

(12)

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 805 240

(51) Int. CI.:

(2006.01) H04B 7/185 (2006.01)

H04B 7/204

T3

TRADUCCIÓN DE PATENTE EUROPEA

PCT/US2016/030263 29.04.2016 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 10.11.2016 WO16179037

(96) Fecha de presentación y número de la solicitud europea: 29.04.2016 E 16724528 (1)

(97) Fecha y número de publicación de la concesión europea: 08.04.2020 EP 3289699

(54) Título: Traspaso para comunicación por satélite

(30) Prioridad:

01.05.2015 US 201562156063 P 17.09.2015 US 201514856933 28.04.2016 US 201615141641

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.02.2021

(73) Titular/es:

QUALCOMM INCORPORATED (100.0%) 5775 Morehouse Drive San Diego, CA 92121-1714, US

(72) Inventor/es:

ULUPINAR, FATIH; PURKAYASTHA, PUNYASLOK; BARANY, PETE y MARSH, GENE WESLEY

(74) Agente/Representante:

FORTEA LAGUNA, Juan José

DESCRIPCIÓN

Traspaso para comunicación por satélite

5 ANTECEDENTES

20

25

30

35

40

55

60

65

[0001] Varios aspectos descritos en el presente documento se refieren a la comunicación por satélite, y más particularmente pero no exclusivamente, al traspaso para la comunicación por satélite no geosíncrono.

[0002] Los sistemas de comunicación basados en satélites pueden incluir pasarelas y uno o más satélites para retransmitir señales de comunicación entre las pasarelas y uno o más terminales de usuario. Una pasarela es una estación terrena que tiene una antena para transmitir señales a, y recibir señales de, satélites de comunicación. Una pasarela proporciona enlaces de comunicación, usando satélites, para conectar un terminal de usuario a otros terminales de usuario o a usuarios de otros sistemas de comunicación, tales como una red telefónica pública conmutada, Internet y diversas redes públicas y/o privadas. Un satélite es un receptor y repetidor en órbita usado para retransmitir información.

[0003] Un satélite puede recibir señales desde y transmitir señales a un terminal de usuario, siempre que el terminal de usuario esté dentro de la "huella" del satélite. La huella de un satélite es la región geográfica de la superficie de la Tierra dentro del alcance de las señales del satélite. La huella habitualmente se divide geográficamente en "células" (por ejemplo, "haces"), mediante el uso de antenas de formación de haces. Cada célula (por ejemplo, haz) cubre una región geográfica particular dentro de la huella. Las células del mismo satélite o de diferentes satélites pueden superponerse (por ejemplo, superponerse parcialmente). Por ejemplo, los haces de un satélite particular se pueden dirigir de modo que más de un haz de ese satélite cubra la misma región geográfica específica.

[0004] Los satélites geosíncronos se han usado durante mucho tiempo para la comunicación. Un satélite geosíncrono es estacionario con respecto a una localización determinada en la Tierra, y por tanto, existe poco desplazamiento temporal y desplazamiento de frecuencia Doppler en la propagación de señal de radio entre un transceptor de comunicación en la Tierra y el satélite geosíncrono. Sin embargo, debido a que los satélites geosíncronos están limitados a una órbita geosíncrona (OGS), que es un círculo que tiene un radio de aproximadamente 42 164 km desde el centro de la Tierra directamente encima el ecuador de la Tierra, el número de satélites que se pueden colocar en la OGS es limitado. El documento US 5999797 se refiere a un procedimiento y aparato para proporcionar rutas de comunicación dedicadas a través de un sistema de comunicación por satélite.

[0005] Como alternativas a los satélites geosíncronos, se han ideado sistemas de comunicación que utilizan una constelación de satélites en órbitas no geosíncronas, tales como órbitas terrestres bajas (LEO), para proporcionar cobertura de comunicación a toda la Tierra o al menos a grandes partes de la Tierra. En los sistemas basados en satélites no geosíncronos, como los sistemas basados en satélites LEO, los satélites se mueven en relación con los dispositivos de comunicación terrestres, como pasarelas o terminales de usuario. Por lo tanto, en algún momento, un terminal de usuario será traspasado de un satélite a otro.

BREVE EXPLICACIÓN

45 [0006] Los aspectos de la invención están definidos en las reivindicaciones.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

[0007] Los dibujos adjuntos se presentan para facilitar la descripción de los aspectos de la divulgación y se proporcionan únicamente para ilustrar los aspectos y no las limitaciones de estos.

La FIG. 1 ilustra un diagrama de bloques de un sistema de comunicaciones de ejemplo de acuerdo con algunos aspectos de la divulgación.

La FIG. 2 es un diagrama de bloques de un ejemplo de un portal de red de satélites (SNP) de la FIG. 1 de acuerdo con algunos aspectos de la divulgación.

La FIG. 3 es un diagrama de bloques de un ejemplo de un satélite de la FIG. 1 de acuerdo con algunos aspectos de la divulgación.

La FIG. 4 es un diagrama de bloques de un ejemplo de un terminal de usuario de la FIG. 1 de acuerdo con algunos aspectos de la divulgación.

La FIG. 5 es un diagrama de bloques de un ejemplo de un equipo de usuario de la FIG. 1 de acuerdo con algunos aspectos de la divulgación.

La FIG. 6 ilustra un diagrama de bloques de un sistema de comunicaciones de ejemplo de acuerdo con algunos aspectos de la divulgación.

5	La FIG. 7 es un diagrama que ilustra un ejemplo de señalización de traspaso entre satélites de acuerdo con algunos aspectos de la divulgación.
	La FIG. 8 es un diagrama que ilustra otro ejemplo de señalización de traspaso entre satélites de acuerdo con algunos aspectos de la divulgación.
10	La FIG. 9 es un diagrama que ilustra un ejemplo de conmutación de enlace de conexión de acuerdo con algunos aspectos de la divulgación.
15	La FIG. 10 es un diagrama que ilustra un ejemplo de un error al apuntar del satélite de acuerdo con algunos aspectos de la divulgación.
	La FIG. 11 es un diagrama que ilustra un ejemplo de un flujo de llamadas para un traspaso BxP basado en acceso no aleatorio de acuerdo con algunos aspectos de la divulgación.
20	La FIG. 12 es un diagrama que ilustra un ejemplo de un flujo de llamadas para un traspaso BxP basado en acceso no aleatorio con mediciones de terminal de usuario (UT) de acuerdo con algunos aspectos de la divulgación.
25	La FIG. 13 es un diagrama que ilustra un ejemplo de un flujo de llamadas para un traspaso BxP basado en acceso aleatorio, de acuerdo con algunos aspectos de la divulgación.
	Las FIG. 14 y 15 son diagramas que ilustran un ejemplo de un flujo de llamadas para un traspaso BxP basado en acceso aleatorio con mediciones UT de acuerdo con algunos aspectos de la divulgación.
30	Las FIG. 16, 17 y 18 son diagramas que ilustran un ejemplo de un flujo de llamadas para un traspaso AxP de acuerdo con algunos aspectos de la divulgación.
	La FIG. 19 es un diagrama que ilustra un ejemplo de un flujo de llamadas para fallo de enlace de radio de acuerdo con algunos aspectos de la divulgación.
35	La FIG. 20 es un diagrama que ilustra un ejemplo de generación y uso de una tabla de transición de célula y satélite de acuerdo con algunos aspectos de la divulgación.
40	La FIG. 21 es un diagrama que ilustra un ejemplo de utilización de una tabla de transición de célula y satélite de acuerdo con algunos aspectos de la divulgación.
	La FIG. 22 es un diagrama que ilustra un ejemplo de señalización de capacidades de terminal de usuario de acuerdo con algunos aspectos de la divulgación.
45	La FIG. 23 es un diagrama que ilustra un ejemplo de utilización de capacidades de terminal de usuario de acuerdo con algunos aspectos de la divulgación.
	La FIG. 24 es un diagrama que ilustra un ejemplo de señalización de información de ubicación de terminal de usuario de acuerdo con algunos aspectos de la divulgación.
50	La FIG. 25 es un diagrama que ilustra un ejemplo de utilización de información de ubicación de terminal de usuario de acuerdo con algunos aspectos de la divulgación.
55	La FIG. 26 es un diagrama que ilustra un ejemplo de operaciones de traspaso de terminal de usuario de acuerdo con algunos aspectos de la divulgación.
	La FIG. 27 es un diagrama que ilustra un ejemplo de operaciones de traspaso de SNP de acuerdo con algunos aspectos de la divulgación.
60	La FIG. 28 es un diagrama que ilustra otro ejemplo de señalización de traspaso entre satélites de acuerdo con algunos aspectos de la divulgación.
	La FIG. 29 es un diagrama que ilustra un ejemplo de información de efemérides de señalización de acuerdo con algunos aspectos de la divulgación.
65	La FIG. 30 es un diagrama que ilustra un ejemplo de operaciones de fallo de enlace de radio de acuerdo con algunos aspectos de la divulgación.

La FIG. 31 es un diagrama que ilustra un ejemplo de operaciones relacionadas con espacio de medición de acuerdo con algunos aspectos de la divulgación.

- La FIG. 32 es un diagrama que ilustra otro ejemplo de operaciones relacionadas con espacio de medición de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 33 es un diagrama que ilustra un ejemplo de operaciones relacionadas con cola de usuarios de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 34 es un diagrama que ilustra un ejemplo de operaciones relacionadas con acceso aleatorio, de acuerdo con algunos aspectos de la divulgación.
- La FIG. 35 es un diagrama de bloques que ilustra una implementación de hardware de ejemplo para un aparato (por ejemplo, un dispositivo electrónico) que puede soportar la comunicación relacionada con satélite de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 36 es un diagrama de flujo que ilustra un ejemplo de proceso que implica la generación de información de traspaso por satélite de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 37 es un diagrama de flujo que ilustra un ejemplo de proceso que implica la generación de información de transición de célula y satélite de acuerdo con algunos aspectos de la divulgación.
- La FIG. 38 es un diagrama de bloques que ilustra una implementación de hardware de ejemplo para otro aparato (por ejemplo, un dispositivo electrónico) que puede soportar la comunicación relacionada con satélites de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 39 es un diagrama de flujo que ilustra un ejemplo de proceso que implica el traspaso de acuerdo con algunos aspectos de la divulgación.
 - La FIG. 40 es un diagrama de flujo que ilustra un ejemplo de proceso que implica el traspaso de acuerdo con algunos aspectos de la divulgación.

DESCRIPCIÓN DETALLADA

5

10

20

30

35

40

45

- [0008] La divulgación se refiere en algunos aspectos al traspaso de un terminal de usuario que está en comunicación con un portal de red de satélites (también denominado pasarela) a través de un satélite de un sistema de comunicación por satélite no geosíncrono. En algunas implementaciones, el sistema de comunicación por satélite es un sistema de comunicación por satélite de órbita terrestre baja (LEO) para comunicar datos, voz, vídeo u otra información. El portal de red de satélites y el terminal de usuario utilizan una tabla de transición de célula y satélite para determinar cuándo traspasar el terminal de usuario de una célula a otra y/o de un satélite a otro. En algunos aspectos, el terminal de usuario puede enviar información de capacidad, información de ubicación u otra información al portal de red de satélites por lo que, basándose en esta información, el portal de red de satélites genera una tabla de transición de célula y satélite y/o selecciona un procedimiento de traspaso para el terminal de usuario. El terminal de usuario también puede realizar mediciones de señal de satélite y enviar un mensaje de medición correspondiente al portal de red de satélites. A continuación, el portal de red de satélites puede generar una nueva tabla de transición de célula y satélite como resultado de recibir el mensaje de medición. Otros diversos aspectos de la divulgación también se describirán a continuación con más detalle.
- 50 **[0009]** Se describen aspectos de la divulgación en la siguiente descripción y en los dibujos relacionados dirigidos a unos ejemplos específicos. Se pueden idear ejemplos alternativos sin apartarse del alcance de la divulgación. Adicionalmente, elementos bien conocidos no se describirán en detalle, o se omitirán, para que los detalles pertinentes de la divulgación no resulten confusos.
- [0010] La FIG. 1 ilustra un ejemplo de un sistema de comunicación por satélite 100 que incluye una pluralidad de satélites (aunque solo se muestra un satélite 300 para mayor claridad de ilustración) en órbitas no geosíncronas, por ejemplo, órbitas terrestres bajas (LEO), un SNP 200 (por ejemplo, correspondiente a una pasarela de satélite) en comunicación con el satélite 300, una pluralidad de terminales de usuario (UT) 400 y 401 en comunicación con el satélite 300, y una pluralidad de equipos de usuario (UE) 500 y 501 en comunicación con los UT 400 y 401, respectivamente. Cada UE 500 o 501 puede ser un dispositivo de usuario tal como un dispositivo móvil, un teléfono, un teléfono inteligente, una tablet, un ordenador portátil, un ordenador, un dispositivo para llevar puesto, un reloj inteligente, un dispositivo audiovisual o cualquier dispositivo que incluya la capacidad para comunicarse con un UT. Adicionalmente, el UE 500 y/o el UE 501 pueden ser un dispositivo (por ejemplo, un punto de acceso, una célula pequeña, etc.) que se usa para la comunicación con uno o más dispositivos de usuario final. En el ejemplo ilustrado en la FIG. 1, el UT 400 y el UE 500 se comunican entre sí por medio de un enlace de acceso bidireccional (que tiene un enlace de acceso directo y un enlace de acceso de retorno) y, de forma similar, el UT 401 y el UE

501 se comunican entre sí por medio de otro enlace de acceso bidireccional. En otra implementación, uno o más UE adicionales (no mostrados) se pueden configurar solo para recibir y, por lo tanto, comunicarse con un UT usando solo un enlace de acceso directo. En otra implementación, uno o más UE adicionales (no mostrados) también se pueden comunicar con el UT 400 o el UT 401. De forma alternativa, un UT y un UE correspondiente pueden ser partes integrantes de un único dispositivo físico, tal como un teléfono móvil con un transceptor de satélite integrado y una antena para comunicarse directamente con un satélite, por ejemplo.

