfuGfgAfasUfsa	aCfuGfcuuUfaGfuaaAfa AfuGfgAfasUfsa	cAfcUfgCfUfUfuAfguaAf aAfaUfgGfasAfsu	cAfcUfgcuUfuAfguaAfaA faUfgGfasAfsu	aCfaCfuGfCfUfuUfaguAf aAfaAfuGfgsAfsa	aCfaCfugcUfuUfaguAfa AfaAfuGfgsAfsa	aAfcAfcUfGfCfuUfuagUf aAfaAfaUfgsGfsa
	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652
	AS1531	AS1532	AS1533	AS1534	AS1535	AS1536	AS1537	AS1538	AS1539	AS1540	AS1541	AS1542
acuAfaAfgCfL96	GfuAfuUfcCfaUfUfUfuUf aCfUfAfaAfgCfL96	UfaUfuCfcAfuUfUfUfuAfc uaAfaGfcAfL96	UfaUfuCfcAfuUfUfUfuAfc UfAfAfaGfcAfL96	AfuUfcCfaUfuUfUfUfaCf uaaAfgCfaGfL96	AfuUfcCfaUfuUfUfUfaCf uAfAfAfgCfaGfL96	UfuCfcAfuUfuUfUfAfcUfa aaGfcAfgUfL96	UfuCfcAfuUfuUfUfAfcUfa AfAfGfcAfgUfL96	UfcCfaUfuUfuUfAfCfuAfa agCfaGfuGfL96	UfcCfaUfuUfuUfAfCfuAfa AfGfCfaGfuGfL96	CfcAfuUfuUfuAfCfUfaAfa gcAfgUfgUfL96	CfcAfuUfuUfuAfCfUfaAfa GfCfAfgUfgUfL96	CfaUfuUfuUfaCfUfAfaAf gcaGfuGfuUfL96
	549	550	551	552	553	554	555	556	557	558	559	560
	S1531	S1532	S1533	S1534	S1535	S1536	S1537	S1538	S1539	S1540	S1541	S1542
	D1531	D1532	D1533	D1534	D1535	D1536	D1537	D1538	D1539	D1540	D1541	D1542

aAfcAfcugCfuUfuagUfaA faAfaUfgsGfsa	aAfaCfaCfUfGfcUfuuaGf uAfaAfaAfusGfsg	aAfaCfacuGfcUfuuaGfu AfaAfaAfusGfsg	aAfaAfcAfCfUfgCfuuuAf gUfaAfaAfasUfsg	aAfaAfcacUfgCfuuuAfgU faAfaAfasUfsg	gAfaAfaCfAfCfuGfcuuUf aGfuAfaAfasAfsu	gAfaAfacaCfuGfcuuUfa GfuAfaAfasAfsu	uGfaAfaAfCfAfcUfgcuUf uAfgUfaAfasAfsa	uGfaAfaacAfcUfgcuUfuA fgUfaAfasAfsa	gUfgAfaAfAfCfaCfugcUf uUfaGfuAfasAfsa	gUfgAfaaaCfaCfugcUfu UfaGfuAfasAfsa	gGfuGfaAfAfAfcAfcugCf uUfuAfgUfasAfsa	gGfuGfaaaAfcAfcugCfu
1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665
AS1543	AS1544	AS1545	AS1546	AS1547	AS1548	AS1549	AS1550	AS1551	AS1552	AS1553	AS1554	AS1555
CfaUfuUfuUfaCfUfAfaAf gCfAfGfuGfuUfL96	AfuUfuUfuAfcUfAfAfaGfc agUfgUfuUfL96	AfuUfuUfuAfcUfAfAfaGfc AfGfUfgUfuUfL96	UfuUfuUfaCfuAfAfAfgCfa guGfuUfuUfL96	UfuUfuUfaCfuAfAfAfgCfa GfUfGfuUfuUfL96	UfuUfuAfcUfaAfAfGfcAfg ugUfuUfuCfL96	UfuUfuAfcUfaAfAfGfcAfg UfGfUfuUfuCfL96	UfuUfaCfuAfaAfGfCfaGf uguUfuUfcAfL96	UfuUfaCfuAfaAfGfCfaGf uGfUfUfuUfcAfL96	UfuAfcUfaAfaGfCfAfgUfg uuUfuCfaCfL96	UfuAfcUfaAfaGfCfAfgUfg UfUfUfuCfaCfL96	UfaCfuAfaAfgCfAfGfuGf uuuUfcAfcCfL96	UfaCfuAfaAfgCfAfGfuGf
561	295	563	564	565	266	267	268	269	220	571	572	573
S1543	S1544	S1545	S1546	S1547	S1548	S1549	S1550	S1551	S1552	S1553	S1554	S1555
D1543	D1544	D1545	D1546	D1547	D1548	D1549	D1550	D1551	D1552	D1553	D1554	D1555

UfuAfgUfasAfsa	aGfgUfgAfAfAfaCfacuGf cUfuUfaGfusAfsa	aGfgUfgaaAfaCfacuGfc UfuUfaGfusAfsa	gAfgGfuGfAfAfaAfcacUf gCfuUfuAfgsUfsa	gAfgGfugaAfaAfcacUfgC fuUfuAfgsUfsa	uGfaGfgUfGfAfaAfacaCf uGfcUfuUfasGfsu	uGfaGfgugAfaAfacaCfu GfcUfuUfasGfsu	aUfgAfgGfUfGfaAfaacAf cUfgCfuUfusAfsg	aUfgAfgguGfaAfaacAfcU fgCfuUfusAfsg	uAfuGfaGfGfUfgAfaaaCf aCfuGfcUfusUfsa	uAfuGfaggUfgAfaaaCfa CfuGfcUfusUfsa	aUfaUfgAfGfGfuGfaaaAf cAfcUfgCfusUfsu	aUfaUfgagGfuGfaaaAfc AfcUfgCfusUfsu
	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677
	AS1556	AS1557	AS1558	AS1559	AS1560	AS1561	AS1562	AS1563	AS1564	AS1565	AS1566	AS1567
uUfUfUfcAfcCfL96	AfcUfaAfaGfcAfGfUfgUfu uuCfaCfcUfL96	AfcUfaAfaGfcAfGfUfgUfu UfUfCfaCfcUfL96	CfuAfaAfgCfaGfUfGfuUf uucAfcCfuCfL96	CfuAfaAfgCfaGfUfGfuUf uUfCfAfcCfuCfL96	UfaAfaGfcAfgUfGfUfuUf ucaCfcUfcAfL96	UfaAfaGfcAfgUfGfUfuUf uCfAfCfcUfcAfL96	AfaAfgCfaGfuGfUfUfuUf cacCfuCfaUfL96	AfaAfgCfaGfuGfUfUfuUf cAfCfCfuCfaUfL96	AfaGfcAfgUfgUfUfuCf accUfcAfuAfL96	AfaGfcAfgUfgUfUfUfuCf aCfCfUfcAfuAfL96	AfgCfaGfuGfuUfUfUfcAf ccuCfaUfaUfL96	AfgCfaGfuGfuUfUfUfcAf cCfUfCfaUfaUfL96
	574	575	576	577	578	579	280	581	582	583	584	585
	S1556	S1557	S1558	S1559	S1560	S1561	S1562	S1563	S1564	S1565	S1566	S1567
	D1556	D1557	D1558	D1559	D1560	D1561	D1562	D1563	D1564	D1565	D1566	D1567

cAfuAfuGfAfGfgUfgaaAf aCfaCfuGfcsUfsu	cAfuAfugaGfgUfgaaAfa CfaCfuGfcsUfsu	gCfaUfaUfGfAfgGfugaAf aAfcAfcUfgsCfsu	gCfaUfaugAfgGfugaAfa AfcAfcUfgsCfsu	aGfcAfuAfUfGfaGfgugAf aAfaCfaCfusGfsc	aGfcAfuauGfaGfgugAfa AfaCfaCfusGfsc	uAfgCfaUfAfUfgAfgguGf aAfaAfcAfcsUfsg	uAfgCfauaUfgAfgguGfa AfaAfcAfcsUfsg	aUfaGfcAfUfAfuGfaggUf gAfaAfaCfasCfsu	aUfaGfcauAfuGfaggUfg AfaAfaCfasCfsu	cAfuAfgCfAfUfaUfgagGf uGfaAfaAfcsAfsc	cAfuAfgcaUfaUfgagGfu GfaAfaAfcsAfsc	aCfaUfaGfCfAfuAfugaGf
1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690
AS1568	AS1569	AS1570	AS1571	AS1572	AS1573	AS1574	AS1575	AS1576	AS1577	AS1578	AS1579	AS1580
GfcAfgUfgUfuUfUfCfaCf cucAfuAfuGfL96	GfcAfgUfgUfuUfUfCfaCf cUfCfAfuAfuGfL96	CfaGfuGfuUfuUfCfAfcCf ucaUfaUfgCfL96	CfaGfuGfuUfuUfCfAfcCf uCfAfUfaUfgCfL96	AfgUfgUfuUfuCfAfCfcUfc auAfuGfcUfL96	AfgUfgUfuUfuCfAfCfcUfc AfUfAfuGfcUfL96	GfuGfuUfuUfcAfCfCfuCf auaUfgCfuAfL96	GfuGfuUfuUfcAfCfCfuCf aUfAfUfgCfuAfL96	UfgUfuUfuCfaCfCfUfcAf uauGfcUfaUfL96	UfgUfuUfuCfaCfCfUfcAf uAfUfGfcUfaUfL96	GfuUfuUfcAfcCfUfCfaUf augCfuAfuGfL96	GfuUfuUfcAfcCfUfCfaUf aUfGfCfuAfuGfL96	UfuUfuCfaCfcUfCfAfuAfu
286	287	288	589	290	591	592	593	594	595	296	297	598
S1568	S1569	S1570	S1571	S1572	S1573	S1574	S1575	S1576	S1577	S1578	S1579	S1580
D1568	D1569	D1570	D1571	D1572	D1573	D1574	D1575	D1576	D1577	D1578	D1579	D1580

gUfgAfaAfasCfsa	aCfaUfagcAfuAfugaGfg UfgAfaAfasCfsa	aAfcAfuAfGfCfaUfaugAf gGfuGfaAfasAfsc	aAfcAfuagCfaUfaugAfg GfuGfaAfasAfsc	uAfaCfaUfAfGfcAfuauGf aGfgUfgAfasAfsa	uAfaCfauaGfcAfuauGfa GfgUfgAfasAfsa	cUfaAfcAfUfAfgCfauaUf gAfgGfuGfasAfsa	cUfaAfcauAfgCfauaUfgA fgGfuGfasAfsa	uCfuAfaCfAfUfaGfcauAf uGfaGfgUfgsAfsa	uCfuAfacaUfaGfcauAfu GfaGfgUfgsAfsa	uUfcUfaAfCfAfuAfgcaUf aUfgAfgGfusGfsa	uUfcUfaacAfuAfgcaUfaU fgAfgGfusGfsa	cUfuCfuAfAfCfaUfagcAf uAfuGfaGfgsUfsg
	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702
	AS1581	AS1582	AS1583	AS1584	AS1585	AS1586	AS1587	AS1588	AS1589	AS1590	AS1591	AS1592
gcUfaUfgUfL96	UfuUfuCfaCfcUfCfAfuAfu GfCfUfaUfgUfL96	UfuUfcAfcCfuCfAfUfaUfg cuAfuGfuUfL96	UfuUfcAfcCfuCfAfUfaUfg CfUfAfuGfuUfL96	UfuCfaCfcUfcAfUfAfuGfc uaUfgUfuAfL96	UfuCfaCfcUfcAfUfAfuGfc UfAfUfgUfuAfL96	UfcAfcCfuCfaUfAfUfgCfu auGfuUfaGfL96	UfcAfcCfuCfaUfAfUfgCfu AfUfGfuUfaGfL96	CfaCfcUfcAfuAfUfGfcUfa ugUfuAfgAfL96	CfaCfcUfcAfuAfUfGfcUfa UfGfUfuAfgAfL96	AfcCfuCfaUfaUfGfCfuAf uguUfaGfaAfL96	AfcCfuCfaUfaUfGfCfuAf uGfUfUfaGfaAfL96	CfcUfcAfuAfuGfCfUfaUfg uuAfgAfaGfL96
	299	009	601	602	603	604	605	909	209	809	609	610
	S1581	S1582	S1583	S1584	S1585	S1586	S1587	S1588	S1589	S1590	S1591	S1592
	D1581	D1582	D1583	D1584	D1585	D1586	D1587	D1588	D1589	D1590	D1591	D1592

cUfuCfuaaCfaUfagcAfuA fuGfaGfgsUfsg	aCfuUfcUfAfAfcAfuagCf aUfaUfgAfgsGfsu	aCfuUfcuaAfcAfuagCfaU faUfgAfgsGfsu	gAfcUfuCfUfAfaCfauaGf cAfuAfuGfasGfsg	gAfcUfucuAfaCfauaGfcA fuAfuGfasGfsg	gGfaCfuUfCfUfaAfcauAf gCfaUfaUfgsAfsg	gGfaCfuucUfaAfcauAfg CfaUfaUfgsAfsg	uGfgAfcUfUfCfuAfacaUf aGfcAfuAfusGfsa	uGfgAfcuuCfuAfacaUfa GfcAfuAfusGfsa	cUfgGfaCfUfUfcUfaacAf uAfgCfaUfasUfsg	cUfgGfacuUfcUfaacAfuA fgCfaUfasUfsg	cCfuGfgAfCfUfuCfuaaCf aUfaGfcAfusAfsu	cCfuGfgacUfuCfuaaCfa
1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715
AS1593	AS1594	AS1595	AS1596	AS1597	AS1598	AS1599	AS1600	AS1601	AS1602	AS1603	AS1604	AS1605
CfcUfcAfuAfuGfCfUfaUfg UfUfAfgAfaGfL96	CfuCfaUfaUfgCfUfAfuGf uuaGfaAfgUfL96	CfuCfaUfaUfgCfUfAfuGf uUfAfGfaAfgUfL96	UfcAfuAfuGfcUfAfUfgUfu agAfaGfuCfL96	UfcAfuAfuGfcUfAfUfgUfu AfGfAfaGfuCfL96	CfaUfaUfgCfuAfUfGfuUf agaAfgUfcCfL96	CfaUfaUfgCfuAfUfGfuUf aGfAfAfgUfcCfL96	AfuAfuGfcUfaUfGfUfuAf gaaGfuCfcAfL96	AfuAfuGfcUfaUfGfUfuAf gAfAfGfuCfcAfL96	UfaUfgCfuAfuGfUfUfaGf aagUfcCfaGfL96	UfaUfgCfuAfuGfUfUfaGf aAfGfUfcCfaGfL96	AfuGfcUfaUfgUfUfAfgAfa guCfcAfgGfL96	AfuGfcUfaUfgUfUfAfgAfa
611	612	613	614	615	616	617	618	619	620	621	622	623
S1593	S1594	S1595	S1596	S1597	S1598	S1599	S1600	S1601	S1602	S1603	S1604	S1605
D1593	D1594	D1595	D1596	D1597	D1598	D1599	D1600	D1601	D1602	D1603	D1604	D1605

UfaGfcAfusAfsu	gCfcUfgGfAfCfuUfcuaAf cAfuAfgCfasUfsa	gCfcUfggaCfuUfcuaAfcA fuAfgCfasUfsa	uGfcCfuGfGfAfcUfucuAf aCfaUfaGfcsAfsu	uGfcCfuggAfcUfucuAfaC faUfaGfcsAfsu	cUfgCfcUfGfGfaCfuucUf aAfcAfuAfgsCfsa	cUfgCfcugGfaCfuucUfa AfcAfuAfgsCfsa	uCfuGfcCfUfGfgAfcuuCf uAfaCfaUfasGfsc	uCfuGfccuGfgAfcuuCfu AfaCfaUfasGfsc	cUfcUfgCfCfUfgGfacuUf cUfaAfcAfusAfsg	cUfcUfgccUfgGfacuUfcU faAfcAfusAfsg	uCfuCfuGfCfCfuGfgacUf uCfuAfaCfasUfsa	uCfuCfugcCfuGfgacUfu CfuAfaCfasUfsa
	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
	AS1606	AS1607	AS1608	AS1609	AS1610	AS1611	AS1612	AS1613	AS1614	AS1615	AS1616	AS1617
GfUfCfcAfgGfL96	UfgCfuAfuGfuUfAfGfaAf gucCfaGfgCfL96	UfgCfuAfuGfuUfAfGfaAf gUfCfCfaGfgCfL96	GfcUfaUfgUfuAfGfAfaGf uccAfgGfcAfL96	GfcUfaUfgUfuAfGfAfaGf uCfCfAfgGfcAfL96	CfuAfuGfuUfaGfAfAfgUf ccaGfgCfaGfL96	CfuAfuGfuUfaGfAfAfgUf cCfAfGfgCfaGfL96	UfaUfgUfuAfgAfAfGfuCfc agGfcAfgAfL96	UfaUfgUfuAfgAfAfGfuCfc AfGfGfcAfgAfL96	AfuGfuUfaGfaAfGfUfcCf aggCfaGfaGfL96	AfuGfuUfaGfaAfGfUfcCf aGfGfCfaGfaGfL96	UfgUfuAfgAfaGfUfCfcAfg gcAfgAfgAfL96	UfgUfuAfgAfaGfUfCfcAfg GfCfAfgAfgAfL96
	624	625	626	627	628	629	630	631	632	633	634	635
	S1606	S1607	S1608	S1609	S1610	S1611	S1612	S1613	S1614	S1615	S1616	S1617
	D1606	D1607	D1608	D1609	D1610	D1611	D1612	D1613	D1614	D1615	D1616	D1617

gUfcUfcUfGfCfcUfggaCf uUfcUfaAfcsAfsu	gUfcUfcugCfcUfggaCfu UfcUfaAfcsAfsu	uGfuCfuCfUfGfcCfuggAf cUfuCfuAfasCfsa	uGfuCfucuGfcCfuggAfc UfuCfuAfasCfsa	uUfgUfcUfCfUfgCfcugGf aCfuUfcUfasAfsc	uUfgUfcucUfgCfcugGfa CfuUfcUfasAfsc	aUfuGfuCfUfCfuGfccuGf gAfcUfuCfusAfsa	aUfuGfucuCfuGfccuGfg AfcUfuCfusAfsa	uAfuUfgUfCfUfcUfgccUf gGfaCfuUfcsUfsa	uAfuUfgucUfcUfgccUfgG faCfuUfcsUfsa	uUfaUfuGfUfCfuCfugcCf uGfgAfcUfusCfsu	uUfaUfuguCfuCfugcCfu GfgAfcUfusCfsu	uUfuAfuUfGfUfcUfcugCf
1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740
AS1618	AS1619	AS1620	AS1621	AS1622	AS1623	AS1624	AS1625	AS1626	AS1627	AS1628	AS1629	AS1630
GfuUfaGfaAfgUfCfCfaGf gcaGfaGfaCfL96	GfuUfaGfaAfgUfCfCfaGf gCfAfGfaGfaCfL96	UfuAfgAfaGfuCfCfAfgGf cagAfgAfcAfL96	UfuAfgAfaGfuCfCfAfgGf cAfGfAfgAfcAfL96	UfaGfaAfgUfcCfAfGfgCf agaGfaCfaAfL96	UfaGfaAfgUfcCfAfGfgCf aGfAfGfaCfaAfL96	AfgAfaGfuCfcAfGfGfcAfg agAfcAfaUfL96	AfgAfaGfuCfcAfGfGfcAfg AfGfAfcAfaUfL96	GfaAfgUfcCfaGfGfCfaGf agaCfaAfuAfL96	GfaAfgUfcCfaGfGfCfaGf aGfAfCfaAfuAfL96	AfaGfuCfcAfgGfCfAfgAfg acAfaUfaAfL96	AfaGfuCfcAfgGfCfAfgAfg AfCfAfaUfaAfL96	AfgUfcCfaGfgCfAfGfaGf
929	637	638	639	640	641	642	643	644	645	646	647	648
S1618	S1619	S1620	S1621	S1622	S1623	S1624	S1625	S1626	S1627	S1628	S1629	S1630
D1618	D1619	D1620	D1621	D1622	D1623	D1624	D1625	D1626	D1627	D1628	D1629	D1630

cUfgGfaCfusUfsc	uUfuAfuugUfcUfcugCfcU fgGfaCfusUfsc	uUfuUfaUfUfGfuCfucuGf cCfuGfgAfcsUfsu	uUfuUfauuGfuCfucuGfc CfuGfgAfcsUfsu	gUfuUfuAfUfUfgUfcucUf gCfcUfgGfasCfsu	gUfuUfuauUfgUfcucUfg CfcUfgGfasCfsu	uGfuUfuUfAfUfuGfucuCf uGfcCfuGfgsAfsc	uGfuUfuuaUfuGfucuCfu GfcCfuGfgsAfsc	aUfgUfuUfUfAfuUfgucUf cUfgCfcUfgsGfsa	aUfgUfuuuAfuUfgucUfc UfgCfcUfgsGfsa	aAfuGfuUfUfUfaUfuguCf uCfuGfcCfusGfsg	aAfuGfuuuUfaUfuguCfu CfuGfcCfusGfsg	gAfaUfgUfUfUfuAfuugUf cUfcUfgCfcsUfsg
	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752
	AS1631	AS1632	AS1633	AS1634	AS1635	AS1636	AS1637	AS1638	AS1639	AS1640	AS1641	AS1642
acaAfuAfaAfL96	AfgUfcCfaGfgCfAfGfaGf aCfAfAfuAfaAfL96	GfuCfcAfgGfcAfGfAfgAfc aaUfaAfaAfL96	GfuCfcAfgGfcAfGfAfgAfc AfAfUfaAfaAfL96	UfcCfaGfgCfaGfAfGfaCf aauAfaAfaCfL96	UfcCfaGfgCfaGfAfGfaCf aAfUfAfaAfaCfL96	CfcAfgGfcAfgAfGfAfcAfa uaAfaAfcAfL96	CfcAfgGfcAfgAfGfAfcAfa UfAfAfaAfcAfL96	CfaGfgCfaGfaGfAfCfaAf uaaAfaCfaUfL96	CfaGfgCfaGfaGfAfCfaAf uAfAfAfaCfaUfL96	AfgGfcAfgAfgAfCfAfaUfa aaAfcAfuUfL96	AfgGfcAfgAfgAfCfAfaUfa AfAfAfcAfuUfL96	GfgCfaGfaGfaCfAfAfuAf aaaCfaUfuCfL96
	649	650	651	652	653	654	655	656	657	658	629	099
	S1631	S1632	S1633	S1634	S1635	S1636	S1637	S1638	S1639	S1640	S1641	S1642
	D1631	D1632	D1633	D1634	D1635	D1636	D1637	D1638	D1639	D1640	D1641	D1642

gAfaUfguuUfuAfuugUfc UfcUfgCfcsUfsg	gGfaAfuGfUfUfuUfauuGf uCfuCfuGfcsCfsu	gGfaAfuguUfuUfauuGfu CfuCfuGfcsCfsu	aGfgAfaUfGfUfuUfuauUf gUfcUfcUfgsCfsc	aGfgAfaugUfuUfuauUfg UfcUfcUfgsCfsc	cAfgGfaAfUfGfuUfuuaUf uGfuCfuCfusGfsc	cAfgGfaauGfuUfuuaUfu GfuCfuCfusGfsc	aCfaGfgAfAfUfgUfuuuAf uUfgUfcUfcsUfsg	aCfaGfgaaUfgUfuuuAfu UfgUfcUfcsUfsg	cAfcAfgGfAfAfuGfuuuUf aUfuGfuCfusCfsu	cAfcAfggaAfuGfuuuUfaU fuGfuCfusCfsu	uCfaCfaGfGfAfaUfguuUf uAfuUfgUfcsUfsc	uCfaCfaggAfaUfguuUfu
1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765
AS1643	AS1644	AS1645	AS1646	AS1647	AS1648	AS1649	AS1650	AS1651	AS1652	AS1653	AS1654	AS1655
GłgCłaGłaGłaCłAłAfuAf aAfAfCfaUfuCfL96	GfcAfgAfgAfcAfAfUfaAfa acAfuUfcCfL96	GfcAfgAfgAfcAfAfUfaAfa AfCfAfuUfcCfL96	CfaGfaGfaCfaAfUfAfaAf acaUfuCfcUfL96	CfaGfaGfaCfaAfUfAfaAf aCfAfUfuCfcUfL96	AfgAfgAfcAfaUfAfAfaAfc auUfcCfuGfL96	AfgAfgAfcAfaUfAfAfaAfc AfUfUfcCfuGfL96	GfaGfaCfaAfuAfAfAfaCf auuCfcUfgUfL96	GfaGfaCfaAfuAfAfAfaCf aUfUfCfcUfgUfL96	AfgAfcAfaUfaAfAfAfcAfu ucCfuGfuGfL96	AfgAfcAfaUfaAfAfAfcAfu UfCfCfuGfuGfL96	GfaCfaAfuAfaAfAfCfaUfu ccUfgUfgAfL96	GfaCfaAfuAfaAfAfCfaUfu
661	662	663	664	999	999	299	899	699	029	671	672	673
S1643	S1644	S1645	S1646	S1647	S1648	S1649	S1650	S1651	S1652	S1653	S1654	S1655
D1643	D1644	D1645	D1646	D1647	D1648	D1649	D1650	D1651	D1652	D1653	D1654	D1655

