

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 802 524

51 Int. Cl.:

G01N 33/566 (2006.01) C07K 14/435 (2006.01) C07K 14/72 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 09.06.2016 PCT/US2016/036777

(87) Fecha y número de publicación internacional: 15.12.2016 WO16201153

(96) Fecha de presentación y número de la solicitud europea: 09.06.2016 E 16731742 (9)

(97) Fecha y número de publicación de la concesión europea: 01.04.2020 EP 3308168

(54) Título: Líneas celulares para el cribado de receptores de aroma y olor

(30) Prioridad:

10.06.2015 US 201562173762 P 21.09.2015 US 201562221580 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.01.2021

(73) Titular/es:

FIRMENICH SA (100.0%) 7, Rue de la Bergère 1242 Satigny, CH

(72) Inventor/es:

JEONG, HYO-YOUNG; PFISTER, PATRICK y ROGERS, MATTHEW

(74) Agente/Representante:

GONZÁLEZ PECES, Gustavo Adolfo

DESCRIPCIÓN

Líneas celulares para el cribado de receptores de aroma y olor

Campo

5

10

15

20

25

45

50

55

El campo técnico se dirige a los receptores y ensayos de olor y aroma que se pueden usar para identificar compuestos o moduladores de olor y/o aroma. Los ensayos se dirigen más específicamente a líneas celulares diseñadas que exhiben una actividad mejorada del receptor de olor.

Antecedentes

Los olores se codifican inicialmente en el sistema olfativo periférico (es decir, la nariz) a través de interacciones entre compuestos de aroma y sabor volátiles y proteínas del receptor de olor (OR) que residen en las membranas de las neuronas receptoras olfativas del tejido epitelial olfativo. Dichas interacciones se producen de forma combinatoria específica de olor, donde cualquier OR se puede activar por múltiples olores y, por el contrario, la mayoría de los olores son capaces de activar varios OR diferentes. Para un compuesto o mezcla de olor/aroma dado, estas interacciones del receptor generan señales neurofisiológicas en el cerebro y, en última instancia, dan lugar a una percepción consciente del olor. Aproximadamente ~400 genes OR en el genoma humano se pueden activar por miles o más estímulos de olor y es la complejidad inherente de las interacciones combinatorias entre los olores y los receptores lo que permite la amplitud de sensaciones olfativas que podemos percibir. Elucidar estas interacciones puede conducir al descubrimiento de productos beneficiosos que incluyen, pero no está limitado a, contrarrestadores de malos olores que bloquean la percepción de olores desagradables, nuevos ingredientes de sabores y fragancias que reemplazan compuestos no biodegradables o tóxicos, y potenciadores de olores que limitarían nuestra dependencia en compuestos difíciles de obtener de fuentes naturales.

Existe la necesidad de, por ejemplo, pero no está limitado a, nuevos procedimientos que puedan expresar funcionalmente OR en la superficie celular para una decodificación confiable de los códigos OR. Existe una necesidad adicional de un procedimiento que exprese funcionalmente los OR en células no olfativas (por ejemplo, pero no está limitado a, líneas celulares heterólogas) que sean susceptibles a cribado de alto rendimiento con librerías de compuestos de fragancias y sabores volátiles para una caracterización completa de la actividad OR. Esto podría acelerar significativamente el descubrimiento de contrarrestadores de malos olores, moduladores de olores y nuevos compuestos de sabor o fragancia altamente deseables.

El documento WO 2015/020158 A1 describe procedimientos para el cribado de compuestos de perfume de tipo almizcle entre sustancias candidatas que utilizan un receptor olfativo específico para un perfume de almizcle.

Ciertas proteínas que se derivan de las neuronas sensoriales olfativas pueden mejorar la localización de la superficie celular de los receptores de olor en las líneas celulares no olfativas. Estas proteínas funcionan ayudando en el tráfico de los receptores de olor desde el retículo endoplásmico al aparato de Golgi y la membrana plasmática de la célula. Se ha informado que la proteína 1 que transporta el receptor (RTP1), la proteína 2 que transporta el receptor (RTP2) y la proteína 1 que aumenta la expresión del receptor (REEP1) mejoran la localización del receptor de olor en la membrana plasmática y, por lo tanto, funcionan en células no olfativas. RTP1 y RTP2 se han utilizado en células heterólogas recombinantes para promover la expresión en la superficie de los receptores de olor (WO 2013/082522 A1). Se ha informado que RTP1 es la chaperona receptora de olor más eficaz. Se ha demostrado que esta proteína actúa, en parte, al interactuar con los receptores de olor en el retículo endoplásmico. Por lo tanto, una línea celular no olfativa que sea susceptible de cribaje de alto rendimiento y que contenga el gen de RTP1 se desea altamente para la decodificación integral de las interacciones combinatorias entre los olores y los receptores de olores.

Aún más deseable es una línea celular que produce consistentemente la proteína RTP1, que incluye, pero no está limitada a RTP1S, al expresar de manera estable el gen del locus endógeno RTP1. Sin embargo, las técnicas actuales para desarrollar líneas celulares que expresan establemente el gen de RTP1 endógeno implican enfoques de biología molecular ineficientes y engorrosos para la inserción de ADN en células cultivadas que de otra manera no expresarían el gen. Por lo tanto, se desea usar una técnica que evite tales enfoques para desarrollar una línea celular estable y que permita la expresión consistente de la RTP1 endógena sin la necesidad de usar procedimientos recombinantes.

CRISPR/Cas9 es una herramienta de edición genómica altamente eficiente que se utiliza para generar modificaciones genómicas precisas, como inserciones y deleciones. Por ejemplo, un uso particular de CRISPR/Cas9 permite la expresión de un gen que de otro modo podría estar silenciado en una línea celular (véase, por ejemplo, Cheng y otros, Cell Research (2013) 23: 1163-1171 y Maeder y otros, Nature Methods (2013) 10: 977-979). Al incorporar un promotor transcripcional corriente arriba del gen, una línea celular puede expresar un gen endógeno que de otro modo estaría inactivo.

Sumario

La invención se refiere a una célula que comprende un ADN donante que se introduce en el sitio genómico objetivo corriente arriba de un locus del gen de RTP1 endógeno, en el que el ADN donante comprende un promotor en el que

el promotor impulsa la expresión del gen de RTP1, y en el que la célula se deriva de una línea celular HEK293 o HEK293T.

También se divulga en la presente memoria una línea celular no olfativa con función mejorada del receptor de olor que comprende un gen de RTP1 endógeno activado.

También se divulga en la presente memoria una línea celular no olfativa que comprende un gen de RTP1 endógeno activado dentro de la célula que además expresa una proteína RTP1.

La invención se refiere además a un procedimiento para activar un gen de RTP1 endógeno en una célula eucariota, en el que la célula se deriva de una línea celular HEK293 o HEK293T, que comprende:

- a. introducir un ARN guía complementario a un sitio genómico objetivo corriente arriba del gen de RTP1;
- b. introducir una proteína nucleasa Cas para formar un complejo con el ARN guía; y
 - c. utilizar el complejo objetivo genómico ARN guía/Cas9 para administrar los elementos de activación del gen para el gen de RTP1 específicamente.

La invención se refiere además a un procedimiento para identificar un compuesto o mezcla de compuestos que activan, imitan, bloquean, inhiban, modulan y/o aumentan la actividad de un receptor olfativo en una célula no olfativa en la que la célula se deriva de una línea celular HEK293 o HEK293T y comprende un ADN donante que se introduce en el sitio objetivo genómico corriente arriba de un locus del gen de RTP1 endógeno, en el que el ADN donante comprende un promotor en el que el promotor impulsa la expresión del gen de RTP1, en el que el procedimiento comprende además:

- a. poner en contacto el receptor, o una quimera o fragmento del mismo con un compuesto o mezcla de compuestos que activa, imita, bloquea, inhibe, modula y/o mejora el receptor; y
- b. determinar si el compuesto tiene un efecto sobre la actividad del receptor.

Descripción de las figuras

15

20

- La **Figura 1** muestra un esquema del locus del gen de RTP1 endógeno y el sitio objetivo específico que se utilizó para la edición del genoma.
- 25 La Figura 2 muestra un esquema del procedimiento de inserción del promotor CMV.
 - La Figura 3 muestra un esquema de los alelos tipo salvaje y recombinados y las regiones de genoma correspondientes.
 - La Figura 4 muestra la caracterización de la integración del promotor CMV en la línea celular que se diseñó.
 - La Figura 5 muestra la caracterización de la expresión del ARNm de RTP1 en la línea celular que se diseñó.
- 30 La Figura 6 muestra la caracterización de la expresión de la proteína RTP1 en la línea celular que se diseñó.
 - La **Figura 7** muestra una curva dosis-respuesta del receptor de ratón Olfr741 en presencia de concentraciones crecientes de indol.
 - La **Figura 8** muestra una curva dosis-respuesta del receptor de ratón Olfr742 en presencia de concentraciones crecientes de indol.
- La **Figura 9** muestra una curva dosis-respuesta del receptor de ratón Olfr96 en presencia de concentraciones crecientes de vulcanólido.
 - La **Figura 10** muestra una curva dosis-respuesta del receptor humano OR11A1 en presencia de concentraciones crecientes de vulcanólido.
- La **Figura 11** muestra una curva dosis-respuesta del receptor de ratón Olfr740 en presencia de concentraciones crecientes de indol.
 - La **Figura 12** muestra una curva dosis-respuesta del receptor humano OR1A1 en presencia de concentraciones crecientes de carvona- (-).

Descripción detallada

Para las descripciones en la presente memoria y las reivindicaciones adjuntas, el uso de "o" significa "y/o" a menos que se indique lo contrario. De forma similar, "comprende", "comprenden", "que comprende", "incluye", "incluyen" e "incluyendo" son intercambiables y no pretenden ser limitantes.

Se debe entender además que cuando las descripciones de diversas realizaciones usan el término "que comprende", los expertos en la técnica entenderán que, en algunos casos específicos, una realización se puede describir alternativamente usando el lenguaje "que consiste esencialmente en "o que "consiste en".

En una realización, se proporciona una célula que comprende un ácido nucleico que codifica un receptor de olor.

- 5 En una realización adicional, se proporciona una célula que comprende un ácido nucleico que codifica un receptor de olor que se selecciona del grupo que consiste en Olfr741, Olfr742, Olfr96, Olfr740, OR1A1 y OR1A1.
 - En otra realización adicional en la presente memoria se proporciona una célula que comprende un promotor constitutivo corriente arriba de un locus del gen de RTP1 endógeno de tal manera que el promotor impulsa la expresión del gen de RTP1 endógeno.
- En las neuronas sensoriales olfativas de ratón, el transcripto RTP1 contiene dos sitios de inicio de traducción alternativos que pueden conducir a dos formas distintas de la proteína RTP1: una versión larga (RTP1L) y una versión corta (RTP1S). Sin embargo, es la proteína RTP1S que se expresa predominantemente en las neuronas olfativas del ratón. Además, las células no olfativas (por ejemplo, pero no está limitado a HEK293T) que expresan de forma heteróloga la secuencia de codificación completa de RTP1 expresan predominantemente RTP1L, aunque la secuencia de codificación de RTP1S está contenida dentro de RTP1L. Sin embargo, se prefiere RTP1S para el cribado del receptor de olor en células no olfativas, ya que se sabe que RTP1S supera fuertemente a RTP1L con respecto a la expresión de OR en la superficie celular. Sorprendentemente, hemos encontrado que la activación endógena del gen de RTP1 completo conduce preferentemente a la expresión de RTP1S.
- En una realización adicional, en la presente memoria, se proporciona una célula que comprende un promotor constitutivo corriente arriba de un locus del gen de RTP1 endógeno que impulsa la expresión de la versión corta del gen de RTP1, el RTP1S.

En la presente memoria se proporciona una línea celular no olfativa que comprende un gen de RTP1 endógeno que se activa dentro de la célula que además expresa la versión corta de una proteína RTP1, la RTP1S.

En otra realización más, el promotor constitutivo se selecciona del grupo que consiste en CMV, PGK, EFla y SV40.

25 En una realización, el promotor es CMV, que se origina a partir del Citomegalovirus.

En una realización, en la presente memoria se proporcionada una célula que comprende un promotor inducible corriente arriba de un locus del gen de RTP1 endógeno de modo que el promotor impulsa la expresión del gen de RTP1 cuando está presente el operador correspondiente.

En una realización adicional, el promotor inducible es un promotor del Elemento de Respuesta a Tetraciclina (TRE) que se induce por administración de tetraciclina (o su análogo doxiciclina).

En una realización, la proteína nucleasa Cas es una proteína Cas9.

30

En una realización adicional, la proteína Cas9 se selecciona del grupo que consiste en Cas9, dCAs9 (Cas9 desactivado) y Cas9 nicasa.