[0011] El SNP 200 puede tener acceso a Internet 108 o a uno o más tipos diferentes de redes públicas, semiprivadas o privadas. En el ejemplo ilustrado en la FIG. 1, el SNP 200 está en comunicación con la infraestructura 106, que es capaz de acceder a Internet 108 o a uno o más tipos diferentes de redes públicas, semiprivadas o privadas. El SNP 200 también puede estar acoplado a diversos tipos de redes de retorno de comunicación, incluyendo, por ejemplo, redes terrestres tales como redes de fibra óptica o redes telefónicas públicas conmutadas (PSTN) 110. Además, en implementaciones alternativas, el SNP 200 puede interactuar con Internet 108, la PSTN 110, o uno o más tipos diferentes de redes públicas, semiprivadas o privadas sin usar la infraestructura 106. Aún más, el SNP 200 se puede comunicar con otros SNP, tales como el SNP 201, a través de la infraestructura 106 o, de forma alternativa, puede estar configurado para comunicarse con el SNP 201 sin usar la infraestructura 106. La infraestructura 106 puede incluir, en su totalidad o en parte, un centro de control de red (NCC), un centro de control de satélite (SCC), una red central alámbrica y/o inalámbrica y/o cualquier otro componente o sistema usado para facilitar el funcionamiento de y/o la comunicación con el sistema de comunicación por satélite 100.

10

15

20

25

30

35

40

45

50

55

[0012] La comunicación entre el satélite 300 y el SNP 200 en ambas direcciones se denominan enlaces de conexión, mientras que la comunicación entre el satélite y cada uno de los UT 400 y 401 en ambas direcciones se denominan enlaces de servicio. Una ruta de señal desde el satélite 300 hasta una estación terrestre, que puede ser el SNP 200 o uno de los UT 400 y 401, se puede denominar de forma genérica enlace descendente. Una ruta de señal desde una estación terrestre hasta el satélite 300 se puede denominar de forma genérica enlace ascendente. Adicionalmente, como se ilustra, las señales pueden tener una direccionalidad general, tal como un enlace directo y un enlace de retorno (o enlace inverso). En consecuencia, un enlace de comunicación en una dirección que se origina en el SNP 200 y que termina en el UT 400 a través del satélite 300 se denomina enlace directo, mientras que un enlace de comunicación en una dirección que se origina en el UT 400 y que termina en el SNP 200 a través del satélite 300 se denomina enlace de retorno o enlace inverso. Como tal, la ruta de señal desde el SNP 200 al satélite 300 se marca como "enlace de conexión directo" 112, mientras que la ruta de señal desde el satélite 300 al SNP 200 se marca como "enlace de conexión de retorno" 114 en la FIG. 1. De manera similar, la ruta de señal desde cada UT 400 o 401 al satélite 300 se marca como "enlace de servicio de retorno" 116, mientras que la ruta de señal desde el satélite 300 a cada UT 400 o 401 se marca como "enlace de servicio directo" 118 en la FIG. 1.

[0013] Un controlador de traspaso 122 del UT 401 y un controlador de traspaso 124 del SNP 200 cooperan para controlar el traspaso del UT 401 de un satélite o célula a otro. Otros componentes del sistema de comunicación por satélite 100 pueden incluir también controladores de traspaso correspondientes. Sin embargo, los controladores de traspaso solo se ilustran para el UT 401 y el SNP 200 para reducir la complejidad de la FIG. 1.

[0014] El controlador de traspaso 122 envía información de UT 126 (por ejemplo, incluyendo la ubicación de UT e información de capacidades) y mensajes de medición 128 (por ejemplo, incluyendo información de medición de satélite) al controlador de traspaso 124. Un módulo generador de información de transición de satélite/célula 130 del controlador de traspaso 124 genera información de transición de satélite/célula (por ejemplo, una tabla) indicativa del tiempo de traspaso para el UT 401. En algunos aspectos, el módulo generador de información de transición de satélite/célula 130 puede generar la información de transición de satélite/célula basándose, al menos en parte, en la información de UT 126 y los mensajes de medición 128 recibidos del UT 401, ubicaciones de satélite a lo largo del tiempo (obtenidas de datos de efemérides), patrones de células de satélite y horarios de encendido y apagado de células de satélite. Un módulo de envío de información 132 envía esta información de transición de satélite/célula 134 al controlador de traspaso 122 a través del satélite actual 300.

[0015] Un módulo receptor de información 136 del controlador de traspaso 122 recibe esta información de transición de satélite/célula 134 a través del satélite actual 300. A continuación, un módulo de traspaso por satélite/célula 138 del controlador de traspaso 122 puede controlar el traspaso del UT 401 basándose en la información de transición de célula/satélite recibida.

[0016] La FIG. 2 es un ejemplo de diagrama de bloques del SNP 200, que también se puede aplicar al SNP 201 de la FIG. 1. El SNP 200 se muestra para incluir un número de antenas 205, un subsistema RF 210, un subsistema digital 220, una interfaz de red telefónica pública conmutada (PSTN) 230, una interfaz de red de área local (LAN) 240, una interfaz de SNP 245 y un controlador de SNP 250. El subsistema RF 210 está acoplado a las antenas 205 y al subsistema digital 220. El subsistema digital 220 está acoplado a la interfaz PSTN 230, la interfaz LAN 240 y la interfaz de SNP 245. El controlador de SNP 250 está acoplado al subsistema RF 210, el subsistema digital 220, la interfaz PSTN 230, la interfaz LAN 240 y la interfaz de SNP 245.

[0017] El subsistema de RF 210, que puede incluir varios transceptores de RF 212, un controlador de RF 214 y un controlador de antena 216, puede transmitir señales de comunicación al satélite 300 a través de un enlace de conexión directo 301F, y puede recibir señales de comunicación desde el satélite 300 por medio de un enlace de conexión de retorno 301R. Aunque no se muestra para simplificar, cada uno de los transceptores de RF 212 puede incluir una cadena de transmisión y una cadena de recepción. Cada cadena de recepción puede incluir un amplificador de bajo ruido (LNA) y un reductor de frecuencia (por ejemplo, un mezclador) para amplificar y reducir en frecuencia, respectivamente, las señales de comunicación recibidas de una forma ampliamente conocida. Además, cada cadena de recepción puede incluir un convertidor analógico-digital (ADC) para convertir las señales de comunicación recibidas de señales analógicas a señales digitales (por ejemplo, para su procesamiento por el subsistema digital 220). Cada cadena de transmisión puede incluir un convertidor elevador de frecuencia (por ejemplo, un mezclador) y un amplificador de potencia (PA) para elevar la frecuencia de y amplificar, respectivamente, las señales de comunicación que se van a transmitir al satélite 300 de una manera muy conocida. Además, cada cadena de transmisión puede incluir un convertidor digital-analógico (DAC) para convertir las señales digitales recibidas desde el subsistema digital 220 en señales analógicas que se van a transmitir al satélite 300.

10

15

20

25

30

35

40

45

50

55

60

65

[0018] El controlador de RF 214 se puede usar para controlar diversos aspectos de múltiples transceptores de RF 212 (por ejemplo, selección de la frecuencia de portadora, calibración de frecuencia y fase, ajustes de ganancia y similares). El controlador de antena 216 puede controlar diversos aspectos de las antenas 205 (por ejemplo, formación de haces, orientación de haces, ajustes de ganancia, sintonización de frecuencia y similares).

[0019] El subsistema digital 220 puede incluir múltiples módulos receptores digitales 222, múltiples módulos transmisores digitales 224, un procesador de banda de base (BB) 226 y un procesador de control (CTRL) 228. El subsistema digital 220 puede procesar señales de comunicación recibidas desde el subsistema RF 210 y enviar las señales de comunicación procesadas a la interfaz PSTN 230 y/o a la interfaz LAN 240, y puede procesar señales de comunicación recibidas desde la interfaz PSTN 230 y/o la interfaz LAN 240 y enviar las señales de comunicación procesadas al subsistema RF 210.

[0020] Cada módulo receptor digital 222 puede corresponder a elementos de procesamiento de señales usados para gestionar la comunicación entre el SNP 200 y el UT 400. Una de las cadenas de recepción de los transceptores de RF 212 puede proporcionar señales de entrada a múltiples módulos receptores digitales 222. Se pueden usar múltiples módulos receptores digitales 222 para adaptarse a todas las células de satélite y las posibles señales de modo de diversidad que se gestionan en un momento dado. Aunque no se muestra por simplicidad, cada módulo receptor digital 222 puede incluir uno o más receptores de datos digitales, un receptor de buscador y un circuito combinador de diversidad y descodificador. El receptor de buscador se puede usar para buscar modos de diversidad apropiados de señales portadoras, y se puede usar para buscar señales piloto (u otras señales intensas de patrón relativamente fijo).

[0021] Los módulos de transmisor digital 224 pueden procesar las señales que se van a transmitir al UT 400 por medio del satélite 300. Aunque no se muestra para simplificar, cada módulo transmisor digital 224 puede incluir un modulador de transmisión que modula datos para transmisión. La potencia de transmisión de cada modulador de transmisión se puede controlar mediante un controlador de potencia de transmisión digital correspondiente (no mostrado para simplificar) que puede (1) aplicar un nivel mínimo de potencia para propósitos de reducción de interferencia y asignación de recursos y (2) aplicar niveles apropiados de potencia cuando sea necesario para compensar la atenuación en la ruta de transmisión y otras características de transferencia de ruta.

[0022] El procesador de control 228, que está acoplado a los módulos de receptor digital 222, los módulos de transmisor digital 224 y el procesador de banda de base 226, puede proporcionar señales de mandato y control para efectuar funciones tales como, pero sin limitarse a, procesamiento de señales, generación de señales de temporización, control de potencia, control de traspaso, combinación de diversidad e interconexión de sistemas.

[0023] El procesador de control 228 también puede controlar la generación y la potencia de señales de canal piloto, de sincronización y de búsqueda, y su acoplamiento al controlador de potencia de transmisión (no mostrado por simplicidad). El canal piloto es una señal que no está modulada por datos, y puede usar un patrón repetitivo invariable o una entrada de tipo de estructura de trama (patrón) o de tipo de tono no variable. Por ejemplo, la función ortogonal usada para formar el canal para la señal piloto en general tiene un valor constante, tal como todo 1 o 0, o un patrón repetitivo muy conocido, tal como un patrón estructurado de 1 y 0 intercalados.

[0024] El procesador de banda de base 226 es muy conocido en la técnica y, por lo tanto, no se describe en detalle en el presente documento. Por ejemplo, el procesador de banda de base 226 puede incluir diversos elementos conocidos tales como (pero sin limitarse a) codificadores, módems de datos y componentes digitales de almacenamiento y conmutación de datos.

[0025] La interfaz PSTN 230 puede proporcionar señales de comunicación a, y recibir señales de comunicación desde, una PSTN externa ya sea directamente o a través de una infraestructura adicional 106, como se ilustra en la FIG. 1. La interfaz PSTN 230 es ampliamente conocida en la técnica y, por lo tanto, no se describe en detalle en

el presente documento. En otras implementaciones, la interfaz PSTN 230 puede omitirse o sustituirse por cualquier otra interfaz adecuada que conecte el SNP 200 a una red terrestre (por ejemplo, Internet).

[0026] La interfaz LAN 240 puede proporcionar señales de comunicación a, y recibir señales de comunicación desde, una LAN externa. Por ejemplo, la interfaz LAN 240 puede estar acoplada a Internet 108 directamente o bien a través de una infraestructura adicional 106, como se ilustra en la FIG. 1. La interfaz LAN 240 es ampliamente conocida en la técnica y, por lo tanto, no se describe en detalle en el presente documento.

[0027] La interfaz de SNP 245 puede proporcionar señales de comunicación a, y recibir señales de comunicación desde, una o más SNP diferentes asociadas al sistema de comunicación por satélite 100 de la FIG. 1 (y/o a/desde SNP asociadas a otros sistemas de comunicación por satélite, no mostrados para simplificar). Para algunas implementaciones, la interfaz de SNP 245 se puede comunicar con otros SNP por medio de una o más líneas o canales de comunicación dedicadas (no mostradas para simplificar). Para otras implementaciones, la interfaz de SNP 245 se puede comunicar con otros SNP usando la PSTN 110 y/u otras redes tales como Internet 108 (consulte también la FIG. 1). Para al menos una implementación, la interfaz de SNP 245 se puede comunicar con otros SNP por medio de la infraestructura 106.

[0028] El controlador de SNP 250 puede proporcionar un control global de SNP. El controlador de SNP 250 puede planificar y controlar la utilización de los recursos del satélite 300 mediante el SNP 200. Por ejemplo, el controlador de SNP 250 puede analizar tendencias, generar planes de tráfico, asignar recursos de satélite, supervisar (o seguir) posiciones de satélite, y supervisar el rendimiento del SNP 200 y/o el satélite 300. El controlador de SNP 250 también puede estar acoplado a un controlador de satélite terrestre (no mostrado para simplificar) que mantiene y supervisa las órbitas del satélite 300, retransmite información de uso del satélite al SNP 200, sigue las posiciones del satélite 300 y/o ajusta diversos ajustes de canal del satélite 300.

[0029] En la implementación de ejemplo ilustrada en la FIG. 2, el controlador de SNP 250 incluye referencias locales de tiempo, frecuencia y posición 251, que pueden proporcionar información local de tiempo o frecuencia al subsistema de RF 210, al subsistema digital 220 y/o a las interfaces 230, 240 y 245. La información de tiempo o frecuencia se puede usar para sincronizar los diversos componentes del SNP 200 entre sí y/o con el (los) satélite(s) 300. Las referencias de tiempo, frecuencia y posición locales 251 también pueden proporcionar información de posición (por ejemplo, datos de efemérides) del (de los) satélite(s) 300 a los diversos componentes del SNP 200. Además, aunque en la FIG. 2 se representan incluidas dentro del controlador de SNP 250, para otras implementaciones, las referencias de tiempo, frecuencia y posición locales 251 pueden ser un subsistema independiente que está acoplado al controlador de SNP 250 (y/o a uno o más del subsistema digital 220 y el subsistema RF 210).