AfuUfgUfcsUfsc	uUfcAfcAfGfGfaAfuguUf uUfaUfuGfusCfsu	uUfcAfcagGfaAfuguUfu UfaUfuGfusCfsu	uUfuCfaCfAfGfgAfaugUf uUfuAfuUfgsUfsc	uUfuCfacaGfgAfaugUfu UfuAfuUfgsUfsc	cUfuUfcAfCfAfgGfaauGf uUfuUfaUfusGfsu	cUfuUfcacAfgGfaauGfu UfuUfaUfusGfsu	cCfuUfuCfAfCfaGfgaaUf gUfuUfuAfusUfsg	cCfuUfucaCfaGfgaaUfg UfuUfuAfusUfsg	gCfcUfuUfCfAfcAfggaAf uGfuUfuUfasUfsu	gCfcUfuucAfcAfggaAfuG fuUfuUfasUfsu	uGfcCfuUfUfCfaCfaggAf aUfgUfuUfusAfsu	uGfcCfuuuCfaCfaggAfa UfgUfuUfusAfsu
	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777
	AS1656	AS1657	AS1658	AS1659	AS1660	AS1661	AS1662	AS1663	AS1664	AS1665	AS1666	AS1667
CfCfUfgUfgAfL96	AfcAfaUfaAfaAfCfAfuUfc cuGfuGfaAfL96	AfcAfaUfaAfaAfCfAfuUfc CfUfGfuGfaAfL96	CfaAfuAfaAfaCfAfUfuCfc ugUfgAfaAfL96	CfaAfuAfaAfaCfAfUfuCfc UfGfUfgAfaAfL96	AfaUfaAfaAfcAfUfUfcCfu guGfaAfaGfL96	AfaUfaAfaAfcAfUfUfcCfu GfUfGfaAfaGfL96	AfuAfaAfaCfaUfUfCfcUfg ugAfaAfgGfL96	AfuAfaAfaCfaUfUfCfcUfg UfGfAfaAfgGfL96	UfaAfaAfcAfuUfCfCfuGfu gaAfaGfgCfL96	UfaAfaAfcAfuUfCfCfuGfu GfAfAfaGfgCfL96	AfaAfaCfaUfuCfCfUfgUf gaaAfgGfcAfL96	AfaAfaCfaUfuCfCfUfgUf gAfAfAfgGfcAfL96
	674	675	929	229	829	629	089	681	682	683	684	685
	S1656	S1657	S1658	S1659	S1660	S1661	S1662	S1663	S1664	S1665	S1666	S1667
	D1656	D1657	D1658	D1659	D1660	D1661	D1662	D1663	D1664	D1665	D1666	D1667

gUfgCfcUfUfUfcAfcagGf aAfuGfuUfusUfsa	gUfgCfcuuUfcAfcagGfaA fuGfuUfusUfsa	aGfuGfcCfUfUfuCfacaGf gAfaUfgUfusUfsu	aGfuGfccuUfuCfacaGfg AfaUfgUfusUfsu	aAfgUfgCfCfUfuUfcacAf gGfaAfuGfusUfsu	aAfgUfgccUfuUfcacAfgG faAfuGfusUfsu	aAfaGfuGfCfCfuUfucaCf aGfgAfaUfgsUfsu	aAfaGfugcCfuUfucaCfa GfgAfaUfgsUfsu	aAfaAfgUfGfCfcUfuucAf cAfgGfaAfusGfsu	aAfaAfgugCfcUfuucAfcA fgGfaAfusGfsu	gAfaAfaGfUfGfcCfuuuCf aCfaGfgAfasUfsg	gAfaAfaguGfcCfuuuCfa CfaGfgAfasUfsg	uGfaAfaAfGfUfgCfcuuUf
1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790
AS1668	AS1669	AS1670	AS1671	AS1672	AS1673	AS1674	AS1675	AS1676	AS1677	AS1678	AS1679	AS1680
AfaAfcAfuUfcCfUfGfuGfa aaGfgCfaCfL96	AfaAfcAfuUfcCfUfGfuGfa AfAfGfgCfaCfL96	AfaCfaUfuCfcUfGfUfgAf aagGfcAfcUfL96	AfaCfaUfuCfcUfGfUfgAf aAfGfGfcAfcUfL96	AfcAfuUfcCfuGfUfGfaAfa ggCfaCfuUfL96	AfcAfuUfcCfuGfUfGfaAfa GfGfCfaCfuUfL96	CfaUfuCfcUfgUfGfAfaAf ggcAfcUfuUfL96	CfaUfuCfcUfgUfGfAfaAf gGfCfAfcUfuUfL96	AfuUfcCfuGfuGfAfAfaGf gcaCfuUfuUfL96	AfuUfcCfuGfuGfAfAfaGf gCfAfCfuUfuUfL96	UfuCfcUfgUfgAfAfAfgGfc acUfuUfuCfL96	UfuCfcUfgUfgAfAfAfgGfc AfCfUfuUfuCfL96	UfcCfuGfuGfaAfAfGfgCf
989	289	889	689	069	691	692	693	694	695	969	269	869
S1668	S1669	S1670	S1671	S1672	S1673	S1674	S1675	S1676	S1677	S1678	S1679	S1680
D1668	D1669	D1670	D1671	D1672	D1673	D1674	D1675	D1676	D1677	D1678	D1679	D1680

cAfcAfgGfasAfsu	uGfaAfaagUfgCfcuuUfc AfcAfgGfasAfsu	aUfgAfaAfAfGfuGfccuUf uCfaCfaGfgsAfsa	aUfgAfaaaGfuGfccuUfu CfaCfaGfgsAfsa	aAfuGfaAfAfAfgUfgccUf uUfcAfcAfgsGfsa	aAfuGfaaaAfgUfgccUfu UfcAfcAfgsGfsa	gAfaUfgAfAfAfaGfugcCf uUfuCfaCfasGfsg	gAfaUfgaaAfaGfugcCfu UfuCfaCfasGfsg	gGfaAfuGfAfAfaAfgugCf cUfuUfcAfcsAfsg	gGfaAfugaAfaAfgugCfc UfuUfcAfcsAfsg	uGfgAfaUfGfAfaAfaguGf cCfuUfuCfasCfsa	uGfgAfaugAfaAfaguGfc CfuUfuCfasCfsa	gUfgGfaAfUfGfaAfaagUf gCfcUfuUfcsAfsc
	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802
	AS1681	AS1682	AS1683	AS1684	AS1685	AS1686	AS1687	AS1688	AS1689	AS1690	AS1691	AS1692
acuUfuUfcAfL96	UfcCfuGfuGfaAfAfGfgCf aCfUfUfuUfcAfL96	CfcUfgUfgAfaAfGfGfcAfc uuUfuCfaUfL96	CfcUfgUfgAfaAfGfGfcAfc UfUfUfuCfaUfL96	CfuGfuGfaAfaGfGfCfaCf uuuUfcAfuUfL96	CfuGfuGfaAfaGfGfCfaCf uUfUfUfcAfuUfL96	UfgUfgAfaAfgGfCfAfcUfu uuCfaUfuCfL96	UfgUfgAfaAfgGfCfAfcUfu UfUfCfaUfuCfL96	GfuGfaAfaGfgCfAfCfuUf uucAfuUfcCfL96	GfuGfaAfaGfgCfAfCfuUf uUfCfAfuUfcCfL96	UfgAfaAfgGfcAfCfUfuUfu caUfuCfcAfL96	UfgAfaAfgGfcAfCfUfuUfu CfAfUfuCfcAfL96	GfaAfaGfgCfaCfUfUfuUf cauUfcCfaCfL96
	669	700	701	702	703	704	705	206	707	708	402	710
	S1681	S1682	S1683	S1684	S1685	S1686	S1687	S1688	S1689	S1690	S1691	S1692
	D1681	D1682	D1683	D1684	D1685	D1686	D1687	D1688	D1689	D1690	D1691	D1692

gUfgGfaauGfaAfaagUfg CfcUfuUfcsAfsc	aGfuGfgAfAfUfgAfaaaGf uGfcCfuUfusCfsa	aGfuGfgaaUfgAfaaaGfu GfcCfuUfusCfsa	aAfgUfgGfAfAfuGfaaaAf gUfgCfcUfusUfsc	aAfgUfggaAfuGfaaaAfg UfgCfcUfusUfsc	aAfaGfuGfGfAfaUfgaaAf aGfuGfcCfusUfsu	aAfaGfuggAfaUfgaaAfa GfuGfcCfusUfsu	uAfaAfgUfGfGfaAfugaAf aAfgUfgCfcsUfsu	uAfaAfgugGfaAfugaAfaA fgUfgCfcsUfsu	uUfaAfaGfUfGfgAfaugAf aAfaGfuGfcsCfsu	uUfaAfaguGfgAfaugAfa AfaGfuGfcsCfsu	gUfuAfaAfGfUfgGfaauGf aAfaAfgUfgsCfsc	gUfuAfaagUfgGfaauGfa
1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815
AS1693	AS1694	AS1695	AS1696	AS1697	AS1698	AS1699	AS1700	AS1701	AS1702	AS1703	AS1704	AS1705
GfaAfaGfgCfaCfUfUfuUf cAfUfUfcCfaCfL96	AfaAfgGfcAfcUfUfuCfa uuCfcAfcUfL96	AfaAfgGfcAfcUfUfUfuCfa UfUfCfcAfcUfL96	AfaGfgCfaCfuUfUfUfcAf uucCfaCfuUfL96	AfaGfgCfaCfuUfUfUfcAf uUfCfCfaCfuUfL96	AfgGfcAfcUfuUfUfCfaUfu ccAfcUfuUfL96	AfgGfcAfcUfuUfUfCfaUfu CfCfAfcUfuUfL96	GfgCfaCfuUfuUfCfAfuUf ccaCfuUfuAfL96	GfgCfaCfuUfuUfCfAfuUf cCfAfCfuUfuAfL96	GfcAfcUfuUfuCfAfUfuCfc acUfuUfaAfL96	GfcAfcUfuUfuCfAfUfuCfc AfCfUfuUfaAfL96	CfaCfuUfuUfcAfUfUfcCfa cuUfuAfaCfL96	CfaCfuUfuUfcAfUfUfcCfa
711	712	713	714	715	716	717	718	719	720	721	722	723
S1693	S1694	S1695	S1696	S1697	S1698	S1699	S1700	S1701	S1702	S1703	S1704	S1705
D1693	D1694	D1695	D1696	D1697	D1698	D1699	D1700	D1701	D1702	D1703	D1704	D1705

AfaAfgUfgsCfsc	aGfuUfaAfAfGfuGfgaaUf gAfaAfaGfusGfsc	aGfuUfaaaGfuGfgaaUfg AfaAfaGfusGfsc	aAfgUfuAfAfAfgUfggaAf uGfaAfaAfgsUfsg	aAfgUfuaaAfgUfggaAfu GfaAfaAfgsUfsg	cAfaGfuUfAfAfaGfuggAf aUfgAfaAfasGfsu	cAfaGfuuaAfaGfuggAfa UfgAfaAfasGfsu	uCfaAfgUfUfAfaAfgugGf aAfuGfaAfasAfsg	uCfaAfguuAfaAfgugGfa AfuGfaAfasAfsg	aUfcAfaGfUfUfaAfaguGf gAfaUfgAfasAfsa	aUfcAfaguUfaAfaguGfg AfaUfgAfasAfsa	aAfuCfaAfGfUfuAfaagUf gGfaAfuGfasAfsa	aAfuCfaagUfuAfaagUfg GfaAfuGfasAfsa
	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827
	AS1706	AS1707	AS1708	AS1709	AS1710	AS1711	AS1712	AS1713	AS1714	AS1715	AS1716	AS1717
CfUfUfuAfaCfL96	AfcUfuUfuCfaUfUfCfcAfc uuUfaAfcUfL96	AfcUfuUfuCfaUfUfCfcAfc UfUfUfaAfcUfL96	CfuUfuUfcAfuUfCfCfaCf uuuAfaCfuUfL96	CfuUfuUfcAfuUfCfCfaCf uUfUfAfaCfuUfL96	UfuUfuCfaUfuCfCfAfcUf uuaAfcUfuGfL96	UfuUfuCfaUfuCfCfAfcUf uUfAfAfcUfuGfL96	UfuUfcAfuUfcCfAfCfuUfu aaCfuUfgAfL96	UfuUfcAfuUfcCfAfCfuUfu AfAfCfuUfgAfL96	UfuCfaUfuCfcAfCfUfuUf aacUfuGfaUfL96	UfuCfaUfuCfcAfCfUfuUf aAfCfUfuGfaUfL96	UfcAfuUfcCfaCfUfUfuAfa cuUfgAfuUfL96	UfcAfuUfcCfaCfUfUfuAfa CfUfUfgAfuUfL96
	724	725	726	727	728	729	730	731	732	733	734	735
	S1706	S1707	S1708	S1709	S1710	S1711	S1712	S1713	S1714	S1715	S1716	S1717
	D1706	D1707	D1708	D1709	D1710	D1711	D1712	D1713	D1714	D1715	D1716	D1717

aAfaUfcAfAfGfuUfaaaGf uGfgAfaUfgsAfsa	aAfaUfcaaGfuUfaaaGfu GfgAfaUfgsAfsa	aAfaAfuCfAfAfgUfuaaAf gUfgGfaAfusGfsa	aAfaAfucaAfgUfuaaAfgU fgGfaAfusGfsa	aAfaAfaUfCfAfaGfuuaAf aGfuGfgAfasUfsg	aAfaAfaucAfaGfuuaAfa GfuGfgAfasUfsg	aAfaAfaAfUfCfaAfguuAf aAfgUfgGfasAfsu	aAfaAfaauCfaAfguuAfaA fgUfgGfasAfsu	uAfaAfaAfAfUfcAfaguUf aAfaGfuGfgsAfsa	uAfaAfaaaUfcAfaguUfaA faGfuGfgsAfsa	uUfaAfaAfAfAfuCfaagUf uAfaAfgUfgsGfsa	uUfaAfaaaAfuCfaagUfu AfaAfgUfgsGfsa	uUfuAfaAfAfAfaUfcaaGf
1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840
AS1718	AS1719	AS1720	AS1721	AS1722	AS1723	AS1724	AS1725	AS1726	AS1727	AS1728	AS1729	AS1730
CfaUfuCfcAfcUfUfUfaAfc uuGfaUfuUfL96	CfaUfuCfcAfcUfUfUfaAfc UfUfGfaUfuUfL96	AfuUfcCfaCfuUfUfAfaCfu ugAfuUfuUfL96	AfuUfcCfaCfuUfUfAfaCfu UfGfAfuUfuUfL96	UfuCfcAfcUfuUfAfAfcUfu gaUfuUfuUfL96	UfuCfcAfcUfuUfAfAfcUfu GfAfUfuUfuUfL96	UfcCfaCfuUfuAfAfCfuUfg auUfuUfuUfL96	UfcCfaCfuUfuAfAfCfuUfg AfUfUfuUfuUfL96	CfcAfcUfuUfaAfCfUfuGfa uuUfuUfuAfL96	CfcAfcUfuUfaAfCfUfuGfa UfUfUfuUfuAfL96	CfaCfuUfuAfaCfUfUfgAf uuuUfuUfaAfL96	CfaCfuUfuAfaCfUfUfgAf uUfUfuUfaAfL96	AfcUfuUfaAfcUfUfGfaUfu
736	737	738	739	740	741	742	743	744	745	746	747	748
S1718	S1719	S1720	S1721	S1722	S1723	S1724	S1725	S1726	S1727	S1728	S1729	S1730
D1718	D1719	D1720	D1721	D1722	D1723	D1724	D1725	D1726	D1727	D1728	D1729	D1730

uUfaAfaGfusGfsg	uUfuAfaaaAfaUfcaaGfu UfaAfaGfusGfsg	aUfuUfaAfAfAfaAfucaAf gUfuAfaAfgsUfsg	aUfuUfaaaAfaAfucaAfgU fuAfaAfgsUfsg	aAfuUfuAfAfAfaAfaucAfa GfuUfaAfasGfsu	aAfuUfuaaAfaAfaucAfaG fuUfaAfasGfsu	gAfaUfuUfAfAfaAfaauCf aAfgUfuAfasAfsg	gAfaUfuuaAfaAfaauCfaA fgUfuAfasAfsg	gGfaAfuUfUfAfaAfaaaUf cAfaGfuUfasAfsa	gGfaAfuuuAfaAfaaaUfcA faGfuUfasAfsa	gGfgAfaUfUfUfaAfaaaAf uCfaAfgUfusAfsa	gGfgAfauuUfaAfaaaAfu CfaAfgUfusAfsa	aGfgGfaAfUfUfuAfaaaAf aUfcAfaGfusUfsa
	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852
	AS1731	AS1732	AS1733	AS1734	AS1735	AS1736	AS1737	AS1738	AS1739	AS1740	AS1741	AS1742
uuUfuAfaAfL96	AfcUfuUfaAfcUfUfGfaUfu UfUfUfuAfaAfL96	CfuUfuAfaCfuUfGfAfuUf uuuUfaAfaUfL96	CfuUfuAfaCfuUfGfAfuUf uUfUfUfaAfaUfL96	UfuUfaAfcUfuGfAfUfuUf uuuAfaAfuUfL96	UfuUfaAfcUfuGfAfUfuUf uUfUfAfaAfuUfL96	UfuAfaCfuUfgAfUfUfuUf uuaAfaUfuCfL96	UfuAfaCfuUfgAfUfUfuUf uUfAfAfaUfuCfL96	UfaAfcUfuGfaUfUfUfuUf uaaAfuUfcCfL96	UfaAfcUfuGfaUfUfuUf uAfAfuUfcCfL96	AfaCfuUfgAfuUfUfUfuUf aaaUfuCfcCfL96	AfaCfuUfgAfuUfUfUfuUf aAfAfUfuCfcCfL96	AfcUfuGfaUfuUfUfUfuAf aauUfcCfcUfL96
	749	750	751	752	753	754	755	756	757	758	759	760
	S1731	S1732	S1733	S1734	S1735	S1736	S1737	S1738	S1739	S1740	S1741	S1742
	D1731	D1732	D1733	D1734	D1735	D1736	D1737	D1738	D1739	D1740	D1741	D1742

aGfgGfaauUfuAfaaaAfa UfcAfaGfusUfsa	aAfgGfgAfAfUfuUfaaaAf aAfuCfaAfgsUfsu	aAfgGfgaaUfuUfaaaAfa AfuCfaAfgsUfsu	uAfaGfgGfAfAfuUfuaaAf aAfaUfcAfasGfsu	uAfaGfggaAfuUfuaaAfa AfaUfcAfasGfsu	aUfaAfgGfGfAfaUfuuaAf aAfaAfuCfasAfsg	aUfaAfgggAfaUfuuaAfaA faAfuCfasAfsg	aAfuAfaGfGfGfaAfuuuAf aAfaAfaUfcsAfsa	aAfuAfaggGfaAfuuuAfaA faAfaUfcsAfsa	cAfaUfaAfGfGfgAfauuUf aAfaAfaAfusCfsa	cAfaUfaagGfgAfauuUfa AfaAfaAfusCfsa	aCfaAfuAfAfGfgGfaauUf uAfaAfaAfasUfsc	aCfaAfuaaGfgGfaauUfu
1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865
AS1743	AS1744	AS1745	AS1746	AS1747	AS1748	AS1749	AS1750	AS1751	AS1752	AS1753	AS1754	AS1755
AfcUfuGfaUfuUfUfUfuAf aAfUfUfcCfcUfL96	CfuUfgAfuUfuUfUfUfaAf auuCfcCfuUfL96	CfuUfgAfuUfuUfUfUfaAf aUfUfCfcCfuUfL96	UfuGfaUfuUfuUfUfAfaAf uucCfcUfuAfL96	UfuGfaUfuUfuUfUfAfaAf uUfCfCfcUfuAfL96	UfgAfuUfuUfuUfAfAfaUfu ccCfuUfaUfL96	UfgAfuUfuUfuUfAfAfaUfu CfCfCfuUfaUfL96	GfaUfuUfuUfuAfAfAfuUfc ccUfuAfuUfL96	GfaUfuUfuUfuAfAfAfuUfc CfCfUfuAfuUfL96	AfuUfuUfuUfaAfAfUfuCfc cuUfaUfuGfL96	AfuUfuUfuUfaAfAfUfuCfc CfUfUfaUfuGfL96	UfuUfuUfuAfaAfUfUfcCfc uuAfuUfgUfL96	UfuUfuUfuAfaAfUfUfcCfc
761	762	763	764	765	992	792	768	769	770	771	772	773
S1743	S1744	S1745	S1746	S1747	S1748	S1749	S1750	S1751	S1752	S1753	S1754	S1755
D1743	D1744	D1745	D1746	D1747	D1748	D1749	D1750	D1751	D1752	D1753	D1754	D1755