- En una realización, la secuencia de ARN guía (ARNg) se puede diseñar en base a reglas de última generación (Doench y otros, Nat Biotech (2014)) y herramientas de diseño de ARN guía disponibles públicamente para una orientación genómica eficiente (por ejemplo, wwws.blueheronbio.com/external/tools/gRNASrc.jsp). Se pueden usar los brazos homólogos que tienen 800 pb de largo en cada lado de la ruptura de ADN de doble cadena específica que se genera por Cas9. Es útil revisar cuidadosamente el sitio de integración del promotor CMV para evitar un sitio de inicio de traducción no deseado antes del sitio de inicio RTP1 endógeno.
- 40 Preferentemente, la línea celular original que se utiliza para la ingeniería CRISPR/Cas9 debería ser de origen mamífero y portar el locus del gen de RTP1. Dichas líneas celulares incluyen, pero no se restringen a, HEK293, HEK293T, HeLa, CHO, OP6, HeLa-S3, HEKn, HEKa, PC-3, Calu1, Hep G2, HeLa B, HeLa T4, COS, COS-1, COS-6, COS-M6A, epitelio de riñón de mono BS-C-1, fibroblastos de embriones de ratón BALB/3T3, 3T3 Swiss, 3T3-L1, fibroblastos fetales humanos 132-d5; 10.1 fibroblastos de ratón, 293-T, 3T3, BHK, BHK-21, BR 293, BxPC3, C3H-IOT1/2, C6/36, Cal-27, CHO-7, CHO-IR, CHO-K1, CHO-K2, CHO-T, CHO Dhfr -/-, COS-7, HL-60, LNCap, MCF-7, MCF-10A, MDCK II, SkBr3, células Vero, células olfativas inmortalizadas, células gustativas inmortalizadas y variedades transgénicas de las mismas. Las líneas celulares están disponibles en una variedad de fuentes conocidas por los expertos en la técnica (véase, por ejemplo, la Colección Americana de Cultivos Tipo (Manassus, Virginia).
- Por lo tanto, se selecciona una línea celular estable del grupo que consiste en HEK293, HEK293T, HeLa, CHO, OP6, HeLa-S3, HEKn, HEKa, PC-3, Calu1, Hep G2, HeLa B, HeLa T4, COS, COS-1, COS-6, COS-M6A, epitelio de riñón de mono BS-C-1, fibroblastos de embriones de ratón BALB/3T3, 3T3 Swiss, 3T3-L1, fibroblastos fetales humanos 132-d5; fibroblastos de ratón 10,1, 293-T, 3T3, BHK, BHK-21, BR 293, BxPC3, C3H-10T1/2, C6/36, Cal-27, CHO-7, CHO-IR, CHO-K1, CHO-K2, CHO-T, CHO Dhfr -/-, COS-7, HL-60, LNCap, MCF-7, MCF-10A, MDCK II, SkBr3, células Vero,

células olfativas inmortalizadas, células gustativas inmortalizadas y variedades transgénicas de las mismas. Las células de la invención o que se usan según la invención se derivan de la línea celular HEK293 o HEK293T.

En otra realización más, el complejo permite la escisión de la secuencia de ácido nucleico objetivo adyacente a la secuencia de ARN guía y el complejo de proteína Cas9 que se entrega a la célula y en el que el procedimiento comprende además introducir un ADN donante que comprende un promotor CMV dentro la célula.

En una realización, la secuencia de ARN guía y el complejo de proteína Cas9 permite la escisión de la secuencia de ácido nucleico objetivo adyacente a la secuencia de ARN guía y el complejo de proteína Cas9 y en el que el procedimiento comprende además introducir un ADN donante que comprende un promotor CMV a través de la homología celular dirigida. mecanismo de reparación en el sitio de escisión.

10 En una realización adicional, una línea celular se modifica para expresar de manera estable el gen de RTP1 endógeno bajo el promotor CMV.

En una realización adicional, un ADN donante también puede comprender un casete de selección de antibióticos (por ejemplo, que contiene el gen de resistencia a la puromicina). El cultivo de células en medios de cultivo que contienen antibióticos después del suministro de ADN puede ser beneficioso, ya que elimina las células que no experimentaron una integración adecuada del ADN y, por lo tanto, permite seleccionar eficientemente las poblaciones de clones celulares recombinadas que adquirieron un marcador de resistencia, de ahí la integración que se desea del ADN del donante (por ejemplo, el promotor constitutivo CMV). Dicho gen de resistencia a antibióticos se puede eliminar posteriormente por ingeniería mediante sitios flanqueantes "frt" que se reconocen específicamente por la enzima Flipasa. Este casete luego se retira mediante la entrega de dicha enzima a las células.

- En una realización, el complejo funciona apuntando a ubicaciones específicas en el genoma y reclutando más factores de transcripción que activan genes endógenos corriente abajo como RTP1 sin la necesidad de escindir el ADN. Esto se realiza fusionando la proteína Cas9 con un dominio de activación de la transcripción para formar un complejo en el que el complejo no es capaz de escindir la secuencia de ácido nucleico objetivo. El procedimiento proporciona un ADN objetivo que dirige al ARN guía (es decir, corriente arriba del gen de RTP1) del dominio de activación de la transcripción que se fusiona a Cas9. En lugar de escindir el ADN para permitir la integración del promotor, se une y recluta transitoriamente factores de transcripción que activan el gen sin la necesidad de diseñar o modificar el genoma. Esto se puede hacer mediante el uso de una versión desactivada de Cas9 que se llama dCas9, que se fusiona a factores transcripcionales específicos que reclutan elementos como VP64, VPR y SAM, o mediante el uso de un ARN guía modificado (por ejemplo, un ARN guía truncado). Esta proteína de fusión no escinde el ácido nucleico.
- 30 Una realización, que se proporciona en la presente memoria es un procedimiento que comprende introducir un ácido nucleico que codifica un receptor olfativo dentro la célula.

Una realización adicional, que se proporciona en la presente memoria es un procedimiento para identificar un compuesto que activa, imita, bloquea, inhibe, modula y/o aumenta la actividad de un receptor olfativo en una célula no olfativa, en el que la célula se deriva de una línea celular HEK293 o HEK293T y comprende un ADN donante que se introduce en el sitio objetivo genómico corriente arriba de un locus del gen de RTP1 endógeno, en el que el ADN donante comprende un promotor en el que el promotor impulsa la expresión del gen de RTP1, en el que el procedimiento comprende además:

- a. poner en contacto el receptor, o una quimera o fragmento del mismo con un compuesto que activa, imita, bloquea, inhibe, modula y/o mejora el receptor y
- b. determinar si el compuesto tiene un efecto sobre la actividad del receptor.

En una realización, el receptor olfativo es del grupo que consiste en un receptor de almizcle y de mal olor.

En una realización particular, el receptor de mal olor se selecciona de un receptor de escatol o indol.

En una realización particular, el receptor de almizcle se selecciona de un receptor de almizcle policíclico y un receptor de almizcle nitro.

45 En una realización, los ácidos nucleicos que codifican un receptor de olor se introducen en ausencia sustancial de una proteína Golf.

En una realización, se llevan a cabo las siguientes etapas:

15

35

40

- 1. editar el genoma de una línea celular usando la tecnología CRISPR/Cas9, que incluye: (1) diseñar un ADN que codifique un 'ARN guía' específico para el sitio de integración de ADN genómico deseado ubicado cerca del locus del gen de RTP1 endógeno; y (2) un 'ADN donante' para que se integre en el locus genómico que comprende un promotor transcripcional constitutivamente activo;
- 2. introducir los ADN diseñados en la etapa 1 en una línea celular de mamífero;

- 3. seleccionar una línea celular que tiene integrado el ADN del donante en el locus genómico deseado y que produce un ARNm de RTP1 mediante la activación del gen de RTP1 endógeno.
- 4. introducir una secuencia de ADN del receptor de olor dentro de la línea celular seleccionada.
- 5. poner en contacto un receptor, quimera o fragmento con un compuesto y analizar si el compuesto tiene un efecto sobre la actividad del receptor de olor.

Los procedimientos proporcionados en la presente memoria permiten el uso de líneas celulares para descubrir ingredientes tales como potenciadores o bloqueadores de olor para uso cosmético e industrial (por ejemplo, perfumes, potenciadores de perfume, potenciadores de sabor, desodorantes para el hogar y el cuerpo). Los nuevos ingredientes pueden proporcionar perfiles de fragancia, toxicidad y biodegradación más favorables y/o exhibir una mayor potencia.

10 En consecuencia, se divulga en la presente memoria un compuesto o mezcla de compuestos que activa, imita, bloquea, inhiba, modula y/o aumenta la actividad de un receptor olfativo en una célula no olfativa que se obtiene por uno cualquiera de los procedimientos divulgados en la presente memoria.

En una realización, se proporciona un sistema de expresión heterólogo de expresión funcional mejorada del receptor de olor que usa CRISPR/Cas9 para activar específica y constitutivamente el gen de RTP1 que se silencia (inactiva) en células HEK293T regulares.

Definiciones

5

15

20

25

30

35

40

45

50

55

Los siguientes términos tienen los significados atribuidos a éstos, a menos que se especifique lo contrario.

"Gen endógeno" se refiere a un gen que se origina dentro de un organismo, tejido o célula.

La expresión "efectos funcionales" incluye la determinación de cualquier parámetro que esté indirectamente o directamente bajo la influencia del receptor, por ejemplo, efectos funcionales, físicos y químicos. Incluye, pero no está limitado a, la unión de ligandos, cambios en el flujo de iones, potencial de membrana, flujo de corriente, transcripción, unión a proteínas G, fosforilación o desfosforilación de GPCR, interacciones receptor-ligando de transducción de señales, concentraciones de segundo mensajero (por ejemplo, AMPc, GMPc, IP3 o Ca intracelular²+), in vitro, in vivo y ex vivo y también incluye otros efectos fisiológicos tales como aumentos o disminuciones de la liberación de neurotransmisores u hormonas.

La expresión "determinar si el compuesto tiene un efecto sobre la actividad" en el contexto de los ensayos significa ensayos para un compuesto que aumenta o disminuye un parámetro que está indirectamente o directamente bajo la influencia de un miembro de la familia OR, por ejemplo, efectos funcionales, físicos y químicos. Tales efectos funcionales se pueden medir por cualquier medio conocido por los expertos en la técnica, por ejemplo, pero no está limitado a, cambios en las características espectroscópicas (por ejemplo, fluorescencia, absorbancia, índice de refracción), hidrodinámica (por ejemplo, forma), cromatográfica o propiedades de solubilidad, pinzamiento de parche, colorantes sensibles al voltaje, corrientes de células enteras, eflujo de radioisótopos, marcadores inducibles, expresión génica de OR de ovocitos; cultivo celular de tejidos con expresión de OR; activación transcripcional de genes OR; ensayos de unión a ligandos; cambios de voltaje, potencial de membrana y conductancia; ensayos de flujo de iones; cambios en los mensajeros intracelulares secundarios como AMPc, GMPc e inositol trifosfato (IP3); cambios en los niveles de calcio intracelular; liberación de neurotransmisores, y similares.

El término "vector de expresión" se refiere a cualquier sistema de expresión recombinante con el propósito de expresar una secuencia de ácido nucleico de la invención *in vitro* o *in vivo*, de manera constitutiva o inducible, en cualquier célula, que incluye células procariotas, de levaduras, fúngicas, vegetales, de insectos o de mamíferos. El término incluye sistemas de expresión lineales o circulares. El término incluye sistemas de expresión que permanecen episomales o se integran en el genoma de la célula huésped. Los sistemas de expresión pueden tener la capacidad de autorreplicarse o no, es decir, conducir solo la expresión transitoria en una célula. El término incluye casetes de expresión recombinante que contienen solo los elementos mínimos necesarios para la transcripción del ácido nucleico recombinante.

Por "célula huésped" se entiende una célula que contiene un vector de expresión y soporta la replicación o expresión del vector de expresión. Las células huésped pueden ser células procariotas como *E. coli*, o células eucariotas como levaduras, insectos, anfibios o células de mamíferos como células CHO, HeLa, HEK-293 y similares, por ejemplo, células cultivadas, explantes y células *in vivo*.

"Inhibidores", "activadores", "contrarrestantes" y "moduladores" de genes o proteínas OR se usan indistintamente para referirse a moléculas inhibidoras, activadoras o moduladoras identificadas usando ensayos *in vitro* e *in vivo* para la transducción olfativa, por ejemplo, ligandos, agonistas, antagonistas, potenciadores y sus homólogos y miméticos. Los inhibidores son compuestos que, por ejemplo, se unen, bloquean parcial o totalmente la estimulación, disminuyen, evitan, retrasan la activación, inactivan, desensibilizan o regulan negativamente la transducción olfativa, por ejemplo, los antagonistas. Los activadores son compuestos que, por ejemplo, se unen, estimulan, aumentan, activan la apertura, facilitan, mejoran la activación, sensibilizan o regulan la transducción

olfativa, por ejemplo, agonistas. Los moduladores incluyen compuestos que, por ejemplo, alteran la interacción de un receptor con: proteínas extracelulares que se unen a activadores o inhibidores (por ejemplo, proteínas de unión a odorantes y otros miembros de la familia de vehículos hidrófobos); proteínas G; quinasas (por ejemplo, homólogos de rodopsina quinasa y beta quinasas de receptores adrenérgicos que están involucradas en la desactivación y desensibilización de un receptor); y arrestinas, que también desactivan y desensibilizan los receptores. Los moduladores pueden incluir versiones genéticamente modificadas de miembros de la familia OR, por ejemplo, con actividad alterada, así como ligandos de origen natural o sintéticos, antagonistas, agonistas, moléculas químicas pequeñas y similares. Dichos ensayos para inhibidores y activadores incluyen, por ejemplo, expresar miembros de la familia OR en células o membranas celulares, aplicar compuestos moduladores putativos, en presencia o ausencia de moléculas de aroma o gusto, por ejemplo, almizcles o malos olores, y luego determinar los efectos funcionales sobre la transducción olfativa, como se describió anteriormente. Las muestras o ensayos que comprenden miembros de la familia OR que se tratan con un posible activador, inhibidor o modulador se comparan con muestras de control sin el inhibidor, activador o modulador para examinar el grado de modulación.