[0030] Aunque no se muestra en la FIG. 2 para simplificar, el controlador de SNP 250 también puede estar acoplado a un centro de control de red (NCC) y/o a un centro de control de satélite (SCC). Por ejemplo, el controlador de SNP 250 puede permitir que el SCC se comunique directamente con el (los) satélite(s) 300, por ejemplo, para recuperar datos de efemérides del (de los) satélite(s) 300. El controlador de SNP 250 también puede recibir información procesada (por ejemplo, desde el SCC y/o el NCC) que permite al controlador de SNP 250 orientar correctamente sus antenas 205 (por ejemplo, en el/los satélite(s) apropiado(s) 300), para planificar transmisiones de célula, coordinar traspasos y realizar otras funciones ampliamente conocidas.

[0031] El controlador de SNP 250 puede incluir uno o más de un circuito de procesamiento 232, un dispositivo de memoria 234 o un controlador de traspaso 236 que realiza de manera independiente o cooperativa operaciones relacionadas con el traspaso para el SNP 200 como se enseña en el presente documento. En una implementación de ejemplo, el circuito de procesamiento 232 está configurado (por ejemplo, programado) para realizar algunas o todas estas operaciones. En otra implementación de ejemplo, el circuito de procesamiento 232 (por ejemplo, en forma de procesador) ejecuta el código almacenado en el dispositivo de memoria 234 para realizar algunas o todas estas operaciones. En otro ejemplo de implementación, el controlador de traspaso 236 está configurado (por ejemplo, programado) para realizar algunas o todas estas operaciones. Aunque en la FIG. 2 se representan incluidas dentro del controlador de SNP 250, para otras implementaciones, uno o más del circuito de procesamiento 232, el dispositivo de memoria 234 o el controlador de traspaso 236 puede ser un subsistema independiente que está acoplado al controlador de SNP 250 (y/o a uno o más del subsistema digital 220 y el subsistema RF 210).

[0032] La FIG. 3 es un ejemplo de diagrama de bloques del satélite 300 para fines ilustrativos solo. Se apreciará que las configuraciones de satélite específicas pueden variar significativamente y pueden incluir o no procesamiento incorporado. Además, aunque se ilustra como un único satélite, dos o más satélites que usan comunicación entre satélites pueden proporcionar la conexión funcional entre el SNP 200 y el UT 400. Se apreciará que la divulgación no se limita a ninguna configuración de satélite específica, y se puede considerar que cualquier satélite o combinación de satélites que pueda proporcionar la conexión funcional entre el SNP 200 y el UT 400 está dentro del alcance de la divulgación. En un ejemplo, se muestra que el satélite 300 incluye un transpondedor directo 310, un transpondedor de retorno 320, un oscilador 330, un controlador 340, antenas de enlace directo 351 y 352(1) - 352(N) y antenas de enlace de retorno 362 y 361(1) - 361(N). El transpondedor directo 310, que puede procesar señales de comunicación dentro de un canal o banda de frecuencias correspondiente, puede incluir un

filtro respectivo de primeros filtros de paso de banda 311(1) - 311(N), uno respectivo de los primeros amplificadores de bajo ruido (LNA) 312(1) - 312(N), uno respectivo de los convertidores de frecuencia 313(1)313(N), un respectivo de los segundos LNA 314(1) - 314(N), uno respectivo de los segundos filtros de paso de banda 315(1) - 315(N), y uno respectivo de los amplificadores de potencia (PA) 316(1) - 316(N). Cada uno de los PA 316(1) - 316(N) está acoplado a una respectiva de las antenas 352(1) - 352(N), como se muestra en la FIG. 3.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0033] Dentro de cada una de las respectivas rutas directas FP(1) - FP(N), el primer filtro de paso de banda 311 pasa componentes de señal que tienen frecuencias dentro del canal o la banda de frecuencias de la respectiva ruta directa, FP, y filtra componentes de señal que tienen frecuencias fuera del canal o banda de frecuencias de la respectiva ruta directa FP. Por tanto, la banda de paso del primer filtro de paso de banda 311 corresponde al ancho del canal asociado a la respectiva ruta directa FP. El primer LNA 312 amplifica las señales de comunicación recibidas a un nivel adecuado para el procesamiento mediante el convertidor de frecuencia 313. El convertidor de frecuencia 313 convierte la frecuencia de las señales de comunicación en la respectiva ruta directa FP (por ejemplo, a una frecuencia adecuada para la transmisión desde el satélite 300 hasta el UT 400). El segundo LNA 314 amplifica las señales de comunicación convertidas en frecuencia, y el segundo filtro de paso de banda 315 filtra las componentes de señal que tienen frecuencias fuera del ancho de canal asociado. El PA 316 amplifica las señales filtradas a un nivel de potencia adecuado para la transmisión a los UT 400 por medio de la antena respectiva 352. El transpondedor de retorno 320, que incluye un número N de rutas de retorno RP(1)-RP(N), recibe señales de comunicación desde el UT 400 a lo largo del enlace de servicio de retorno 302R por medio de las antenas 361(1)-361(N), y transmite señales de comunicación al SNP 200 a lo largo del enlace de conexión de retorno 301R por medio de una o más de las antenas 362. Cada una de las rutas de retorno RP(1) - RP(N), que puede procesar señales de comunicación dentro de un canal o banda de frecuencias correspondiente, puede estar acoplado a una respectiva de las antenas 361(1) - 361(N), y puede incluir uno respectivo de unos primeros filtros de paso de banda 321(1) - 321(N), uno respectivo de unos primeros LNA 322(1) - 322(N), uno respectivo de unos convertidores de frecuencia 323(1) - 323(N), uno respectivo de unos segundos LNA 324(N) - 324(N), y uno respectivo de unos segundos filtros de paso de banda 325(1) - 325(N).

[0034] Dentro de cada una de las respectivas rutas de retorno RP(1) - RP(N), el primer filtro de paso de banda 321 pasa componentes de señal que tienen frecuencias dentro del canal o la banda de frecuencias de la respectiva ruta de retorno RP, y filtra componentes de señal que tienen frecuencias fuera del canal o banda de frecuencias de la respectiva ruta de retorno RP. Por tanto, la banda de paso del primer filtro de paso de banda 321 puede corresponder, en algunas implementaciones, al ancho del canal asociado a la respectiva ruta de retorno RP. El primer LNA 322 amplifica todas las señales de comunicación recibidas a un nivel adecuado para el procesamiento mediante el convertidor de frecuencia 323. El convertidor de frecuencia 323 convierte la frecuencia de las señales de comunicación en la respectiva ruta de retorno RP (por ejemplo, a una frecuencia adecuada para la transmisión desde el satélite 300 hasta el SNP 200). El segundo LNA 324 amplifica las señales de comunicación convertidas en frecuencia, y el segundo filtro de paso de banda 325 filtra las componentes de señal que tienen frecuencias fuera del ancho de canal asociado. Las señales de las rutas de retorno RP(1) - RP(N) se combinan y se proporcionan a la una o más antenas 362 por medio de un PA 326. El PA 326 amplifica las señales combinadas para su transmisión al SNP 200.

[0035] El oscilador 330, que puede ser cualquier circuito o dispositivo adecuado que genera una señal oscilante, proporciona una señal de oscilador local directa LO(F) a los convertidores de frecuencia 313(1) - 313(N) del transpondedor directo 310, y proporciona una señal de oscilador local de retorno LO(R) a los convertidores de frecuencia 323(1) - 323(N) del transpondedor de retorno 320. Por ejemplo, los convertidores de frecuencia 313(1)-313(N) pueden usar la señal LO(F) para convertir señales de comunicación de una banda de frecuencias asociada con la transmisión de señales desde el SNP 200 hasta el satélite 300 a una banda de frecuencias asociada con la transmisión de señales desde el satélite 300 hasta el UT 400. Los convertidores de frecuencias asociada con la transmisión de señales desde el UT 400 hasta el satélite 300 a una banda de frecuencias asociada con la transmisión de señales desde el UT 400 hasta el satélite 300 a una banda de frecuencias asociada con la transmisión de señales desde el satélite 300 hasta el SNP 200.

[0036] El controlador 340, que está acoplado al transpondedor directo 310, al transpondedor de retorno 320 y al oscilador 330, puede controlar diversas operaciones del satélite 300, incluyendo (pero sin limitarse a) asignaciones de canal. En un aspecto, el controlador 340 puede incluir una memoria (no mostrada) acoplada a un circuito de procesamiento (por ejemplo, un procesador). La memoria puede incluir un medio no transitorio legible por ordenador (por ejemplo, uno o más elementos de memoria no volátil, tales como EPROM, EEPROM, una memoria flash, un disco duro, etc.) que almacena instrucciones que, cuando se ejecutan mediante el circuito de procesamiento, hacen que el satélite 300 realice operaciones que incluyen (pero sin limitarse a) las descritas en el presente documento.

[0037] Un ejemplo de un transceptor para su uso en el UT 400 o el UT 401 se ilustra en la FIG. 4. En la FIG. 4, se proporciona al menos una antena 410 para recibir señales de comunicación de enlace directo (por ejemplo, desde el satélite 300), que se transfieren a un receptor analógico 414, donde se reducen en frecuencia, se amplifican y se digitalizan. Un elemento duplexor 412 se usa a menudo para permitir que la misma antena sirva tanto para funciones de transmisión como de recepción. De forma alternativa, un transceptor de UT puede emplear

antenas independientes para funcionar a diferentes frecuencias de transmisión y recepción.

5

10

15

30

35

40

45

50

55

60

65

[0038] Las señales de comunicación digitales emitidas por el receptor analógico 414 se transfieren a al menos un receptor de datos digital 416A y a al menos un receptor de buscador 418. Se pueden usar receptores de datos digitales adicionales (por ejemplo, como se representa mediante un receptor de datos digital 416N) para obtener los niveles deseados de diversidad de señal, dependiendo del nivel aceptable de complejidad del transceptor, como sería evidente para un experto en la técnica.

[0039] Al menos un procesador de control de terminal de usuario 420 está acoplado a los receptores de datos digitales 416A-416N y al receptor de buscador 418. El procesador de control 420 proporciona, entre otras funciones, procesamiento básico de señales, temporización, control o coordinación de potencia y traspaso, y selección de frecuencia usada para portadoras de señal. Otra función de control básica que puede realizar el procesador de control 420 es la selección o manipulación de las funciones que se van a usar para procesar diversas formas de onda de señal. El procesamiento de señales por el procesador de control 420 puede incluir una determinación de una intensidad de señal relativa y un cálculo de diversos parámetros de señal relacionados. Dichos cálculos de parámetros de señal, tales como la temporización y la frecuencia, pueden incluir el uso de circuitos dedicados adicionales o separados para proporcionar eficacia o velocidad incrementadas en las mediciones o una asignación mejorada de recursos de procesamiento de control.

[0040] Las salidas de los receptores de datos digitales 416A - 416N están acopladas a unos circuitos de banda de base digitales 422 dentro del UT 400. Los circuitos de banda de base digitales 422 incluyen elementos de procesamiento y presentación usados para transferir información a y desde el UE 500, como se muestra en la FIG. 1, por ejemplo. En referencia a la FIG. 4, si se emplea el procesamiento de señales de diversidad, los circuitos de banda de base digitales 422 pueden incluir un combinador y descodificador de diversidad (no mostrado). Algunos de estos elementos también pueden funcionar bajo el control de, o en comunicación con, un procesador de control 420.

[0041] Cuando se prepara voz u otros datos como un mensaje o señal de comunicación de salida que se origina en el UT 400, los circuitos de banda de base digitales 422 se usan para recibir, almacenar, procesar y preparar de otro modo los datos deseados para su transmisión. Los circuitos de banda de base digitales 422 proporcionan estos datos a un modulador de transmisión 426 que funciona bajo el control del procesador de control 420. La salida del modulador de transmisión 426 se transfiere a un controlador de potencia 428, que proporciona control de potencia de salida a un amplificador de potencia de transmisión 430 para la transmisión final de la señal de salida desde la antena 410 hasta un satélite (por ejemplo, el satélite 300).

[0042] En la FIG. 4, el transceptor de UT también incluye una memoria 432 asociada al procesador de control 420. La memoria 432 puede incluir instrucciones para su ejecución por el procesador de control 420, así como datos para su procesamiento por el procesador de control 420. En el ejemplo ilustrado en la FIG. 4, la memoria 432 puede incluir instrucciones para realizar ajustes de tiempo o frecuencia que se van a aplicar a una señal RF que el UT 400 va a transmitir por medio del enlace de servicio de retorno al satélite 300.

[0043] En el ejemplo ilustrado en la FIG. 4, el UT 400 también incluye referencias locales opcionales de tiempo, frecuencia y/o posición 434 (por ejemplo, un receptor GPS), que pueden proporcionar información local de tiempo, frecuencia y/o posición al procesador de control 420 para diversas aplicaciones, incluyendo, por ejemplo, la sincronización de tiempo o frecuencia para el UT 400.

[0044] Los receptores de datos digitales 416A - 416N y el receptor de buscador 418 están configurados con elementos de correlación de señales para desmodular y seguir señales específicas. El receptor de buscador 418 se usa para buscar señales piloto, u otras señales intensas de patrón relativamente fijo, mientras que los receptores de datos digitales 416A-416N se usan para desmodular otras señales asociadas con señales piloto detectadas. Sin embargo, se puede asignar un receptor de datos digital 416 para realizar un seguimiento de la señal piloto después de la adquisición para determinar con precisión la relación de energías de fragmentos de señal a ruido de señal, y para formular la intensidad de señal piloto. Por lo tanto, las salidas de estas unidades se pueden supervisar para determinar la energía en, o la frecuencia de, la señal piloto u otras señales. Estos receptores también emplean elementos de seguimiento de frecuencia que se pueden supervisar para proporcionar información de frecuencia y temporización actual al procesador de control 420 para señales que se están desmodulando.