AfaAfaAfasUfsc	gAfcAfaUfAfAfgGfgaaUf uUfaAfaAfasAfsu	gAfcAfauaAfgGfgaaUfu UfaAfaAfasAfsu	gGfaCfaAfUfAfaGfggaAf uUfuAfaAfasAfsa	gGfaCfaauAfaGfggaAfu UfuAfaAfasAfsa	gGfgAfcAfAfUfaAfgggAf aUfuUfaAfasAfsa	gGfgAfcaaUfaAfgggAfa UfuUfaAfasAfsa	aGfgGfaCfAfAfuAfaggGf aAfuUfuAfasAfsa	aGfgGfacaAfuAfaggGfa AfuUfuAfasAfsa	aAfgGfgAfCfAfaUfaagGf gAfaUfuUfasAfsa	aAfgGfgacAfaUfaagGfg AfaUfuUfasAfsa	gAfaGfgGfAfCfaAfuaaGf gGfaAfuUfusAfsa	gAfaGfggaCfaAfuaaGfg GfaAfuUfusAfsa
	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877
	AS1756	AS1757	AS1758	AS1759	AS1760	AS1761	AS1762	AS1763	AS1764	AS1765	AS1766	AS1767
UfUfAfuUfgUfL96	UfuUfuUfaAfaUfUfCfcCf uuaUfuGfuCfL96	UfuUfuUfaAfaUfUfCfcCf uUfAfUfuGfuCfL96	UfuUfuAfaAfuUfCfCfcUfu auUfgUfcCfL96	UfuUfuAfaAfuUfCfCfcUfu AfUfUfgUfcCfL96	UfuUfaAfaUfuCfCfCfuUf auuGfuCfcCfL96	UfuUfaAfaUfuCfCfCfuUf aUfUfGfuCfcCfL96	UfuAfaAfuUfcCfCfUfuAfu ugUfcCfcUfL96	UfuAfaAfuUfcCfCfUfuAfu UfGfUfcCfcUfL96	UfaAfaUfuCfcCfUfUfaUf uguCfcCfuUfL96	UfaAfaUfuCfcCfUfUfaUf uGfUfCfcCfuUfL96	AfaAfuUfcCfcUfUfAfuUfg ucCfcUfuCfL96	AfaAfuUfcCfcUfUfAfuUfg UfCfCfcUfuCfL96
	774	775	776	777	778	779	780	781	782	783	784	785
	S1756	S1757	S1758	S1759	S1760	S1761	S1762	S1763	S1764	S1765	S1766	S1767
	D1756	D1757	D1758	D1759	D1760	D1761	D1762	D1763	D1764	D1765	D1766	D1767

gGfaAfgGfGfAfcAfauaAf gGfgAfaUfusUfsa	gGfaAfgggAfcAfauaAfg GfgAfaUfusUfsa	uGfgAfaGfGfGfaCfaauAf aGfgGfaAfusUfsu	uGfgAfaggGfaCfaauAfa GfgGfaAfusUfsu	uUfgGfaAfGfGfgAfcaaUf aAfgGfgAfasUfsu	uUfgGfaagGfgAfcaaUfa AfgGfgAfasUfsu	uUfuGfgAfAfGfgGfacaAf uAfaGfgGfasAfsu	uUfuGfgaaGfgGfacaAfu AfaGfgGfasAfsu	uUfuUfgGfAfAfgGfgacAf aUfaAfgGfgsAfsa	uUfuUfggaAfgGfgacAfa UfaAfgGfgsAfsa	uUfuUfuGfGfAfaGfggaCf aAfuAfaGfgsGfsa	uUfuUfuggAfaGfggaCfa AfuAfaGfgsGfsa	uUfuUfuUfGfGfaAfgggAf
1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890
AS1768	AS1769	AS1770	AS1771	AS1772	AS1773	AS1774	AS1775	AS1776	AS1777	AS1778	AS1779	AS1780
AfaUfuCfcCfuUfAfUfuGf uccCfuUfcCfL96	AfaUfuCfcCfuUfAfUfuGf uCfCfcfuUfcCfL96	AfuUfcCfcUfuAfUfUfgUfc ccUfuCfcAfL96	AfuUfcCfcUfuAfUfUfgUfc CfCfUfuCfcAfL96	UfuCfcCfuUfaUfUfGfuCf ccuUfcCfaAfL96	UfuCfcCfuUfaUfUfGfuCf cCfUfUfcCfaAfL96	UfcCfcUfuAfuUfGfUfcCfc uuCfcAfaAfL96	UfcCfcUfuAfuUfGfUfcCfc UfUfCfcAfaAfL96	CfcCfuUfaUfuGfUfCfcCf uucCfaAfaAfL96	CfcCfuUfaUfuGfUfCfcCf uUfCfCfaAfaAfL96	CfcUfuAfuUfgUfCfCfcUfu ccAfaAfaAfL96	CfcUfuAfuUfgUfCfCfcUfu CfCfAfaAfaAfL96	CfuUfaUfuGfuCfCfCfuUf
786	787	788	789	790	791	792	793	794	795	962	797	798
S1768	S1769	S1770	S1771	S1772	S1773	S1774	S1775	S1776	S1777	S1778	S1779	S1780
D1768	D1769	D1770	D1771	D1772	D1773	D1774	D1775	D1776	D1777	D1778	D1779	D1780

cAfaUfaAfgsGfsg	uUfuUfuugGfaAfgggAfc AfaUfaAfgsGfsg	uUfuUfuUfUfGfgAfaggGf aCfaAfuAfasGfsg	uUfuUfuuuGfgAfaggGfa CfaAfuAfasGfsg	uUfuUfuUfUfUfgGfaagGf gAfcAfaUfasAfsg	uUfuUfuuuUfgGfaagGfg AfcAfaUfasAfsg	cUfuUfuUfUfUfuGfgaaGf gGfaCfaAfusAfsa	cUfuUfuuuUfuGfgaaGfg GfaCfaAfusAfsa	uCfuUfuUfUfuUfggaAf gGfgAfcAfasUfsa	uCfuUfuuuUfuUfggaAfg GfgAfcAfasUfsa	cUfcUfuUfUfUfuUfuggAf aGfgGfaCfasAfsu	cUfcUfuuuUfuUfuggAfa GfgGfaCfasAfsu	uCfuCfuUfUfUfuUfuugGf aAfgGfgAfcsAfsa
	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902
	AS1781	AS1782	AS1783	AS1784	AS1785	AS1786	AS1787	AS1788	AS1789	AS1790	AS1791	AS1792
ccaAfaAfL96	CfuUfaUfuGfuCfCfCfuUf cCfAfAfaAfaAfL96	UfuAfuUfgUfcCfCfUfuCfc aaAfaAfaAfL96	UfuAfuUfgUfcCfCfUfuCfc AfAfAfaAfaAfL96	UfaUfuGfuCfcCfUfUfcCf aaaAfaAfaAfL96	UfaUfuGfuCfcCfUfUfcCf aAfAfafaAfaAfL96	AfuUfgUfcCfcUfUfCfcAfa aaAfaAfaGfL96	AfuUfgUfcCfcUfUfCfcAfa AfAfAfaAfaGfL96	UfuGfuCfcCfuUfCfCfaAf aaaAfaAfgAfL96	UfuGfuCfcCfuUfCfCfaAf aAfAfAfaAfgAfL96	UfgUfcCfcUfuCfCfAfaAfa aaAfaGfaGfL96	UfgUfcCfcUfuCfCfAfaAfa AfAfAfaGfaGfL96	GfuCfcCfuUfcCfAfAfaAfa aaAfgAfgAfL96
	799	800	801	802	803	804	805	808	807	808	808	810
	S1781	S1782	S1783	S1784	S1785	S1786	S1787	S1788	S1789	S1790	S1791	S1792
	D1781	D1782	D1783	D1784	D1785	D1786	D1787	D1788	D1789	D1790	D1791	D1792

uCfuCfuuuUfuUfuugGfa AfgGfgAfcsAfsa	uUfcUfcUfUfUfuUfuuuGf gAfaGfgGfasCfsa	uUfcUfcuuUfuUfuuuGfg AfaGfgGfasCfsa	aUfuCfuCfUfUfuUfuuuUf gGfaAfgGfgsAfsc	aUfuCfucuUfuUfuuuUfg GfaAfgGfgsAfsc	gAfuUfcUfCfUfuUfuuuUf uGfgAfaGfgsGfsa	gAfuUfcucUfuUfuuuUfu GfgAfaGfgsGfsa	uGfaUfuCfUfCfuUfuuuUf uUfgGfaAfgsGfsg	uGfaUfucuCfuUfuuuUfu UfgGfaAfgsGfsg	uUfgAfuUfCfUfcUfuuuUf uUfuGfgAfasGfsg	uUfgAfuucUfcUfuuuUfu UfuGfgAfasGfsg	uUfuGfaUfUfCfuCfuuuUf uUfuUfgGfasAfsg	uUfuGfauuCfuCfuuuUfu
1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915
AS1793	AS1794	AS1795	AS1796	AS1797	AS1798	AS1799	AS1800	AS1801	AS1802	AS1803	AS1804	AS1805
GfuCfcCfuUfcCfAfAfaAfa AfAfAfgAfgAfL96	UfcCfcUfuCfcAfAfAfaAfa aaGfaGfaAfL96	UfcCfcUfuCfcAfAfAfaAfa AfAfGfaGfaAfL96	CfcCfuUfcCfaAfAfAfaAfa agAfgAfaUfL96	CfcCfuUfcCfaAfAfAfaAfa AfGfAfgAfaUfL96	CfcUfuCfcAfaAfAfaAfa gaGfaAfuCfL96	CfcUfuCfcAfaAfAfaAfa GfAfGfaAfuCfL96	CfuUfcCfaAfaAfAfaAfg agAfaUfcAfL96	CfuUfcCfaAfaAfAfaAfg AfGfAfaUfcAfL96	UfuCfcAfaAfaAfAfaGfa gaAfuCfaAfL96	UfuCfcAfaAfaAfAfaGfa GfAfAfuCfaAfL96	UfcCfaAfaAfaAfAfgAfg aaUfcAfaAfL96	UfcCfaAfaAfaAfAfgAfg
811	812	813	814	815	816	817	818	819	820	821	822	823
S1793	S1794	S1795	S1796	S1797	S1798	S1799	S1800	S1801	S1802	S1803	S1804	S1805
D1793	D1794	D1795	D1796	D1797	D1798	D1799	D1800	D1801	D1802	D1803	D1804	D1805

UfuUfgGfasAfsg	uUfuUfgAfUfUfcUfcuuUf uUfuUfuGfgsAfsa	uUfuUfgauUfcUfcuuUfu UfuUfuGfgsAfsa	aUfuUfuGfAfUfuCfucuUf uUfuUfuUfgsGfsa	aUfuUfugaUfuCfucuUfu UfuUfuUfgsGfsa	aAfuUfuUfGfAfuUfcucUf uUfuUfuUfusGfsg	aAfuUfuugAfuUfcucUfuU fuUfuUfusGfsg	aAfaUfuUfUfGfaUfucuCf uUfuUfuUfusUfsg	aAfaUfuuuGfaUfucuCfu UfuUfuUfusUfsg	aAfaAfuUfUfUfgAfuucUf cUfuUfuUfusUfsu	aAfaAfuuuUfgAfuucUfcU fuUfuUfusUfsu	uAfaAfaUfUfUfuGfauuCf uCfuUfuUfusUfsu	uAfaAfauuUfuGfauuCfu CfuUfuUfusUfsu
	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927
	AS1806	AS1807	AS1808	AS1809	AS1810	AS1811	AS1812	AS1813	AS1814	AS1815	AS1816	AS1817
AfAfUfcAfaAfL96	CfcAfaAfaAfaAfAfGfaGfa auCfaAfaAfL96	CfcAfaAfaAfaAfAfGfaGfa AfUfCfaAfaAfL96	CfaAfaAfaAfaAfGfAfgAfa ucAfaAfaUfL96	CfaAfaAfaAfaAfGfAfgAfa UfCfAfaAfaUfL96	AfaAfaAfaAfaGfAfGfaAfu caAfaAfuUfL96	AfaAfaAfaAfaGfAfGfaAfu CfAfAfaAfuUfL96	AfaAfaAfaAfgAfGfAfaUfc aaAfaUfuUfL96	AfaAfaAfaAfgAfGfAfaUfc AfAfAfaUfuUfL96	AfaAfaGfaGfAfAfuCfa aaAfuUfuUfL96	AfaAfaAfaGfaGfAfAfuCfa AfAfafuUfuUfL96	AfaAfaAfgAfgAfAfUfcAfa aaUfuUfuAfL96	AfaAfaAfgAfgAfAfUfcAfa AfAfUfuUfuAfL96
	824	825	826	827	828	829	830	831	832	833	834	835
	S1806	S1807	S1808	S1809	S1810	S1811	S1812	S1813	S1814	S1815	S1816	S1817
	D1806	D1807	D1808	D1809	D1810	D1811	D1812	D1813	D1814	D1815	D1816	D1817

gUfaAfaAfUfUfuUfgauUf cUfcUfuUfusUfsu	gUfaAfaauUfuUfgauUfc UfcUfuUfusUfsu	uGfuAfaAfAfUfuUfugaUf uCfuCfuUfusUfsu	uGfuAfaaaUfuUfugaUfu CfuCfuUfusUfsu	uUfgUfaAfAfAfuUfuugAf uUfcUfcUfusUfsu	uUfgUfaaaAfuUfuugAfu UfcUfcUfusUfsu	uUfuGfuAfAfAfaUfuuuGf aUfuCfuCfusUfsu	uUfuGfuaaAfaUfuuuGfa UfuCfuCfusUfsu	cUfuUfgUfAfAfaAfuuuUf gAfuUfcUfcsUfsu	cUfuUfguaAfaAfuuuUfgA fuUfcUfcsUfsu	uCfuUfuGfUfAfaAfauuUf uGfaUfuCfusCfsu	uCfuUfuguAfaAfauuUfu GfaUfuCfusCfsu	uUfcUfuUfGfUfaAfaauUf
1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940
AS1818	AS1819	AS1820	AS1821	AS1822	AS1823	AS1824	AS1825	AS1826	AS1827	AS1828	AS1829	AS1830
AfaAfaGfaGfaAfUfCfaAf aauUfuUfaCfL96	AfaAfaGfaGfaAfUfCfaAf aAfUfUtuUfaCfL96	AfaAfgAfgAfaUfCfAfaAfa uuUfuAfcAfL96	AfaAfgAfgAfaUfCfAfaAfa UfUfUfuAfcAfL96	AfaGfaGfaAfuCfAfAfaAfu uuUfaCfaAfL96	AfaGfaGfaAfuCfAfAfaAfu UfUfUfaCfaAfL96	AfgAfgAfaUfcAfAfaUfu uuAfcAfaAfL96	AfgAfgAfaUfcAfAfaUfu UfUfAfcAfaAfL96	GfaGfaAfuCfaAfAftuUf uuaCfaAfaGfL96	GfaGfaAfuCfaAfAffuUf uUfAfCfaAfaGfL96	AfgAfaUfcAfaAfAfUfuUfu acAfaAfgAfL96	AfgAfaUfcAfaAfAfUfuUfu AfCfAfaAfgAfL96	GfaAfuCfaAfaAfUfuUf
836	837	838	839	840	841	842	843	844	845	846	847	848
S1818	S1819	S1820	S1821	S1822	S1823	S1824	S1825	S1826	S1827	S1828	S1829	S1830
D1818	D1819	D1820	D1821	D1822	D1823	D1824	D1825	D1826	D1827	D1828	D1829	D1830

uUfgAfuUfcsUfsc	uUfcUfuugUfaAfaauUfu UfgAfuUfcsUfsc	aUfuCfuUfUfGfuAfaaaUf uUfuGfaUfusCfsu	aUfuCfuuuGfuAfaaaUfu UfuGfaUfusCfsu	gAfuUfcUfUfUfgUfaaaAf uUfuUfgAfusUfsc	gAfuUfcuuUfgUfaaaAfu UfuUfgAfusUfsc	uGfaUfuCfUfuGfuaaAf aUfuUfuGfasUfsu	uGfaUfucuUfuGfuaaAfa UfuUfuGfasUfsu	uUfgAfuUfCfUfuUfguaAf aAfuUfuUfgsAfsu	uUfgAfuucUfuUfguaAfaA fuUfuUfgsAfsu	uUfuGfaUfUfCfuUfuguAf aAfaUfuUfusGfsa	uUfuGfauuCfuUfuguAfa AfaUfuUfusGfsa	cUfuUfgAfUfUfcUfuugUf aAfaAfuUfusUfsg
	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
	AS1831	AS1832	AS1833	AS1834	AS1835	AS1836	AS1837	AS1838	AS1839	AS1840	AS1841	AS1842
acaAfaGfaAfL96	GfaAfuCfaAfaAfUfUfuUf aCfAfAfaGfaAfL96	AfaUfcAfaAfaUfUfUfuAfc aaAfgAfaUfL96	AfaUfcAfaAfaUfUfUfuAfc AfAfAfgAfaUfL96	AfuCfaAfaAfuUfUfUfaCfa aaGfaAfuCfL96	AfuCfaAfaAfuUfUfUfaCfa AfAfGfaAfuCfL96	UfcAfaAfaUfuUfUfAfcAfa agAfaUfcAfL96	UfcAfaAfaUfuUfUfAfcAfa AfGfAfaUfcAfL96	CfaAfaAfuUfuUfAfCfaAfa gaAfuCfaAfL96	CfaAfaAfuUfuUfAfCfaAfa GfAfAfuCfaAfL96	AfaAfaUfuUfuAfCfAfaAfg aaUfcAfaAfL96	AfaAfaUfuUfuAfCfAfaAfg AfAfUfcAfaAfL96	AfaAfuUfuUfaCfAfAfaGfa auCfaAfaGfL96
	849	850	851	852	853	854	855	856	857	858	859	860
	S1831	S1832	S1833	S1834	S1835	S1836	S1837	S1838	S1839	S1840	S1841	S1842
	D1831	D1832	D1833	D1834	D1835	D1836	D1837	D1838	D1839	D1840	D1841	D1842

cUfuUfgauUfcUfuugUfa AfaAfuUfusUfsg	cCfuUfuGfAfUfuCfuuuGf uAfaAfaUfusUfsu	cCfuUfugaUfuCfuuuGfu AfaAfaUfusUfsu	uCfcUfuUfGfAfuUfcuuUf gUfaAfaAfusUfsu	uCfcUfuugAfuUfcuuUfg UfaAfaAfusUfsu	uUfcCfuUfUfGfaUfucuUf uGfuAfaAfasUfsu	uUfcCfuuuGfaUfucuUfu GfuAfaAfasUfsu	aUfuCfcUfUfUfgAfuucUf uUfgUfaAfasAfsu	aUfuCfcuuUfgAfuucUfu UfgUfaAfasAfsu	aAfuUfcCfUfUfuGfauuCf uUfuGfuAfasAfsa	aAfuUfccuUfuGfauuCfu UfuGfuAfasAfsa	gAfaUfuCfCfUfuUfgauUf cUfuUfgUfasAfsa	gAfaUfuccUfuUfgauUfcU
1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965
AS1843	AS1844	AS1845	AS1846	AS1847	AS1848	AS1849	AS1850	AS1851	AS1852	AS1853	AS1854	AS1855
AfaAfuUfuUfaCfAfAfaGfa AfUfCfaAfaGfL96	AfaUfuUfuAfcAfAfafgAfa ucAfaAfgGfL96	AfaUfuUfuAfcAfAfafgAfa UfCfAfaAfgGfL96	AfuUfuUfaCfaAfAfGfaAfu caAfaGfgAfL96	AfuUfuUfaCfaAfAfGfaAfu CfAfAfaGfgAfL96	UfuUfuAfcAfaAfGfAfaUfc aaAfgGfaAfL96	UfuUfuAfcAfaAfGfAfaUfc AfAfAfgGfaAfL96	UfuUfaCfaAfaGfAfAfuCf aaaGfgAfaUfL96	UfuUfaCfaAfaGfAfAfuCf aAfAfGfgAfaUfL96	UfuAfcAfaAfgAfAfUfcAfa agGfaAfuUfL96	UfuAfcAfaAfgAfAfUfcAfa AfGfGfaAfuUfL96	UfaCfaAfaGfaAfUfCfaAf aggAfaUfuCfL96	UfaCfaAfaGfaAfUfCfaAf
861	862	863	864	865	998	867	898	698	870	871	872	873
S1843	S1844	S1845	S1846	S1847	S1848	S1849	S1850	S1851	S1852	S1853	S1854	S1855
D1843	D1844	D1845	D1846	D1847	D1848	D1849	D1850	D1851	D1852	D1853	D1854	D1855