La región del "dominio N terminal" comienza en el N-terminal y se extiende hasta una región cercana al comienzo de la primera región transmembrana. "Dominio transmembrana", que comprende las siete "regiones transmembrana", se refiere al dominio de polipéptidos OR que se encuentra dentro de la membrana plasmática, y también puede incluir los lazos citoplasmáticos (intracelulares) y extracelulares correspondientes. Las siete regiones transmembrana y los lazos extracelulares y citoplasmáticos se pueden identificar utilizando procedimientos estándares, como se describe en Kyte y Doolittle, J. Mol. Biol., 157:105-32 (1982), o en Stryer. La estructura secundaria y terciaria general de los dominios transmembrana, en particular los siete dominios transmembrana de los receptores acoplados a proteínas G, como los receptores olfativos, son conocidos en la técnica. Por lo tanto, la secuencia de estructura primaria se puede diseñar o predecir en base a secuencias de dominio transmembrana conocidas, como se describe en detalle a continuación. Estos dominios transmembrana son útiles para ensayos *in vitro* de unión a ligandos, tanto en fase soluble como sólida.

El término "ácido nucleico" o "secuencia de ácido nucleico" se refiere a un oligonucleótido de desoxirribonucleótidos o ribonucleótidos en forma de simple o doble cadena. El término abarca ácidos nucleicos, es decir, oligonucleótidos, que contienen análogos conocidos de nucleótidos naturales. El término abarca, además, estructuras similares a ácidos nucleicos con cadenas principales sintéticas. A menos que se indique lo contrario, una secuencia de ácido nucleico particular implícitamente abarca las variantes de estos modificadas de forma muy conservadora (por ejemplo, las sustituciones de codones degenerados) y las secuencias complementarias, así como la secuencia que se indica explícitamente. Específicamente, las sustituciones de codones degenerados se pueden lograr mediante la generación, por ejemplo, de secuencias en las que la tercera posición de uno o más codones seleccionados se sustituye con residuos con base mezclada y/o desoxiinosina.

Receptor de olor u "OR" se refiere a uno o más miembros de una familia de receptores acoplados a proteínas G que se expresan en células olfativas. Las células receptoras olfativas también se pueden identificar en base a la morfología o mediante la expresión de proteínas expresadas específicamente en células olfativas. Los miembros de la familia OR pueden tener la capacidad de actuar como receptores para la transducción olfativa.

El receptor de olor o los ácidos nucleicos "OR" codifican una familia de receptores acoplados a proteínas G con siete regiones transmembrana que tienen actividad de receptor acoplado a proteínas G, por ejemplo, se pueden unir a proteínas G en respuesta a estímulos extracelulares y promover la producción de mensajeros secundarios como IP3, AMPc, GMPc y Ca²⁺ a través de la estimulación de enzimas como la fosfolipasa C y la adenilato ciclasa.

Los polipéptidos "OR" se consideran como tales si pertenecen a la superfamilia de receptores acoplados a la proteína G de los 7 dominios transmembrana codificada por un solo exón de ~ 1 kb de longitud y exhibe motivos característicos de aminoácidos específicos del receptor olfativo. Los siete dominios predichos se denominan dominios "transmembrana" o "TM", TM I a TM VII que se conectan por tres dominios predichos de "lazo celular interno" o "IC", IC I a IC III, y tres dominios predichos de "lazo celular externo" o "EC", EC I a EC III. Los motivos se definen como, pero no están limitados a, el motivo MAYDRYVAIC superpuesto a TM III e IC II, el motivo FSTCSSH superpuesto a IC III y TM VI, el motivo PMLNPFIY en TM VII, así como tres residuos C conservados en EC II, y la presencia de residuos altamente conservados de GN en TM I [Zhang y Firestein (2002), The Olfactory Receptor Gene Superfamily of the Mouse. Nature Neuroscience: 5 (2):124-33; Malnic y otros, The Human Olfactory Receptor Gene Family: PNAS: 101(8):2584-9].

Los términos "polipéptido", "péptido" y "proteína" se usan indistintamente en la presente memoria para referirse a un polímero de residuos de aminoácidos. Los términos se aplican a polímeros de aminoácidos en los que uno o más residuos de aminoácido es un mimético químico artificial de un correspondiente aminoácido de origen natural, así como de polímeros de aminoácidos de origen natural y polímeros de aminoácidos de origen no natural. El término "heterólogo" cuando se usa con referencia a las porciones de un ácido nucleico indica que el ácido nucleico comprende dos o más subsecuencias que no se encuentran en la naturaleza en igual relación entre sí. Por ejemplo, el ácido nucleico típicamente se produce por vía recombinante, y tiene dos o más secuencias a partir de genes no relacionados dispuestos para preparar un nuevo ácido nucleico funcional, por ejemplo, un promotor a partir de una fuente y una región de codificación a partir de otra fuente. Del mismo modo, una proteína heteróloga indica que la

proteína comprende dos o más subsecuencias que no se encuentran en la naturaleza en igual relación entre sí (por ejemplo, una proteína de fusión).

Un "promotor" se define como una serie de secuencias de ácidos nucleicos que dirigen la transcripción de un ácido nucleico. Como se usa en la presente memoria, un promotor incluye las secuencias de ácidos nucleicos necesarias cerca del sitio de inicio de la transcripción, tal como, en el caso de un promotor de polimerasa tipo II, un elemento TATA. Un promotor además incluye opcionalmente los elementos potenciadores o represores distales, que se pueden localizar hasta diversos miles de pares de bases a partir del sitio de inicio de la transcripción. Un promotor "constitutivo" es un promotor que se activa bajo la mayoría de las condiciones ambientales y de desarrollo. Un promotor "inducible" es un promotor que se activa bajo la regulación ambiental o de desarrollo.

Como se usa en la presente memoria, el término "recombinante" se refiere a un polinucleótido que se sintetiza o manipula de cualquier otra manera in vitro (por ejemplo, "polinucleótido recombinante"), mediante procedimientos para el uso de polinucleótidos recombinantes para producir productos génicos en células u otros sistemas biológicos, o para un polipéptido ("proteína recombinante") codificado por un polinucleótido recombinante. "Medios recombinantes" también abarca la ligadura de ácidos nucleicos que tienen diversas regiones codificadoras o dominios o secuencias promotoras de diferentes fuentes en un casete de expresión o vector para expresión de, por ejemplo, expresión inducible o constitutiva de una proteína de fusión que comprende un dominio de translocación de la invención y una secuencia de ácido nucleico amplificada que usa un cebador de la invención.

El ácido nucleico y las secuencias de aminoácidos que se identifican y/o utilizan en la presente memoria se enumeran a continuación:

Secuencia objetivo de ARN guía (SEQ ID NO: 1 ADN)

SEQ ID NO: 1

5

20

ctgcaatctcagttcagggcc

ADN donante para la reparación homóloga dirigida (SEQ ID NO: 2 ADN)

SEQ ID NO: 2

tgatctgtactgcagcaatagtaatcataacttaagagacctccaattgtgttttgaaaatggcaaagtgctggtcacaagatggctgggg aagccgagagagagtttattattattgctccatctactaacaaatttacatctccccatccctcatttctccttggctgcctaaggcatcatgg ttaccgtagcagcagatgctgatgatgctccaggggacggcaaggtgaaactgagccagttccagtcctcacctcccatactctt tccaggccagggtgagatggtctgaagctcagtctctggtcaggtcccccactctgtcttggatcatttagacccgcggccgcgcgc geeteggaattegattgaagtteetatteegaagtteetattetetagaaagtataggaactteggtgtggaaagteeceaggeteeceag caggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgccctaactccgcccatcccgccctaactccgcc agtgaggaggettttttggaggectaggettttgeaaaaagettgeatgeetgeaggteggecgeeaegaceggtgeegeeaeeatee cctgacccacgccctgaccctcacaaggagacgaccttccatgaccgagtacaagcccacggtgcgcctcgccacccgcgacg acgtcccccgggccgtacgcaccctcgccgccgcgttcgccgactaccccgccacgcgccacaccgtcgacccggaccgccacatcgagcgggtcaccgagctgcaagaactettectcacgcgcgtcgggctcgacatcggcaaggtgtgggtcgcggacgacggcgcc gcggtggcggtctggaccacgccggagagcgtcgaagcgggggggtgttcgccgagatcggcccgcgcatggccgagttgagc ggttcccggctggccgcgcagcaacagatggaaggcctcctggcgcaccggcccaaggagcccgcgtggttcctggccacc gteggegtetegecegaeeaeeagggeaagggtetgggeagegeegtegtgeteeeeggagtggaggeggeegagegeegg ggtgcccgcettcctggagacctccgcgccccgcaacctccccttctacgagcggctcggcttcaccgtcaccgccgacgtcgaggt ggagcgaccaccatggctccgaccgaagccacccggggcggccccgccgacccgcacccgcccccgaggccaccgac lagitattaatagtaatcaattaeggggteattagtieatageeeatatatggagtteegegttaeataacttaeggtaaatggeeegeetgg ctgaccgcccaacgaccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatg ggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgcccctattgacgtcaatgacggtaa atggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggt gatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatggga gtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgcccattgacgcaaatgggcggtaggcgtgtacggt gcctggttgccgtggaaacaggttccactgcggacaaaggaggagctgggtcctgcttctcctctggtcttgtcgatgaggatttttag accgtggagactgcgctgccctgccctgcacctaccctcactctccgtgttctcactaaggtggaaattgccttccctcactactgacga gaccatgtgtaaaagegtgaccacagatgagtggaagaaagtettetatgagaagatggaggaggcaaageeggetgacagetggg accteateatagaccceaaccteaageacaatgtgetgagccetggttggaageagtacctggaattgcatgctteaggeaggtgagta geccaggaaagtggateeetgeaggeegeetetaggteeetagetetggggeaeetteeaaggagaggaagattaegtagaaeeea agtgtttagetteaateteactattaggetggegtagaetggaagteagagaaagagteectaaetgggaaetaegaeaettgagttgga

 $ctacacactga cattttacatattttctattttaacagtctcttaaaaagtagtttaaaccagagaagaaggagtttgaggcccactgggggt\\ cgagacgtccgtgctctggtcctgggaccggtttaaatctatttaa$

Olfr741 de ratón (SEQ ID NO: 3 ADN; SEQ ID NO: 4 PROTEÍNA)

SEQ ID NO: 3

SEQ ID NO: 4

mktlsspsnsstitgfillgfaypregqillfviffivyililmgnasiicavycdqrlhtpmylllanfsfmeigyvtstvpnmlanfls dtkvisfsgcflqfyfffsfgstecfflavmafdrylaicrplhypslmtgrlrntlvtscwvlgflwfpvpiiiisqmsfcgsriidhflc dpgpllalacsrvplievfwsiimsmllvipflfimgtyilvlravfrlpsregqkkafstcgshltvvslfycsvmimylsptsehea gmqklvtlfysvgtpllnpmiyslrnkdmknalqkilrt

Olfr742 de ratón (SEQ ID NO: 5 ADN; SEQ ID NO: 6 PROTEÍNA)

SEQ ID NO: 5

5

SEQ ID NO: 6

mktlsspsnsstitgfillgfpcpregqillfvtffivyililmgnasiicavycdqslhtpmyfllanfsfleiwyvtstvpnmlanflsd tkvisfsgcflqfyfffsfgstecfflavmafdrylaicrplhypslmtghlcnilviscwvlgflwfpvpiiiisqmsfcgsriidhflc dpgpllalacsraplmevfwtiimsmllvipflfimgtyilvlravfrlpsrdgqkkafstcgshltvvslfycsvmkmylsptsehe agmqklvtlfysvgtpllnpviyslrnkdmknalqkilrt

Olfr96 de ratón (SEQ ID NO: 7 ADN; SEQ ID NO: 8 PROTEÍNA)

SEQ ID NO: 7

atgggaat cettee a caggaaat caa act g teactgagttt g tacttett g gtttee atgaagtee ct g g ct g cae cteet gtttttttet g teactgagt g cae cteet gtttttttet g teactgagt g cae cteet g g cteet g g cteet g g cae cteet g g cteet g g cae cteet g g cteet g cteet g g cteet g ctegt t cac cate ctetat geet ceat cate a cag ggaa cat get catt geag t ggt ggt gag et ce cag ag get t cae a cae ceat gt a cate cate at get cate a cate at get cate a cate a cate a cate at get cate a cate

tegea atttgte accetet acgataccea cacete atggggeet caatggtgeet gggtttgtget cacagtet gget tet ggette at the state of the s

ggtagatggactagttgttgctctgatggcccagttgagattctgtggcccaacttagttgatcacttttactgtgatttttcacctttgatgg

gtgtecacgttctatggaacactcatggtattgtacattgtgccctctgctgttcattctcagetcctctccaaggtcattgccctgctctaca

cagtggtcactcccatcttcaaccctgtcatctacaccttgaggaaccaggaggtgcagcaggactaagaaggcttctctactgcaaa

ccaactgaaatgtga

SEQ ID NO: 8

Mgilstgnqtvtefvllgfhevpglhllffsvftilyasiitgnmliavvvvssqrlhtpmyfflvnlsfieivytstvvpkmlegflqea

tisvagellqffvfgslatdeefllavmaydrylaichplryphlmgpqwelglvltvwlsgfmvdglvvalmaqlrfegpnlvdh

fycdfsplmvlacsdtqvaqvttfvlsvvfltvpfglvlisyaqivvtvlrvpsgtrrtkafstcsshlavvstfygtlmvlyivpsavhs

qllskviallytvvtpifnpviytlrnqevqqalrrllyckptem

OR11A1 humano (SEQ ID NO: 9 ADN; SEQ ID NO: 10 PROTEÍNA)