[0045] El procesador de control 420 puede usar dicha información para determinar en qué medida las señales recibidas están desplazadas de la frecuencia del oscilador, cuando se escalan a la misma banda de frecuencias, cuando proceda. Esta y otra información relacionada con errores de frecuencia y desplazamientos de frecuencia se pueden almacenar en un elemento de almacenamiento o memoria (por ejemplo, la memoria 432) según se desee.

[0046] El procesador de control 420 también se puede acoplar a circuitos de interfaz de UE 450 para permitir la comunicación entre el UT 400 y uno o más UE. Los circuitos de interfaz de UE 450 pueden estar configurados como se desee para la comunicación con diversas configuraciones de UE y, en consecuencia, pueden incluir

diversos transceptores y componentes relacionados dependiendo de las diversas tecnologías de comunicación empleadas para comunicarse con los diversos UE soportados. Por ejemplo, los circuitos de interfaz del UE 450 pueden incluir una o más antenas, un transceptor de red de área amplia (WAN), un transceptor de red de área local inalámbrica (WLAN), una interfaz de red de área local (LAN), una interfaz de red telefónica pública conmutada (PSTN) y/u otras tecnologías de comunicación conocidas configuradas para comunicarse con uno o más UE en comunicación con el UT 400.

5

10

15

40

45

50

[0047] El procesador de control 420 puede incluir uno o más de un circuito de procesamiento 442, un dispositivo de memoria 444 o un controlador de traspaso 446 que realiza de manera independiente o cooperativa operaciones relacionadas con el traspaso para el UT 400 como se enseña en el presente documento. En una implementación de ejemplo, el circuito de procesamiento 442 está configurado (por ejemplo, programado) para realizar algunas o todas estas operaciones. En otra implementación de ejemplo, el circuito de procesamiento 442 (por ejemplo, en forma de procesador) ejecuta el código almacenado en el dispositivo de memoria 444 para realizar algunas o todas estas operaciones. En otro ejemplo de implementación, el controlador de traspaso 446 está configurado (por ejemplo, programado) para realizar algunas o todas estas operaciones. Aunque se representa en la FIG. 4 como se incluye dentro del procesador de control 420, para otras implementaciones, uno o más del circuito de procesamiento 442, el dispositivo de memoria 444 o el controlador de traspaso 446 pueden ser un subsistema separado que está acoplado al procesador de control 420.

20 [0048] La FIG. 5 es un diagrama de bloques que ilustra un ejemplo del UE 500, que también se puede aplicar al UE 501 de la FIG. 1. El UE 500, como se muestra en la FIG. 5, puede ser un dispositivo móvil, un ordenador portátil, una tablet, un dispositivo para llevar puesto, un reloj inteligente o cualquier tipo de dispositivo capaz de interactuar con un usuario, por ejemplo. Adicionalmente, el ÚE 500 puede ser un dispositivo de lado de red que proporciona conectividad a diversos dispositivos de usuario final de última tecnología y/o a diversas redes públicas 25 o privadas. En el ejemplo mostrado en la FIG. 5, el UE 500 puede incluir una interfaz LAN 502, una o más antenas 504, un transceptor de red de área amplia (WAN) 506, un transceptor de red de área local inalámbrica (WLAN) 508 y un receptor de sistema de posicionamiento por satélite (SPS) 510. El receptor de SPS 510 puede ser compatible con el Sistema de posicionamiento global (GPS), el Sistema global de navegación por satélite (GLONASS) y/o cualquier otro sistema de posicionamiento global o regional basado en satélites. En un aspecto 30 alternativo, el UE 500 puede incluir un transceptor WLAN 508, tal como un transceptor wifi, con o sin la interfaz LAN 502, el transceptor WAN 506 y/o el receptor SPS 510, por ejemplo. Además, el UE 500 puede incluir transceptores adicionales tales como Bluetooth, ZigBee y otras tecnologías conocidas, con o sin la interfaz LAN 502, el transceptor WAN 506, el transceptor WLAN 508 y/o el receptor de SPS 510. En consecuencia, los elementos ilustrados para el UE 500 se proporcionan simplemente como un ejemplo de configuración y no pretenden limitar la configuración de los UE de acuerdo con los diversos aspectos divulgados en el presente 35 documento.

[0049] En el ejemplo mostrado en la FIG. 5, un procesador 512 está conectado a la interfaz LAN 502, al transceptor WAN 506, al transceptor WLAN 508 y al receptor SPS 510. Opcionalmente, un sensor de movimiento 514 y otros sensores también pueden estar acoplados al procesador 512.

[0050] Una memoria 516 está conectada al procesador 512. En un aspecto, la memoria 516 puede incluir datos 518 que se pueden transmitir a y/o recibir desde el UT 400, como se muestra en la FIG. 1. En referencia a la FIG. 5, la memoria 516 también puede incluir instrucciones almacenadas 520 que el procesador 512 va a ejecutar para realizar los pasos de proceso para comunicarse con el UT 400, por ejemplo. Además, el UE 500 también puede incluir una interfaz de usuario 522, que puede incluir hardware y software para interconectar entradas o salidas del procesador 512 con el usuario a través de entradas o salidas luminosas, sonoras o táctiles, por ejemplo. En el ejemplo mostrado en la FIG. 5, el UE 500 incluye un micrófono/altavoz 524, un teclado 526 y una pantalla 528 conectados a la interfaz de usuario 522. De forma alternativa, la entrada o salida táctil del usuario puede estar integrada con la pantalla 528 usando una pantalla táctil, por ejemplo. Una vez más, los elementos ilustrados en la FIG. 5 no pretenden limitar la configuración de los UE divulgados en el presente documento, y se apreciará que los elementos incluidos en el UE 500 variarán basándose en el uso final del dispositivo y las opciones de diseño de los ingenieros de sistemas.

[0051] Además, el UE 500 puede ser un dispositivo de usuario tal como un dispositivo móvil o un dispositivo de lado de red externa en comunicación con pero independiente del UT 400, como se ilustra en la FIG. 1, por ejemplo. De forma alternativa, el UE 500 y el UT 400 pueden ser partes integrantes de un único dispositivo físico.

[0052] En el ejemplo mostrado en la FIG. 1, dos UT 400 y 401 pueden realizar comunicación bidireccional con el satélite 300 por medio de enlaces de servicio de retorno y directo dentro de una cobertura de célula. Un satélite puede comunicarse con más de dos UT dentro de una cobertura de célula. El enlace de servicio de retorno desde los UT 400 y 401 hasta el satélite 300 puede ser, por lo tanto, un canal de muchos a uno. Algunos de los UT pueden ser móviles, mientras que otros pueden ser estacionarios, por ejemplo. En un sistema de comunicación por satélite como el ejemplo ilustrado en la FIG. 1, múltiples UT 400 y 401 dentro de una cobertura de célula se pueden multiplexar mediante división de tiempo (TDM), multiplexar mediante división de frecuencia (FDM) o ambas.

Traspaso de UT

10

15

20

25

30

35

55

60

[0053] En algún momento, puede ser necesario traspasar un UT a otro satélite (no mostrado en la FIG. 1). El traspaso puede ser ocasionado por eventos programados o eventos no programados.

[0054] A continuación se muestran varios ejemplos de traspaso debido a eventos programados. El traspaso entre células y entre satélites puede ser ocasionado por el movimiento del satélite, el movimiento del UT o una célula del satélite que se apaga (por ejemplo, debido a una restricción de satélite geoestacionario (GEO)). El traspaso también puede deberse a un satélite que se mueve fuera del alcance del SNP mientras el satélite todavía está dentro de la línea de visión de UT.

[0055] A continuación se presentan varios ejemplos de traspaso debido a eventos no programados. El traspaso puede ser activado por un satélite que está oculto por un obstáculo (por ejemplo, un árbol). El traspaso también puede activarse debido a una reducción en la calidad del canal (por ejemplo, calidad de la señal) debido a la atenuación debida a la lluvia u otras condiciones atmosféricas.

[0056] En algunas implementaciones, en un punto particular en el tiempo, un satélite particular puede ser controlado por una entidad particular (por ejemplo, un controlador de acceso a la red, NAC) en un SNP. Por lo tanto, un SNP puede tener varios NAC (por ejemplo, implementados por el controlador 250 de SNP de la FIG. 2), cada uno de los cuales controla uno de los satélites controlados por el SNP. Además, un satélite determinado puede soportar múltiples células. Por lo tanto, con el tiempo, pueden ocurrir diferentes tipos de traspaso.

[0057] En el traspaso entre células, un UT se traspasa de una célula de un satélite a otra célula del satélite. Por ejemplo, la célula particular que sirve un UT estacionario puede cambiar con el tiempo a medida que se mueve el satélite en servicio.

[0058] En el traspaso entre satélites, se traspasa un UT del satélite en servicio actual (denominado satélite de origen) a otro satélite (denominado satélite objetivo). Por ejemplo, un UT puede traspasarse al satélite objetivo a medida que el satélite de origen se aleja del UT y el satélite objetivo se mueve hacia el UT.

[0059] Con referencia a la FIG. 6, varios aspectos de la divulgación se refieren al traspaso de un terminal de usuario (UT) 602 en comunicación con un portal de red de satélites (SNP) 604 a través de un satélite 606 en un sistema de comunicación por satélite 600. En algunas implementaciones, el sistema 600 puede ser un sistema de comunicación por satélite no geosíncrono, tal como un sistema de comunicación por satélite de órbita terrestre baja (LEO), para datos, voz, vídeo u otra comunicación. El UT 602 es un ejemplo del UT 400 o el UT 401 de la FIG. 1. El SNP 604 es un ejemplo del SNP 200 o el SNP 201 de la FIG. 1. El satélite 606 es un ejemplo del satélite 300 de la FIG. 1.

40 [0060] En algunos aspectos, el SNP 604 y el UT 602 usan información de transición de célula y satélite 608 para determinar cuándo traspasar el UT 602 de una célula a otra y/o de un satélite a otro. Por ejemplo, el UT 602 puede enviar información de UT 610 (por ejemplo, información de capacidad, información de ubicación u otra información) al SNP 604 a través de la primera señalización 612. Basándose en la información 610, el SNP 604 o alguna otra entidad genera la información de transición de célula y satélite 608 y envía la información 608 al UT 602 a través de la segunda señalización 614. De forma alternativa o adicional, el SNP 604 o alguna otra entidad selecciona un procedimiento de traspaso para el UT 602 basándose en la información 610. En algunos aspectos, el traspaso del UT 602 a un satélite diferente (un nuevo satélite en servicio) implica que el UT 602 realiza mediciones de señal de satélite y envía un mensaje de medición 616 al SNP 604. En algunos aspectos, el SNP 604 genera nueva información de transición de célula y satélite (por ejemplo, modifica una tabla de transición de célula y satélite) como resultado de recibir el mensaje de medición 616.

[0061] El UT 602 puede realizar otras operaciones relacionadas con el traspaso de acuerdo con las enseñanzas del presente documento. En algunos aspectos, el UT 602 puede recibir información de efemérides de satélite a través del SNP 604 y usar la información de efemérides de satélite para sincronizar con un satélite (por ejemplo, el satélite 606). En algunos aspectos, el UT 602 invoca un modo de fallo de enlace de radio si el UT 602 pierde conectividad a un satélite y/o célula.

[0062] En algunos aspectos, un diseño de traspaso puede intentar cumplir uno o más objetivos de diseño. Entre los ejemplos de dicho objetivo se incluyen: minimizar la señalización durante los traspasos; minimizar la interrupción de datos durante los traspasos; o reducir la dependencia del conocimiento de UT de los datos de efemérides del satélite (por ejemplo, en lugar de eso, confiar en el conocimiento del SNP de la ubicación del satélite y la ubicación de UT).

[0063] En el ejemplo de la FIG. 6, el SNP 604 incluye controladores de acceso a la red (NAC) 618, cada uno de los cuales interactúa con uno o más subsistemas de radiofrecuencia (RF) 620 para comunicarse con el UT 602 y otros UT (no mostrados) a través del satélite 606 (o algún otro satélite, no mostrado). El SNP 604 también incluye

un plano de control de red central (CNCP) 622 y un plano de usuario de red central (CNUP) 624, u otra funcionalidad similar (por ejemplo, funcionalidad de control y plano de usuario para otros tipos de redes), para comunicarse con una red 626. La red 626 puede representar, por ejemplo, una o más de una red central (por ejemplo, 3G, 4G, 5G, etc.), una intranet o Internet.

[0064] En algunas implementaciones, el SNP 604 determina (por ejemplo, recibe o genera) la información de transición de célula y satélite 608. Por ejemplo, un NAC 618 puede generar información de transición de célula y satélite para todos los UT bajo el control del NAC 618 basándose en la información (por ejemplo, Información de efemérides) recibida a través de la red 626 e información (por ejemplo, información de configuración y mensajes de medición) recibidos de UTs. Como otro ejemplo, un NAC 618 puede recibir la información de transición de célula y satélite para sus UT a través de la red 626 (por ejemplo, desde una entidad de red 628).

[0065] Otras entidades en el sistema también podrían generar la información de transición de célula y satélite 608. En algunas implementaciones, un controlador 630 de la entidad de red 628 puede generar la información de transición de célula y satélite 608 y enviar la información de transición de célula y satélite 608 para controlar los componentes del sistema 600 (por ejemplo, durante el inicio del sistema y/o en otros momentos). Por ejemplo, la entidad de red 628 puede transmitir la información de transición de célula y satélite 608 al SNP 604 a través de la red 626 (por ejemplo, una red central, una intranet o Internet) o algún otro mecanismo de transferencia de datos. Para fines de ilustración, la entidad de red 628 se representa como fuera de la red 626. Sin embargo, la entidad de red 628 podría ser parte de la red 626.