fuUfgUfasAfsa	aGfaAfuUfCfCfuUfugaUf uCfuUfuGfusAfsa	aGfaAfuucCfuUfugaUfu CfuUfuGfusAfsa	uAfgAfaUfUfCfcUfuugAf uUfcUfuUfgsUfsa	uAfgAfauuCfcUfuugAfuU fcUfuUfgsUfsa	cUfaGfaAfUfUfcCfuuuGf aUfuCfuUfusGfsu	cUfaGfaauUfcCfuuuGfa UfuCfuUfusGfsu	uCfuAfgAfAfUfuCfcuuUf gAfuUfcUfusUfsg	uCfuAfgaaUfuCfcuuUfg AfuUfcUfusUfsg	uUfcUfaGfAfAfuUfccuUf uGfaUfuCfusUfsu	uUfcUfagaAfuUfccuUfu GfaUfuCfusUfsu	uUfuCfuAfGfAfaUfuccUf uUfgAfuUfcsUfsu	uUfuCfuagAfaUfuccUfu UfgAfuUfcsUfsu
	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
	AS1856	AS1857	AS1858	AS1859	AS1860	AS1861	AS1862	AS1863	AS1864	AS1865	AS1866	AS1867
aGfGfAfaUfuCfL96	AfcAfaAfgAfaUfCfAfaAfg gaAfuUfcUfL96	AfcAfaAfgAfaUfCfAfaAfg GfAfAfuUfcUfL96	CfaAfaGfaAfuCfAfAfaGf gaaUfuCfuAfL96	CfaAfaGfaAfuCfAfAfaGf gAfAfUfuCfuAfL96	AfaAfgAfaUfcAfAfAfgGfa auUfcUfaGfL96	AfaAfgAfaUfcAfAfAfgGfa AfUfUfcUfaGfL96	AfaGfaAfuCfaAfAfGfgAfa uuCfuAfgAfL96	AfaGfaAfuCfaAfAfGfgAfa UfUfCfuAfgAfL96	AfgAfaUfcAfaAfGfGfaAfu ucUfaGfaAfL96	AfgAfaUfcAfaAfGfGfaAfu UfCfUfaGfaAfL96	GfaAfuCfaAfaGfGfAfaUf ucuAfgAfaAfL96	GfaAfuCfaAfaGfGfAfaUf uCfUfAfgAfaAfL96
	874	875	876	877	878	879	880	881	882	883	884	882
	S1856	S1857	S1858	S1859	S1860	S1861	S1862	S1863	S1864	S1865	S1866	S1867
	D1856	D1857	D1858	D1859	D1860	D1861	D1862	D1863	D1864	D1865	D1866	D1867

cUfuUfcUfAfGfaAfuucCf uUfuGfaUfusCfsu	cUfuUfcuaGfaAfuucCfu UfuGfaUfusCfsu	aCfuUfuCfUfAfgAfauuCf cUfuUfgAfusUfsc	aCfuUfucuAfgAfauuCfcU fuUfgAfusUfsc	uAfcUfuUfCfUfaGfaauUf cCfuUfuGfasUfsu	uAfcUfuucUfaGfaauUfc CfuUfuGfasUfsu	aUfaCfuUfUfCfuAfgaaUf uCfcUfuUfgsAfsu	aUfaCfuuuCfuAfgaaUfu CfcUfuUfgsAfsu	gAfuAfcUfUfcUfagaAf uUfcCfuUfusGfsa	gAfuAfcuuUfcUfagaAfuU fcCfuUfusGfsa	aGfaUfaCfUfUfuCfuagAf aUfuCfcUfusUfsg	aGfaUfacuUfuCfuagAfa UfuCfcUfusUfsg	cAfgAfuAfCfUfuUfcuaGf
1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
AS1868	AS1869	AS1870	AS1871	AS1872	AS1873	AS1874	AS1875	AS1876	AS1877	AS1878	AS1879	AS1880
AfaUfcAfaAfgGfAfAfuUfc uaGfaAfaGfL96	AfaUfcAfaAfgGfAfAfuUfc UfAfGfaAfaGfL96	AfuCfaAfaGfgAfAfUfuCfu agAfaAfgUfL96	AfuCfaAfaGfgAfAfUfuCfu AfGfAfaAfgUfL96	UfcAfaAfgGfaAfUfUfcUfa gaAfaGfuAfL96	UfcAfaAfgGfaAfUfUfcUfa GfAfAfaGfuAfL96	CfaAfaGfgAfaUfUfCfuAf gaaAfgUfaUfL96	CfaAfaGfgAfaUfUfCfuAf gAfAfafgUfaUfL96	AfaAfgGfaAfuUfCfUfaGf aaaGfuAfuCfL96	AfaAfgGfaAfuUfCfUfaGf aAfAfGfuAfuCfL96	AfaGfgAfaUfuCfUfAfgAfa agUfaUfcUfL96	AfaGfgAfaUfuCfUfAfgAfa AfGfUfaUfcUfL96	AfgGfaAfuUfcUfAfGfaAfa
886	887	888	889	890	891	892	893	894	895	896	897	898
S1868	S1869	S1870	S1871	S1872	S1873	S1874	S1875	S1876	S1877	S1878	S1879	S1880
D1868	D1869	D1870	D1871	D1872	D1873	D1874	D1875	D1876	D1877	D1878	D1879	D1880

aAfuUfcCfusUfsu	cAfgAfuacUfuUfcuaGfaA fuUfcCfusUfsu	cCfaGfaUfAfCfuUfucuAf gAfaUfuCfcsUfsu	cCfaGfauaCfuUfucuAfg AfaUfuCfcsUfsu	cCfcAfgAfUfAfcUfuucUfa GfaAfuUfcsCfsu	cCfcAfgauAfcUfuucUfaG faAfuUfcsCfsu	gCfcCfaGfAfUfaCfuuuCf uAfgAfaUfusCfsc	gCfcCfagaUfaCfuuuCfu AfgAfaUfusCfsc	uGfcCfcAfGfAfuAfcuuUf cUfaGfaAfusUfsc	uGfcCfcagAfuAfcuuUfcU faGfaAfusUfsc	cUfgCfcCfAfGfaUfacuUf uCfuAfgAfasUfsu	cUfgCfccaGfaUfacuUfu CfuAfgAfasUfsu	uCfuGfcCfCfAfgAfuacUf uUfcUfaGfasAfsu
	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
	AS1881	AS1882	AS1883	AS1884	AS1885	AS1886	AS1887	AS1888	AS1889	AS1890	AS1891	AS1892
guAfuCfuGfL96	AfgGfaAfuUfcUfAfGfaAfa GfUfAfuCfuGfL96	GfgAfaUfuCfuAfGfAfaAf guaUfcUfgGfL96	GfgAfaUfuCfuAfGfAfaAf gUfAfUfcUfgGfL96	GfaAfuUfcUfaGfAfAfaGf uauCfuGfgGfL96	GfaAfuUfcUfaGfAfAfaGf uAfUfCfuGfgGfL96	AfaUfuCfuAfgAfAfAfgUfa ucUfgGfgCfL96	AfaUfuCfuAfgAfAfAfgUfa UfCfUfgGfgCfL96	AfuUfcUfaGfaAfAfGfuAfu cuGfgGfcAfL96	AfuUfcUfaGfaAfAfGfuAfu CfUfGfgGfcAfL96	UfuCfuAfgAfaAfGfUfaUfc ugGfgCfaGfL96	UfuCfuAfgAfaAfGfUfaUfc UfGfGfgCfaGfL96	UfcUfaGfaAfaGfUfAfuCf uggGfcAfgAfL96
	668	006	901	905	903	904	902	906	206	806	606	910
	S1881	S1882	S1883	S1884	S1885	S1886	S1887	S1888	S1889	S1890	S1891	S1892
	D1881	D1882	D1883	D1884	D1885	D1886	D1887	D1888	D1889	D1890	D1891	D1892

uCfuGfcccAfgAfuacUfuU fcUfaGfasAfsu	uUfcUfgCfCfCfaGfauaCf uUfuCfuAfgsAfsa	uUfcUfgccCfaGfauaCfu UfuCfuAfgsAfsa	gUfuCfuGfCfCfcAfgauAf cUfuUfcUfasGfsa	gUfuCfugcCfcAfgauAfcU fuUfcUfasGfsa	cGfuUfcUfGfCfcCfagaUf aCfuUfuCfusAfsg	cGfuUfcugCfcCfagaUfa CfuUfuCfusAfsg	gCfgUfuCfUfGfcCfcagAf uAfcUfuUfcsUfsa	gCfgUfucuGfcCfcagAfuA fcUfuUfcsUfsa	aGfcGfuUfCfUfgCfccaGf aUfaCfuUfusCfsu	aGfcGfuucUfgCfccaGfa UfaCfuUfusCfsu	uAfgCfgUfUfCfuGfcccAf gAfuAfcUfusUfsc	uAfgCfguuCfuGfcccAfgA
2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
AS1893	AS1894	AS1895	AS1896	AS1897	AS1898	AS1899	AS1900	AS1901	AS1902	AS1903	AS1904	AS1905
UfcUfaGfaAfaGfUfAfuCf uGfGfGfcAfgAfL96	CfuAfgAfaAfgUfAfUfcUfg ggCfaGfaAfL96	CfuAfgAfaAfgUfAfUfcUfg GfGfCfaGfaAfL96	UfaGfaAfaGfuAfUfCfuGf ggcAfgAfaCfL96	UfaGfaAfaGfuAfUfCfuGf gGfCfAfgAfaCfL96	AfgAfaAfgUfaUfCfUfgGf gcaGfaAfcGfL96	AfgAfaAfgUfaUfCfUfgGf gCfAfGfaAfcGfL96	GfaAfaGfuAfuCfUfGfgGf cagAfaCfgCfL96	GfaAfaGfuAfuCfUfGfgGf cAfGfAfaCfgCfL96	AfaAfgUfaUfcUfGfGfgCf agaAfcGfcUfL96	AfaAfgUfaUfcUfGfGfgCf aGfAfAfcGfcUfL96	AfaGfuAfuCfuGfGfGfcAf gaaCfgCfuAfL96	AfaGfuAfuCfuGfGfGfcAf
911	912	913	914	915	916	917	918	919	920	921	922	923
S1893	S1894	S1895	S1896	S1897	S1898	S1899	S1900	S1901	S1902	S1903	S1904	S1905
D1893	D1894	D1895	D1896	D1897	D1898	D1899	D1900	D1901	D1902	D1903	D1904	D1905

fuAfcUfusUfsc	cUfaGfcGfUfUfcUfgccCf aGfaUfaCfusUfsu	cUfaGfcguUfcUfgccCfa GfaUfaCfusUfsu	cCfuAfgCfGfUfuCfugcCf cAfgAfuAfcsUfsu	cCfuAfgcgUfuCfugcCfcA fgAfuAfcsUfsu	uCfcUfaGfCfGfuUfcugCf cCfaGfaUfasCfsu	uCfcUfagcGfuUfcugCfc CfaGfaUfasCfsu	cUfcCfuAfGfCfgUfucuGf cCfcAfgAfusAfsc	cUfcCfuagCfgUfucuGfc CfcAfgAfusAfsc	uCfuCfcUfAfGfcGfuucUf gCfcCfaGfasUfsa	uCfuCfcuaGfcGfuucUfg CfcCfaGfasUfsa	cUfcUfcCfUfAfgCfguuCf uGfcCfcAfgsAfsu	cUfcUfccuAfgCfguuCfuG fcCfcAfgsAfsu
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
	AS1906	AS1907	AS1908	AS1909	AS1910	AS1911	AS1912	AS1913	AS1914	AS1915	AS1916	AS1917
gAfAfCfgCfuAfL96	AfgUfaUfcUfgGfGfCfaGf aacGfcUfaGfL96	AfgUfaUfcUfgGfGfCfaGf aAfCfGfcUfaGfL96	GfuAfuCfuGfgGfCfAfgAf acgCfuAfgGfL96	GfuAfuCfuGfgGfCfAfgAf aCfGfCfuAfgGfL96	UfaUfcUfgGfgCfAfGfaAf cgcUfaGfgAfL96	UfaUfcUfgGfgCfAfGfaAf cGfCfUfaGfgAfL96	AfuCfuGfgGfcAfGfAfaCf gcuAfgGfaGfL96	AfuCfuGfgGfcAfGfAfaCf gCfUfAfgGfaGfL96	UfcUfgGfgCfaGfAfAfcGf cuaGfgAfgAfL96	UfcUfgGfgCfaGfAfAfcGf cUfAfGfgAfgAfL96	CfuGfgGfcAfgAfAfCfgCf uagGfaGfaGfL96	CfuGfgGfcAfgAfAfCfgCf uAfGfGfaGfaGfL96
	924	925	926	927	928	929	930	931	932	933	934	935
	S1906	S1907	S1908	S1909	S1910	S1911	S1912	S1913	S1914	S1915	S1916	S1917
	D1906	D1907	D1908	D1909	D1910	D1911	D1912	D1913	D1914	D1915	D1916	D1917

uCfuCfuCfCfUfaGfcguUf cUfgCfcCfasGfsa	uCfuCfuccUfaGfcguUfc UfgCfcCfasGfsa	aUfcUfcUfCftuAfgcgUf uCfuGfcCfcsAfsg	aUfcUfcucCfuAfgcgUfuC fuGfcCfcsAfsg	gAfuCfuCfUfCfcUfagcGf uUfcUfgCfcsCfsa	gAfuCfucuCfcUfagcGfu UfcUfgCfcsCfsa	gGfaUfcUfCfUfcCfuagCf gUfuCfuGfcsCfsc	gGfaUfcucUfcCfuagCfg UfuCfuGfcsCfsc	uGfgAfuCfUfCfuCfcuaGf cGfuUfcUfgsCfsc	uGfgAfucuCfuCfcuaGfc GfuUfcUfgsCfsc	uUfgGfaUfCfUfcUfccuAf gCfgUfuCfusGfsc	uUfgGfaucUfcUfccuAfgC fgUfuCfusGfsc	uUfuGfgAfUfCfuCfuccUf
2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
AS1918	AS1919	AS1920	AS1921	AS1922	AS1923	AS1924	AS1925	AS1926	AS1927	AS1928	AS1929	AS1930
UfgGfgCfaGfaAfCfGfcUf aggAfgAfgAfL96	UfgGfgCfaGfaAfCfGfcUf aGfGfAfgAfL96	GfgGfcAfgAfaCfGfCfuAf ggaGfaGfaUfL96	GfgGfcAfgAfaCfGfCfuAf gGfAfGfaGfaUfL96	GfgCfaGfaAfcGfCfUfaGf gagAfgAfuCfL96	GfgCfaGfaAfcGfCfUfaGf gAfGfAfgAfuCfL96	GfcAfgAfaCfgCfUfAfgGf agaGfaUfcCfL96	GfcAfgAfaCfgCfUfAfgGf aGfAfGfaUfcCfL96	CfaGfaAfcGfcUfAfGfgAf gagAfuCfcAfL96	CfaGfaAfcGfcUfAfGfgAf gAfGfAfuCfcAfL96	AfgAfaCfgCfuAfGfGfaGf agaUfcCfaAfL96	AfgAfaCfgCfuAfGfGfaGf aGfAfUfcCfaAfL96	GfaAfcGfcUfaGfGfAfgAf
936	937	938	626	940	941	942	943	944	945	946	947	948
S1918	S1919	S1920	S1921	S1922	S1923	S1924	S1925	S1926	S1927	S1928	S1929	S1930
D1918	D1919	D1920	D1921	D1922	D1923	D1924	D1925	D1926	D1927	D1928	D1929	D1930

aGfcGfuUfcsUfsg	uUfuGfgauCfuCfuccUfa GfcGfuUfcsUfsg	aUfuUfgGfAfUfcUfcucCf uAfgCfgUfusCfsu	aUfuUfggaUfcUfcucCfuA fgCfgUfusCfsu	aAfuUfuGfGfAfuCfucuCf cUfaGfcGfusUfsc	aAfuUfuggAfuCfucuCfcU faGfcGfusUfsc	aAfaUfuUfGfGfaUfcucUf cCfuAfgCfgsUfsu	aAfaUfuugGfaUfcucUfc CfuAfgCfgsUfsu	gAfaAfuUfUfGfgAfucuCf uCfcUfaGfcsGfsu	gAfaAfuuuGfgAfucuCfu CfcUfaGfcsGfsu	gGfaAfaUfUfgGfaucUf cUfcCfuAfgsCfsg	gGfaAfauuUfgGfaucUfc UfcCfuAfgsCfsg	uGfgAfaAfUfUfuGfgauCf uCfuCfcUfasGfsc
	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052
	AS1931	AS1932	AS1933	AS1934	AS1935	AS1936	AS1937	AS1938	AS1939	AS1940	AS1941	AS1942
gauCfcAfaAfL96	GfaAfcGfcUfaGfGfAfgAf gAfUfCfcAfaAfL96	AfaCfgCfuAfgGfAfGfaGf aucCfaAfaUfL96	AfaCfgCfuAfgGfAfGfaGf aUfCfCfaAfaUfL96	AfcGfcUfaGfgAfGfAfgAfu ccAfaAfuUfL96	AfcGfcUfaGfgAfGfAfgAfu CfCfAfaAfuUfL96	CfgCfuAfgGfaGfAfGfaUf ccaAfaUfuUfL96	CfgCfuAfgGfaGfAfGfaUf cCfAfAfaUfuUfL96	GfcUfaGfgAfgAfGfAfuCf caaAfuUfuCfL96	GfcUfaGfgAfgAfGfAfuCf cAfAfafuUfuCfL96	CfuAfgGfaGfaGfAfUfcCf aaaUfuUfcCfL96	CfuAfgGfaGfaGfAfUfcCf aAfAfUfuUfcCfL96	UfaGfgAfgAfUfCfcAfa auUfuCfcAfL96
	949	950	951	952	953	954	955	926	957	958	959	096
	S1931	S1932	S1933	S1934	S1935	S1936	S1937	S1938	S1939	S1940	S1941	S1942
	D1931	D1932	D1933	D1934	D1935	D1936	D1937	D1938	D1939	D1940	D1941	D1942

	±	0	¥- <u>.</u>	_	7.5		±		±		¥.	7
uGfgAfaauUfuGfgauCfu CfuCfcUfasGfsc	aUfgGfaAfAfUfuUfggaUf cUfcUfcCfusAfsg	aUfgGfaaaUfuUfggaUfc UfcUfcCfusAfsg	aAfuGfgAfAfAfuUfuggAf uCfuCfuCfcsUfsa	aAfuGfgaaAfuUfuggAfu CfuCfuCfcsUfsa	cAfaUfgGfAfAfaUfuugGf aUfcUfcUfcsCfsu	cAfaUfggaAfaUfuugGfa UfcUfcUfcsCfsu	aCfaAfuGfGfAfaAfuuuGf gAfuCfuCfusCfsc	aCfaAfuggAfaAfuuuGfg AfuCfuCfusCfsc	gAfcAfaUfGfGfaAfauuUf gGfaUfcUfcsUfsc	gAfcAfaugGfaAfauuUfg GfaUfcUfcsUfsc	aGfaCfaAfUfGfgAfaauUf uGfgAfuCfusCfsu	aGfaCfaauGfgAfaauUfu
2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065
AS1943	AS1944	AS1945	AS1946	AS1947	AS1948	AS1949	AS1950	AS1951	AS1952	AS1953	AS1954	AS1955
UłaGfgAfgAfgAfUfCfcAfa AfUfUfuCfcAfL96	AfgGfaGfaGfaUfCfCfaAf auuUfcCfaUfL96	AfgGfaGfaGfaUfCfCfaAf aUfUfUfcCfaUfL96	GfgAfgAfgAfuCfCfAfaAfu uuCfcAfuUfL96	GfgAfgAfuCfCfAfaAfu UfUfCfcAfuUfL96	GfaGfaGfaUfcCfAfAfaUf uucCfaUfuGfL96	GfaGfaGfaUfcCfAfAfaUf uUfCfCfaUfuGfL96	AfgAfgAfuCfcAfAfAfuUfu ccAfuUfgUfL96	AfgAfgAfuCfcAfAfafuUfu CfCfAfuUfgUfL96	GfaGfaUfcCfaAfAfUfuUf ccaUfuGfuCfL96	GfaGfaUfcCfaAfAfUfuUf cCfAfUfuGfuCfL96	AfgAfuCfcAfaAfUfUfuCfc auUfgUfcUfL96	AfgAfuCfcAfaAfUfUfuCfc
961	362	6963	964	965	996	296	896	696	970	971	972	973
S1943	S1944	S1945	S1946	S1947	S1948	S1949	S1950	S1951	S1952	S1953	S1954	S1955
D1943	D1944	D1945	D1946	D1947	D1948	D1949	D1950	D1951	D1952	D1953	D1954	D1955