SEQ ID NO: 9

atggaaattgtctccacaggaaacgaaactattactgaatttgtcctccttggcttctatgacatccctgaactgcatttcttgttttttattgtation at the second of the seco

t cactget g tetatg tet teat category a tatget g at tattg tag cagtg g t taget te cacagagg et ceacaa acceat g tatatt tt taget g to taget g tag

cttggcgaatetgtcettcetggatattctctacacctccgcagtgatgccaaaaatgctggagggcttcctgcaagaagcaactatctct

ggtagatggactggttgtggccctggtggcccagctgaggttctgtggcccaaccacattgaccagttttactgtgactttatgcttttcg

getgtagtgaceacattetatggaacgetcatgatettttatgttgcaccetetgetgtccatteccagetcetetccaaggtettetecetge

aaacaaactgaaacacttgattga

5

SEQ ID NO: 10

Meivstgnetitefvllgfydipelhflffivftavyvfiiignmliivavvssqrlhkpmyiflanlsfldilytsavmpkmlegflqe

atisvagellqffifgslataeelllavmaydrylaicyplhypllmgprrymglvvttwlsgfvvdglvvalvaqlrfcgpnhidqf

ycdfmlfvglacsdprvaqvttlilsvfcltipfgliltsyarivvavlrvpagasrrrafstcsshlavvttfygtlmifyvapsavhsqll

skvfsllytvvtplfnpviytmrnkevhqalrkilcikqtetld

Olfr740 de ratón (SEQ ID NO: 11 ADN; SEQ ID NO: 12 PROTEÍNA)

SEQ ID NO: 11

cct ctttgtget ctt ctc cattgt ctacct gettaccet cattgggeaa caettgeat cat ctttgeagtatget gggat cagaga ctccaeae

acceat gtacetact getggccaact tetect teet ggagatet ggtat gttacet ceacagtecceaa cat gtt ggccaatt teet et et gagatet ggtat gttacet ceacagtecceaa cat gtt ggccaatt teet et et gagatet ggtat gttacet ceacagtecceaa cat gtt ggccaatt teet et et gagatet ggtat gttacet ceacagtecceaa cat gtt ggccaatt teet et et gagatet ggtat gtt get gagatet ggtat ggtat

caccaaggtcatctctttctctggatgcttcctgcagttctatttcttctccttgggttctacagaatgccttttcctggcagtcatggcattt

gategatacettgecatctgtaggccactacattatcctgetctcatgactgggagcctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctggtgctgctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctggtgctgctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctgggtgctctgcaacatccttgtgatcagttgctggatcagttgctgcaacatccttgctgatcagttgctggatcagttgctgcaacatccttgctgatcagttgctggatcagttgctgctgcaacatccttgctgatcagttgctggatcagttgctgatcagt

tggtttcctctggttccctgttcccatcatcatcatctcccagatgtccttctgtgggtccagaattatagaccacttcctgtgtgacccaggc

atgggatet tatac attggteet gag ag et gtgtte ag ag tteet te aag ag attggac aan aan ag gett te te eact tgeggatet eatet the sum of the

cacagtagttttactcttttatggctcagtgatgataatgtatctaagcccgacctctgagcatgaagctggaatgcagaagcttgtgactc

tattttattctgtggttactccactcattaatcctgtgatatacagtctgaggaacaaggatatgaaacatgccctgcagaagattttaagaa

cataa

SEQ ID NO: 12

mktfsspinsstttgfillgfpcpregqillfvlfsivylltlmgntciifavcwdqrlhtpmylllanfsfleiwyvtstvpnmlanflsd

tkvisfsgcflqfyfffslgsteclflavmafdrylaicrplhypalmtgslcnilviscwvlgflwfpvpiiiisqmsfcgsriidhflcd pgpllaltcsraplmevfwtiitslilfvpflfimgsytlvlravfrvpsrdgqkkafstcgshltvvllfygsvmimylsptseheag

mqklvtlfysvvtplinpviyslrnkdmkhalqkilrt

OR1A1 humano (SEQ ID NO: 13 ADN; SEQ ID NO: 14 PROTEÍNA)

SEQ ID NO: 13

at gagggaa aa taac cag to ctctac act ggaat to at cet cet gggagt tact gg to ag gaac ag gaac ag gaat to to tacact contains a containing a containing

tettgtteatttaccccateacattgattggaaacctgcteategtectageeatttgctetgatgttegeetteacaaccccatgtattttetee

ttgccaacctctccttggttgacatcttcttctcatcggtaaccatccctaagatgctggccaaccatctctttgggcagcaaatccatctcttt

gccate age cgcccact t cactaca caa caattat gag te caegg tett gt at et gget tatt geg tett gg tett gg te tatt geg t

atgecetececcacactetgeteacagetagtetgteettetgtggcaaccaggaagtggccaacttetactgtgacattaccccettget

at attegag tete cacage tete cagge te cacage aggregate caagge cette te cacet g t get the cacet ac get the cacage teterange to the cacage teterange at the cacage term of the cacage ter

tetttgtattatggtacagtcatgggcacgtatttccgccctttgaccaattatagcctaaaagacgcagtgatcactgtaatgtacacggc

agtgaccccaatgttaaatcctttcatctacagtetgagaaatcgggacatgaaggctgccctgcggaaactcttcaacaagagaatctc

ctcgtga

SEO ID NO: 14

mrenngsstlefillgytgggegedffyilflfiypitlignllivlaicsdyrlhnpmyfllanlslydiffssytipkmlanhllgsksis

fggcltqmyfmialgntdsyilaamaydravaisrplhyttimsprsciwliagswvignanalphtlltaslsfcgnqevanfycdi tpllklscsdihfhvkmmylgvgifsvpllciivsyirvfstvfqvpstkgvlkafstcgshltvvslyygtvmgtyfrpltnyslkda

vitvmytavtpmlnpfiyslrnrdmkaalrklfnkriss

Etiqueta Flag (SEQ ID NO: 15 ADN; SEQ ID NO: 16 PROTEÍNA)

SEQ ID NO: 15

gattacaaggacgacgacgataag

SEQ ID NO: 16

dykddddk

Etiqueta Rho (SEQ ID NO: 17 ADN; SEQ ID NO: 18 PROTEÍNA)

SEQ ID NO: 17 atgaacgggaccgagggcccaaacttctacgtgcctttctccaacaagacgggcgtggtg

SEQ ID NO: 18

mngtegpnfyvpfsnktgvv

Etiqueta Lucy (SEQ ID NO: 19 ADN; SEQ ID NO: 20 PROTEÍNA)

SEQ ID NO: 19

10 atgagaccccagatcctgctgctcctggccctgctgaccctaggcctggct

SEQ ID NO: 20 mrpqillllalltlgla

Ejemplos

Los siguientes ejemplos son ilustrativos para la invención.

15 **Ejemplo 1**

20

25

30

35

40

5

Estrategia de edición del genoma para inducir la activación constitutiva del gen de RTP1 endógeno en células HEK293T.

Se describe una estrategia para desarrollar una expresión funcional mejorada del receptor de olor en el sistema de expresión heterólogo. Aprovechando una nueva tecnología de edición del genoma llamada CRISPR/Cas9, un gen de RTP1 endógeno que está silenciado (inactivo) en las células HEK293T normales, se activa de manera específica y constitutiva mediante la introducción de un promotor constitutivo (CMV) corriente arriba de su secuencia de codificación. Figura 1) El gen de RTP1 se encuentra en el cromosoma 3 y se muestra la secuencia de ADN alrededor de su sitio de inicio. La endonucleasa Cas9 está dirigida por un ARN guía (gRNA) de 20 pares de bases (pb) homólogo al objetivo. Tras la entrega a las células (GeneArt CRISPR Nuclease (enriquecido con CD4) Vector Kit, cat # A21175), la molécula de ARN guía y la proteína Cas9 forman un complejo activo que induce la ruptura de ADN de doble cadena deseada (DSB) corriente arriba de la secuencia de codificación. Los cuadros indican el gen de RTP1 en el cromosoma 3 (cuadro lleno, secuencia de codificación (CDS); cuadro abierto, región no traducida (UTR) en el exón). La supuesta región promotora corriente arriba del gen de RTP1 está inactiva en las células HEK293T. Se muestra la secuencia objetivo de ARN guía (SEQ ID NO: 1) entre la posición -150 y -131 y un Motivo Adyacente Protospacer (PAM) desde -153 hasta -151 desde el codón de inicio (ATG) respectivamente. Figura 1) El sitio DSB para la nucleasa Cas9, 3pb lejos del motivo PAM, que se especifica por un triángulo, permite que se inserte un ADN donante (SEQ ID NO: 2). Figura 2) Se muestra un esquema del procedimiento de inserción del promotor CMV. La configuración superior muestra el locus del gen de RTP1 antes de la modificación y el esquema inferior muestra el locus RTP1 después de que un ADN donante se dirige al sitio DSB mediante Reparación por Homología Directa (HDR). El ADN del donante está compuesto por un brazo de homología 5', un casete de selección de puromicina flanqueado por FRT (Objetivo de Reconocimiento a Flipasa), el promotor CMV y un brazo de homología 3'. La integración del promotor CMV corriente arriba del gen de RTP1 se obtiene luego por el mecanismo celular HDR inherente a las células eucariotas. Un plásmido donante que contiene dos ADN se estira homólogo a las secuencias a cada lado del punto de entrada deseado, flanqueando el casete de selección de resistencia a la puromicina (Puro^r) y el ADN del CMV se cotransfecta en células HEK293T. El HDR resulta en la introducción de Puror y CMV corriente arriba de la secuencia de codificación de RTP1. El casete de selección de puromicina se puede retirar posteriormente mediante el uso de la enzima Flipasa.

Ejemplo 2

Selección de una línea celular modificada que expresa endógenamente el gen de RTP1.

Varias etapas de control ayudan a caracterizar la modificación de la línea celular y su integridad. Figura 3) Muestra un esquema de los alelos tipo salvaje y los recombinados. Las líneas grises indican las posiciones relativas del amplicón de los resultados experimentales de PCR y RT-PCR para el genotipado de ADN y para los controles de expresión de ARN, respectivamente (no a escala). Figura 4) Se extrae el ADN genómico de la línea celular resistente a la puromicina y se realiza una PCR que discrimina entre el tipo salvaje no recombinado (WT) y las líneas celulares modificadas (Mod.). La PCR 1 amplifica una banda de 2,0 kb solo en células HEK293T de tipo salvaje pero no en una línea celular modificada. La línea modificada debería producir una banda de 4,0 kb con la PCR 1 pero no probablemente debido a

la longitud y la complejidad de la estructura genómica. Los resultados de genotipado para la línea celular modificada no pudieron producir la banda de 2,0 kb que indica una integración homocigótica del promotor CMV. La integración adecuada del ADN del donante se probó adicionalmente con la PCR 2 y 3, como se indica. Figura 5) Después de la extracción del ARNm y la síntesis de ADNc, se realiza un experimento de RT-PCR para demostrar que el ARNm de RTP1 se expresa específicamente en la línea celular modificada pero no en las células HEK293T originales. Esto confirma que el promotor de CMV que se integró en el locus genómico objetivo conduce adecuadamente la expresión del gen de RTP1. La especificidad de las bandas de RT-PCR se confirmó por secuenciación directa de las bandas amplificadas. La transcripción reversa negativa (RT-) y las condiciones de PCR y GAPDH indican la ausencia de ADN genómico contaminante y la presencia de ADNc en todas las muestras, respectivamente.

10 Ejemplo 3

15

20

25

35

40

45

50

Caracterización de la expresión de la proteína RTP1.

La expresión de la proteína RTP1 en la línea celular modificada seleccionada se determinó mediante análisis de transferencia Western usando un anticuerpo específico para RTP1. Una forma de proteína larga (RTP1L) y una corta (RTP1S) se pueden originar a partir del gen de RTP1 endógeno. La estrategia de modificación del genoma que se describe en la presente memoria implicó la introducción del promotor CMV corriente arriba del codón de inicio de RTP1L para evitar cualquier modificación de la secuencia de codificación endógena; por lo tanto, se esperaba que RTP1L se expresara. Sin embargo, los resultados indican que la línea celular modificada estaba fuertemente sesgada hacia la expresión de RTP1S, lo que sugiere que el gen de RTP1 endógeno expresa preferentemente la versión corta sin edición del genoma adicional. Esta última es la versión preferida, ya que se sabe que promueve mejor la expresión del receptor de olor en la superficie celular. Figura 6) muestra las transferencias Western de la proteína RTP1. Las puntas de flecha indican los tamaños de proteína esperados para RTP1S - 25 kDa, RTP1L - 28 kDa y la proteína de control β-actina - 42 kDa. Se muestra la ausencia de la proteína RTP1 en una línea celular HEK293T de tipo salvaje (WT) y la presencia de RTP1S en la línea celular modificada (Mod.). Sorprendentemente, se puede ver una banda mucho más fuerte para RTP1S en comparación con RTP1L. La extracción de proteína de membrana se preparó de acuerdo con el kit de extracción de proteína de membrana Mem-Per Plus (Pierce, cat # 89842). Se utilizó como marcador de peso Chameleon Duo Pre-stained (LiCor, cat#92860000). El etiquetado se realizó con los siguientes anticuerpos primarios: Anti-RTPI de conejo (Invitrogen, cat#PA5-24028) y anti-β-actina de ratón (Pierce, cat#PIMA515739). La detección se realizó con los siguientes anticuerpos secundarios: anti-conejo de cabra (LiCor cat#925-32211) y anti-ratón de cabra (LiCor cat#925-68070). Las imágenes se realizaron en un Odyssey CLx (LiCor).

30 Ejemplo 4

Caracterización funcional de varios receptores de olor en la línea celular modificada.