[0066] Ahora se describirán varios aspectos de ejemplo de un UT, un SNP o un satélite que pueden usarse junto con el traspaso de un UT de acuerdo con las enseñanzas del presente documento. Estos aspectos pueden incluir, para uno de estos componentes del sistema de satélite, uno o más de: un parámetro u otra información utilizada por el componente, un parámetro asignado al componente, una característica (por ejemplo, capacidad) del componente, señalización utilizada por el componente, o una operación realizada por el componente.

ID de satélite

5

10

15

20

25

60

65

[0067] Un identificador de satélite (ID) es una identificación única de un satélite particular dentro de un sistema de satélite. La ID de satélite permite que el satélite se identifique de forma única dentro del sistema de satélite (por ejemplo, mediante un UT). Para permitir una implementación de satélite grande, una ID de satélite podría ser de 16 bits o más. En algunas implementaciones, la ID de satélite se transmite en un canal superior y no se requiere que el UT la lea inmediatamente. El UT y el SNP pueden usar una identificación de satélite para indexar una tabla de información de efemérides para ubicar el satélite y las proyecciones de las células del satélite en la Tierra en un momento dado.

ID de célula o haz

40 [0068] Una ID de célula es una ID única para una célula. Del mismo modo, una ID de haz es una ID única para un haz. Por conveniencia, el término haz/célula se puede usar en el presente documento para indicar una célula y/o un haz. La ID de haz/célula permite que un haz/célula de un satélite determinado se identifique de forma única (por ejemplo, mediante un UT). En algunos aspectos, una ID de haz/célula puede ser detectada por un UT en un período de tiempo muy corto (por ejemplo, la identificación de haz/célula puede ser una firma continua utilizada en el piloto del haz/célula). Por lo tanto, un UT podría no necesitar descodificar un mensaje de sobrecarga para descubrir una ID de haz/célula. En un ejemplo no limitante, una ID de haz/célula podría incluir 10 bits: 2 bits para una ID de SNP (por ejemplo, 2 bits pueden ser suficientes para tener un SNP único visible por un UT; y los 4 valores para la ID de SNP podrían reutilizarse en todo el mundo); y 8 bits para el haz/célula ordenado por un SNP (por ejemplo, un SNP controla aproximadamente 10 satélites x 16 haces/satélite = 160 haces/SNP => 8 bits para identificar de forma única las células/haces). Se podría usar un número diferente de bits en otras implementaciones. Además, se podría tener en cuenta la diversidad espacial de los satélites para reducir el número de bits.

Capacidades de UT

55 **[0069]** Un UT puede intercambiar sus capacidades con el SNP en el momento de la conexión o en otro momento. A continuación se presentan varios ejemplos no limitantes de capacidades de UT.

[0070] Un UT puede ser capaz de detección de doble haz/célula. Por lo tanto, un parámetro de capacidad UT (por ejemplo, que toma un valor de SÍ o NO) puede indicar si el UT es capaz de detectar más de un haz/célula. Por ejemplo, este parámetro de capacidad puede indicar, mientras el UT se comunica activamente utilizando un haz/célula de un satélite particular, si el UT puede captar y detectar una ID de haz/célula de otro haz/célula del mismo satélite. En algunas implementaciones, este parámetro de capacidad se puede usar para indicar si un UT puede soportar dos células/haces al mismo tiempo. Un número diferente de células/haces (por ejemplo, tres o más) podría soportarse en otras implementaciones.

[0071] Un UT puede tener capacidad de detección de satélite doble. Por lo tanto, otro parámetro de capacidad

UT (por ejemplo, que toma un valor de SÍ o NO) puede indicar si el UT es capaz de detectar más de un satélite. Por ejemplo, este parámetro de capacidad puede indicar, mientras el UT se está comunicando activamente utilizando un haz/célula de un satélite particular, si el UT puede captar y detectar una ID de haz/célula de otro satélite. En algunas implementaciones, este parámetro de capacidad se puede usar para indicar si un UT puede soportar dos satélites al mismo tiempo. Se podría soportar un número diferente de satélites (por ejemplo, tres o más) en otras implementaciones.

[0072] Como se analiza con más detalle a continuación, un SNP puede usar la capacidad de detección de un UT para determinar qué tipo de traspaso usar para el UT. Por ejemplo, si un UT solo puede soportar un solo haz/célula a la vez, el traspaso podría basarse simplemente en la tabla de transición de célula y satélite. Por el contrario, si un UT puede soportar múltiples células/haces/satélites a la vez, un SNP podría supervisar un mensaje de medición desde un UT durante el traspaso, por lo que el mensaje de medición puede afectar cómo (por ejemplo, cuándo y/o dónde) se traspasa el UT.

- 15 [0073] Otro parámetro de capacidad UT puede indicar el tiempo de sintonización entre células y/o el tiempo de sintonización entre haces (por ejemplo, en microsegundos (μs)) para un UT. Por conveniencia, el término tiempo de sintonización entre células/haces puede usarse para referirse al tiempo de sintonización entre células y/o el tiempo de sintonización entre haces. Este parámetro de capacidad UT puede indicar el tiempo que le lleva al UT dejar de escuchar un haz/célula y comenzar a escuchar otro haz/célula del mismo satélite. Por lo tanto, en algunos aspectos, el tiempo de sintonización entre células/haces indica cuánto tiempo tarda un UT en sintonizar de un haz/célula a otro haz/célula.
 - [0074] Otro parámetro de capacidad UT puede indicar el tiempo de sintonización entre satélites (por ejemplo, en microsegundos (µs)) para un UT. Este parámetro de capacidad UT puede indicar el tiempo que tarda el UT dejar de escuchar un haz/célula en el satélite actual y comenzar a escuchar un haz/célula de otro satélite. Por lo tanto, en algunos aspectos, el tiempo de sintonización entre satélites indica cuánto tiempo tarda un UT en sintonizar de un satélite a otro satélite.
- [0075] En algunas implementaciones, se puede dar un tiempo de sintonización como límite superior. Por ejemplo, un tiempo de sintonización puede indicar la cantidad máxima de tiempo que se espera que el UT tarde en sintonizar de un haz/célula o satélite a otro.
 - **[0076]** En algunas implementaciones, se puede describir un tiempo de sintonización de acuerdo con una fórmula. Un ejemplo no limitante de tal fórmula es: $a + b * \tau$ donde, a es una constante que indica la duración de tiempo mínima para la sintonización entre satélites, τ es la distancia angular (en grados) entre el satélite actual y el satélite objetivo, y b es la velocidad de movimiento de la antena de UT en grados de movimiento por milisegundo.

Definiciones sintonizadas

[0077] La señalización puede emplearse para permitir que un UT se sintonice para la detección entre satélites y entre células/haz. Esta señalización puede usarse para definir períodos de sintonización para que un UT detecte otras células/haces del mismo satélite u otros satélites.

Ubicación de UT

5

10

25

35

45

65

- [0078] Se utiliza un mecanismo de informe de ubicación de UT para el procesamiento de traspaso y búsqueda para que el SNP conozca la ubicación del UT (por ejemplo, de forma continua o regular). En algunas implementaciones, un UT tendrá un posicionamiento fiable del sistema de posicionamiento global (GPS).
- 50 **[0079]** Para los UT estacionarios, el mecanismo de informe de ubicación de UT puede implicar que el UT envíe un mensaje de señalización al SNP que informe sobre la ubicación (por ejemplo, las coordenadas GPS) del UT.
- [0080] Para los UT móviles (por ejemplo, UT en un barco o avión), el mecanismo de informe de ubicación de UT puede implicar que el UT envíe un mensaje de señalización al SNP que informa sobre la velocidad y la dirección del UT. Esto permite al SNP estimar continuamente la ubicación del UT. Incluso para los UT móviles, la información de dirección y velocidad puede ser relativamente estable si los UT son transportados (por ejemplo, unidos a) recipientes relativamente grandes.
- [0081] Además, a través de la señalización relacionada con la ubicación, el UT puede ser informado sobre la desviación de ubicación permitida antes de que se necesite un nuevo mensaje de actualización de ubicación.
 - [0082] Algunas implementaciones pueden emplear umbrales para la tolerancia de ubicación. Algunas implementaciones pueden emplear cercado GEO. Por ejemplo, si un UT está más allá de un límite designado en relación con un satélite y/o un SNP (por ejemplo, el UT está a cierta distancia), el UT puede configurarse para enviar una actualización de ubicación al SNP.

Transferencia de efemérides y actualización de señalización

[0083] Los mensajes de señalización de transferencia y actualización de efemérides se pueden usar para transferir datos de efemérides de satélite a los UT. En algunos aspectos, los datos de efemérides incluyen una descripción geográfica de dónde se encuentra un satélite determinado en un momento dado. El UT puede utilizar estos datos cuando busca el próximo satélite y haz/célula (por ejemplo, después de que el UT detecte un fallo en el enlace de radio). Por ejemplo, en algunos aspectos, un UT puede usar los datos de efemérides de un satélite determinado para determinar dónde apuntar la antena (antenas) del UT en un punto dado en el tiempo. En algunos aspectos, un SNP puede transmitir un mensaje de señalización que contiene los datos de efemérides del satélite a todos los UT conectados (por ejemplo, cada vez que hay una actualización). En algunos aspectos, un UT puede solicitar datos de efemérides de satélite del SNP (por ejemplo, cuando el UT establece una conexión).

Tablas de transición de célula y satélite

[0084] Cada haz de satélite puede considerarse como una célula separada con sus propios canales de datos y control, y señales. El SNP o alguna otra entidad puede generar una tabla de transición de célula y satélite que proporcione una lista de satélites a los que un UT puede optar por traspasar a continuación. La tabla de transición también puede dictar exactamente en qué momento el UT cambiará de una célula (por ejemplo, correspondiente a un haz y/o una banda de RF) del próximo satélite a otra. Una tabla de transición puede indicar, para varios satélites, las células (por ejemplo, los haces y/o las bandas) que se utilizarán para cada satélite. Una tabla de transición puede indicar, para cada célula (por ejemplo, haz), la frecuencia (por ejemplo, la frecuencia de radio nominal o banda de frecuencias) de la célula. Una tabla de transición también puede indicar la ID de célula de cada célula (o ID de haz de cada haz).

[0085] Un SNP puede definir una tabla de transición de célula y satélite basándose en diversa información. En algunos aspectos, un SNP puede definir la tabla utilizando la ubicación (y la velocidad y dirección, si se especifica) del UT. En algunos aspectos, un SNP puede definir la tabla utilizando ubicaciones de satélite a lo largo del tiempo calculadas a partir de datos de efemérides. En algunos aspectos, un SNP puede definir la tabla basándose en la información sobre si ciertas células/haces y/o satélites están apagados en ciertos momentos.

[0086] La Tabla 1 siguiente es un ejemplo de una tabla de transición de célula y satélite. Las entradas para esta tabla incluyen ID de satélite, ID de haz, frecuencias de haz (Freq), tiempo de inicio y tiempo de finalización. Esta tabla también podría denominarse tabla de transición de haz y satélite. TAhaz denota el tiempo de sintonización de un haz a otro del mismo satélite. En este ejemplo, el UT debe sintonizar el Satélite 1, Haz 1 (en la frecuencia F₁₁) desde el tiempo a₁ al tiempo b₁. El UT debe sintonizar el Satélite 1, Haz 2 (en la frecuencia F₂₁) desde el tiempo b₁ + TAhaz hasta el tiempo c₁, y así sucesivamente.

[0087] En algunas implementaciones, el SNP puede enviar la tabla en un mensaje de señalización al UT al que sirve, en cualquier momento antes de que el UT sea traspasado al próximo satélite.

TABLA 1

ID de satélite	ID de haz	Frec.	Tiempo de inicio (por ejemplo, número de trama)	Tiempo de finalización (por ejemplo, número de trama)
Satélite 1	Haz 1	F ₁₁	a ₁	b ₁
	Haz 2	F ₂₁	b ₁ + TA _{haz}	C1
	Haz N	F _{N1}	mi+ TA _{haz}	n ₁
Satélite 2	Haz 1	F ₁₂	a ₂	b ₂
	Haz 2	F ₂₂	b ₂ + TA _{haz}	C2
	Haz N	F _{N2}	m ₂ + TA _{haz}	n ₂

[0088] En un ejemplo, la sobrecarga del mensaje de la tabla de transición de célula y satélite es la siguiente (suponiendo que hay dos satélites listados en la tabla): Identificación del satélite = 16 bits; ID del haz = 10 bits; frec. = 4 bits (suponiendo 16 frecuencias de haz por satélite); y tiempos de inicio y finalización = 15 bits.

[0089] El tiempo de inicio y el tiempo de finalización se pueden especificar en términos de números de tramas. La capa física puede especificar el uso de tramas de transmisión de 10 milisegundos (ms) para el sistema. Suponiendo que se realiza un traspaso por satélite cada 3 minutos, el número de tramas que se pueden transmitir entre traspasos es de 18 000. Los números de tramas se pueden reinicializar desde cero después de cada traspaso. El número de bits que se requieren para especificar los números de tramas es, por lo tanto, de 15 bits en este ejemplo.

30

10

40

45

50

35

[0090] En el ejemplo anterior, la sobrecarga total del mensaje sería 1020 bits = 128 bytes (aproximadamente). Los valores de un₁b₁,..., n₁, TA_{haz} se especificarían.

[0091] Si un haz puede dar servicio a un máximo de 1000 usuarios activos en cualquier momento, y si el rendimiento general de un enlace descendente (DL) del haz es de aproximadamente 300 Mbps, la sobrecarga viene dada por: sobrecarga = $(128 \text{ bytes} \times \text{numUsersBeam})/(\text{bytes totales entregados por haz durante 3 minutos}) = <math>(128 \text{ bytes} \times 1000)/(300 \times 10^6 \times 3 \times 60) = 19 \times 10^{-6} \text{ (aproximadamente)}.$

[0092] La Tabla 2 siguiente es otro ejemplo de una tabla de transición de célula y satélite. SatelliteID es una ID única asignada a un satélite en el sistema. La banda de enlace directo (FL) es un índice entero positivo que identifica una banda de frecuencias de transmisión del FL. La banda de enlace de retorno (RL) es un índice entero positivo que identifica una banda de frecuencias de transmisión del RL.