GfgAfuCfusCfsu	aAfgAfcAfAfUfgGfaaaUf uUfgGfaUfcsUfsc	aAfgAfcaaUfgGfaaaUfu UfgGfaUfcsUfsc	cAfaGfaCfAfAfuGfgaaAf uUfuGfgAfusCfsu	cAfaGfacaAfuGfgaaAfu UfuGfgAfusCfsu	gCfaAfgAfCfAfaUfggaAf aUfuUfgGfasUfsc	gCfaAfgacAfaUfggaAfaU fuUfgGfasUfsc	uGfcAfaGfAfCfaAfuggAf aAfuUfuGfgsAfsu	uGfcAfagaCfaAfuggAfaA fuUfuGfgsAfsu	uUfgCfaAfGfAfcAfaugGf aAfaUfuUfgsGfsa	uUfgCfaagAfcAfaugGfa AfaUfuUfgsGfsa	cUfuGfcAfAfGfaCfaauGf gAfaAfuUfusGfsg	cUfuGfcaaGfaCfaauGfg AfaAfuUfusGfsg
	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077
	AS1956	AS1957	AS1958	AS1959	AS1960	AS1961	AS1962	AS1963	AS1964	AS1965	AS1966	AS1967
AfUfUfgUfcUfL96	GfaUfcCfaAfaUfUfUfcCf auuGfuCfuUfL96	GfaUfcCfaAfaUfUfUfcCf aUfUfGfuCfuUfL96	AfuCfcAfaAfuUfUfCfcAfu ugUfcUfuGfL96	AfuCfcAfaAfuUfUfCfcAfu UfGfUfcUfuGfL96	UfcCfaAfaUfuUfCfCfaUf uguCfuUfgCfL96	UfcCfaAfaUfuUfCfCfaUf uGfUfCfuUfgCfL96	CfcAfaAfuUfuCfCfAfuUfg ucUfuGfcAfL96	CfcAfaAfuUfuCfCfAfuUfg UfCfUfuGfcAfL96	CfaAfaUfuUfcCfAfUfuGf ucuUfgCfaAfL96	CfaAfaUfuUfcCfAfUfuGf uCfUfUfgCfaAfL96	AfaAfuUfuCfcAfUfUfgUfc uuGfcAfaGfL96	AfaAfuUfuCfcAfUfUfgUfc UfUfGfcAfaGfL96
	974	975	926	977	978	926	086	981	982	983	984	985
	S1956	S1957	S1958	S1959	S1960	S1961	S1962	S1963	S1964	S1965	S1966	S1967
	D1956	D1957	D1958	D1959	D1960	D1961	D1962	D1963	D1964	D1965	D1966	D1967

gCfuUfgCfAfAfgAfcaaUf gGfaAfaUfusUfsg	gCfuUfgcaAfgAfcaaUfg GfaAfaUfusUfsg	uGfcUfuGfCfAfaGfacaAf uGfgAfaAfusUfsu	uGfcUfugcAfaGfacaAfu GfgAfaAfusUfsu	uUfgCfuUfGfCfaAfgacAf aUfgGfaAfasUfsu	uUfgCfuugCfaAfgacAfa UfgGfaAfasUfsu	uUfuGfcUfUfGfcAfagaCf aAfuGfgAfasAfsu	uUfuGfcuuGfcAfagaCfa AfuGfgAfasAfsu	cUfuUfgCfUfUfgCfaagAf cAfaUfgGfasAfsa	cUfuUfgcuUfgCfaagAfcA faUfgGfasAfsa	gCfuUfuGfCfUfuGfcaaGf aCfaAfuGfgsAfsa	gCfuUfugcUfuGfcaaGfa CfaAfuGfgsAfsa	uGfcUfuUfGfCfuUfgcaAf
2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090
AS1968	AS1969	AS1970	AS1971	AS1972	AS1973	AS1974	AS1975	AS1976	AS1977	AS1978	AS1979	AS1980
AfaUfuUfcCfaUfUfGfuCf uugCfaAfgCfL96	AfaUfuUfcCfaUfUfGfuCf uUfGfCfaAfgCfL96	AfuUfuCfcAfuUfGfUfcUfu gcAfaGfcAfL96	AfuUfuCfcAfuUfGfUfcUfu GfCfAfaGfcAfL96	UfuUfcCfaUfuGfUfCfuUf gcaAfgCfaAfL96	UfuUfcCfaUfuGfUfCfuUf gCfAfAfgCfaAfL96	UfuCfcAfuUfgUfCfUfuGf caaGfcAfaAfL96	UfuCfcAfuUfgUfCfUfuGf cAfAfGfcAfaAfL96	UfcCfaUfuGfuCfUfUfgCf aagCfaAfaGfL96	UfcCfaUfuGfuCfUfUfgCf aAfGfCfaAfaGfL96	CfcAfuUfgUfcUfUfGfcAfa gcAfaAfgCfL96	CfcAfuUfgUfcUfUfGfcAfa GfCfAfaAfgCfL96	CfaUfuGfuCfuUfGfCfaAf
986	286	886	686	066	991	992	663	994	966	966	266	866
S1968	S1969	S1970	S1971	S1972	S1973	S1974	S1975	S1976	S1977	S1978	S1979	S1980
D1968	D1969	D1970	D1971	D1972	D1973	D1974	D1975	D1976	D1977	D1978	D1979	D1980

gAfcAfaUfgsGfsa	uGfcUfuugCfuUfgcaAfg AfcAfaUfgsGfsa	gUfgCfuUfUfGfcUfugcAf aGfaCfaAfusGfsg	gUfgCfuuuGfcUfugcAfa GfaCfaAfusGfsg	cGfuGfcUfUfUfgCfuugCf aAfgAfcAfasUfsg	cGfuGfcuuUfgCfuugCfa AfgAfcAfasUfsg	aCfgUfgCfUfUfuGfcuuGf cAfaGfaCfasAfsu	aCfgUfgcuUfuGfcuuGfc AfaGfaCfasAfsu	uAfcGfuGfCfUfuUfgcuUf gCfaAfgAfcsAfsa	uAfcGfugcUfuUfgcuUfg CfaAfgAfcsAfsa	aUfaCfgUfGfCfuUfugcUf uGfcAfaGfasCfsa	aUfaCfgugCfuUfugcUfu GfcAfaGfasCfsa	aAfuAfcGfUfGfcUfuugCf uUfgCfaAfgsAfsc
	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102
	AS1981	AS1982	AS1983	AS1984	AS1985	AS1986	AS1987	AS1988	AS1989	AS1990	AS1991	AS1992
gcaAfaGfcAfL96	CfaUfuGfuCfuUfGfCfaAf gCfAfAfaGfcAfL96	AfuUfgUfcUfuGfCfAfaGf caaAfgCfaCfL96	AfuUfgUfcUfuGfCfAfaGf cAfAfAfgCfaCfL96	UfuGfuCfuUfgCfAfAfgCf aaaGfcAfcGfL96	UfuGfuCfuUfgCfAfAfgCf aAfAfGfcAfcGfL96	UfgUfcUfuGfcAfAfGfcAfa agCfaCfgUfL96	UfgUfcUfuGfcAfAfGfcAfa AfGfCfaCfgUfL96	GfuCfuUfgCfaAfGfCfaAf agcAfcGfuAfL96	GfuCfuUfgCfaAfGfCfaAf aGfCfAfcGfuAfL96	UfcUfuGfcAfaGfCfAfaAfg caCfgUfaUfL96	UfcUfuGfcAfaGfCfAfaAfg CfAfCfgUfaUfL96	CfuUfgCfaAfgCfAfAfaGfc acGfuAfuUfL96
	666	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010
	S1981	S1982	S1983	S1984	S1985	S1986	S1987	S1988	S1989	S1990	S1991	S1992
	D1981	D1982	D1983	D1984	D1985	D1986	D1987	D1988	D1989	D1990	D1991	D1992

aAfuAfcguGfcUfuugCfu UfgCfaAfgsAfsc	uAfaUfaCfGfUfgCfuuuGf cUfuGfcAfasGfsa	uAfaUfacgUfgCfuuuGfc UfuGfcAfasGfsa	uUfaAfuAfCfGfuGfcuuUf gCfuUfgCfasAfsg	uUfaAfuacGfuGfcuuUfg CfuUfgCfasAfsg	uUfuAfaUfAfCfgUfgcuUf uGfcUfuGfcsAfsa	uUfuAfauaCfgUfgcuUfu GfcUfuGfcsAfsa	aUfuUfaAfUfAfcGfugcUf uUfgCfuUfgsCfsa	aUfuUfaauAfcGfugcUfu UfgCfuUfgsCfsa	uAfuUfuAfAfUfaCfgugCf uUfuGfcUfusGfsc	uAfuUfuaaUfaCfgugCfu UfuGfcUfusGfsc	aUfaUfuUfAfAfuAfcguGf cUfuUfgCfusUfsg	aUfaUfuuaAfuAfcguGfc
2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115
AS1993	AS1994	AS1995	AS1996	AS1997	AS1998	AS1999	AS2000	AS2001	AS2002	AS2003	AS2004	AS2005
CfuUfgCfaAfgCfAfAfaGfc AfCfGfuAfuUfL96	UfuGfcAfaGfcAfAfAfgCfa cgUfaUfuAfL96	UfuGfcAfaGfcAfAfAfgCfa CfGfUfaUfuAfL96	UfgCfaAfgCfaAfAfGfcAfc guAfuUfaAfL96	UfgCfaAfgCfaAfAfGfcAfc GfUfAfuUfaAfL96	GfcAfaGfcAfaAfGfCfaCf guaUfuAfaAfL96	GfcAfaGfcAfaAfGfCfaCf gUfAfUfuAfaAfL96	CfaAfgCfaAfaGfCfAfcGf uauUfaAfaUfL96	CfaAfgCfaAfaGfCfAfcGf uAfUfUfaAfaUfL96	AfaGfcAfaAfgCfAfCfgUfa uuAfaAfuAfL96	AfaGfcAfaAfgCfAfCfgUfa UfUfAfaAfuAfL96	AfgCfaAfaGfcAfCfGfuAfu uaAfaUfaUfL96	AfgCfaAfaGfcAfCfGfuAfu
1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023
S1993	S1994	S1995	S1996	S1997	S1998	S1999	S2000	S2001	S2002	S2003	S2004	S2005
D1993	D1994	D1995	D1996	D1997	D1998	D1999	D2000	D2001	D2002	D2003	D2004	D2005

UfuUfgCfusUfsg	cAfuAfuUfUfAfaUfacgUf gCfuUfuGfcsUfsu	cAfuAfuuuAfaUfacgUfgC fuUfuGfcsUfsu	uCfaUfaUfUfUfaAfuacGf uGfcUfuUfgsCfsu	uCfaUfauuUfaAfuacGfu GfcUfuUfgsCfsu	aUfcAfuAfUfUfuAfauaCf gUfgCfuUfusGfsc	aUfcAfuauUfuAfauaCfg UfgCfuUfusGfsc	gAfuCfaUfAfUfuUfaauAf cGfuGfcUfusUfsg	gAfuCfauaUfuUfaauAfc GfuGfcUfusUfsg	aGfaUfcAfUfAfuUfuaaUf aCfgUfgCfusUfsu	aGfaUfcauAfuUfuaaUfa CfgUfgCfusUfsu	cAfgAfuCfAfUfaUfuuaAf uAfcGfuGfcsUfsu	cAfgAfucaUfaUfuuaAfuA fcGfuGfcsUfsu
	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127
	AS2006	AS2007	AS2008	AS2009	AS2010	AS2011	AS2012	AS2013	AS2014	AS2015	AS2016	AS2017
UfAfAfaUfaUfL96	GfcAfaAfgCfaCfGfUfaUf uaaAfuAfuGfL96	GfcAfaAfgCfaCfGfUfaUf uAfAfafuAfuGfL96	CfaAfaGfcAfcGfUfAfuUfa aaUfaUfgAfL96	CfaAfaGfcAfcGfUfAfuUfa AfAfUfaUfgAfL96	AfaAfgCfaCfgUfAfUfuAfa auAfuGfaUfL96	AfaAfgCfaCfgUfAfUfuAfa AfUfAfuGfaUfL96	AfaGfcAfcGfuAfUfUfaAfa uaUfgAfuCfL96	AfaGfcAfcGfuAfUfUfaAfa UfAfUfgAfuCfL96	AfgCfaCfgUfaUfUfAfaAfu auGfaUfcUfL96	AfgCfaCfgUfaUfUfAfaAfu AfUfGfaUfcUfL96	GfcAfcGfuAfuUfAfAfaUfa ugAfuCfuGfL96	GfcAfcGfuAfuUfAfAfaUfa UfGfAfuCfuGfL96
	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035
	S2006	S2007	S2008	82009	S2010	S2011	S2012	S2013	S2014	S2015	S2016	S2017
	D2006	D2007	D2008	D2009	D2010	D2011	D2012	D2013	D2014	D2015	D2016	D2017

					-							
gCfaGfaUfCfAfuAfuuuAf aUfaCfgUfgsCfsu	gCfaGfaucAfuAfuuuAfa UfaCfgUfgsCfsu	uGfcAfgAfUfCfaUfauuUf aAfuAfcGfusGfsc	uGfcAfgauCfaUfauuUfa AfuAfcGfusGfsc	cUfgCfaGfAfUfcAfuauUf uAfaUfaCfgsUfsg	cUfgCfagaUfcAfuauUfuA faUfaCfgsUfsg	gCfuGfcAfGfAfuCfauaUf uUfaAfuAfcsGfsu	gCfuGfcagAfuCfauaUfu UfaAfuAfcsGfsu	gGfcUfgCfAfGfaUfcauAf uUfuAfaUfasCfsg	gGfcUfgcaGfaUfcauAfu UfuAfaUfasCfsg	uGfgCfuGfCfAfgAfucaUf aUfuUfaAfusAfsc	uGfgCfugcAfgAfucaUfa UfuUfaAfusAfsc	aUfgGfcUfGfCfaGfaucAf
2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140
AS2018	AS2019	AS2020	AS2021	AS2022	AS2023	AS2024	AS2025	AS2026	AS2027	AS2028	AS2029	AS2030
CfaCfgUfaUfuAfAfAfuAfu gaUfcUfgCfL96	CfaCfgUfaUfuAfAfAfuAfu GfAfUfcUfgCfL96	AfcGfuAfuUfaAfAfUfaUfg auCfuGfcAfL96	AfcGfuAfuUfaAfAfUfaUfg AfUfCfuGfcAfL96	CfgUfaUfuAfaAfUfAfuGf aucUfgCfaGfL96	CfgUfaUfuAfaAfUfAfuGf aUfCfUfgCfaGfL96	GfuAfuUfaAfaUfAfUfgAfu cuGfcAfgCfL96	GfuAfuUfaAfaUfAfUfgAfu CfUfGfcAfgCfL96	UfaUfuAfaAfuAfUfGfaUfc ugCfaGfcCfL96	UfaUfuAfaAfuAfUfGfaUfc UfGfCfaGfcCfL96	AfuUfaAfaUfaUfGfAfuCf ugcAfgCfcAfL96	AfuUfaAfaUfaUfGfAfuCf uGfCfAfgCfcAfL96	UfuAfaAfuAfuGfAfUfcUfg
1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048
S2018	S2019	S2020	S2021	S2022	S2023	S2024	S2025	S2026	S2027	S2028	S2029	S2030
D2018	D2019	D2020	D2021	D2022	D2023	D2024	D2025	D2026	D2027	D2028	D2029	D2030

gCfaGfaUfCfAfuAfuuuAf aUfaCfgUfgsCfsu	gCfaGfaucAfuAfuuuAfa UfaCfgUfgsCfsu	uGfcAfgAfUfCfaUfauuUf aAfuAfcGfusGfsc	uGfcAfgauCfaUfauuUfa AfuAfcGfusGfsc	cUfgCfaGfAfUfcAfuauUf uAfaUfaCfgsUfsg	cUfgCfagaUfcAfuauUfuA faUfaCfgsUfsg	gCfuGfcAfGfAfuCfauaUf uUfaAfuAfcsGfsu	gCfuGfcagAfuCfauaUfu UfaAfuAfcsGfsu	gGfcUfgCfAfGfaUfcauAf uUfuAfaUfasCfsg	gGfcUfgcaGfaUfcauAfu UfuAfaUfasCfsg	uGfgCfuGfCfAfgAfucaUf aUfuUfaAfusAfsc	uGfgCfugcAfgAfucaUfa UfuUfaAfusAfsc	aUfgGfcUfGfCfaGfaucAf
2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140
AS2018	AS2019	AS2020	AS2021	AS2022	AS2023	AS2024	AS2025	AS2026	AS2027	AS2028	AS2029	AS2030
CfaCfgUfaUfuAfAfAfuAfu gaUfcUfgCfL96	CfaCfgUfaUfuAfAfafuAfu GfAfUfcUfgCfL96	AfcGfuAfuUfaAfAfUfaUfg auCfuGfcAfL96	AfcGfuAfuUfaAfAfUfaUfg AfUfCfuGfcAfL96	CfgUfaUfuAfaAfUfAfuGf aucUfgCfaGfL96	CfgUfaUfuAfaAfUfAfuGf aUfCfUfgCfaGfL96	GfuAfuUfaAfaUfAfUfgAfu cuGfcAfgCfL96	GfuAfuUfaAfaUfAfUfgAfu CfUfGfcAfgCfL96	UfaUfuAfaAfuAfUfGfaUfc ugCfaGfcCfL96	UfaUfuAfaAfuAfUfGfaUfc UfGfCfaGfcCfL96	AfuUfaAfaUfaUfGfAfuCf ugcAfgCfcAfL96	AfuUfaAfaUfaUfGfAfuCf uGfCfAfgCfcAfL96	UfuAfaAfuAfuGfAfUfcUfg
1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048
S2018	S2019	S2020	S2021	S2022	S2023	S2024	S2025	S2026	S2027	S2028	S2029	S2030
D2018	D2019	D2020	D2021	D2022	D2023	D2024	D2025	D2026	D2027	D2028	D2029	D2030

uAfuUfuAfasUfsa	aUfgGfcugCfaGfaucAfu AfuUfuAfasUfsa	aAfuGfgCfUfGfcAfgauCf aUfaUfuUfasAfsu	aAfuGfgcuGfcAfgauCfa UfaUfuUfasAfsu	uAfaUfgGfCfUfgCfagaUf cAfuAfuUfusAfsa	uAfaUfggcUfgCfagaUfcA fuAfuUfusAfsa	uUfaAfuGfGfCfuGfcagAf uCfaUfaUfusUfsa	uUfaAfuggCfuGfcagAfu CfaUfaUfusUfsa	uUfuAfaUfGfGfcUfgcaGf aUfcAfuAfusUfsu	uUfuAfaugGfcUfgcaGfa UfcAfuAfusUfsu	uUfuUfaAfUfGfgCfugcAf gAfuCfaUfasUfsu	uUfuUfaauGfgCfugcAfg AfuCfaUfasUfsu	uUfuUfuAfAfUfgGfcugCf aGfaUfcAfusAfsu
	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152
	AS2031	AS2032	AS2033	AS2034	AS2035	AS2036	AS2037	AS2038	AS2039	AS2040	AS2041	AS2042
caGfcCfaUfL96	UfuAfaAfuAfuGfAfUfcUfg CfAfGfcCfaUfL96	UfaAfaUfaUfgAfUfCfuGf cagCfcAfuUfL96	UfaAfaUfaUfgAfUfCfuGf cAfGfCfcAfuUfL96	AfaAfuAfuGfaUfCfUfgCf agcCfaUfuAfL96	AfaAfuAfuGfaUfCfUfgCf aGfCfCfaUfuAfL96	AfaUfaUfgAfuCfUfGfcAfg ccAfuUfaAfL96	AfaUfaUfgAfuCfUfGfcAfg CfCfAfuUfaAfL96	AfuAfuGfaUfcUfGfCfaGf ccaUfuAfaAfL96	AfuAfuGfaUfcUfGfCfaGf cCfAfUfuAfaAfL96	UfaUfgAfuCfuGfCfAfgCf cauUfaAfaAfL96	UfaUfgAfuCfuGfCfAfgCf cAfUfUfaAfaAfL96	AfuGfaUfcUfgCfAfGfcCf auuAfaAfaAfL96
	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060
	S2031	S2032	S2033	S2034	S2035	S2036	S2037	S2038	S2039	S2040	S2041	S2042
	D2031	D2032	D2033	D2034	D2035	D2036	D2037	D2038	D2039	D2040	D2041	D2042

uUfuUfuaaUfgGfcugCfa GfaUfcAfusAfsu	cUfuUfuUfAfAfuGfgcuGf cAfgAfuCfasUfsa	cUfuUfuuaAfuGfgcuGfc AfgAfuCfasUfsa	uCfuUfuUfUfAfaUfggcUf gCfaGfaUfcsAfsu	uCfuUfuuuAfaUfggcUfg CfaGfaUfcsAfsu	gUfcUfuUfUfUfaAfuggCf uGfcAfgAfusCfsa	gUfcUfuuuUfaAfuggCfu GfcAfgAfusCfsa	uGfuCfuUfUfUfuAfaugGf cUfgCfaGfasUfsc	uGfuCfuuuUfuAfaugGfc UfgCfaGfasUfsc	gUfgUfcUfUfUfuUfaauGf gCfuGfcAfgsAfsu	gUfgUfcuuUfuUfaauGfg CfuGfcAfgsAfsu	uGfuGfuCfUfUfuUfuaaUf gGfcUfgCfasGfsa	uGfuGfucuUfuUfuaaUfg
2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165
AS2043	AS2044	AS2045	AS2046	AS2047	AS2048	AS2049	AS2050	AS2051	AS2052	AS2053	AS2054	AS2055
AfuGfaUfcUfgCfAfGfcCf aUfUfAfaAfaAfL96	UfgAfuCfuGfcAfGfCfcAfu uaAfaAfaGfL96	UfgAfuCfuGfcAfGfCfcAfu UfAfAfaAfaGfL96	GfaUfcUfgCfaGfCfCfaUf uaaAfaAfgAfL96	GfaUfcUfgCfaGfCfCfaUf uAfAfAfaAfgAfL96	AfuCfuGfcAfgCfCfAfuUfa aaAfaGfaCfL96	AfuCfuGfcAfgCfCfAfuUfa AfAfAfaGfaCfL96	UfcUfgCfaGfcCfAfUfuAfa aaAfgAfcAfL96	UfcUfgCfaGfcCfAfUfuAfa AfAfAfgAfcAfL96	CfuGfcAfgCfcAfUfUfaAfa aaGfaCfaCfL96	CfuGfcAfgCfcAfUfUfaAfa AfAfGfaCfaCfL96	UfgCfaGfcCfaUfUfAfaAf aagAfcAfcAfL96	UfgCfaGfcCfaUfUfAfaAf
1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073
S2043	S2044	S2045	S2046	S2047	S2048	S2049	S2050	S2051	S2052	S2053	S2054	S2055
D2043	D2044	D2045	D2046	D2047	D2048	D2049	D2050	D2051	D2052	D2053	D2054	D2055