Se realizaron experimentos de dosis-respuesta funcional para evaluar el nivel de mejora funcional de la actividad de los receptores de olor en la línea celular modificada. Los receptores de olor se modificaron en su N-terminal con secuencias o etiquetas cortas de polipéptidos [por ejemplo, Flag (SEQ ID NO: 15), Rho (SEQ ID NO: 17; 20 primeros aminoácidos del receptor de rodopsina bovina) o Lucy (SEQ ID NO: 19)], expresado transitoriamente en células WT o HEK293T modificadas, y se estimuló con compuestos olorosos para determinar la actividad de los receptores. Figuras 7 y 8) Usando un ensayo de unión a olores basado en células, se probó la actividad de Olfr741 (SEQ ID NO: 4) y Olfr742 (SEQ ID NO: 6) para indol en el diseño de la línea celular RTP1 y se comparó con HEK293T que carece de la expresión de la proteína RTP1. Los receptores de olor se transfectaron en ambas líneas celulares y se expusieron a concentraciones crecientes de indol. La actividad inducida por olor se detectó midiendo el nivel de aumento de AMPc en el citosol usando un kit basado en HTRF (CisBio, kit cAMP dynamic 2, cat#62AM4PEJ). Figura 9 y 10) Usando el mismo ensayo de unión a olores basado en células, se probó la actividad de Olfr96 (SEQ ID NO: 8) y OR11A1 (SEQ ID NO: 10) para vulcanólido en el diseño de la línea celular de expresión de RTP1 y se comparó con HEK293T que carece de la expresión de la proteína RTP1. La actividad de Olfr740 (SEQ ID NO: 12) para indol también se probó en ambos fondos celulares. Se registra un aumento de la actividad del receptor dependiente de la dosis para todos los OR en la línea celular RTP1 modificada y no en la línea celular de control no modificada que carece de expresión de RTP1. Además, la actividad de OR1A1 (SEQ ID NO: 14) para carvona- (-) se probó en ambos fondos celulares. Aunque OR1A1 se puede expresar en HEK293T regular, se registra un aumento más potente de la actividad del receptor dependiente de la dosis en la línea celular RTP1 modificada y se compara con la línea celular de control no modificada que carece de expresión de RTP1.

Listado de secuencias

<110> Firmenich SA

<120> Líneas celulares para el cribado de receptores de aroma y olor

<130> 81455-95501

55 <150> 62/173,762

<151> 2015-06-10

	<150> 62/221,580 <151> 2015-09-21		
	<160> 20		
	<170> PatentIn versión 3.5		
5	<210> 1 <211> 21 <212> ADN <213> artificial		
10	<220> <223> Secuencia objetivo del ARN guía		
	<400> 1 ctgcaatctc agttcagggc c 21		
15	<210> 2 <211> 3628 <212> ADN <213> artificial		
	<220> <223> ADN donante para reparación por ho	omología directa	
	<400> 2		
	ggggttttat ggaagagtct tacttctctt	ttctttcatc tatattttgt	atttttcta 60
	gaataaaccc atatgatttt ttaaaaggaa	aaataattta ttaaaaatag	cagcagaggc 120
	atgtatagta aaggctgttt tgcctgtggg	tggtgctcct cttctgcgct	tctataatca 180
	gcttggaaat aatcttgtct gctcctgcct	ggctgatgca atgctcctac	ctttgtgcac 240
	aggtggctgt tcttgcacaa ggccattgca	gcatggatcc tattgcacag	ttattcagta 300
	cacagtcagc tacaagcact gacatagagc	ttggcacatg tctgcaaacc	ctacccacat 360
	gctcggatat gtttgaaatg aatgaattaa	tgaaccggtc tggggtcaac	agcttgaatt 420
	tgtatacagg ctccgccatt tataggctag	gtgagtccta ggctcctgat	ctgtactgca 480
	gcaatagtaa tcataactta agagacctcc	aattgtgttt tgaaaatggc	aaagtgctgg 540
	tcacaagatg gctggggaag ccgagagaga	gtttattatt attgctccat	ctactaacaa 600
	atttacatct ccccatccct catttctcct	tggctgccta aggcatcatg	gttaccgtag 660
20	cagccagatg ctgatgatgc ctccagggga	cggcaaggtg aaactgagcc	agttcccagt 720

cctcacctcc	ccatactctt	tccaggccag	ggtgagatgg	tctgaagctc	agtctctggt	780
caggtccccc	actctgtctt	ggatcattta	gacccgcggc	cgcggcgcgc	ctcggaattc	840
gattgaagtt	cctattccga	agttcctatt	ctctagaaag	tataggaact	tcggtgtgga	900
aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	960
accatagtcc	cgcccctaac	tccgcccatc	ccgcccctaa	ctccgcccag	ttccgcccat	1020
tctccgcccc	atggctgact	aattttttt	atttatgcag	aggccgaggc	cgcctcggcc	1080
tctgagctat	tccagaagta	gtgaggaggc	ttttttggag	gcctaggctt	ttgcaaaaag	1140
cttgcatgcc	tgcaggtcgg	ccgccacgac	cggtgccgcc	accatcccct	gacccacgcc	1200
cctgacccct	cacaaggaga	cgaccttcca	tgaccgagta	caagcccacg	gtgcgcctcg	1260
ccacccgcga	cgacgtcccc	cgggccgtac	gcaccctcgc	cgccgcgttc	gccgactacc	1320
ccgccacgcg	ccacaccgtc	gacccggacc	gccacatcga	gcgggtcacc	gagctgcaag	1380
aactcttcct	cacgcgcgtc	gggctcgaca	tcggcaaggt	gtgggtcgcg	gacgacggcg	1440
ccgcggtggc	ggtctggacc	acgccggaga	gcgtcgaagc	gggggcggtg	ttcgccgaga	1500
teggeeegeg	catggccgag	ttgagcggtt	cccggctggc	cgcgcagcaa	cagatggaag	1560
gcctcctggc	gccgcaccgg	cccaaggagc	ccgcgtggtt	cctggccacc	gtcggcgtct	1620
cgcccgacca	ccagggcaag	ggtctgggca	gcgccgtcgt	gctccccgga	gtggaggcgg	1680
ccgagcgcgc	cggggtgccc	gccttcctgg	agacctccgc	gccccgcaac	ctccccttct	1740
acgagegget	cggcttcacc	gtcaccgccg	acgtcgaggt	gcccgaagga	ccgcgcacct	1800
ggtgcatgac	ccgcaagccc	ggtgcctgac	gcccgcccca	cgacccgcag	cgcccgaccg	1860
aaaggagcgc	acgaccccat	ggctccgacc	gaagccaccc	ggggcggccc	cgccgacccc	1920
gcacccgccc	ccgaggccca	ccgactctag	aggatcataa	tcagccatac	cacatttgta	1980
gaggttttac	ttgctttaaa	aaacctccca	cacctccccc	tgaacctgaa	acataaaatg	2040
aatgcaattg	ttgttgttaa	cttgtttatt	gcagcttata	atggttacaa	ataaagcaat	2100
agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	gaagttccta	ttccgaagtt	2160
cctattctct	agaaagtata	ggaacttcaa	tcactagtga	attcacgcgt	tgacattgat	2220
tattgactag	ttattaatag	taatcaatta	cggggtcatt	agttcatagc	ccatatatgg	2280
agttccgcgt	tacataactt	acggtaaatg	gcccgcctgg	ctgaccgccc	aacgaccccc	2340
gcccattgac	gtcaataatg	acgtatgttc	ccatagtaac	gccaataggg	actttccatt	2400
gacgtcaatg	ggtggagtat	ttacggtaaa	ctgcccactt	ggcagtacat	caagtgtatc	2460
atatgccaag	tacgccccct	attgacgtca	atgacggtaa	atggcccgcc	tggcattatg	2520
cccagtacat	gaccttatgg	gactttccta	cttggcagta	catctacgta	ttagtcatcg	2580
ctattaccat	ggtgatgcgg	ttttggcagt	acatcaatgg	gcgtggatag	cggtttgact	2640

cacggggatt	tccaagtctc	caccccattg	acgtcaatgg	gagtttgttt	tggcaccaaa	2700
atcaacggga	ctttccaaaa	tgtcgtaaca	actccgcccc	attgacgcaa	atgggcggta	2760
ggcgtgtacg	gtgggaggtc	tatataagca	gagctcgttt	agtgaaccgt	gtttaaacct	2820
cttcagagac	tccctcctcc	ccaagctctg	tcttctggca	acctgcctgg	ttgccgtgga	2880
aacaggttcc	actgcggaca	aaggagggag	ctgggtcctg	cttcctcctg	gtcttgtcga	2940
tgaggatttt	tagaccgtgg	agactgcgct	gccctgccct	gcacctaccc	tcactctccg	3000
tgttctcact	aaggtggaaa	ttgccttccc	tcactactga	cgagaccatg	tgtaaaagcg	3060
tgaccacaga	tgagtggaag	aaagtcttct	atgagaagat	ggaggaggca	aagccggctg	3120
acagctggga	cctcatcata	gaccccaacc	tcaagcacaa	tgtgctgagc	cctggttgga	3180
agcagtacct	ggaattgcat	gcttcaggca	ggtgagtagc	ccaggaaagt	ggatccctgc	3240
aggccgcctc	taggtcccta	gctctggggc	accttccaag	gagaggaaga	ttacgtagaa	3300
cccaagtgtt	tagcttcaat	ctcactatta	ggctggcgta	gactggaagt	cagagaaaga	3360
gtccctaact	gggaactacg	acacttgagt	tggatttcag	ctcttctact	gatcacctgt	3420
gttactcttc	ctctctgagt	cacaattttt	ccgtctggaa	aataaagaca	tagaatatac	3480
gtatgagtcc	tacacactga	cattttacat	attttctatt	ttaacagtct	cttaaaaagt	3540
agtttaaaac	cagagaagaa	gggtttgagg	cccactgggg	gtcgagacgt	ccgtgctctg	3600
gtcctgggac	cggtttaaat	ctatttaa				3628

5

<210> 3 <211> 928

<212> ADN

<213> ratón

<400> 3

atgaaaaccc tcagcagccc cagcaactcc agcaccatca ctggcttcat cctcttgggc 60 ttcgcctacc ccagggaggg gcaaattctc ctctttgtga tcttcttcat tgtttacata 120 ctcattctta tgggcaacgc ttccatcatc tgtgctgtgt actgtgatca gagactccac 180 acccccatgt accttctgct ggccaacttc tccttcatgg agattggata tgtcacctcc 240 300 acagtcccca acatgttggc caacttcctt tcagacacca aggtcatctc tttctctgga 360 tgcttcctgc agttctattt cttcttctcc tttggttcta cagaatgctt tttcctggca gtcatggcat ttgatcgata ccttgccatc tgtaggccac tacattatcc ttctctcatg 420 actgggcgcc tccgaaacac ccttgtgacc agttgctggg tgcttggttt cctctggttc 480 cctgtaccca tcatcatcat ctcccagatg tccttctgtg ggtccagaat tatagaccac 540 ttcctgtgtg acccaggccc tcttttggcc cttgcctgtt ccagagtccc attgatagag 600 gttttctggt ccattataat gtctatgctc ctggttattc ctttcctctt catcatggga 660

acttacatat	tggt	ccta	ag a	gctg	tgtt	t ag	actt	cctt	caa	gaga	agg	acaa	aaaa	ag		720
gctttctcca	cttg	cggg	tc t	catc	tcac	a gt	agtt	tcac	tct	ttta	ttg	ctca	gtga	tg		780
ataatgtatc	tgag	ccca	ac a	tctg	agca	t ga	ggcc	ggaa	tgc	agaa	gct	tgta	actc	ta	:	840
ttttattctg	tggg	taca	cc a	ctgc	ttaa	t cc	tatg	atat	aca	gtct	gag	gaac	aaag	at	:	900
atgaaaaatg	ccct	acag	aa g	attt	tga										!	928
<210> 4 <211> 311 <212> PRT <213> ratón																
<400> 4																
	Met 1	Lys	Thr	Leu	Ser 5	Ser	Pro	Ser	Asn	Ser 10	Ser	Thr	Ile	Thr	Gly 15	Phe
	Ile	Leu	Leu	Gly 20	Phe	Ala	Tyr	Pro	Arg 25	Glu	Gly	Gln	Ile	Leu 30	Leu	Phe
	Val	Ile	Phe 35	Phe	Ile	Val	Tyr	Ile 40	Leu	Ile	Leu	Met	Gly 45	Asn	Ala	Ser
	Ile	Ile 50	Cys	Ala	Val	Tyr	Cys 55	Asp	Gln	Arg	Leu	His 60	Thr	Pro	Met	Tyr
	Leu 65	Leu	Leu	Ala	Asn	Phe 70	Ser	Phe	Met	Glu	Ile 75	Gly	Tyr	Val	Thr	Ser 80
	Thr	Val	Pro	Asn	Met 85	Leu	Ala	Asn	Phe	Leu 90	Ser	Asp	Thr	Lys	Val 95	Ile
	Ser	Phe	Ser	Gly 100	Cys	Phe	Leu	Gln	Phe 105	Tyr	Phe	Phe	Phe	Ser 110	Phe	Gly
	Ser		Glu 115	-	Phe			Ala 120		Met	Ala		Asp 125	-	Tyr	Leu
	Ala	Ile 130	Cys	Arg	Pro	Leu	His 135	Tyr	Pro	Ser	Leu	Met 140	Thr	Gly	Arg	Leu
	Arg 145	Asn	Thr	Leu	Val	Thr 150	Ser	Cys	Trp	Val	Leu 155	Gly	Phe	Leu	Trp	Phe 160
	Pro	Val	Pro	Ile	Ile 165	Ile	Ile	Ser	Gln	Met 170	Ser	Phe	Cys	Gly	Ser 175	Arg