[0093] El tiempo de activación de traspaso especifica el tiempo cuando un UT debe dejar de transmitir y recibir. En algunas implementaciones, este tiempo se especifica en la célula de origen en unidades de números de tramas del sistema (SFN). Los SFN pueden ser, por ejemplo, números de secuencia asignados a tramas de radio de transmisión de capa física de 10 ms. El UT deja de transmitir y recibir al comienzo del SFN. Por ejemplo, si se especifica que el tiempo de activación de traspaso está en el SFN 5, entonces el UT deja de transmitir o recibir en la subtrama 0 del SFN 5.

TABLA 2

SatelliteID	Banda FL	Banda RL	 Banda RL	Tiempo de activación de traspaso (por ejemplo, SFN)
Satélite 1	F ₁	R ₁₁	 R _{1M}	a ₁
	F ₂	R ₂₁	 R _{2M}	a ₂
	F ₁₆	R _{16,1}	 R _{16,M}	a ₁₆
Satélite 2			 	

[0094] El UT comienza a transmitir o recibir en la célula objetivo en el tiempo de activación de traspaso más un tiempo de sintonización. Dos ejemplos de parámetros UT relacionados con el tiempo de sintonización son un tiempo de sintonización entre células y un tiempo de sintonización entre satélites. Estos parámetros pueden incluirse en la información de capacidad UT.

Traspaso entre satélites

5

10

15

20

25

30

35

40

55

[0095] Las FIG. 7 y 8 ilustran ejemplos de traspaso entre satélites. En estos ejemplos, el SNP incluye un NAC de origen que controla un primer satélite y un NAC objetivo que controla un segundo satélite. En cada caso, el UT se conecta inicialmente a un satélite de origen (y, por lo tanto, el NAC de origen) y posteriormente se traspasa a un satélite objetivo (y, por lo tanto, el NAC objetivo). Se podría soportar un número diferente de NAC y satélites en otras implementaciones. Además, en algunas implementaciones, una entidad común (por ejemplo, la misma) podría soportar múltiples satélites.

[0096] La FIG. 7 es un ejemplo donde un UT 702 no envía un mensaje de medición. Por ejemplo, el UT 702 podría no soportar la detección de múltiples células/haces y/o satélites o el UT 702 puede determinar que no es necesario enviar un mensaje de medición a un SNP 704. En este caso, el UT 702 y el SNP 704 se basan en la tabla de transición de célula y satélite existente para determinar cuándo hacer la transición al siguiente haz/célula y/o satélite y dónde hacer la transición (por ejemplo, qué haz/célula, qué frecuencia, qué satélite). El UT 702 es un ejemplo del UT 400 o el UT 401 de la FIG. 1. El SNP 704 es un ejemplo del SNP 200 o el SNP 201 de la FIG. 1.

[0097] Un NAC de origen 706 envía la señalización de control 708 al UT 702. Esta señalización de control 708 puede incluir, por ejemplo, información de medición e información de control de sintonización (por ejemplo, definiciones de sintonización). Además, los datos en paquetes 710 se intercambian entre el UT 702 y el NAC de origen 706. El NAC de origen 706 es un ejemplo del NAC 612 de la FIG. 6.

50 **[0098]** En algún momento se activa un traspaso 712. Por ejemplo, el tiempo actual puede corresponder al tiempo para una transición de un satélite al siguiente indicado por la tabla de transición de célula y satélite.

[0099] También se pueden emplear otros activadores de traspaso. Por ejemplo, el SNP 704 (por ejemplo, el NAC de origen 706) puede decidir de manera autónoma que es necesario traspasar el UT 702. Tal activador puede deberse, por ejemplo, a: el satélite en servicio actual se está moviendo fuera del alcance del UT 702; el satélite se está moviendo fuera del alcance del UT 702; o el haz/célula

que sirve al UT 702 se apagará debido a los requisitos de GEO.

20

25

30

35

40

45

50

55

60

[0100] En el caso de que el UT 702 sea capaz de detectar otro haz/célula y/o satélite mientras está conectado al primer satélite, el UT 702 puede buscar la intensidad de la señal del satélite predeterminado y el haz/célula para el traspaso. Se puede suponer que el UT 702 tiene la información de ubicación de este satélite para hacerlo. Esta información de ubicación se puede obtener de los datos de efemérides de satélite que posee el UT 702. Si la intensidad de la señal es satisfactoria, el UT 702 no hace nada y espera a que el NAC de origen 706 inicie el proceso de traspaso entre satélites.

- [0101] Así, en el ejemplo de la FIG. 7, tanto el UT 702 como el NAC de origen 706 seguirán la tabla y comenzarán el traspaso a un nuevo satélite en servicio. Para este fin, el NAC de origen 706 realizará el procesamiento de traspaso 714. Por ejemplo, el NAC de origen 706 puede comunicarse con un NAC objetivo 716 para comenzar el traspaso. En algunos aspectos, esto puede implicar la sincronización de las colas 718 (por ejemplo, colas de tráfico de paquetes) entre los NAC 706 y 716. Además, dado que el tiempo del traspaso se conoce con anticipación, las colas de usuario se pueden transferir con anticipación. El NAC objetivo 716 es un ejemplo del NAC 612 de la FIG.
 - **[0102]** A continuación, el NAC de origen 706 envía la señalización de traspaso 720 al UT 702. En algunos aspectos, esta señalización de traspaso 720 puede incluir información que permite que el UT 702 se comunique con el NAC objetivo 716. En algunos aspectos, esta señalización de traspaso 720 puede incluir una nueva tabla de transición de célula y satélite (por ejemplo, que el NAC de origen 706 recibió del NAC objetivo 716).
 - [0103] A continuación, el UT 702 separa 722 del primer satélite y se sincroniza con el segundo satélite. Con este fin, el UT 702 puede enviar la señalización de sincronización 724 para el segundo satélite al NAC objetivo 716. En algunos aspectos, esto puede implicar que el UT 702 realice un procedimiento de acceso aleatorio en el segundo satélite.
 - [0104] A continuación, el UT 702 y el NAC objetivo 716 pueden intercambiar la señalización de conexión 726 y 728. En algunos aspectos, esto puede implicar que el NAC objetivo 716 envíe información de efemérides al UT 702 y solicite un indicador de calidad del canal del UT 702. En algunos aspectos, el UT 702 puede usar la información de efemérides para sincronizar con el segundo satélite.
 - **[0105]** Además, las diversas entidades pueden realizar diversas operaciones en segundo plano para garantizar que el reenvío de paquetes se realice correctamente y se realice cualquier limpieza necesaria (por ejemplo, limpieza de memoria caché).
 - [0106] La FIG. 8 es un ejemplo en el que un UT 802 envía un mensaje de medición. Por ejemplo, el UT 802 podría determinar que un mensaje de medición debe enviarse a un SNP 804 porque las condiciones del canal medidas (por ejemplo, la intensidad de la señal) desde el satélite en servicio o el satélite objetivo son inaceptables (por ejemplo, la intensidad de la señal es demasiado baja). En este caso, el SNP 804 puede generar una nueva tabla de transición de célula y satélite basándose en el mensaje de medición. A continuación, el UT 802 y el SNP 804 utilizarán la nueva tabla de transición de célula y satélite para determinar cuándo hacer la transición al siguiente haz/célula y/o satélite y dónde hacer la transición (por ejemplo, qué haz/célula, qué frecuencia, qué satélite). El UT 802 es un ejemplo del UT 400 o el UT 401 de la FIG. 1. El SNP 804 es un ejemplo del SNP 200 o el SNP 201 de la FIG. 1.
 - [0107] Como en la FIG. 7, un NAC de origen 806 envía la señalización de control 808 al UT 802. Esta señalización de control 808 puede incluir, por ejemplo, información de medición e información de control de sintonización (por ejemplo, definiciones de sintonización). Además, los datos en paquetes 810 se intercambian entre el UT 802 y el NAC de origen 806. El NAC de origen 806 es un ejemplo del NAC 612 de la FIG. 6.
 - [0108] En algún momento se activa un traspaso 812. En algunos casos, el tiempo actual correspondiente al tiempo para una transición de un satélite al siguiente como lo indica la tabla de transición de célula y satélite constituye un activador de traspaso. En algunos casos, un mensaje de medición enviado por el UT 802 que indica que un satélite vecino es materialmente más potente (por ejemplo, asociado con una mayor intensidad de señal recibida) que un satélite en servicio actual puede constituir un activador de traspaso.
 - [0109] También se pueden emplear otros activadores de traspaso. Por ejemplo, el SNP 804 (por ejemplo, el NAC de origen 806) puede decidir de manera autónoma que es necesario traspasar el UT 802. Tal activador puede deberse, por ejemplo, a: el satélite en servicio actual se está moviendo fuera del alcance del UT 802; el satélite se está moviendo fuera del alcance del SNP 804, incluso si puede estar dentro del alcance del UT 802; o el haz/célula que sirve al UT 802 se apagará debido a los requisitos de GEO.
- [0110] En el ejemplo de la FIG. 8, el UT 802 es capaz de detectar otro haz/célula y/o satélite mientras está conectado al primer satélite. Por lo tanto, el UT 802 puede realizar mediciones de calidad de canal (por ejemplo, mediciones de intensidad de señal de satélite). Por ejemplo, el UT 802 puede medir 814 la intensidad de la señal

del satélite en servicio actual (primer satélite) y el satélite objetivo (segundo satélite).

[0111] A continuación, el UT 802 realiza el procesamiento de medición 816 para determinar, por ejemplo, si la calidad de cualquiera de los canales es inadecuada (por ejemplo, la intensidad de la señal es demasiado baja). En caso de que la calidad de cualquiera de los canales sea inadecuada, el UT 802 puede optar por enviar un mensaje de medición 818 al NAC de origen 806. Este mensaje de medición 818 puede incluir, por ejemplo, los resultados de las mediciones (por ejemplo, intensidad de la señal en dB), una indicación de que el tiempo de traspaso debe adelantarse (por ejemplo, porque la señal del satélite de origen es actualmente demasiado baja), una indicación de que el tiempo de traspaso debe retrasarse (por ejemplo, porque la señal del satélite objetivo es actualmente demasiado baja), o alguna otra indicación.

[0112] Por lo tanto, de forma similar a la FIG. 7, el UT 802 puede buscar la intensidad de la señal del satélite y el haz/célula determinado para el traspaso. Nuevamente, se puede suponer que el UT 802 tiene la información de ubicación de este satélite para hacerlo (por ejemplo, obtenida a partir de los datos de efemérides del satélite que posee el UT 802). Si la intensidad de la señal no es satisfactoria, el UT 802 puede enviar un mensaje de medición 818 al NAC de origen 806 indicando un satélite diferente del predeterminado, para activar el proceso de traspaso anticipadamente o retrasarlo.

[0113] De este modo, el NAC de origen 806 puede tomar la decisión de traspasar el UT 802 a un satélite objetivo y un NAC 820 objetivo basándose en la tabla de transición de célula y satélite y en cualquier mensaje de medición 818 que el NAC de origen 806 recibe del UT 802. Así pues, como se indica en la FIG. 8, el NAC de origen 806 realizará un procesamiento de traspaso 822. Por ejemplo, el NAC de origen 806 puede decidir, basándose en el mensaje de medición 818, si el tiempo de traspaso necesita adelantarse (traspaso anticipado) o retrasarse (traspaso tardío), o si algún otro satélite debe seleccionarse como objetivo. Además, el NAC 806 de origen puede comunicarse con un NAC 820 objetivo para comenzar el traspaso. En algunos aspectos, esto puede implicar la sincronización de las colas 824 (por ejemplo, colas de tráfico de paquetes) entre los NAC 806 y 820. El NAC objetivo 820 es un ejemplo del NAC 612 de la FIG. 6.

[0114] A continuación, el NAC de origen 806 envía la señalización de traspaso 826 al UT 802. En algunos aspectos, esta señalización de traspaso 826 puede incluir información que permite que el UT 802 se comunique con el NAC objetivo 820. En algunos aspectos, esta señalización de traspaso 826 puede incluir una nueva tabla de transición de célula y satélite (por ejemplo, que el NAC de origen 806 recibió del NAC objetivo 820).

[0115] A continuación, el UT 802 separa 828 del primer satélite y se sincroniza con el segundo satélite. Con este fin, el UT 802 puede enviar la señalización de sincronización 830 para el segundo satélite al NAC objetivo 820.

[0116] A continuación, el UT 802 y el NAC objetivo 820 pueden intercambiar la señalización de conexión 832 y 834. En algunos aspectos, esto puede implicar que el NAC objetivo 820 envíe información de efemérides al UT 802 y solicite un indicador de calidad del canal del UT 802. Nuevamente, las diversas entidades pueden realizar varias operaciones en segundo plano para garantizar que el reenvío de paquetes se realice correctamente y se realice cualquier limpieza necesaria (por ejemplo, limpieza de memoria caché).

[0117] Con el traspaso normal entre satélites, los procesos de petición de repetición automática híbrida (HARQ) pueden finalizar. Sin embargo, el NAC de origen puede saber exactamente cuándo ocurrirá el traspaso, por lo tanto, el NAC de origen puede garantizar que se agoten las memorias intermedias de datos de enlace directo. Además, el espacio para el flujo de datos se puede minimizar ya que se conoce el tiempo de traspaso.

Traspaso entre haces

10

15

20

25

35

40

45

60

65

50 [0118] El traspaso entre células/haces es ejecutado por el SNP y el UT síncronamente de acuerdo con la línea de tiempo especificada en la tabla de transición de célula y satélite. Utilizando los períodos de sintonización o la capacidad de recepción doble, el UT detecta la presencia del próximo haz/célula especificada en la tabla de transición de célula y satélite. Si el UT detecta el siguiente haz/célula con éxito, se ejecuta un traspaso normal entre células/haces sin ninguna señalización entre el UT y el SNP.