GfcUfgCfasGfsa	aUfgUfgUfCfUfuUfuuaAf uGfgCfuGfcsAfsg	aUfgUfgucUfuUfuuaAfu GfgCfuGfcsAfsg	aAfuGfuGfUfCfuUfuuuAf aUfgGfcUfgsCfsa	aAfuGfuguCfuUfuuuAfa UfgGfcUfgsCfsa	gAfaUfgUfGfUfcUfuuuUf aAfuGfgCfusGfsc	gAfaUfgugUfcUfuuuUfa AfuGfgCfusGfsc	aGfaAfuGfUfGfuCfuuuUf uAfaUfgGfcsUfsg	aGfaAfuguGfuCfuuuUfu AfaUfgGfcsUfsg	cAfgAfaUfGfUfgUfcuuUf uUfaAfuGfgsCfsu	cAfgAfaugUfgUfcuuUfuU faAfuGfgsCfsu	aCfaGfaAfUfGfuGfucuUf uUfuAfaUfgsGfsc	aCfaGfaauGfuGfucuUfu UfuAfaUfgsGfsc
	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177
	AS2056	AS2057	AS2058	AS2059	AS2060	AS2061	AS2062	AS2063	AS2064	AS2065	AS2066	AS2067
aAfGfAfcAfcAfL96	GfcAfgCfcAfuUfAfAfaAfa gaCfaCfaUfL96	GfcAfgCfcAfuUfAfAfaAfa GfAfCfaCfaUfL96	CfaGfcCfaUfuAfAfAfaAfg acAfcAfuUfL96	CfaGfcCfaUfuAfAfAfaAfg AfCfAfcAfuUfL96	AfgCfcAfuUfaAfAfaGfa caCfaUfuCfL96	AfgCfcAfuUfaAfAfAfaGfa CfAfCfaUfuCfL96	GfcCfaUfuAfaAfAfAfgAfc acAfuUfcUfL96	GfcCfaUfuAfaAfAfafgAfc AfCfAfuUfcUfL96	CfcAfuUfaAfaAfAfGfaCfa caUfuCfuGfL96	CfcAfuUfaAfaAfAfGfaCfa CfAfUfuCfuGfL96	CfaUfuAfaAfaAfGfAfcAfc auUfcUfgUfL96	CfaUfuAfaAfaAfGfAfcAfc AfUfUfcUfgUfL96
	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085
	S2056	S2057	S2058	S2059	S2060	S2061	S2062	S2063	S2064	S2065	S2066	S2067
	D2056	D2057	D2058	D2059	D2060	D2061	D2062	D2063	D2064	D2065	D2066	D2067

uAfcAfgAfAfUfgUfgucUf uUfuUfaAfusGfsg	uAfcAfgaaUfgUfgucUfuU fuUfaAfusGfsg	uUfaCfaGfAfAfuGfuguCf uUfuUfuAfasUfsg	uUfaCfagaAfuGfuguCfu UfuUfuAfasUfsg	uUfuAfcAfGfAfaUfgugUf cUfuUfuUfasAfsu	uUfuAfcagAfaUfgugUfcU fuUfuUfasAfsu	uUfuUfaCfAfGfaAfuguGf uCfuUfuUfusAfsa	uUfuUfacaGfaAfuguGfu CfuUfuUfusAfsa	uUfuUfuAfCfAfgAfaugUf gUfcUfuUfusUfsa	uUfuUfuacAfgAfaugUfg UfcUfuUfusUfsa	uUfuUfuUfAfCfaGfaauGf uGfuCfuUfusUfsu	uUfuUfuuaCfaGfaauGfu GfuCfuUfusUfsu	uUfuUfuUfUfAfcAfgaaUf
2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190
AS2068	AS2069	AS2070	AS2071	AS2072	AS2073	AS2074	AS2075	AS2076	AS2077	AS2078	AS2079	AS2080
AfuUfaAfaAfaGfAfCfaCfa uuCfuGfuAfL96	AfuUfaAfaAfaGfAfCfaCfa UfUfCfuGfuAfL96	UfuAfaAfaAfgAfCfAfcAfu ucUfgUfaAfL96	UfuAfaAfaAfgAfCfAfcAfu UfCfUfgUfaAfL96	UfaAfaAfaGfaCfAfCfaUf ucuGfuAfaAfL96	UfaAfaAfaGfaCfAfCfaUf uCfUfGfuAfaAfL96	AfaAfaAfgAfcAfCfAfuUfc ugUfaAfaAfL96	AfaAfaAfgAfcAfCfAfuUfc UfGfUfaAfaAfL96	AfaAfaGfaCfaCfAfUfuCf uguAfaAfaAfL96	AfaAfaGfaCfaCfAfUfuCf uGfUfAfaAfaAfL96	AfaAfgAfcAfcAfUfUfcUfg uaAfaAfaAfL96	AfaAfgAfcAfcAfUfUfcUfg UfAfAfaAfaAfL96	AfaGfaCfaUfUfCfuGf
1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098
S2068	S2069	S2070	S2071	S2072	S2073	S2074	S2075	S2076	S2077	S2078	S2079	S2080
D2068	D2069	D2070	D2071	D2072	D2073	D2074	D2075	D2076	D2077	D2078	D2079	D2080

gUfgUfcUfusUfsu	uUfuUfuuuAfcAfgaaUfg UfgUfcUfusUfsu	uUfuUfuUfUfUfaCfagaAf uGfuGfuCfusUfsu	uUfuUfuuuUfaCfagaAfu GfuGfuCfusUfsu	uUfuUfuUfUfUfuAfcagAf aUfgUfgUfcsUfsu	uUfuUfuuuUfuAfcagAfa UfgUfgUfcsUfsu	uUfuUfuUfUfUfuUfacaGf aAfuGfuGfusCfsu	uUfuUfuuuUfuUfacaGfa AfuGfuGfusCfsu	uUfuUfuUfUfUfuUfuacAf gAfaUfgUfgsUfsc	uUfuUfuuuUfuUfuacAfg AfaUfgUfgsUfsc	uUfuUfuUfUfUfuUfuuaCf aGfaAfuGfusGfsu	uUfuUfuuuUfuUfuuaCfa GfaAfuGfusGfsu
	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201
	AS2081	AS2082	AS2083	AS2084	AS2085	AS2086	AS2087	AS2088	AS2089	AS2090	AS2091
uaaAfaAfaAfL96	AfaGfaCfaCfaUfUfCfuGf uAfAfAfaAfaAfL96	AfgAfcAfcAfuUfCfUfgUfa aaAfaAfaAfL96	AfgAfcAfcAfuUfCfUfgUfa AfAfAfaAfaAfL96	GfaCfaCfaUfuCfUfGfuAf aaaAfaAfaAfL96	GfaCfaCfaUfuCfUfGfuAf aAfAfAfaAfaAfL96	AfcAfcAfuUfcUfGfUfaAfa aaAfaAfaAfL96	AfcAfcAfuUfcUfGfUfaAfa AfAfAfaAfaAfL96	CfaCfaUfuCfuGfUfAfaAf aaaAfaAfaAfL96	CfaCfaUfuCfuGfUfAfaAf aAfAfAfaAfaAfL96	AfcAfuUfcUfgUfAfAfaAfa aaAfaAfaAfL96	D2091 S2091 1109 AfcAfuUfcUfgUfAfAfaAfa AS2091 2201 uUfuUfuuuUfuudCfa AfAfAfaAfaAfaAfL96 AS2091 2201 uUfuUfuuudCfa
	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109
	S2081	S2082	S2083	S2084	S2085	S2086	S2087	S2088	S2089	S2090	S2091
	D2081	D2082	D2083	D2084	D2085	D2086	D2087	D2088	D2089	D2090	D2091

Los nucleótidos en minúscula (a, u, g, c) son nucleótidos de 2'-O-metilo; Nf (por ejemplo, Af) es un nucleótido 2'-fluoro; s es una conexión de fosfotiorato; L96 indica un ligando de GalNAc₃.

137

Ejemplo 4: Detección in vitro de agentes de iARN

Cultivo celular y transfecciones

10

15

20

25

30

35

50

55

Se cultivaron células Hep3B humanas o células H.II.4.E de rata (ATCC, Manassas, VA) casi hasta la confluencia a 37°C en una atmósfera de 5% de CO₂ en RPMI (ATCC) complementado con 10% de FBS, estreptomicina y glutamina (ATCC) antes de liberarse de la placa por tripsinización. La transfección se llevó a cabo agregando 14.8ml de Opti-MEM más 0.2 ml de Lipofectamina RNAiMax por pocillo (Invitrogen, Carlsbad CA. cat. No. 13778-150) hasta 5ml de dúplex de ARNip por pocillo en una placa de 96 pocillos y se incubaron a temperatura ambiente durante 15 minutos. 80 μl de medios de cultivo completos sin antibióticos que contenían ~2 x10⁴ células Hep3B se agregaron luego a la mezcla de ARNip. Las células se incubaron durante 24 o 120 horas antes de la purificación del ARN. Se realizaron experimentos de una sola dosis a 10nM y 0.1nM de concentración de dúplex final y se llevaron a cabo experimentos de respuesta a dosis usando diluciones en serie de 8, 4 veces con una dosis máxima de 10nM de concentración de dúplex final.

Aislamiento de ARN total usando el Kit de Aislamiento de ARNm DYNABEADS (Invitrogen, parte No.: 610-12):

Las células se cultivaron y se lisaron en 150ml de Lisis/Tampón de Unión y luego se mezclaron durante 5 minutos a 850rpm usando un Termomixer Eppendorf ® (la velocidad de mezclado fue la misma a lo largo de todo el proceso). Diez microlitros de perlas magnéticas y 80ml de mezcla de Lisis/Tampón de Unión se agregaron a una placa de fondo redondo y se mezclaron durante 1 minuto. Las perlas magnéticas se capturaron usando un soporte magnético y el sobrenadante se retiró sin alterar las perlas. Después de quitar el sobrenadante, las células lisadas se agregaron a las perlas restantes y se mezclaron durante 5 minutos. Después de retirar el sobrenadante, las perlas magnéticas se lavaron 2 veces con 150ml de Tampón de Lavado A y se mezclaron durante 1 minuto. Las perlas se capturaron nuevamente y se quitó el sobrenadante. Las perlas se lavaron luego con 150ml de Tampón de Lavado B, se capturaron y se retiró el sobrenadante. Las perlas se lavaron luego con 150 ml de Tampón de Elución, se capturaron y se retiró el sobrenadante. Las perlas se dejaron secar durante 2 minutos. Después de secarse, se agregaron 50 ml de Tampón de Elución y se mezcló durante 5 minutos a 70°C. Las perlas se capturaron sobre un imán durante 5 minutos. Se retiraron 40ml de sobrenadante y se agregaron a otra placa de 96 pocillos.

Síntesis de ADNc usando un kit de transcripción inversa de ADNc de alta capacidad de ABI (Applied Biosystems, Foster City, CA, Cat No. 4368813)

Una mezcla principal de 1 μ l de Tampón 10X, 0.4 μ l de dNTP 25X, 1 μ l de cebadores aleatorios, 0.5 μ l de Transcriptasa Inversa, 0.5 μ l de inhibidor de RNasa y 1.6 μ l de H₂O por reacción se agregaron a 5 μ l de ARN total. Se generó ADNc usando un Bio-Rad C-1000 o ciclador térmico S-1000 (Hercules, CA) a través de las siguientes etapas: 25°C 10 min, 37°C 120 min, 85°C 5 seg, 4°C de espera.

PCR en tiempo real

Se agregaron 2µl de ADNc a una mezcla principal que contenía 0.5µl de Sonda GAPDH TaqMan (Applied Biosystems Cat No. 4326317E (humana)), Cat No. 4308313 (roedor)), 0.5µl de sonda de TTR TaqMan (Applied Biosystems cat No. HS00174914 _m1 (humana) cat No. Rn00562124_m1 (rata)) y 5µl de una mezcla principal de sonda Lightcycler 480 (Roche Cat No. 04887301001) por pocillo en una placa de 384 pocillos (Roche cat No. 04887301001). La PCR en tiempo real se realizó en una máquina de PCR en Tiempo Real Roche LC 480 (Roche). Cada dúplex se evaluó en al menos dos transfecciones independientes y cada transfección se ensayó por duplicado, a menos que se indique lo contrario.

40 Para calcular el cambio múltiplo relativo, los datos en tiempo real se analizaron usando el método de ΔΔCt y se normalizaron a ensayos realizados con células transfectadas con 10nM AD-1955 o células transfectadas simuladas. Las Cl₅₀ se calcularon usando un modelo de ajuste de 4 parámetros usando XLFit y se normalizaron a células transfectadas con AD-1955 (secuencia sentido: cuuAcGcuGAGuAcuucGAdTsdT (SEQ ID NO: 2202); secuencia antisentido: UCGAAGuCUcAGCGuAAGdTsdT (SEQ ID NO: 2203)) o células sin tratamiento previo en el mismo rango de dosis, o a su dosis más baja. Las Cl₅₀ se calcularon para cada transfección individual, así como en combinación, donde una sola Cl₅₀ se ajustó a los datos de ambas transfecciones.

Los resultados del silenciamiento del dúplex de ARNip ejemplar con varias modificaciones de motivos de la invención se muestran en la Tabla 1 anterior.

Ejemplo 5: Actividad de silenciamiento in vitro de agentes de iARN modificados químicamente que se dirigen a TTR

Los siguientes experimentos demostraron los efectos beneficiosos de las modificaciones químicas, incluida la introducción de motivos de repetición en triplete, junto con un ligando GalNAc3, en la actividad de silenciamiento de los agentes de iARN que se dirigen a TTR. Las secuencias de los agentes investigados se proporcionan en la Tabla 2 a continuación. Las regiones de complementariedad del ARNm de TTR son las siguientes: la región de complementariedad de los agentes de iARN AD-45165, AD-51546 y AD-51547 es

ES 2 800 065 T3

GGATGGGATTTCATGTAACCAAGA (SEQ ID NO: 2204) y la región o complementariedad de los agentes de iARN AD-45163, AD-51544 y AD-51545 es TTCATGTAACCAAGAGTATTCCAT (SEQ ID NO: 2205).

Protocolo para evaluación de Cl₅₀ en células Hep3B

La Cl₅₀ para cada ARNip modificado se determinó en las células Hep3B (una línea celular de hepatoma humano) mediante transfección inversa estándar usando Lipofectamina RNAiMAX. Brevemente, la transfección inversa se llevó a cabo agregando 5 μL de Opti-MEM a 5 μL de dúplex de ARNip por pocillo en una placa de 96 pocillos con 10 μL de Opti-MEM más 0.5 μL de Lipofectamina RNAiMax por pocillo (Invitrogen, Carlsbad CA. cat No. 13778-150) e incubando a temperatura ambiente durante 15-20 minutos. Luego de la incubación, se agregaron 100 μL de medios de cultivo completos sin antibiótico que contenían 12,000-15,000 de células Hep3B a cada pocillo. Las células se incubaron durante 24 horas a 37°C en una atmósfera con 5% de CO₂ antes de lisis y análisis de TTR y ARNm de GAPDH por ADNb (Quantigene). Se evaluaron siete concentraciones de ARNip diferentes en el rango de 10nM a 0.6pM para determinar la Cl₅₀ y TTR/GAPDH para células transfectadas de ARNip se normalizó a las células transfectadas con 10nM de Luc ARNip. Los resultados se muestran en la Tabla 2.

Protocolo para evaluación de Cl₅₀ de libre captación

15 El silenciamiento de libre captación en hepatocitos de cynomolgus primarios se evaluó luego de la incubación con ARNip de TTR durante 4 horas o 24 horas. El silenciamiento se midió a las 24 horas desde la exposición inicial. En resumen, se recubrieron 96 pocillos con 0.05%-0.1% de colágeno (Sigma C3867-1VL) a temperatura ambiente, 24 horas antes del comienzo del experimento. El día del ensayo, los ARNip se diluyeron en Medios de Placas precalentadas que consisten en DMEM complementado con Kit de Medios de Mantenimiento de GIBCO (Serum-20 Free, Life Technologies CM4000) y se agregaron a las placas de cultivo de 96 pocillos recubiertas de colágeno. Los hepatocitos de cynomolgus primarios criopreservados se descongelaron rápidamente en un baño de agua a 37°C, e inmediatamente se diluyeron en Medios de Placas a una concentración de 360,000 células/mL. Un volumen de suspensión celular se colocó en pipetas cuidadosamente sobre los ARNip pre-emplacados de forma tal que el conteo celular final fue 18,000 células/pocillo. La placa se agitó suavemente para mezclar y propagar las células de 25 manera uniforme en los pocillos y se colocó en una incubadora de 5% de CO2 a 37°C durante 24 horas antes de la lisis y análisis de ARNm de TTR y GAPDH mediante ADNb (Quantigene, Affymetrix). En el caso de la incubación de 4 h con ARNip, los medios se decantaron después de 4 horas de exposición a las células, y se reemplazaron con Medios de Placas nuevos durante las 20 horas restantes de incubación. El análisis corriente abajo para ARNm de TTR y GAPDH fue el mismo que se describió anteriormente. Para una curva de respuesta a la dosis típica, los 30 ARNip se titularon de 1 um a 0.24nM mediante una dilución en serie de 4 veces.

Tabla 2: Resumen de actividad in vitro para TTR-GaINAc alternadas y variantes con motivos en triplete

	_	-		=	
			Captación libre	libre	
ID del	S (5 ⁻ 3')	AS (5'-3")	CI50 (µM)	M)	CI50 de Hen3B
			4h 2,	24h	(Mn)
AD-45163	AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 2206)	aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa (SEQ ID NO: 2212)	0.04101 0.	0.00820	0.0115
AD-51544	AfuGfuAfaCfcAf Af GfaGfuAfu u cCfaUfL96 (SEQ ID NO: 2207)	aUfgGf Af AfuAfcUfc u uGfgUfuAfcAfusGfsa (SEQ ID NO: 2213)	0.00346 0.	0.00374	0.0014
AD-51545	AfuGfuAf Af CfcAf Af GfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 2208)	aUfgGfaAfuAfcUfc u uGfg u uAfcAfusGfsa (SEQ ID NO: 2214)	0.00395	0.00389	0.0018
AD-45165	UfgGfgAfuUfuCfaUfgUfaAfcCfaAfgAfL96 (SEQ ID NO: 2209)	uCfuUfgGfuUfaCfaUfgAfaAfuCfcCfasUfsc (SEQ ID NO: 2215)	0.02407 0.	0.00869	0.0112
AD-51546	UfgGf Gf AfuUfuCf Af UfgUfaAfcCf Af AfgAfL96 (SEQ ID NO: 2210)	uCfu u gGfuUfaCfa u gAfaAfu c cCfasUfsc (SEQ ID NO: 2216)	0.00317 0.	0.00263	0.0017
AD-51547	UfgGfgAfuUfuCf Af UfgUfa a cCfaAfgAfL96 (SEQ ID NO: 2211)	uCfuUfgGf Uf UfaCfa u gAfaAfuCfcCfasUfsc (SEQ ID NO: 2217)	0.00460 0.	0.00374	0.0028
+00010	ob oobitoolour goothai (o o ii o) ohioojiaim go oobi	Soloria arr aggibar AA alamaia "ag' HA alitam O'O	0,4ido 0,4liloro. c ii	ocioci	مام مېزىرە

Los nucleótidos en minúscula (a, u, g, c) indican nucleótidos de 2'-O-metilo; Nf (por ejemplo, Af) indican un nucleótido 2'-fluoro; s indica una conexión de fosfotiorato; L96 indica un ligando de GalNAc₃; los nucleótidos en negrita indican cambios con respecto al agente base correspondiente. Cada nucleótido en negrita se encuentra en el centro de un motivo en triplete.

140

ES 2 800 065 T3

Los resultados se proporcionan en la Tabla 2 y demuestran que los agentes de iARN modificados que se dirigen a TTR proporcionan una actividad de silenciamiento mejorada.

Resultados: Actividad mejorada de agentes de iARN modificados

Los agentes de iARN base con modificaciones químicas alternadas y un ligando GalNAc3 proporcionaron una Cl50 en células Hep3B de aproximadamente 0.01 nM. Tal como se muestra en las Figuras 4-5 y en la Tabla 2, los agentes modificados con respecto a los agentes base, por ejemplo, mediante la adición de uno o más tripletes de repetición de modificaciones 2'-fluoro y 2'-O-metilo, mostraron una actividad de silenciamiento inesperadamente mejorada, alcanzando valores de Cl50 en células Hep3B que fueron 5-8 veces mejores que el agente base correspondiente.

Resultados: CI50 de captación libre en células Hep3B

15

20

25

30

35

40

45

50

55

10 Tal como se muestra en la Tabla 2 y las Figuras 6-7, los agentes de iARN modificados con respecto al AD-45163 base también mostraron un silenciamiento de captación libre mejorado. Los agentes modificados mostraron más del doble de actividad de silenciamiento de la base después de un período de incubación de 24 horas y casi 10 veces la actividad de silenciamiento de la base después de un período de incubación de 4 horas.

Tal como se muestra en la Tabla 2 y las Figuras 8-9, los agentes de iARN modificados con respecto al AD-45165 base también mostraron un silenciamiento de captación libre mejorado. Los agentes modificados mostraron 2-3 veces la actividad de silenciamiento de la base después de un período de incubación de 24 horas y 5-8 veces la actividad de silenciamiento de la base después de un período de incubación de 4 horas.

Tomados colectivamente, estos resultados demuestran que los agentes de iARN modificados presentados en la presente, por ejemplo, AD-51544, AD-51545, AD-51546 y AD-51547, mostraron inesperadamente una buena inhibición del ARNm de TTR en experimentos de silenciamiento in vitro.

Ejemplo 6: Silenciamiento de ARNm de TTR y supresión de proteína TTR en ratones transgénicos

Para evaluar la eficacia de los agentes de iARN AD-45163, AD-51544, AD-51545, AD45165, AD-51546 y AD-51547, estos agentes se administraron a ratones transgénicos que expresan transtiretina humana con la mutación V30M (ver Santos, SD., Fernaandes, R., y Saraiva, MJ. (2010) *Neurobiology of Aging*, 31, 280-289). Se sabe que la mutación V30M provoca polineuropatía amiloide familiar tipo I en humanos. Ver, por ejemplo, Lobato, L. (2003) *J Nephrol.*, 16(3):438-42.

Los agentes de iARN (en tampón de PBS) o testigo de PBS se administraron a ratones (2 machos y 2 hembras) de 18-24 meses de edad en una sola dosis subcutánea de 5 mg/kg o 1 mg/kg. Después de aproximadamente 48 horas, los ratones se anestesiaron con 200 µl de cetamina, y luego se desangraron cortando la arteria caudal correcta. Se aisló sangre entera y plasma y se almacenó -80°C hasta el ensayo. Se recogió el tejido del hígado, se congeló instantáneamente y se almacenó a -80°C hasta su procesamiento.