Ile Ile Asp His Phe Leu Cys Asp Pro Gly Pro Leu Leu Ala Leu Ala

Cys Ser Arg Val Pro Leu Ile Glu Val Phe Trp Ser Ile Ile 1 195 200 205	Met Ser
Met Leu Leu Val Ile Pro Phe Leu Phe Ile Met Gly Thr Tyr 210 215 220	Ile Leu
Val Leu Arg Ala Val Phe Arg Leu Pro Ser Arg Glu Gly Gln : 235	Lys Lys 240
Ala Phe Ser Thr Cys Gly Ser His Leu Thr Val Val Ser Leu 1 245 250	Phe Tyr 255
Cys Ser Val Met Ile Met Tyr Leu Ser Pro Thr Ser Glu His o 260 265 270	Glu Ala
Gly Met Gln Lys Leu Val Thr Leu Phe Tyr Ser Val Gly Thr 1 275 280 285	Pro Leu
Leu Asn Pro Met Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys 2 290 295 300	Asn Ala
Leu Gln Lys Ile Leu Arg Thr 305 310	
<210> 5 <211> 936 <212> ADN <213> ratón	
<400> 5	
atgaaaaccc tcagcagccc cagcaactcc agcaccatca ctggcttcat cctcttgggc	60
ttcccctgcc ccagggaggg gcaaatcctc ctctttgtga ccttcttcat tgtttacata	120
ctcattctta tgggcaatge ttecatcate tgtgctgtgt actgtgatca gagcctccac	180
acccccatgt acttcctgct ggccaacttc tccttcctgg agatctggta tgtcacctcc	240
acagtcccca acatgttggc caacttcctt tcagacacca aggtcatctc tttctctgga	300
tgcttcctgc agttctattt cttcttctcc tttggttcta cagaatgctt tttcctggca	360 4 20
gtcatggcat ttgatcgata ccttgccatc tgtaggccac tacattatcc ttctctcatg actgggcacc tctgcaacat ccttgtgatc agttgctggg tgcttggttt cctctggttc	480
cctgtaccca tcatcatcat ctcccagatg tccttctgtg ggtccagaat tatagaccac	540
ttcctgtgtg acccaggccc tcttttggcc cttgcctgtt ccagagcccc attgatggag	600
gttttctgga caattataat gtctatgctc ctggttattc ctttcctctt catcatggga	660

acttacatat	tggt	ccta	ag a	gctg	tgtt [.]	t ag	actt	cctt	caa	gaga [.]	tgg	acaa	aaaa	ag	•	720
gccttctcca	cttg	cggg	tc t	catc	tcac	a gt	agtt	tcac	tct	ttta [.]	ttg	ctca	gtga [.]	tg	•	780
aaaatgtatt	tgag	ccca	ac a	tctg	agca	t ga	agct	ggaa	tgc	agaa	gct	tgta	actc	ta	1	840
ttttattctg	tggg	tact	cc a	ctac	ttaa [.]	t ac	tgtg	atat	aca	gtct	gag	gaac	aaag	at	!	900
atgaaaaatg	ccct	gcag	aa g	attt	taag	a ac	ataa								!	936
<210> 6 <211> 311 <212> PRT <213> ratón																
<400> 6																
	Met 1	Lys	Thr	Leu	Ser 5	Ser	Pro	Ser	Asn	Ser 10	Ser	Thr	Ile	Thr	Gly 15	Phe
	Ile	Leu	Leu	Gly 20	Phe	Pro	Cys	Pro	Arg 25	Glu	Gly	Gln	Ile	Leu 30	Leu	Phe
	Val	Thr	Phe 35	Phe	Ile	Val	Tyr	Ile 40	Leu	Ile	Leu	Met	Gly 45	Asn	Ala	Ser
	Ile	Ile 50	Cys	Ala	Val	Tyr	Cys 55	Asp	Gln	Ser	Leu	His 60	Thr	Pro	Met	Tyr
	Phe 65	Leu	Leu	Ala	Asn	Phe 70	Ser	Phe	Leu	Glu	Ile 75	Trp	Tyr	Val	Thr	Ser 80
	Thr	Val	Pro	Asn	Met 85	Leu	Ala	Asn	Phe	Leu 90	Ser	Asp	Thr	Lys	Val 95	Ile
	Ser	Phe	Ser	Gly 100	Cys	Phe	Leu	Gln	Phe 105	Tyr	Phe	Phe	Phe	Ser 110	Phe	Gly
	Ser		Glu 115	-				Ala 120		Met		Phe		-	Tyr	Leu
	Ala	Ile 130	Cys	Arg	Pro	Leu	His 135	Tyr	Pro	Ser	Leu	Met 140	Thr	Gly	His	Leu
	Cys 145	Asn	Ile	Leu	Val	Ile 150	Ser	Cys	Trp	Val	Leu 155	Gly	Phe	Leu	Trp	Phe 160
	Pro	Val	Pro	Ile	Ile 165	Ile	Ile	Ser	Gln	Met 170	Ser	Phe	Суѕ	Gly	Ser 175	Arg

Ile Ile Asp His Phe Leu Cys Asp Pro Gly Pro Leu Leu Ala Leu Ala

	116 116	180		u cys	nsp	185	GIY	110	пец	пец	190	пец	ALG
	Cys Ser	Arg Ala	Pro Le	u Met	Glu 200	Val	Phe	Trp	Thr	Ile 205	Ile	Met	Ser
	Met Leu 210	Leu Val	Ile Pr	o Phe 215	Leu	Phe	Ile	Met	Gly 220	Thr	Tyr	Ile	Leu
	Val Leu 225	Arg Ala	. Val Ph 23	_	Leu	Pro	Ser	Arg 235	Asp	Gly	Gln	Lys	Lys 240
	Ala Phe	Ser Thr	Cys G1 245	y Ser	His	Leu	Thr 250	Val	Val	Ser	Leu	Phe 255	Tyr
	Cys Ser	Val Met 260	_	t Tyr	Leu	Ser 265	Pro	Thr	Ser	Glu	His 270	Glu	Ala
	Gly Met	Gln Lys 275	Leu Va	l Thr	Leu 280	Phe	Tyr	Ser	Val	Gly 285	Thr	Pro	Leu
	Leu Asr 290	Pro Val	Ile Ty	r Ser 295	Leu	Arg	Asn	Lys	Asp 300	Met	Lys	Asn	Ala
	Leu Glr 305	Lys Ile	Leu Ar	-									
<210> 7 <211> 942 <212> ADN <213> ratón													
<400> 7													
atgggaatcc	tttccaca	agg aaato	caaact g	tcact	gagt	ttgi	tacti	tct ·	tggt [.]	ttcc	at		60
gaagtccctg	ggctgcad	cat catgt	ttttt t	ctgtg	ttca	ccat	tcct	cta ·	tgcc	tcca	tc	:	120
atcacaggga	acatgcto	cat tgcaç	gtggtg g	tggtg	agct	CCC	agag	gct ·	tcac	acac	cc	:	180
atgtatttct	ttctggt	gaa tctgt	ccttc a	tagag	attg	tcta	atac	ctc	caca	gtgg	tg	:	240
cccaaaatgc	tggaagg	ctt cttac	aggag g	ccacc	atat	ctg	tggc	tgg ·	ctgc [.]	ttgc	tc	:	300
cagttctttg	tttttgg	ctc tctgo	gccaca g	atgag	tgtt	ttc	tgct	ggc ·	tgtg	atgg	ca	:	360
tatgatcgat	atctcgca	aat ttgto	caccct c	tacga	tacc	caca	acct	cat (gggg	cctc	aa	•	420
tggtgcctgg	ggttggt	gct cacaç	gtctgg c	tgtct	ggct	tcat	tggta	aga ·	tgga	ctag	tt	•	480
gttgctctga	tggccca	gtt gagat	tctgt g	gcccc	aact	tagi	ttgai	tca ·	cttt [.]	tact	gt		540
gatttttcac	ctttgate	ggt cctgo	gettge t	cagat	accc	aagt	tggc	cca (ggtg	acta	ca	•	600
tttgttctct	ctgtggtd	ett cctga	actgtc c	ccttt	gggc	tggt	ttct	gat	ctcc [.]	tatg	ct	(660

cagattgtag	tgac	tgtg	ct g	agag	ttcc	t tc	tggg.	acca	gaa	gaac	caa	ggcc	ttct	cc		720
acatgctcct	ctca	cctg	gc t	gtgg	tgtc	c ac	gttc	tatg	gaa	cact	cat	ggta	ttgt	ac		780
attgtgccct	ctgc	tgtt	ca t	tctc	agct	c ct	ctcc	aagg	tca	ttgc	cct	gctc	taca	ca	;	840
gtggtcactc	ccat	cttc	aa c	cctg	tcat	c ta	cacc	ttga	gga	acca	gga	ggtg	cagc	ag	:	900
gcactaagaa	ggct	tctc	ta c	tgca	aacc	a ac	tgaa	atgt	ga						:	942
<210> 8 <211> 313 <212> PRT <213> ratón																
<400> 8																
	Met 1	Gly	Ile	Leu	Ser 5	Thr	Gly	Asn	Gln	Thr 10	Val	Thr	Glu	Phe	Val 15	Leu
	Leu	Gly	Phe	His 20	Glu	Val	Pro	Gly	Leu 25	His	Leu	Leu	Phe	Phe 30	Ser	Val
	Phe	Thr	Ile 35	Leu	Tyr	Ala	Ser	Ile 40	Ile	Thr	Gly	Asn	Met 45	Leu	Ile	Ala
	Val	Val 50	Val	Val	Ser	Ser	Gln 55	Arg	Leu	His	Thr	Pro 60	Met	Tyr	Phe	Phe
	Leu 65	Val	Asn	Leu	Ser	Phe 70	Ile	Glu	Ile	Val	Tyr 75	Thr	Ser	Thr	Val	Val 80
	Pro	Lys	Met	Leu	Glu 85	Gly	Phe	Leu	Gln	Glu 90	Ala	Thr	Ile	Ser	Val 95	Ala
	Gly	Cys	Leu	Leu 100	Gln	Phe	Phe	Val	Phe 105	Gly	Ser	Leu	Ala	Thr 110	Asp	Glu
	Cys		Leu 115	Leu	Ala				_	_	_	Tyr		Ala	Ile	Cys
	His	Pro 130	Leu	Arg	Tyr	Pro	His 135	Leu	Met	Gly	Pro	Gln 140	Trp	Cys	Leu	Gly
	Leu 145	Val	Leu	Thr	Val	Trp 150	Leu	Ser	Gly	Phe	Met 155	Val	Asp	Gly	Leu	Val 160
	Val	Ala	Leu	Met	Ala 165	Gln	Leu	Arg	Phe	Cys 170	Gly	Pro	Asn	Leu	Val 175	Asp

	His	Phe	Tyr	Cys 180	Asp	Phe	Ser	Pro	Leu 185	Met	Val	Leu	Ala	Cys 190	Ser	Asp
	Thr	Gln	Val 195	Ala	Gln	Val	Thr	Thr 200	Phe	Val	Leu	Ser	Val 205	Val	Phe	Leu
	Thr	Val 210	Pro	Phe	Gly	Leu	Val 215	Leu	Ile	Ser	Tyr	Ala 220	Gln	Ile	Val	Val
	Thr 225	Val	Leu	Arg	Val	Pro 230	Ser	Gly	Thr	Arg	Arg 235	Thr	Lys	Ala	Phe	Ser 240
	Thr	Cys	Ser	Ser	His 245	Leu	Ala	Val	Val	Ser 250	Thr	Phe	Tyr	Gly	Thr 255	Leu
	Met	Val	Leu	Tyr 260	Ile	Val	Pro	Ser	Ala 265	Val	His	Ser	Gln	Leu 270	Leu	Ser
	Lys	Val	Ile 275	Ala	Leu	Leu	Tyr	Thr 280	Val	Val	Thr	Pro	Ile 285	Phe	Asn	Pro
	Val	Ile 290	Tyr	Thr	Leu	Arg	Asn 295	Gln	Glu	Val	Gln	Gln 300	Ala	Leu	Arg	Arg
	Leu 305	Leu	Tyr	Cys	Lys	Pro 310	Thr	Glu	Met							
<210> 9 <211> 948 <212> ADN <213> ser hun	nano															
<400> 9																
atggaaattg	tctc	caca	gg a	aacg	aaac	t at	tact	gaat	ttg	tcct	cct	tggc	ttct	at		60
gacatccctg	aact	gcat	tt c	ttgt	tttt	t at	tgta	ttca	ctg	ctgt	cta	tgtc	ttca [.]	tc	;	120
atcataggga	atat	gctg	at t	attg	tagc	a gt	ggtt	agct	ccc	agag	gct	ccac	aaac	cc	:	180
atgtatattt	tctt	ggcg	aa t	ctgt	cctt	c ct	ggat	attc	tct	acac	ctc	cgca	gtga [.]	tg	:	240
ccaaaaatgc	tgga	gggc	tt c	ctgc	aaga	a gc	aact	atct	ctg	tggc	tgg	ttgc	ttgc [.]	tc	:	300
cagttcttta	tctt	cggc	tc t	ctag	ccac	a gc	tgaa	tgct	tac	tgct	ggc	tgtc	atgg	ca		360
tatgaccgct																420
cggtacatgg																480
gtggccctgg	tggc	ccag	ct g	aggt [.]	tctg	t gg	cccc	aacc	aca	ttga	cca	gttt	tact	gt		540
gactttatgc	tttt	cgtg	gg c	ctgg	cttg	c to	ggat	ccca	gag	tggc	tca	ggtg	acaa	ct	,	600