[0119] Con el traspaso normal entre células/haces, los procesos HARQ de enlace directo se pueden transferir de un haz/célula al siguiente. Además, las asignaciones inversas pueden cancelarse cuando el UT realiza un traspaso desde un haz/célula al siguiente. Por ejemplo, en lugar de eso, el UT puede enviar nuevos mensajes de petición para enviar datos de enlace inverso.

Escenarios de excepción

[0120] Si el UT pierde el haz/célula de servicio actual antes de que expire el tiempo especificado en la tabla de transición de célula y satélite, el UT entra en modo de fallo de enlace de radio (RLF). En el modo RLF, el UT puede intentar encontrar un haz/célula o satélite alternativo (por ejemplo, basándose en la información de efemérides en el UT). Por ejemplo, el UT puede intentar conectarse al próximo satélite que debería estar sirviendo al UT. Si el UT

establece con éxito otra conexión, el UT puede enviar mensajes de señalización al SNP para continuar la comunicación donde el UT se detuvo antes del RLF.

[0121] Mientras es atendido por un haz/célula, el UT puede fallar al detectar el siguiente haz/célula especificado en la tabla de transición de célula y satélite, pero puede detectar otro haz/célula. Esto puede suceder, por ejemplo, a un UT que se mueve rápidamente (por ejemplo, un UT conectado a un avión). En este caso, el UT puede enviar un mensaje de medición para iniciar otro procedimiento de traspaso. Además, el UT también puede enviar una actualización de posición si se ha movido desde la última vez que se envió una actualización de posición. En respuesta, el SNP puede enviar una tabla de transición de célula y satélite actualizada. En este caso, el UT sigue la tabla actualizada. De forma alternativa, el SNP puede iniciar un proceso de traspaso completamente nuevo.

Ejemplo de detalles de traspaso del modo conectado

5

10

15

20

25

30

35

50

65

- [0122] Con referencia ahora a las FIG. 9 19, se describirán con más detalle varios aspectos del traspaso del modo conectado por radio de acuerdo con las enseñanzas del presente documento. A continuación se describen ejemplos de flujos de llamadas para varias operaciones de traspaso en modo conectado. Además, los siguientes detalles describen varios procedimientos que pueden usarse para mejorar el rendimiento del traspaso. En varios aspectos, estos procedimientos pueden usarse para definir mediciones de traspaso, determinar cuándo activar las mediciones, determinar cuándo traspasar un UT o determinar si activar un UT para obtener la sincronización del enlace de retorno después de un traspaso. Con fines explicativos, estos detalles se analizarán en el contexto de un NAC que comprende dos componentes, un BxP y un AxP, para controlar y/o comunicarse con un satélite.
- [0123] La FIG. 9 ilustra un ejemplo de despliegue de componentes BxP y AxP en un sistema de satélite. En un momento dado, un UT 902 se comunica con uno de los AxP 904 a través de un satélite 906 y uno de los BxP 908, donde cada BxP 908 incluye o está asociado con un subsistema de satélite RF 910.
- [0124] Un BxP se refiere a una combinación de un BCP y un BTP (de ahí el acrónimo BxP). En algunos aspectos, un BxP puede incluir componentes de red de radio para controlar un satélite. Por ejemplo, un BxP puede incluir, para un haz/célula determinado de un satélite, un conjunto correspondiente de circuitos digitales que sirve a ese haz/célula. Por lo tanto, en algunos aspectos, un BxP corresponde a una antena particular. Además, en algunos aspectos, un BxP determinado puede estar asociado con una banda particular para un haz/célula dado de un satélite.
- [0125] Un AxP se refiere a una combinación de un ACP y un ATP (de ahí el acrónimo AxP). En algunos aspectos, un AxP corresponde a un punto de anclaje. En algunos aspectos, un punto de anclaje puede estar asociado con una región particular (por ejemplo, una región administrativa, una frontera de país, etc.). Un AxP determinado puede prestar servicio a uno o más satélites. Además, un satélite determinado puede prestar servicio a uno o más AxP.
- 40 [0126] En el escenario anterior, un UT en modo conectado puede sufrir dos tipos de traspaso: traspaso BxP o traspaso AxP. Por ejemplo, a medida que los satélites se mueven en un sistema de satélite no OSG, las células/haces (y, por lo tanto, los circuitos y antenas asociados con esas células/haces) utilizados para prestar servicio a un UT determinado cambiarán con el tiempo. Por lo tanto, en algunos aspectos, un traspaso BxP puede corresponder a un traspaso a un haz/célula (o antena, etc.) diferente. Como otro ejemplo, la atenuación debida a la lluvia en un haz/célula particular que opera en una primera banda puede requerir un cambio a una banda diferente para ese haz/célula. Por lo tanto, en algunos aspectos, un traspaso BxP puede corresponder a un traspaso a una banda diferente para un haz/célula determinado. Un traspaso AxP corresponde al traspaso a un punto de anclaje diferente. Por ejemplo, un UT puede moverse a una región administrativa diferente, por lo que necesita un cambio en el AxP en servicio. Un traspaso BxP puede o no estar asociado con un traspaso AxP.
 - [0127] En algunos aspectos, la divulgación siguiente aborda los errores al apuntar del satélite que pueden ocurrir en un sistema de comunicación por satélite. Estos errores pueden tener varias causas en el sistema.
- [0128] El gráfico 1000 de la FIG. 10 ilustra los contornos de ganancia esperados 1002 y 1004 de diferentes haces de satélite, un primer haz esperado y un segundo haz esperado, respectivamente. En algunos aspectos, estos contornos de ganancia de haz pueden usarse para determinar cuándo traspasar un UT de un haz a otro. Por ejemplo, se puede entregar un UT cuando la ganancia de haz del primer haz esperado (un haz de origen) que actualmente está sirviendo al UT cae por debajo de la ganancia del segundo haz esperado (un haz objetivo candidato).
 - [0129] Para el primer haz esperado, la FIG. 10 ilustra un contorno de ganancia de haz real 1006 que puede ser visto por un UT debido a un error al apuntar del satélite. Como se indica en la FIG. 10, un desplazamiento 1008 en el contorno de ganancia debido a un error al apuntar del satélite desplaza la intersección del contorno de ganancia entre los dos contornos del haz desde una primera intersección 1010 a una segunda intersección 1012. Por lo tanto, en el tiempo de traspaso esperado (ideal) 1014, la ganancia del primer haz será menor (en la cantidad indicada) que la ganancia esperada 1016, lo cual afectará negativamente al rendimiento del traspaso. Como

resultado, la calidad de la señal en el UT puede ser inferior a la deseada inmediatamente antes del traspaso. Para abordar este problema, el tiempo de traspaso ideal puede cambiarse en un Δ (anteriormente en este ejemplo) basándose en el desplazamiento 1008 en el contorno del haz debido al error al apuntar del satélite. Por lo tanto, el traspaso ocurrirá en un nuevo tiempo de traspaso 1018. Como se muestra en la FIG. 10, la ganancia 1020 en el nuevo tiempo de traspaso 1018 puede ser menor en una ganancia Δ 1022 que la ganancia esperada 1016 asociada con el primer haz esperado.

[0130] Con este fin, un UT puede realizar mediciones de señales de satélite (por ejemplo, entre satélites e intrasatelitales) y enviar esta información a un SNP. Basándose en estas señales, el SNP puede modificar el tiempo de traspaso para el UT. En consecuencia, un SNP puede enviar información actualizada de traspaso a un UT (por ejemplo, a través de una tabla de transición de célula y satélite o un subconjunto de la tabla de transición de célula y satélite) para dar cuenta del error al apuntar del satélite.

[0131] En algunos aspectos, se puede utilizar un procedimiento de acceso aleatorio en escenarios en los que un UT aún no ha logrado la sincronización con un satélite durante un traspaso. Por ejemplo, un procedimiento de acceso aleatorio basado en mediciones UT de señales de satélite puede permitir que un UT logre la sincronización del enlace de retorno.

Traspaso BxP

5

10

15

20

25

35

40

55

[0132] Un BxP lógico puede identificarse de manera única mediante una tupla de 4 que incluye una red de acceso por satélite (SAN), una antena SNP, un haz de satélite y una frecuencia de enlace de servicio directo (FSL), donde la antena SNP se refiere a la antena de la FIG. 9. Se produce un traspaso BxP para un UT en modo conectado por radio si cambia la tupla de 4 de BxP de su conexión.

[0133] La Tabla 3 enumera un ejemplo de estos cuatro tipos de traspasos BxP y los cambios (resaltados en negrita) asociados con la tupla de 4 de BxP para cada tipo de traspaso BxP. Para el traspaso de conmutación de enlace de conexión, solo cambia BxP, no toda la SAN.

30 TABLA 3

Tipo de traspaso BxP	Cambios de tupla de 4 de BxP (en negrita)
Traspaso intra-sat	(SAN, antena SNP, haz de sat., frecuencia FSL)
Traspaso entre sat.	(SAN, antena SNP, haz de sat., frecuencia FSL)
Traspaso de conmutación de enlace de conexión	(SAN, antena SNP, haz de sat., frecuencia FSL)
Fallo intra-SNP, de antena SNP	(SAN, antena SNP , haz de sat., frecuencia FSL)

[0134] El traspaso BxP ocurre en un tiempo de traspaso basándose en información a priori, denotada como THO_a_priori, o en un nuevo tiempo de traspaso recalculado usando informes de mediciones UT, denotados como THO_recalc, donde THO_recalc = THO_a_priori $\pm\Delta$ (por ejemplo, como en la FIG. 10).

[0135] Si los errores al apuntar de la antena de satélite son bien conocidos a priori, entonces el traspaso BxP será iniciado por el UT basándose únicamente en su tabla de traspaso por satélite (por ejemplo, tabla de transición de célula y satélite). De lo contrario, el traspaso BxP puede requerir mediciones UT de la célula objetivo y el posterior informe de mediciones por parte del UT al AxP de origen basándose en el cual el AxP de origen actualizará el satélite UT y la tabla de transición de célula.

Traspaso BxP - Conmutación de enlace de conexión

[0136] Refiriéndose nuevamente a la FIG. 9, una primera configuración 902 y una segunda configuración 904 ilustran un traspaso BxP de conmutación de enlace de conexión. Cada satélite tiene dos conexiones de enlace de conexión doble SNP, pero solo una conexión de enlace de conexión está activa a la vez. Las conexiones de enlace de conexión doble permiten la conmutación instantánea de la conexión de enlace de conexión activa en un satélite. La conmutación de enlace de conexión aparece como un traspaso idempotente en la que el UT se transfiere al mismo satélite, la misma célula y la misma frecuencia. Sin embargo, el traspaso BxP de conmutación de enlace de conexión también se puede hacer que ocurra al mismo tiempo que un traspaso de célula para algunos UT, en cuyo caso la célula objetivo es diferente de la célula de origen.

[0137] Los flujos de llamadas para el traspaso BxP de conmutación de enlace de conexión son los mismos que los ilustrados en la FIG. 11 y la FIG. 13 analizadas a continuación. El flujo de llamadas en la FIG. 11 es aplicable para el caso en el que el UT no necesita realizar un procedimiento de acceso aleatorio para lograr la sincronización RL después de que se produce la conmutación de enlace de conexión. El flujo de llamadas en la FIG. 13 es

aplicable para el caso en el que el UT necesita realizar un procedimiento de acceso aleatorio para lograr la sincronización RL después de que se produzca la conmutación de enlace de conexión.