La eficacia del tratamiento se evaluó mediante (i) medición de ARNm de TTR en el hígado 48 horas post-dosis, y (ii) medición de proteína TTR en plasma antes del sangrado y 48 horas post-dosis. Los niveles de ARNm hepático de TTR se ensayaron utilizando los ensayos de ADN ramificado - QuantiGene 2.0 (Panomics cat No.: QS0011). Brevemente, se molieron las muestras de hígado de ratón y se prepararon lisados de tejido. La mezcla de lisis de hígado (una mezcla de 1 volumen de mezcla de lisis, 2 volúmenes de agua libre de nucleasa y 10ul de Proteinasa-K/ml para una concentración final de 20mg/ml) se incubó a 65ºC durante 35 minutos. 20µl del conjunto de sonda de trabajo (sonda TTR para direccionamiento a genes y GAPDH para control endógeno) y 80ul de lisado de tejido se agregaron entonces en la placa de captura. Las placas de captura se incubaron a 55°C ± 1°C (aproximadamente 16-20hrs). Al día siguiente, las placas de captura se lavaron 3 veces con 1X Tampón de Lavado (agua libre de nucleasa, Componente de Tampón 1 y Componente de Tampón de Lavado 2), y luego se secaron mediante la centrifugación durante 1 minuto a 240g. Se agregaron 100µl de un reactivo de trabajo pre-amplificador en la placa de captura, que se selló con una lámina de aluminio y se incubó durante 1 hora a 55°C ± 1°C. Después de 1 hora de incubación, se repitió la etapa de lavado, luego se agregaron 100µl de reactivo de trabajo amplificador. Después de 1 hora, las etapas de lavado y secado se repitieron, y se agregaron 100µl de sonda de etiqueta. Las placas de captura se incubaron 50°C ± 1°C durante 1 hora. La placa se lavó entonces con 1X de Tampón de Lavado, se secó y se agregaron 100µl de sustrato en la placa de captura. Las placas de captura se leyeron utilizando el Luminómetro SpectraMax seguido por 5 a 15 minutos de incubación. Los datos de bADN se analizaron sustrayendo del antecedente promedio de cada muestra por triplicado, promediando el GAPDH por triplicado resultante (sonda testigo) y valores TTR (sonda experimental) y luego computando la relación: (sonda experimentalantecedente)/(sonda testigo-antecedente).

Los niveles de TTR en plasma se ensayaron utilizando el kit disponible comercialmente "AssayMax Human Prealbumin ELISA Kit" (AssayPro, St. Charles, MO, No. de catálogo EP3010-1) de acuerdo con las pautas del fabricante. Brevemente, se diluyó plasma de ratón 1:10,000 en 1X de diluyentes de mezcla y se agregó a placas previamente recubiertas junto con estándares del kit y se incubó durante 2 horas a temperatura ambiente seguido de 5 lavados con tampón de lavado del kit. Se agregaron cincuenta microlitros de anticuerpo de prealbúmina biotinilado a cada pocillo y se incubó durante 1 hr a temperatura ambiente, seguido de 5 lavados con tampón de lavado. Se

agregaron cincuenta microlitros de conjugado de estreptavidina-peroxidasa a cada pocillo y las placas se incubaron durante 30 minutos a temperatura ambiente, con posterior lavado como se describió anteriormente. La reacción se desarrolló mediante la adición de 50 μl/pocillo de sustrato de cromógeno e incubación durante 10 minutos a temperatura ambiente con detención de la reacción mediante la adición de 50 μl/pocillo de solución de detención. Se leyó la absorbancia a 450 nm en una lectora de placas Versamax (Molecular Devices, Sunnyvale, CA) y los datos se analizaron utilizando el paquete informático Softmax 4.6 (Molecular Devices).

5

10

20

25

Los resultados se muestran en las Figuras 10-12. La Figura 10 muestra que los agentes de iARN, modificados con respecto a los agentes AD-45163 y AD-45165 base, mostraron una actividad de silenciamiento de ARN que fue similar o más potente que la de los agentes base. La Figura 11 muestra que los agentes AD-51544 y AD-51545 mostraron actividad de silenciamiento dependiente de la dosis y que la actividad de silenciamiento de estos agentes a una dosis de 5mg/kg fue similar a la del correspondiente AD-45163 base. La Figura 12 muestra que los agentes AD-51546 y AD-51547 también mostraron actividad de silenciamiento dependiente de la dosis. Más aun, la actividad de silenciamiento de AD-51546 y AD-51547 a una dosis de 5mg/kg fue superior a la del correspondiente AD-45165 base.

15 Ejemplo 7: Perfiles farmacocinéticos en suero e hígado de agentes de iARN que se dirigen a la TTR en ratones

Para evaluar los perfiles farmacocinéticos de los agentes de iARN AD-45163, AD-51544, AD-51545, AD-51546 y AD-51547, estos agentes, en tampón de PBS, se administraron a ratones C57BL/6 usando un solo bolo IV o administración subcutánea (SC). Las concentraciones en plasma y concentraciones en hígado de los agentes se evaluaron en distintos momentos después de la administración.

Los parámetros farmacocinéticos en plasma se presentan en las Tablas 3 y 4 a continuación. El tiempo de permanencia medio (MRT) en plasma fue de aproximadamente 0.2 horas después de la dosificación IV y aproximadamente 1 después de la dosificación SC. A una dosis de 25 mg/kg, los agentes AD-51544, AD-51545, AD-51546 y AD-51547 mostraron propiedades farmacocinéticas similares. Cada uno de estos agentes tuvo más de 75% biodisponibilidad del espacio subcutáneo. Su biodisponibilidad fue superior a la del agente AD-45163 base, que se administró a una dosis más alta de 30 mg/kg. La biodisponibilidad subcutánea de AD-51544 y AD-51547 fue de aproximadamente 100%, mientras que la de AD-51545 fue 90% y la de AD-51546 fue de 76%.

Tabla 3: Resumen de estimaciones de parámetros farmacocinéticos en plasma después de la administración SC de ARNip de TTR-GalNAc en ratones

Parámetro	30 mpk AD- 45163 (h/c TTR- GalNAc)	25 mpk AD- 51544 (h/c TTR- GalNAc)	25 mpk AD- 51545 (h/c TTR- GalNAc)	25 mpk AD- 51546 (h/c TTR- GalNAc)	25 mpk AD- 51547 (h/c TTR- GalNAc)
Plasma Tmáx (h)	0.25	1	0.5	1	0.5
Plasma Cmáx (µg/mL)	9.6	11.7	10.9	11.7	12.1
Plasma AUC (h*µg/mL)	12.4	21.9	19.9	20.9	25.3
F _{SC} (%)	79	100	90.1	76.0	99.2

Tabla 4: Parámetros farmacocinéticos de ARNip en plasma después de un bolo IV o dosis SC de AD-51544, 51545, 51546 o 51547 a 25 mg/kg

ماميس مام دارد مارد مارد مارد مارد مارد مارد	42.04	277	•	C 4 E 4 E		245.46		145.47
Articulo de prueba	AD-51544	446	AD	AD-51545	A	AD-51546	Ą	AD-51547
Dosis de ARNip (mg/kg)	25			25		25		25
Ruta de administración	≥	SC	ΛΙ	SC	2	SC	2	SC
t _{máx} (h)	0.083	1	0.083	0.5	0.083	-	0.083	0.5
С _{máx} (µg/mL)	96.5ª	11.7	108ª	10.9	128ª	10.9	123ª	12.1
AUC _{0-últ} (h·µg/mL)	21.6	21.9	22.1	19.9	27.5	20.9	25.5	25.3
MRT _{0-últ} (h)	0.17	1.2	0.16	1.1	0.22	4.1	0.19	1.3
t _{1/2β} (h) ^b aparente	ΩN	QN	QN	0.49	QN	1.2	QN	0.56
F _{SC} (%) ^c	-	102	-	90.1		76.0		99.2
a: Concentración en la 1ª muestra (5 min) despu	5 min) después	és de la dosificación IV	ación IV					

concentración en la 1ª muestra (5 min) después de la dosificación IV

b: La semivida de eliminación aparente (t1/2β) no pudo determinarse (ND) para ninguno de los 4 artículos de prueba después de la dosificación IV, dado que la fase terminal de los perfiles de concentración-tiempo no estuvo bien definida y, como resultado, los parámetros farmacocinéticos asociados a la t₁/2β (por ejemplo, AUC_{0-∞}, CL y Vss) no se indicaron.

c: Biodisponibilidad SC, calculada como relación porcentual de AUC_{0-últ} después de la dosificación SC e IV a 25 mg/kg

ES 2 800 065 T3

Los resultados también indicaron que los agentes de iARN AD-45163, AD-51544, AD-51545, AD-51546 y AD-51547 lograron concentraciones similares o mayores en el hígado cuando se administraron subcutáneamente que cuando se administraron mediante bolo IV. Los parámetros farmacocinéticos hepáticos se presentan en las Tablas 5 y 6 a continuación. La concentración pico (C_{máx}) y el área bajo la curva (AUC_{0-últ}) en el hígado fueron dos a tres veces más altas después de la administración subcutánea en comparación con la administración IV del mismo agente a la misma dosis. La exposiciones en el hígado fueron más altas para AD-51547 y más bajas para AD-51545. El tiempo de permanencia medio (MRT) y la semivida de eliminación fueron mayores para AD-51546 y AD-51547 en comparación con AD-51544 y AD-51545. Luego de la administración subcutánea, MRT aproximados fueron 40 horas para AD-51546 y 25 horas para AD-51547, mientras que los MRT para AD-51544 y AD-51545 fueron menores (aproximadamente 6-9 horas). La semivida de eliminación de AD-51546 y AD-51547 también fue más alta (41-53 horas) que la semivida de eliminación de AD-51544 y AD-51545 (6-10 horas).

10

Tabla 5: Resumen de estimaciones de parámetros farmacocinéticos en hígado después de la administración SC de ARNip de TTR-GaINAc en ratones

30 mpk AD- 25 mpk AD- 25 mpk AD- 25 mpk AD- 25 mpk AD- 45163 (h/c 51544 (h/c 51545 (h/c 51546 (h/c 51547 (h/c TTR- TTR- TTR- TTR- TTR- GaINAc) GaINAc) GaINAc)
4
126 80
1092 763

Tabla 6: Parámetros farmacocinéticos de ARNip en hígado en ratones después de un bolo IV o dosis SC de AD-51544, 51545, 51546 o 51547 a 25 mg/kg

Artículo de prueba	AD-51544	1544	S-QA	AD-51545	AD-5	AD-51546	AD-51547	1547
Dosis de ARNip (mg/kg)	25	10	25	2	2	25	25	2
Ruta de administración	2	SC	2	SC	2	SC	2	SC
tmáx (h)	٦	4	1	4	4	2	2	8
С _{та́х} (µg/g)	6.79	126	37.0	80.5	35.3	117	73.8	174
AUC _{0-últ} (h·μg/g)	632	1092	324	763	984	2131	1429	4583
MRT _{0-últ} (h)	8.7	6.5	5.9	8.5	45.7	40.2	29.4	25.3
t _{1/28} (h) aparente	8.1	8.2	2.7	10.0	51.1	45.3	41.1	52.7

Ejemplo 8: Estabilidad in vitro de agentes de iARN en suero de mono

10

15

20

La estabilidad en suero de los agentes de iARN AD-51544, AD-51545, AD-51546 y AD-51547 también se evaluó en monos. Los resultados demostraron que las hebras antisentido y sentido de AD-51544, AD-51545 y AD-51547 mostraron estabilidad en suero en un período de aproximadamente 24 horas (datos no se muestran).

5 Ejemplo 9: Agentes de iARN Producen supresión duradera de proteína TTR en primates no humanos

La actividad de silenciamiento de ARN de agentes de iARN AD-45163, AD-51544, AD-51545, AD-51546 y AD-51547 se evaluó midiendo la supresión de proteína TTR en suero de monos cynomolgus luego de la administración subcutánea de cinco dosis de 5 mg/kg (una dosis cada día durante 5 días) o una sola dosis de 25 mg/kg. Los niveles de proteína TTR pre-dosis en suero se evaluaron promediando los niveles a los 11 días antes de la primera dosis, 7 días antes de la primera dosis y 1 día antes de la primera dosis. Los niveles post-dosis en suero de proteína TTR se evaluaron determinando el nivel en suero a partir de 1 día después de la dosis final (es decir, el día 5 del estudio en el grupo de 5x5 mg/kg y el día 1 del estudio en el grupo de 1x25 mg/kg) hasta 49 días después de la última dosis (es decir, día 53 del estudio en el grupo de 5x5 mg/kg y día 49 del estudio en el grupo de 1x25 mg/kg). Ver la Figura 13.

Los niveles de proteína TTR se evaluaron como se describe en el Ejemplo 6. Los resultados se muestran en la Figura 14 y en las Tablas 7 y 8.

Se alcanzó una supresión de proteína TTR de hasta aproximadamente 50% en los grupos que recibieron 25 mg/kg de AD-45163, AD-51544, AD-51546 y AD-51547 (ver la Tabla 8). Se alcanzó una mayor supresión de proteína TTR máxima de aproximadamente 70% en los grupos que recibieron 5x5 mg/kg de AD-45163, AD-51544, AD-51546 y AD-51547 (ver la Tabla 7). El agente AD-51545 produjo un menor grado de supresión en ambos protocolos de administración. Una supresión significativa de aproximadamente 20% o más persistió por hasta 49 días después de la última dosis de AD-51546 y AD-51547 en ambos protocolos de 1x25 mg/kg y 5x5 mg/kg. En general, se logró una mejor supresión en el protocolo de 5x5 mg/kg que en el protocolo de 1x25 mg/kg.

Tabla 7 Transtiretina en suero de fracciones con relación a la pre-dosis en monos cynomolgus (5 mg/kg por día durante 5 días)

	D-11 D-7		D-1	D2	D7	60	D11	D14	D18	D22	D26	D32	D39	D46	D53
AD- 45163	0.98	66.0	1.03	0.71	0.52	0.40	0.34	0.27	0.31	0.39	0.48	0.64	0.68	0.81	0.88
AD- 51544	1.02	66.0	66.0	09.0	0.47	0.37	0.35	0.39	0.48	0.58	99.0	0.74	0.83	0.91	0.92
AD- 51545	1.03	0.97	1.00	0.73	0.65	0.63	69.0	0.68	0.78	0.87	0.97	1.00	1.03	1.06	1.09
AD- 51546	1.01	0.97	1.02	0.59	0.42	0.35	0:30	0.32	0.43	0.58	99.0	0.77	0.92	0.93	0.97
AD- 51547	66:0	66.0	1.02	0.74	0.54	0.41	0.34	0.34	0.39	0.49	0.51	0.53	0.65	02.0	0.77

Tabla 8 Transtiretina en suero de fracciones con relación a la pre-dosis en monos cynomolgus (25 mg/kg)

D-11 D-7 D-1	D-1			D1	D3	D5	D7	D10	D14	D18	D22	D28	D35	D42	D49
1.04 1.01 0.95 0.99 0.84	0.95 0.99	0.99		0.84		0.67	0.57	0.44	0.45	0.51	0.58	0.66	0.72	0.78	0.85
1.01 1.04 0.95 0.92 0.69	0.95 0.92	0.92		0.69		0.57	0.49	0.48	0.56	0.65	69.0	0.77	0.83	0.87	0.94
0.98 1.02 0.99 0.87 0.77	0.99 0.87	0.87		0.77		0.69	0.71	0.72	0.84	0.90	0.92	0.99	1.00	1.00	1.00
1.04 1.03 0.93 0.89 0.71	0.93 0.89	0.89		0.71		0.62	0.53	0.50	0.55	0.70	0.70	0.69	0.72	0.79	0.84
0.96 1.03 1.01 1.19 0.90	1.01 1.19 0.90	1.19 0.90	06:0			0.70	0.54	0.48	0.50	0.50	0.52	0.58	0.62	0.70	0.72

Ejemplo 10: Tolerabilidad de agentes de iARN que se dirigen a TTR

Evaluación en citoquina en ensayo de sangre entera

Para evaluar la tolerabilidad de agentes de iARN que se dirigen a TTR (incluidos AD-45163, AD-51544, AD-51545, AD-51546 y AD-51547), cada agente se evaluó en un ensayo de sangre entera usando sangre de tres donantes humanos. Los agentes son reactivo transfectado DOTAP 300 nM o 1 μ M sin transfección (ARNip libre). Se produjo un cambio menor que 2x para las siguientes citoquinas/quimioquinas: G-CSF, IFN- γ , IL-10, IL-12 (p70), IL1 β , IL-1ra, IL-6, IL-8, IP-10, MCP-1, MIP-1 α , MIP-1 β , TNF α . (Los resultados no se muestran).

Evaluación in vivo

10

15

20

Para evaluar la tolerabilidad in vivo se inyectaron agentes de iARN subcutáneamente en ratones CD1 a una dosis de 125 mg/kg. No se observó inducción de citoquina a las 2, 4, 6, 24 o 48 horas después de la inyección subcutánea de AD-45163. No se observó una inducción de citoquina significativa a las 6 o 24 horas después de la inyección subcutánea de AD-51544, AD-51545, AD-51546 o AD-51547.

Para evaluar adicionalmente in vivo la tolerabilidad, múltiples agentes de iARN (incluidos AD-45163, AD-51544, AD-51545, AD-51546 y AD-51547) se evaluaron mediante inyección subcutánea de 5 y 25 mg en primates no humanos (monos cynomolgus) con volúmenes de dosis entre 1-2 ml por sitio. No se observaron eritremas ni edemas en los sitios de inyección.

Estudio de tolerabilidad en ratas con dosis única SC

Para evaluar la toxicidad se inyectaron ratas con una sola dosis subcutánea de 100, 250, 500 o 750 mg/kg de AD-45163 (ver la Tabla 9). Se realizaron las siguientes evaluaciones: signos clínicos de toxicidad, peso corporal, hematología, química clínica y coagulación, peso de órganos (hígado y baso); evaluación a grandes rasgos y microscópica (riñón, hígado, pulmón, nodo linfático, bazo, testículos, timo, aorta, corazón, intestinos (delgado y grueso).

Tabla 9: Estudio de tolerabilidad en ratas con dosis única SC: 100, 250, 500 y 750 mg/kg de AD-45163 in ratas Sprague Dawley

Grupo	Nivel de dosis (mg/kg)	Volumen de dosis (ml/kg)	Ruta y régimen	No. Male Ratas Sprague Dawley	Día de necropsia
PBS	0		Inyección SC	7/grupo	
	100	10	Día 1 (2 sitios)	(5 animales Tox, 2 animales TK)	Día 4
Base AD- 45163	250	. •	(2 Sitios)	Z dililiales TK)	2.0
	500				
	750				

25

30

35

Los resultados no mostraron ningún signo clínico de toxicidad, efecto en el peso corporal, peso de órganos o química clínica relacionados con el artículo de prueba. No se observó histopatología en corazón, riñones, testículos, bazo, hígado y timo. Se produjo un leve aumento en el recuento de glóbulos blancos no adverso relacionado con el artículo de prueba (↑68%, principalmente atribuido al aumento en NEUT y MONO) con 750 mg/kg. Estos resultados indican que una dosis única de hasta 750 mg/kg es bien tolerada en ratas.

Tolerabilidad de administraciones subcutáneas repetidas en ratas

Para evaluar la tolerabilidad de administraciones subcutáneas repetidas de AD-45163 se administraron inyecciones subcutáneas de 300 mg/kg durante 5 días y se realizó una necropsia en el día 6. El diseño del estudio se muestra en la Tabla 10.

Tabla 10: Estudio de tolerabilidad de dosis repetidas en rata

Grupo	Nivel de dosis (kmg/kg	Conc. (mg/mL)	No. de animales tox.	Nx día 6
PBS	0	0	2M, 2H	2M, 2H
AD-45163	300	150	2M, 2H	2M, 2H

Se evaluaron las siguientes variables resultantes: signos clínicos, pesos corporales, hematología, química clínica y coagulación, peso de órganos, evaluación a grandes rasgos y microscópica (hígado, bazo, riñón, corazón, tracto GI y primer y último sitio de inyección). Los resultados no mostraron signos clínicos ni efectos en el peso corporal o en el peso de los órganos relacionados con el artículo de prueba y tampoco hallazgos relacionados con el artículo de prueba en la hematología o química clínica. Se produjo una posible prolongación leve del tiempo de tromboplastina parcial activada (TTPA) el día 6 (20.4 vs. 17.4 seg). La histopatología no reveló ningún hallazgo relacionado con el artículo de prueba en el hígado, bazo, corazón y tracto GI. En el riñón, se observó una hipertrofia mínima a leve del epitelio tubular (no adversa). En el último sitio de inyección hubo una infiltración mononuclear multifocal mínima no adversa. Estos resultados indican que cinco dosis diarias de 300 mg/kg del agente de iARN base AD-45163 fueron bien toleradas en ratas.

Ejemplo 11: Agentes de iARN producen supresión duradera de proteína TTR en primates no humanos

La actividad de silenciamiento de ARN del agente de iARN AD-51547 se evaluó midiendo la supresión de proteína TTR en suero de monos cynomolgus luego de la administración subcutánea de una "fase de carga" del agente de iARN: cinco dosis diarias de 2.5 mg/kg, 5 mg/kg o 10 mg/kg (una dosis cada día durante 5 días) seguida de una "fase de mantenimiento" del agente de iARN: dosificación semanal de 2.5 mg/kg, 5 mg/kg o 10 mg/kg durante 4 semanas. Los niveles de proteína TTR en suero pre-dosis se evaluaron promediando los niveles a los 11 días antes de la primera dosis, 7 días antes de la primera dosis, 7 días antes de la primera dosis y 1 día antes de la primera dosis. Los niveles de proteína TTR en suero post-dosis se evaluaron determinando el nivel en suero con relación a la pre-dosis comenzando el día 1 después de que la fase de carga se había completado hasta el día 40 después de la última dosis de la fase de mantenimiento (es decir, el día 70 del estudio).

Los niveles de proteína TTR se evaluaron como se describe en el Ejemplo 6. Los resultados se muestran en la Figura 15.