5

660

ctcattctgt ctgtgttctg cctcactatt ccttttggac tgattctgac atcttatgcc

agaattgtgg	tggc	agtg	ct g	agag	ttcc	t gc	tggg	gcaa	gca	ggag	aag	ggct	ttct	cc		720
acatgctcct	ccca	ccta	gc t	gtag	tgac	c ac	attc	tatg	gaa	cgct	cat	gatc	tttt	at	•	780
gttgcaccct	ctgc	tgtc	ca t	taca	agct	c ct	ctcc	aagg	tct	tctc	cct	gctc	taca	ct	:	840
gtggtcaccc	ctct	cttc	aa t	cctg	tgat	c ta	tacc	atga	gga	acaa	gga	ggtg	catc	ag	:	900
gcacttcgga	agat	tctc	tg t	atca	aaca	a ac	tgaa	acac	ttg	attg	a				:	948
<210> 10 <211> 315 <212> PRT <213> ser hun	nano															
<400> 10																
	Met 1	Glu	Ile	Val	Ser 5	Thr	Gly	Asn	Glu	Thr 10	Ile	Thr	Glu	Phe	Val 15	Leu
	Leu	Gly	Phe	Tyr 20	Asp	Ile	Pro	Glu	Leu 25	His	Phe	Leu	Phe	Phe 30	Ile	Val
	Phe	Thr	Ala 35	Val	Tyr	Val	Phe	Ile 40	Ile	Ile	Gly	Asn	Met 45	Leu	Ile	Ile
	Val	Ala 50	Val	Val	Ser	Ser	Gln 55	Arg	Leu	His	Lys	Pro 60	Met	Tyr	Ile	Phe
	Leu 65	Ala	Asn	Leu	Ser	Phe 70	Leu	Asp	Ile	Leu	Tyr 75	Thr	Ser	Ala	Val	Met 80
	Pro	Lys	Met	Leu	Glu 85	Gly	Phe	Leu	Gln	Glu 90	Ala	Thr	Ile	Ser	Val 95	Ala
	Gly	Cys	Leu	Leu 100	Gln	Phe	Phe	Ile	Phe 105	Gly	Ser	Leu	Ala	Thr 110	Ala	Glu
	Cys		Leu 115	Leu	Ala				-	-	-	Tyr		Ala	Ile	Cys
	Tyr	Pro 130	Leu	His	Tyr	Pro	Leu 135	Leu	Met	Gly	Pro	Arg 140	Arg	Tyr	Met	Gly
	Leu 145	Val	Val	Thr	Thr	Trp 150	Leu	Ser	Gly	Phe	Val 155	Val	Asp	Gly	Leu	Val 160
	Val	Ala	Leu	Val	Ala 165	Gln	Leu	Arg	Phe	Cys 170	Gly	Pro	Asn	His	Ile 175	Asp

	Gln Ph	e Tyr	Cys 180	Asp	Phe	Met	Leu	Phe 185	Val	Gly	Leu	Ala	Cys 190	Ser	Asp
	Pro Ar	g Val 195		Gln	Val	Thr	Thr 200	Leu	Ile	Leu	Ser	Val 205	Phe	Cys	Leu
	Thr Il		Phe	Gly	Leu	Ile 215	Leu	Thr	Ser	Tyr	Ala 220	Arg	Ile	Val	Val
	Ala Va 225	l Leu	Arg	Val	Pro 230	Ala	Gly	Ala	Ser	Arg 235	Arg	Arg	Ala	Phe	Ser 240
	Thr Cy	s Ser	Ser	His 245	Leu	Ala	Val	Val	Thr 250	Thr	Phe	Tyr	Gly	Thr 255	Leu
	Met Il	e Phe	Tyr 260	Val	Ala	Pro	Ser	Ala 265	Val	His	Ser	Gln	Leu 270	Leu	Ser
	Lys Va	l Phe 275		Leu	Leu	Tyr	Thr 280	Val	Val	Thr	Pro	Leu 285	Phe	Asn	Pro
	Val II 29		Thr	Met	Arg	Asn 295	Lys	Glu	Val	His	Gln 300	Ala	Leu	Arg	Lys
	Ile Le	u Cys	Ile	Lys	Gln 310	Thr	Glu	Thr	Leu	Asp 315					
<210> 11 <211> 936 <212> ADN <213> ratón															
<400> 11															
atgaaaacct	tcagcag	jaaa o	atca	actc	c ag	cacc	acca	ctg	gctt	cat	tctc	ttgg	gc		60
ttcccctgcc	ccaggga	rada a	caaa	tcct	c ct	cttt	gtgc	tct	tctc	cat	tgtc	tacc	tg	:	120
cttaccctca	tgggcaa	cac t	tgca	tcat	c tt	tgca	gtat	gct	ggga	tca	gaga	ctcc	ac	:	180
acacccatgt	acctact	gct g	gcca	actt	c tc	cttc	ctgg	aga	tctg	gta	tgtt	acct	cc	:	240
acagtcccca	acatgtt	ggc c	aatt	tcct	c tc	tgac	acca	agg	tcat	ctc	tttc	tctg	ga	:	300
tgcttcctgc	agttcta	attt c	ttct	tctc	c tt	gggt [.]	tcta	cag	aatg	cct	tttc	ctgg	ca	:	360
gtcatggcat	ttgatc	gata c	cttg	ccat	c tg	tagg	ccac	taca	atta	tcc	tgct	ctca [.]	tg	•	420
actgggagcc															480
cctgttccca															540
ttcctgtgtg							_						_		600
gttttctgga	caattat	aac a	tctc	ttat	c ct	gttc	gttc	ctt	tcct	ctt	catc	atgg	ga	•	660

tcttatacat	tggt	cctg	ag a	gctg	tgtt	c ag	agtt	cctt	caa	gaga [.]	tgg	acaa	aaaa	ag	•	720
gctttctcca	cttg	cgga	tc t	catc	tcac	a gt	agtt	ttac	tct	ttta [.]	tgg	ctca	gtga [.]	tg		780
ataatgtatc	taag	cccg	ac c	tctg	agca	t ga	agct	ggaa	tgc	agaa	gct	tgtg	actc	ta	1	840
ttttattctg	tggt	tact	cc a	ctca	ttaa	t ac	tgtg	atat	aca	gtct	gag	gaac	aagg	at	9	900
atgaaacatg	ccct	gcag	aa g	attt	taag	a ac	ataa								!	936
<210> 12 <211> 311 <212> PRT <213> ratón																
<400> 12																
	Met 1	Lys	Thr	Phe	Ser 5	Ser	Pro	Ile	Asn	Ser 10	Ser	Thr	Thr	Thr	Gly 15	Phe
	Ile	Leu	Leu	Gly 20	Phe	Pro	Cys	Pro	Arg 25	Glu	Gly	Gln	Ile	Leu 30	Leu	Phe
	Val	Leu	Phe 35	Ser	Ile	Val	Tyr	Leu 40	Leu	Thr	Leu	Met	Gly 45	Asn	Thr	Cys
	Ile	Ile 50	Phe	Ala	Val	Cys	Trp 55	Asp	Gln	Arg	Leu	His 60	Thr	Pro	Met	Tyr
	Leu 65	Leu	Leu	Ala	Asn	Phe 70	Ser	Phe	Leu	Glu	Ile 75	Trp	Tyr	Val	Thr	Ser 80
	Thr	Val	Pro	Asn	Met 85	Leu	Ala	Asn	Phe	Leu 90	Ser	Asp	Thr	Lys	Val 95	Ile
	Ser	Phe	Ser	Gly 100	Cys	Phe	Leu	Gln	Phe 105	Tyr	Phe	Phe	Phe	Ser 110	Leu	Gly
	Ser		Glu 115	-	Leu			Ala 120		Met	Ala	Phe	Asp 125	-	Tyr	Leu
	Ala	Ile 130	Cys	Arg	Pro	Leu	His 135	Tyr	Pro	Ala	Leu	Met 140	Thr	Gly	Ser	Leu
	Cys 145	Asn	Ile	Leu	Val	Ile 150	Ser	Cys	Trp	Val	Leu 155	Gly	Phe	Leu	Trp	Phe 160
	Pro	Val	Pro	Ile	Ile 165	Ile	Ile	Ser	Gln	Met 170	Ser	Phe	Cys	Gly	Ser 175	Arg

Ile Ile Asp His Phe Leu Cys Asp Pro Gly Pro Leu Leu Ala Leu Thr

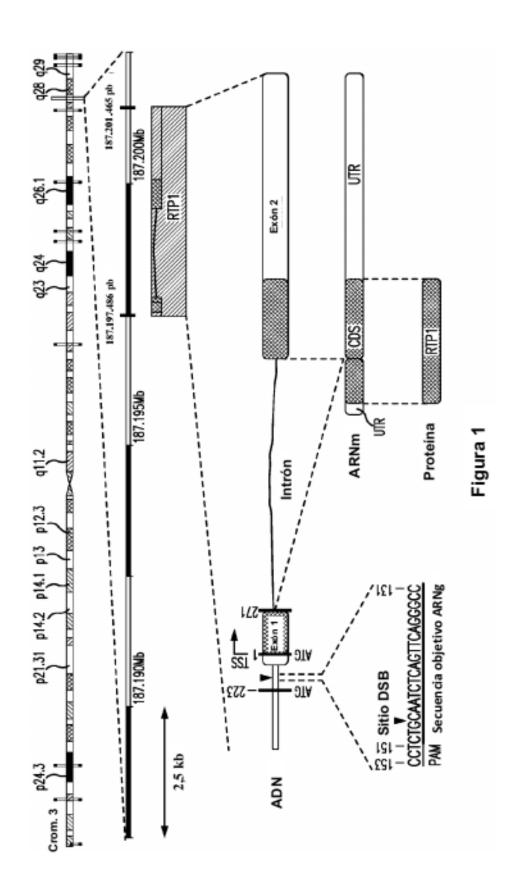
	Ile	Ile	Asp	His 180	Phe	Leu	Cys	Asp	Pro 185	Gly	Pro	Leu	Leu	Ala 190	Leu	Thr
	Cys	Ser	Arg 195	Ala	Pro	Leu	Met	Glu 200	Val	Phe	Trp	Thr	Ile 205	Ile	Thr	Ser
	Leu	Ile 210	Leu	Phe	Val	Pro	Phe 215	Leu	Phe	Ile	Met	Gly 220	Ser	Tyr	Thr	Leu
	Val 225	Leu	Arg	Ala	Val	Phe 230	Arg	Val	Pro	Ser	Arg 235	Asp	Gly	Gln	Lys	Lys 240
	Ala	Phe	Ser	Thr	Cys 245	Gly	Ser	His	Leu	Thr 250	Val	Val	Leu	Leu	Phe 255	Tyr
	Gly	Ser	Val	Met 260	Ile	Met	Tyr	Leu	Ser 265	Pro	Thr	Ser	Glu	His 270	Glu	Ala
	Gly	Met	Gln 275	Lys	Leu	Val	Thr	Leu 280	Phe	Tyr	Ser	Val	Val 285	Thr	Pro	Leu
	Ile	Asn 290	Pro	Val	Ile	Tyr	Ser 295	Leu	Arg	Asn	Lys	Asp 300	Met	Lys	His	Ala
	Leu 305	Gln	Lys	Ile	Leu	Arg 310	Thr									
<pre><210> 13 <211> 930 <212> ADN <213> ser humano</pre>																
<400> 13																
atgagggaaa ataaccagtc ctctacactg gaattcatcc tcctgggagt tactggtcag														60		
caggaacagg	aaga	tttc	tt c	taca	tcct	c tt	cttg	ttca	ttt	accc	cat	caca	ttga [.]	tt	;	120
ggaaacctgc tcatcgtcct agccatttgc							tgat	gttc	gcc	ttca	caa	cccc	atgt	:	180	
tttctccttg	ccaa	cctc	tc c	ttgg	ttga	c at	cttc	ttct	cat	cggt	aac	catc	ccta	ag	:	240
atgctggcca	acca	tctc	tt g	ggca	gcaa	a tc	catc	tctt	ttg	gggg	atg	ccta	acgc	ag	;	300
atgtatttca	tgat	agcc	tt g	ggta	acac	a ga	cagc	tata	ttt	tggc	tgc	aatg	gcat	at	:	360
gatcgagctg	tggc	catc	ag c	cgcc	cact [.]	t ca	ctac	acaa	caa	ttat	gag	tcca	cggt	ct		420
tgtatctggc	ttat	tgct	gg g	tctt	gggt	g at	tgga	aatg	cca	atgc	cct	cccc	caca	ct	•	480
ctgctcacag	ctag	tctg	tc c	ttct	gtgg	c aa	ccag	gaag	tgg	ccaa	ctt	ctac	tgtg	ac		540
attaccccct	tgct	gaag	tt a	tcct	gttc [.]	t ga	catc	cact	ttc	atgt	gaa	gatg	atgt	ac	,	600
ctaggggttg	gcat	tttc	tc t	gtgc	catt	a ct	atgc	atca	ttg	tctc	cta	tatt	cgag	tc		660