Se alcanzó una supresión de proteína TTR de hasta aproximadamente 80% en todos los grupos que recibieron 2.5 mg/kg, 5 mg/kg o 10 mg/kg de AD-51547. Se alcanzó el silenciamiento en el nadir en todos los grupos aproximadamente el día 14, la supresión experimentada en niveles de silenciamiento en el nadir con una dosis de mantenimiento semanal de 2.5 mg/kg, 5 mg/kg o 10 mg/kg de AD-51547. Los niveles de TTR no habían vuelto al valor del inicio más de 40 días después de la administración de la última dosis de mantenimiento para los niveles de dosis de 5 y 2.5 mg/kg.

30

25

5

10

15

20

REIVINDICACIONES

1. Un agente de iARN de doble hebra que comprende una hebra sentido complementaria a una hebra antisentido, en donde dicha hebra antisentido comprende una región básicamente complementaria a la secuencia de nucleótidos 5'-GGATGGGATTTCATGTAACCAAGA-3' (SEQ ID NO:2204), en donde la hebra sentido tiene un total de 21 nucleótidos y la hebra antisentido tiene un total de 23 nucleótidos, en donde dicho agente de iARN de doble hebra está representado por la fórmula (III):

sentido: 5' n_p - N_a - $(XXX)_i$ - N_b -YYY- N_b - $(ZZZ)_j$ - N_a - n_q 3'

antisentido: $3'n_p'-N_a'-(X'X'X')_k-N_b'-Y'Y'Y'-N_b'-(Z'Z'Z')_i-N_a'-n_q'-5'$

(III)

10 en donde:

5

15

- i, j, k y I son cada uno independientemente 0 o 1, en donde i es 0, j es 1;
- p, p', q y q' son cada uno independientemente 0-6;

cada N_a y N_a' representa independientemente una secuencia oligonucleotídica que comprende 0-25 nucleótidos, comprendiendo cada secuencia al menos dos nucleotidos modificados de manera diferente; en donde cada N_b y N_b' representa independientemente una secuencia oligonucleotídica que comprende 0-10 nucleótidos modificados; en donde las modificaciones son 2'-O-metilo, 2'-fluoro o ambas;

cada n_p, n_p', n_q y n_q' representa independientemente un nucleótido saliente;

XXX, YYY, ZZZ, X'X'X', Y'Y'Y' y Z'Z'Z' representan cada uno independientemente un motivo de tres modificaciones idénticas en tres nucleótidos consecutivos;

en donde los nucleótidos Y contienen una modificación 2'-fluoro y los nucleótidos Y' contienen una modificación 2'-O-metilo; en donde dicho motivo YYY ocurre en las posiciones 9, 10 y 11 cuando la región dúplex tiene 21 nucleótidos;

donde la hebra sentido está conjugada con al menos un ligando, en donde el ligando es uno o más derivados de GalNAc unidos a través de un enlazante ramificado bivalente o trivalente;

en donde "básicamente complementario" significa que no hay más de 2 pares de bases no coincidentes en el intervalo de 2 nucleótidos desde el extremo 5' y/o 3'; y

en donde fosforotioato está presente en los dos últimos nucleótidos en uno o ambos extremos.

- 2. El agente de iARN de la reivindicación 1, en donde k es 0 y l es 1.
- 3. El agente de iARN de la reividicación 1 o 2, en donde
 - (a) YYY es complementario a Y'Y'Y', y ZZZ es complementario a Z'Z'Z'; y/o
 - (b) el motivo Y'Y'Y' ocurre en las posiciones 11, 12 y 13 de la hebra antisentido desde el el extremo 5'.
- 4. El agente de iARN de cualquiera de las reivindicaciones 1 a 3, en donde la región dúplex tiene una longitud de 21 pares de nucleótidos.
- 5. El agente de iARN de cualquiera de las reivindicaciones 1 a 4, en donde el ligando es
- 35 a)

30

b) está unido al extremo 3' de la hebra sentido.

6. El agente de iARN de la reivindicación 5, en donde el agente de iARN se conjuga con el ligando tal como se muestra en el siguiente esquema

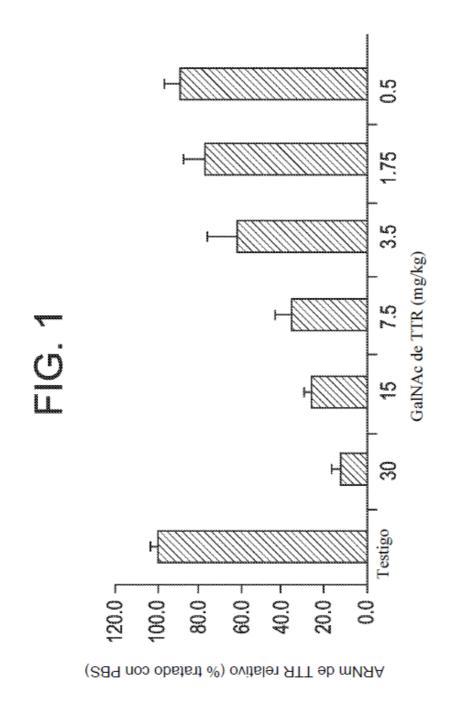
en donde X es O o S, o

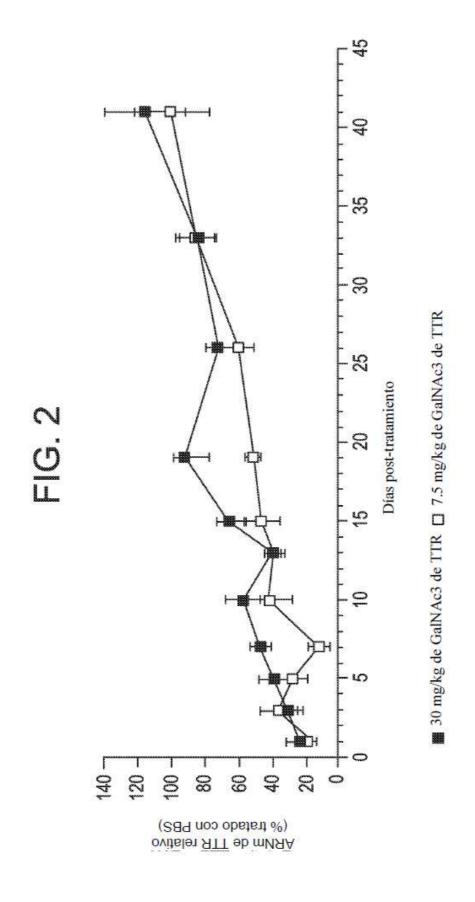
tal como se muestra en el siguiente esquema

10

5

7. Una célula in vitro que contiene el agente de iARN de doble hebra de cualquiera de las reivindicaciones 1 a 6.


ES 2 800 065 T3


- 8. Una composición farmacéutica que comprende un agente de iARN de cualquiera de las reivindicaciones 1 a
- 6.

15

20

- 9. La composición farmacéutica de la reivindicación 8, en donde
- (a) dicho agente de iARN se administra
- 5 (i) en una solución sin tamponar, en donde preferiblemente dicha solución sin tamponar es solución salina o agua;
 - (ii) con una solución tamponadora, en donde preferiblemente dicha solución tamponadora comprende acetato, citrato, prolamina, carbonato o fosfato o cualquier combinación de los mismos, en donde más preferiblemente dicha solución tamponadora es solución salina tamponada con fosfato (PBS); o
- 10 (b) dicha composición farmacéutica es
 - (i) un liposoma; o
 - (ii) una formulación lipídica.
 - 10. Un método in vitro para inhibir la expresión de una transtiretina (TTR) en una célula que comprende poner en contacto dicha célula con un agente de iARN de cualquiera de las reivindicaciones 1 a 6 o con una composición farmacéutica de cualquiera de las reivindicaciones 8 o 9 en una cantidad efectiva para inhibir la expresión de dicha TTR en dicha célula, inhibiendo así la expresión de dicha transtiretina (TTR) en dicha célula, en donde preferiblemente la expresión de dicha TTR se inhibe al menos 10%, al menos 20%, al menos 30%, al menos 40%, al menos 50%, al menos 60%, al menos 70%, al menos 80% o al menos 90%.
 - 11. Un agente de iARN de cualquiera de las reivindicaciones 1 a 6 o una composición farmacéutica de la reivindicación 8 o 9 para uso en un método de tratamiento o prevención de una enfermedad asociada con TTR en un sujeto.
 - 12. El agente o composición para uso de la reivindicación 11, en donde la expresión de TTR en una muestra derivada de dicho sujeto se inhibe al menos 10%, al menos 20%, al menos 30%, al menos 40%, al menos 50%, al menos 60%, al menos 70%, al menos 80% o al menos 90%.
- 25 13. El agente o la composición para uso de la reivindicación 11, en donde dicho sujeto es un humano.
 - 14. El agente o la composición para uso de la reivindicación 11, en donde dicho sujeto es un sujeto
 - (a) que padece una enfermedad asociada a TTR; o
 - (b) que corre el riesgo de desarrollar una enfermedad asociada a TTR.
- 15. El agente o la composición para uso de cualquiera de las reivindicaciones 11 a 14, en donde dicho sujeto porta una mutación del gen de TTR que se asocia con el desarrollo de una enfermedad asociada a TTR, en donde preferiblemente dicha enfermedad asociada a TTR se selecciona del grupo que consiste en amiloidosis sistémica senil (ASS), amiloidosis familiar sistémica, polineuropatía amiloidótica familiar (PAF), cardiomiopatía amiloidótica familiar (CAF), amiloidosis leptomeníngea/del Sistema Nervioso Central (SNC) e hipertiroxinemia.
- 16. El agente o la composición para uso de cualquiera de las reivindicaciones 11 a 15, en donde dicho agente de iARN se va a administrar a una dosis de 0.05-50 mg/kg.

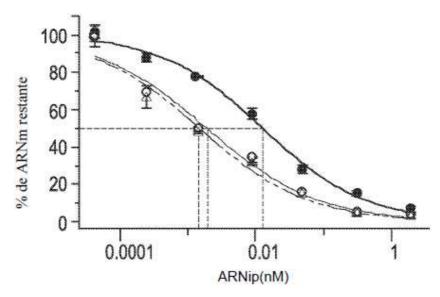


FIG. 3

Secuencia de ARNm de TTR humana (SEQ ID NO: 1), No. de Acceso Gen Bank.: M10605, GI: 189583

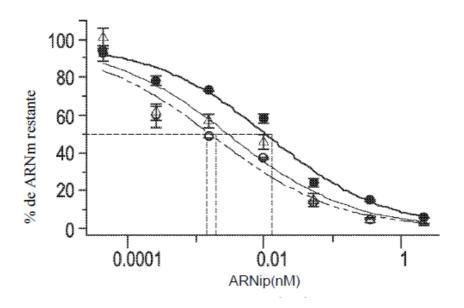

				aggc	ttcctgtgaa	601
caataaaaca	caggcagaga	gttagaagtc	catatgctat	gttttcacct	ctaaagcagt	541
tccattttta	ccaagagtat	tttcatgtaa	agggatggga	ctgaaggacg	tccagtggac	481
ggacttctcc	aaggaatgag	caccaatccc	cggctgtcgt	tattccacca	cccctactcc	421
ccctgctgag	accattgccg	ccgccgctac	actccggccc	acagccaacg	ggtggtattc	361
agcatgcaga	ccattccatg	tggcatctcc	ggaaggcact	aaatcttact	aatagacacc	301
acaaagtgga	gaagggatat	ggaatttgta	caactgagga	catgggctca	tggagagctg	241
ccagtgagtc	tctgggaaaa	gccatttgcc	acacctggga	gctgctgatg	gttcagaaag	181
ccgtgcatgt	atcaatgtgg	cagtcctgcc	ctgtccgagg	gttctagatg	gatggtcaaa	121
agtgtcctct	ggtgaatcca	tacgggcacc	aggetggeee	tttgtgtctg	tggactggta	61
tctgccttgc	ctgctcctcc	ttctcatcgt	gcaggatggc	ctcattcttg	cagaagtcca	

FIG. 4

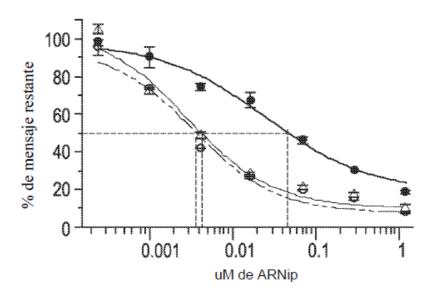
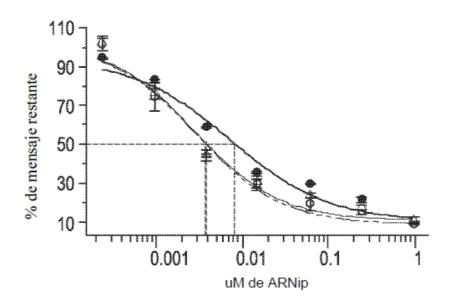

◆ — AD-45163 Ajuste
 △ — AD-51544 Ajuste
 O — AD-51545 Ajuste

FIG. 5

- AD-45165 Ajuste
 △ ----- AD-51546 Ajuste
- o AD-51547 Ajuste

FIG. 6



• ---- 45163, Ajuste de 4 hr

△ ----- **51544**, Ajuste de 4 hr

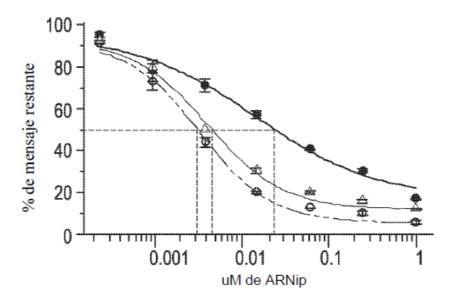

0 _____ 51545, Ajuste de 4 hr

FIG. 7

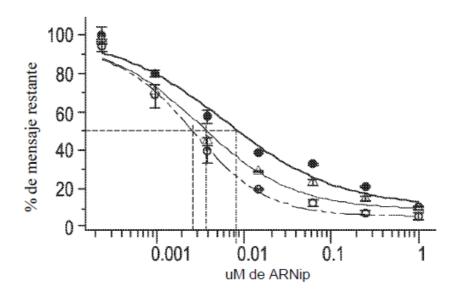
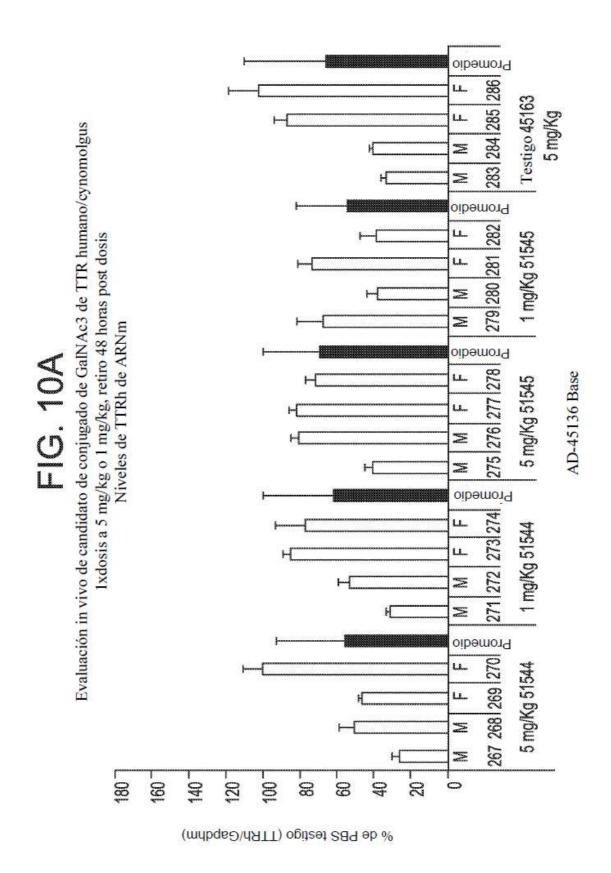

- 45163, Ajuste de 24 hr
 △ ----- 51544, Ajuste de 24 hr
- o _____ 51545, Ajuste de 24 hr

FIG. 8



- ---- 45165, Ajuste de 4 hr
- △ _____ 51546, Ajuste de 4 hr
- 0 --- 51547, Ajuste de 4 hr

FIG. 9

◆ —— 45165, Ajuste de 24 hr
 △ — 51546, Ajuste de 24 hr
 O — 51547, Ajuste de 24 hr

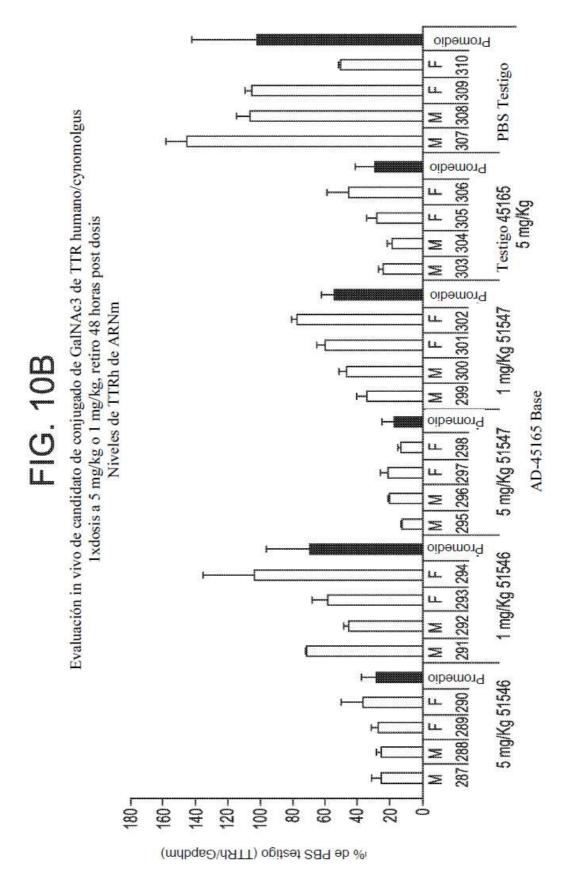


FIG. 11
Proteína TTR relativa - una sola dosis s.c., 48 h

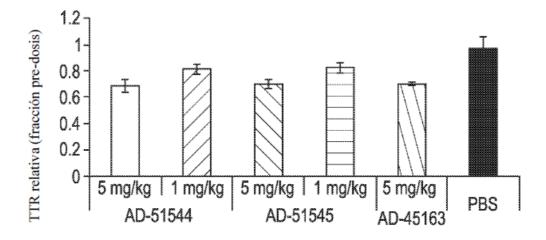
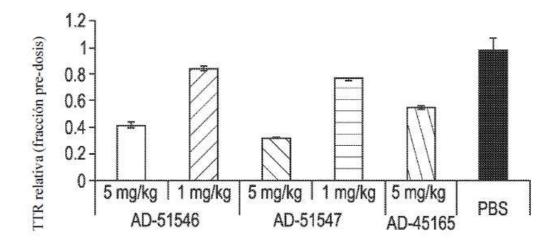



FIG. 12
Proteina TTR relativa - una sola dosis s.c., 48 h

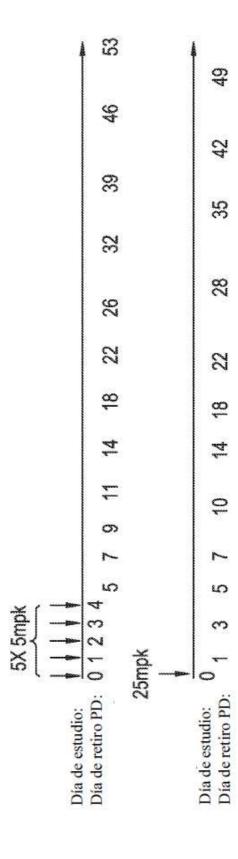
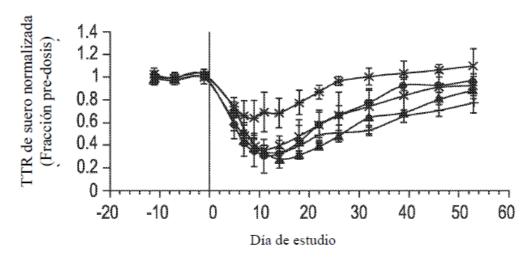
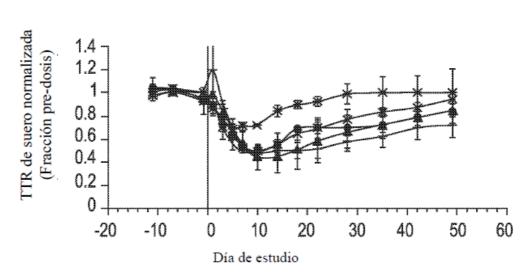
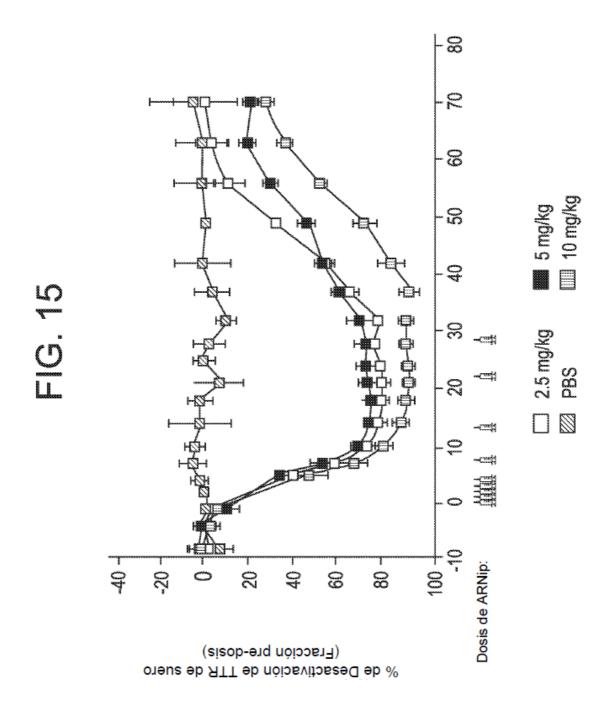




FIG. 14 5X 5mg/kg



- 5x5 mk 45163 × 5x5 mpk 51544
 5x5 mpk 51546 + 5x5 mpk 51547
- * 5x5 mpk 51545

25mg/kg

- ▲ 25mpk 45163 × 25mpk 51544 * 25mpk 51545
- 25mpk 51546 + 25mpk 51547