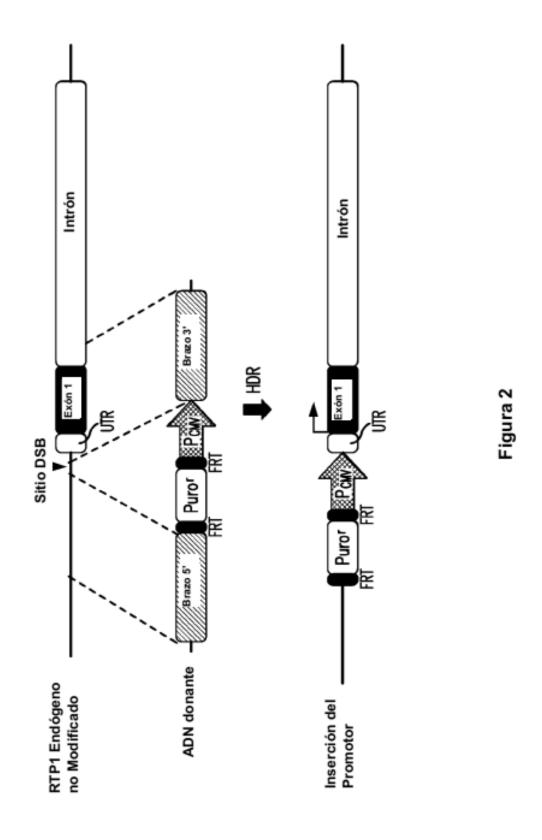
ttctccacag	tctt	ccag	gt t	cctt	ccac	c aa	gggc	gtgc	tca	aggc	ctt	ctcc	acct	gt		720
ggttcccacc	tcac	ggtt	gt c	tctt	tgta	t ta	tggt	acag	tca	tggg	cac	gtat [.]	ttcc	gc		780
cctttgacca	atta	tagc	ct a	aaag	acgc	a gt	gatc	actg	taa	tgta	cac	ggca	gtga	cc	;	840
ccaatgttaa	atcc	tttc	at c	taca	gtct	g ag	aaat	cggg	aca	tgaa	ggc ·	tgcc	ctgc	gg	:	900
aaactcttca	acaa	gaga	at c	tcct	cgtg	a									:	930
<210> 14 <211> 309 <212> PRT <213> ser humano																
<400> 14																
	Met 1	Arg	Glu	Asn	Asn 5	Gln	Ser	Ser	Thr	Leu 10	Glu	Phe	Ile	Leu	Leu 15	Gly
	Val	Thr	Gly	Gln 20	Gln	Glu	Gln	Glu	Asp 25	Phe	Phe	Tyr	Ile	Leu 30	Phe	Leu
	Phe	Ile	Tyr 35	Pro	Ile	Thr	Leu	Ile 40	Gly	Asn	Leu	Leu	Ile 45	Val	Leu	Ala
	Ile	Cys 50	Ser	Asp	Val	Arg	Leu 55	His	Asn	Pro	Met	Tyr 60	Phe	Leu	Leu	Ala
	Asn 65	Leu	Ser	Leu	Val	Asp 70	Ile	Phe	Phe	Ser	Ser 75	Val	Thr	Ile	Pro	Lys 80
	Met	Leu	Ala	Asn	His 85	Leu	Leu	Gly	Ser	Lys 90	Ser	Ile	Ser	Phe	Gly 95	Gly
	Cys	Leu	Thr	Gln 100	Met	Tyr	Phe	Met	Ile 105	Ala	Leu	Gly	Asn	Thr 110	Asp	Ser
	Tyr	Ile	Leu 115	Ala	Ala	Met	Ala	Tyr 120	Asp	Arg	Ala	Val	Ala 125	Ile	Ser	Arg
	Pro	Leu 130	His	Tyr	Thr	Thr	Ile 135	Met	Ser	Pro	Arg	Ser 140	Cys	Ile	Trp	Leu
	Ile 145	Ala	Gly	Ser	Trp	Val 150	Ile	Gly	Asn	Ala	Asn 155	Ala	Leu	Pro	His	Thr 160
	Leu	Leu	Thr	Ala	Ser 165	Leu	Ser	Phe	Суз	Gly 170	Asn	Gln	Glu	Val	Ala 175	Asn

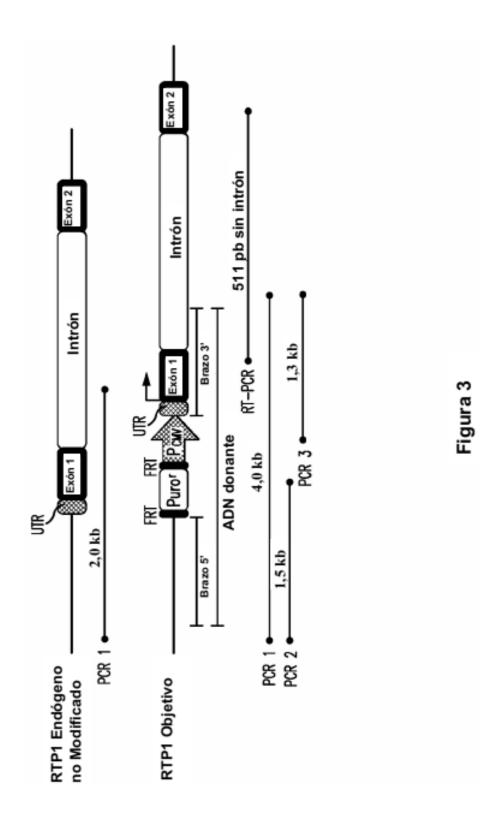
180

Phe Tyr Cys Asp Ile Thr Pro Leu Leu Lys Leu Ser Cys Ser Asp Ile

His Phe His Val Lys Met Met Tyr Leu Gly Val Gly Ile Phe Ser Val 200 Pro Leu Leu Cys Ile Ile Val Ser Tyr Ile Arg Val Phe Ser Thr Val 210 215 220 Phe Gln Val Pro Ser Thr Lys Gly Val Leu Lys Ala Phe Ser Thr Cys Gly Ser His Leu Thr Val Val Ser Leu Tyr Tyr Gly Thr Val Met Gly 250 Thr Tyr Phe Arg Pro Leu Thr Asn Tyr Ser Leu Lys Asp Ala Val Ile 265 Thr Val Met Tyr Thr Ala Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285 Ser Leu Arg Asn Arg Asp Met Lys Ala Ala Leu Arg Lys Leu Phe Asn 295 290 300 Lys Arg Ile Ser Ser <210> 15 <211> 24 <212> ADN 5 <213> artificial <220> <223> etiqueta Flag <400> 15 gattacaagg acgacgacga taag 24 10 <210> 16 <211>8 <212> PRT <213> artificial <220> <223> etiqueta Flag 15 <400> 16 Asp Tyr Lys Asp Asp Asp Lys 1 5 <210> 17 <211>60 20 <212> ADN <213> artificial <220> <223> etiqueta Rho <400> 17 25 atgaacggga ccgagggccc aaacttctac gtgcctttct ccaacaagac gggcgtggtg 60 <210> 18


```
<211> 20
         <212> PRT
         <213> artificial
         <220>
 5
         <223> etiqueta Rho
         <400> 18
                      Met Asn Gly Thr Glu Gly Pro Asn Phe Tyr Val Pro Phe Ser Asn Lys
                                                               10
                       Thr Gly Val Val
         <210> 19
         <211> 51
10
         <212> ADN
         <213> artificial
         <220>
         <223> etiqueta Lucy
15
         atgagacccc agatectget geteetggee etgetgacce taggeetgge t
                                                                 51
         <210> 20
         <211> 17
         <212> PRT
         <213> artificial
         <220>
20
         <223> etiqueta Lucy
         <400> 20
                      Met Arg Pro Gln Ile Leu Leu Leu Leu Ala Leu Leu Thr Leu Gly Leu
```


Ala


REIVINDICACIONES

- 1. Una célula que comprende un ADN donante introducido en el sitio objetivo genómico corriente arriba de un locus del gen de RTP1 endógeno, en la que el ADN donante comprende un promotor en el que el promotor impulsa la expresión del gen de RTP1, y en la que la célula se deriva de una línea celular HEK293 o HEK293T.
- 5 2. La célula según la reivindicación 1, que comprende además un ácido nucleico que codifica un receptor de olor.
 - 3. La célula según la reivindicación 2, en la que el receptor de olor se selecciona del grupo que consiste en receptores de olor de indol, escatol y almizcle.
 - 4. La célula según una cualquiera de las reivindicaciones 1-3, que comprende una proteína Cas o una proteína dCas fusionada a un dominio de activación transcripcional.
- 5. Un procedimiento para activar un gen de RTP1 endógeno en una célula eucariota, en el que la célula se deriva de una línea celular HEK293 o HEK293T, que comprende:
 - a. introducir un ARN guía complementario a un sitio genómico objetivo corriente arriba del gen de RTP1; y
 - b. introducir una proteína nucleasa Cas para producir un complejo con el ARN guía para formar un complejo de ARN guía-proteína Cas.
- 15 6. El procedimiento según la reivindicación 5, que comprende además la introducción de un ADN donante que comprende un promotor en el sitio genómico objetivo corriente arriba de un locus del gen de RTP1 endógeno en el que el promotor impulsa la expresión del gen de RTP1.
 - 7. El procedimiento según la reivindicación 5, en el que el complejo comprende además una proteína dCas9 fusionada a un dominio de activación transcripcional, en el que el dominio de activación impulsa la expresión del gen de RTP1.
- 20 8. El procedimiento según las reivindicaciones 5-7, en el que la proteína Cas es una proteína Cas9 o una nicasa Cas9.
 - 9. El procedimiento según la reivindicación 5, que comprende además la escisión de la secuencia de ácido nucleico objetivo adyacente a la secuencia de ARN guía con el complejo de ARN guía-proteína Cas.
- 10. El procedimiento según una cualquiera de las reivindicaciones 5-9, que comprende además la introducción de un ácido nucleico que codifica un receptor de olor en la célula.
 - 11. Un procedimiento de identificación de un compuesto o mezcla de compuestos que activa, imita, bloquea, inhibe, modula y/o mejora la actividad de un receptor olfativo en una célula no olfativa de acuerdo con la reivindicación 2, en el que la célula se deriva de una línea celular HEK293 o HEK293T y comprende un ADN donante introducido en el sitio objetivo genómico corriente arriba de un locus del gen de RTP1 endógeno, en el que el ADN donante comprende un promotor en el que el promotor impulsa la expresión del gen de RTP1, en el que el procedimiento comprende además:
 - a. poner en contacto el receptor, o una quimera o fragmento del mismo con un compuesto o mezcla de compuestos que activa, imita, bloquea, inhibe, modula y/o mejora el receptor; y
 - b. determinar si el compuesto tiene un efecto sobre la actividad del receptor.
- 35 12. El procedimiento según la reivindicación 11, en el que el receptor olfativo es del grupo que consiste en un receptor de almizcle y de mal olor.
 - 13. El procedimiento según la reivindicación 11, en el que el receptor de mal olor se selecciona de un receptor de escatol o indol, y en el que el receptor de almizcle se selecciona de un receptor de almizcle policíclico y de nitro almizcle.

40

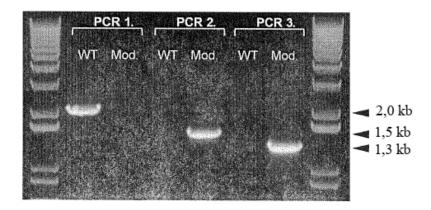


Figura 4

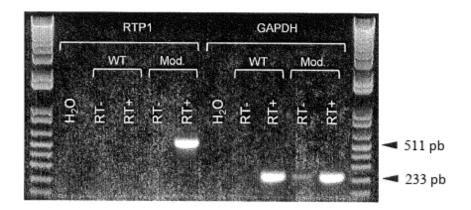


Figura 5

Figura 6

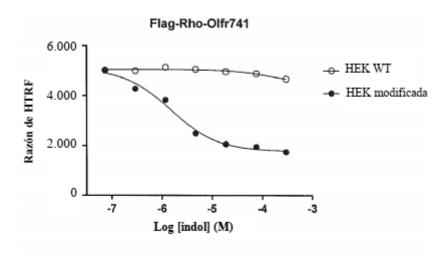


Figura 7

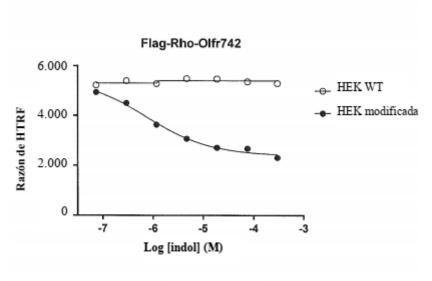
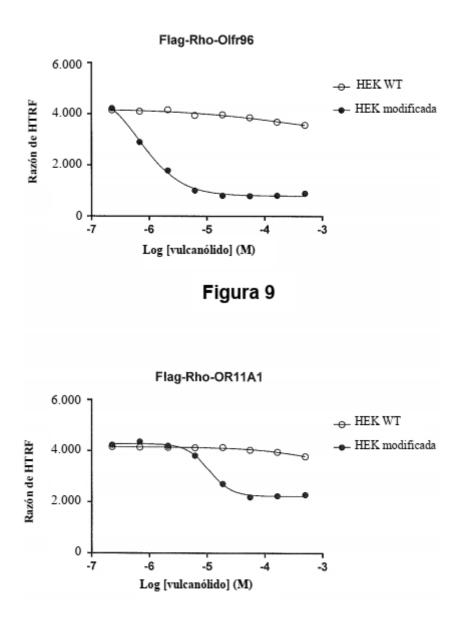
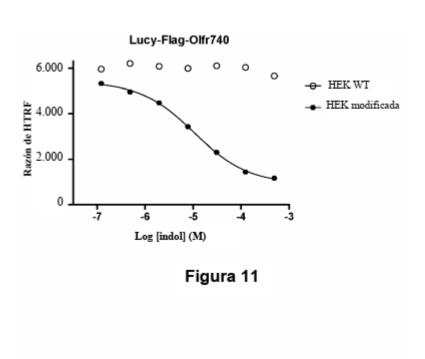
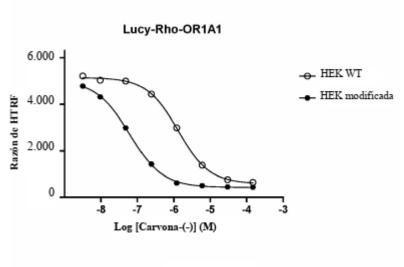





Figura 8