Traspaso BxP - Acceso no aleatorio

5

25

35

- [0138] La FIG. 11 ilustra un flujo de llamadas de traspaso BxP no basado en acceso aleatorio sin mediciones UT e informes de mediciones. Un caso de uso típico es un traspaso BxP dentro del satélite. El flujo de llamadas se encuentra entre un UT 1102, un BxP de origen 1104, un BxP objetivo 1106, un AxP de origen 1108 y un SNP 1110.
- 10 **[0139]** A continuación se proporciona una descripción de los pasos en el flujo de llamadas de traspaso BxP no basado en acceso aleatorio sin mediciones UT e informes de mediciones. El flujo inicial de datos en paquetes está representado por las líneas 1112, 1114 y 1116.
- [0140] En el punto 1118, el AxP de origen 1108 preconfigura el BxP objetivo 1106 para el traspaso antes (por ejemplo, 1 segundo antes) del tiempo de activación de traspaso (por ejemplo, antes de THO_a_priori). En el paso 1A, el AxP de origen 1108 envía un mensaje de reconfiguración de conexión de radio al UT 1102. En el paso 1B, el mensaje se envía al UT 1102 con suficiente antelación al tiempo de activación de traspaso para que el UT 1102 tenga el tiempo adecuado para recibir el mensaje. Este mensaje puede incluir información de traspaso por satélite, como una fila de una tabla de transición (por ejemplo, indicativo de un tiempo de activación de traspaso) y otros parámetros. El UT 1102 inicia el temporizador T-4. Si el T-4 expira (por ejemplo, se produce un fallo de traspaso), entonces el UT 1102 realiza el procedimiento de restablecimiento de la conexión de radio.
 - [0141] En los pasos 2A y 2B, basándose en la única fila de la tabla de transición de célula y satélite contenida en el mensaje de reconfiguración de conexión de radio en el paso 1, tanto el UT 1102 como el AxP de origen 1108 se preparan simultáneamente para el traspaso BxP en el tiempo de activación de traspaso (por ejemplo, en THO_a_priori). Por lo tanto, el UT 1102 se prepara para el traspaso desde el BxP de origen 1104 al BxP objetivo 1106, y el AxP de origen 1108 se prepara para traspasar el UT 1102 desde el BxP de origen 1104 al BxP objetivo 1106.
- 30 **[0142]** En el paso 3, el UT 1102 restablece el estado de control de acceso a medios (MAC). El UT 1102 adquiere la nueva célula (por ejemplo, sincronización FL).
 - [0143] En el paso 4, después de la activación de traspaso + tiempo de sintonización entre células, el BxP objetivo 1106 envía al UT 1102 una petición de indicador de calidad de canal (CQI) + concesión de RL se dirige al identificador UT (UT-ID) que el AxP de origen 1108 asignó al UT 1102 en el mensaje de reconfiguración de conexión de radio (consulte el paso 1).
- [0144] En el paso 5, al recibir la concesión de RL del BxP objetivo 1106, el UT 1102 detiene el temporizador T-4 (por ejemplo, el traspaso tiene éxito) y envía un informe CQI y un mensaje de reconfiguración de conexión de radio completa al BxP objetivo 1106 (paso 5A) para reenviar al AxP de origen 1108 (paso 5B). El mensaje de reconfiguración de conexión de radio completa no contiene elementos de información (IE) y está protegido con integridad y cifrado con las claves antiguas (por ejemplo, Kint y Kenc, respectivamente). El flujo final de datos en paquetes está representado por las líneas 1120, 1122 y 1124.
- [0145] La FIG. 12 ilustra un flujo de llamadas de traspaso BxP no basado en acceso aleatorio con mediciones UT e informes de mediciones. Un caso de uso típico es un traspaso BxP dentro del satélite. El flujo de llamadas se encuentra entre un UT 1202, un BxP de origen 1204, un BxP objetivo 1206, un AxP de origen 1208 y un SNP 1210.
- 50 **[0146]** A continuación se presenta una descripción de los pasos en el flujo de llamadas de traspaso BxP no basado en acceso aleatorio con mediciones UT e informes de mediciones. El flujo inicial de datos en paquetes está representado por las líneas 1212, 1214 y 1216.
- [0147] Un mensaje de reconfiguración de conexión de radio enviado al UT 1202 mientras el UT 1202 es servido por una célula de origen determinada puede indicarle al UT 1202 cuándo realizar mediciones para la siguiente célula objetivo. Por lo tanto, en el punto 1218, mientras está en la célula anterior, el AxP de origen 1208 puede configurar el UT 1202 con información de espacio de medición (por ejemplo, un patrón de espacio) correspondiente a un tiempo de medición. El AxP de origen 1208 puede enviar esta información porque el error al apuntar del satélite puede requerir que se produzca traspaso del satélite en el tiempo de traspaso ideal +/- Δ, lo cual requiere mediciones por parte del UT 1202. En los pasos 1A y 1B, el AxP de origen 1208 envía un mensaje de reconfiguración de conexión de radio al UT 1202. El mensaje incluye información de configuración del espacio de medición y el tiempo de activación/desactivación de la medición (además del tiempo de activación de traspaso y otros IE descritos en el presente documento). En el paso 3, el UT 1202 mide la intensidad de la señal de la célula objetivo de acuerdo con la información de configuración del espacio de medición que recibió del AxP de origen 1208. El flujo de datos en paquetes continúa como se representa mediante las líneas 1218, 1220 y 1222.

[0148] En los pasos 4A y 4B, el UT 1202 envía un informe de mediciones al AxP de origen 1208 indicando la intensidad de la señal (por ejemplo, RSRP) tanto de la célula de origen como de la célula objetivo utilizando informes basados en eventos de la intensidad de la señal. El AxP de origen 1208 configura el UT 1202 para usar un Evento 1 (la célula de origen se vuelve mejor que un umbral) como criterio para activar un informe de mediciones. El AxP de origen 1208 establece el umbral lo suficientemente bajo para que la intensidad de la señal de la célula de origen sea siempre mayor que el umbral, lo cual hace que el UT 1202 envíe un informe de mediciones al AxP de origen 1208. De manera similar, el AxP de origen 1208 configura el UT 1202 para usar un Evento 4 (la célula objetivo se vuelve mejor que un umbral) como criterio para activar un informe de mediciones. El AxP de origen 1208 establece el umbral lo suficientemente bajo como para que la intensidad de la señal de la célula objetivo sea siempre mayor que el umbral, lo cual hace que el UT 1202 envíe un informe de mediciones al AxP de origen 1208. También se pueden usar otros criterios de informe.

[0149] En el paso 5, basándose en el informe de mediciones UT (consulte el paso 4), el AxP de origen 1208 calcula un nuevo tiempo de activación de traspaso (por ejemplo, THO recalc) y preconfigura el BxP objetivo 1206 para el traspaso antes del nuevo tiempo de activación de traspaso (por ejemplo, antes de THO recalc). Por ejemplo, basándose en la información de efemérides de satélite, patrones de haz y el informe de mediciones UT, el AxP de origen 1208 puede prepararse para que ocurra la entrega de BxP en el tiempo de entrega ideal +/- Δ. En los pasos 6A y 6B, el AxP de origen 1208 envía un mensaje de reconfiguración de conexión de radio al UT 1202. El contenido del mensaje se describe en el presente documento, incluido el nuevo tiempo de activación de traspaso. Opcionalmente, el mensaje también puede contener información de configuración de espacio de medición y tiempo de activación/desactivación de medición. El mensaje se envía al UT 1202 con suficiente antelación al nuevo tiempo de activación de traspaso para que el UT 1202 tenga el tiempo adecuado para recibir el mensaje. El UT 1202 inicia el temporizador T-4. Si el T-4 expira (por ejemplo, se produce un fallo de traspaso), entonces el UT 1202 realiza el procedimiento de restablecimiento de la conexión de radio. Además, si el AxP de origen 1208 no recibe el informe de mediciones del UT 1202 de manera oportuna, entonces el AxP de origen 1208 utiliza el tiempo de activación de traspaso anterior (por ejemplo, THO_a_priori) al configurar tanto el BxP objetivo 1206 como el UT 1202 para manos libres.

[0150] Basándose en la única fila de la tabla de transición de célula y satélite contenida en el mensaje de reconfiguración de conexión de radio en el paso 6, tanto el UT 1202 como el AxP de origen 1208 se preparan simultáneamente para el traspaso BxP en el nuevo tiempo de activación de traspaso (por ejemplo, THO recalc).

[0151] En el paso 7, el UT 1202 restablece el estado MAC. El UT 1202 adquiere la nueva célula (por ejemplo, sincronización FL).

[0152] En el paso 8A, después de la activación de traspaso + tiempo de sintonización entre células, el BxP objetivo 1206 envía al UT 1202 una petición de concesión de RL + CQI. La concesión de RL se dirige a la UT-ID que el AxP de origen 1208 asignó al UT 1202 en el mensaje de reconfiguración de conexión de radio (consulte el paso 3).

[0153] Al recibir la concesión de RL del BxP objetivo 1206, el UT 1202 detiene el temporizador T-4 (por ejemplo, el traspaso es exitoso) y envía un informe CQI (paso 8A) y un mensaje de reconfiguración de conexión de radio completa al BxP objetivo 1206/AxP de origen 1208 (pasos 9A y 9B). El mensaje de reconfiguración de conexión de radio completa no contiene IE y está protegido con integridad y cifrado con las claves antiguas (por ejemplo, Kint y Kenc, respectivamente). El flujo final de datos en paquetes está representado por las líneas 1224, 1226 y 1228

Traspaso BxP - Acceso aleatorio

10

15

20

25

30

35

40

45

55

60

65

[0154] La FIG. 13 ilustra un flujo de llamadas de traspaso BxP basado en acceso aleatorio sin mediciones UT e informes de mediciones. Un caso de uso típico es un traspaso BxP entre satélites. El flujo de llamadas se encuentra entre un UT 1302, un BxP de origen 1304, un BxP objetivo 1306, un AxP de origen 1308 y un SNP 1310.

[0155] A continuación se presenta una descripción de los pasos del flujo de llamadas de traspaso BxP basado en acceso aleatorio sin mediciones UT e informes de mediciones. El flujo inicial de datos en paquetes está representado por las líneas 1312, 1314 y 1316.

[0156] En los pasos 1A y 1B, el AxP de origen 1308 preconfigura el BxP objetivo 1306 para el traspaso antes del tiempo de activación de traspaso (por ejemplo, antes de THO_a_priori). El AxP de origen 1308 envía un mensaje de reconfiguración de conexión de radio al UT 1302. El contenido del mensaje se describe en el presente documento. El mensaje se envía al UT 1302 con suficiente antelación al tiempo de activación de traspaso para que el UT 1302 tenga el tiempo adecuado para recibir el mensaje. El UT 1302 inicia el temporizador T-4. Si el T-4 expira (por ejemplo, se produce un fallo de traspaso), entonces el UT 1302 realiza el procedimiento de restablecimiento de la conexión de radio.

[0157] En el paso 2, basándose en la única fila de la tabla de transición de célula y satélite contenida en el

mensaje de reconfiguración de conexión de radio en el paso 1, tanto el UT 1302 como el AxP de origen 1308 se preparan simultáneamente para el traspaso BxP en el tiempo de activación de traspaso (por ejemplo, en THO_a_priori). Estas operaciones pueden ser similares a las operaciones correspondientes analizadas anteriormente conjuntamente con la FIG. 11.

- **[0158]** En el paso 3, el UT 1302 restablece el estado MAC. El UT 1302 adquiere la nueva célula (por ejemplo, sincronización FL). Como se representa en el paréntesis 1318, si el paso 1 no incluye una orden de procedimiento RA, los pasos 4 7 no son necesarios.
- 10 **[0159]** Después del tiempo de activación de traspaso + sintonización entre satélites, el BxP objetivo 1306 envía una orden de canal de control FL (FLCC) al UT 1302 que contiene una firma de preámbulo dedicada para activar el UT 1302 para realizar un procedimiento de acceso aleatorio no basado en contienda. Esto permite que el UT 1302 logre posteriormente la sincronización RL.

5

25

30

45

65

- 15 **[0160]** En el paso 4, el UT 1302 envía un preámbulo de acceso aleatorio no basado en contienda en el acceso aleatorio al BxP objetivo 1306. Al recibir el preámbulo de acceso aleatorio no basado en contienda del UT 1302, el BxP objetivo 1306 valida la secuencia de firma recibida.
- [0161] En el paso 5, el BxP objetivo 1306 envía una respuesta de acceso aleatorio al UT 1302 que se dirige al grupo apropiado de UT (por ejemplo, RA-RNTI). La respuesta de acceso aleatorio contiene el área de búsqueda (PA), la concesión de RL (que incluye una petición CQI) y la UT-ID temporal.
 - [0162] Si se utiliza una firma de preámbulo dedicada, la concesión de RL puede incluir una petición CQI. En este caso, el proceso puede saltar del punto 1320 al paso 8B. De lo contrario, se pueden realizar las operaciones del bloque 1322, incluidos los pasos 6 y 7, y las operaciones del paso 8A.
 - [0163] Al recibir la petición de concesión de RL + CQI del BxP objetivo 1306 (por ejemplo, en el paso 8A), el UT 1302 detiene el temporizador T-4 (por ejemplo, el traspaso tiene éxito) y envía un informe CQI (paso 8B) al BxP objetivo 1306. Si se usa una firma de preámbulo dedicada, el UT 1302 también envía un mensaje de reconfiguración de conexión de radio completa al BxP objetivo 1306 (paso 9A) para reenviarlo al AxP de origen 1308 (paso 9B). El mensaje de reconfiguración de conexión de radio completa no contiene IE y está protegido con integridad y cifrado con las claves antiguas (por ejemplo, Kint y Kenc, respectivamente). El flujo final de datos en paquetes está representado por las líneas 1324, 1326 y 1328.
- 35 **[0164]** Las FIG. 14 y 15 ilustran un flujo de llamadas de traspaso BxP basado en acceso aleatorio con mediciones UT e informes de mediciones. Un caso de uso típico es un traspaso BxP entre satélites. El flujo de llamadas se encuentra entre un UT 1402, un BxP de origen 1404, un BxP objetivo 1406, un AxP de origen 1408 y un SNP 1410.
- [0165] A continuación se presenta una descripción de los pasos en el traspaso BxP basado en acceso aleatorio con mediciones UT e informes de mediciones. El flujo inicial de datos en paquetes está representado por las líneas 1412, 1414 y 1416.
 - [0166] Con referencia inicialmente a la FIG. 14, mientras que en la célula anterior, el UT 1402 fue configurado por el AxP de origen 1408 en un mensaje de reconfiguración de conexión de radio con información de configuración de espacio de medición y tiempo de activación/desactivación de medición (además del tiempo de activación de traspaso y otros IE descritos en el presente documento). En el paso 1, el UT 1402 mide la intensidad de la señal de la célula objetivo de acuerdo con la información de configuración del espacio de medición que recibió del AxP de origen 1408. El flujo de datos en paquetes continúa como se representa mediante las líneas 1418, 1420 y 1422.
- [0167] En el paso 2, el UT 1402 envía un informe de mediciones al AxP de origen 1408 que indica que la intensidad de la señal (por ejemplo, RSRP) tanto de la célula de origen como de la célula objetivo utilizando informes basados en eventos de la intensidad de la señal. El AxP de origen 1408 configura el UT 1402 para usar un Evento 1 (la célula de origen se vuelve mejor que un umbral) como criterio para activar un informe de mediciones. El AxP de origen 1408 establece el umbral lo suficientemente bajo como para que la intensidad de la señal de la célula de origen sea siempre mayor que el umbral, por lo que se activa el UT 1402 para enviar un informe de mediciones al AxP de origen 1408. De manera similar, el AxP de origen 1408 configura el UT 1402 para usar un Evento 4 (la célula objetivo se vuelve mejor que un umbral) como criterio para activar un informe de mediciones. El AxP de origen 1408 establece el umbral lo suficientemente bajo como para que la intensidad de la señal de la célula objetivo sea siempre mayor que el umbral, lo cual hace que el UT 1402 envíe un informe de mediciones al AxP de origen 1408. También se pueden usar otros criterios de informe.
 - **[0168]** Basándose en el informe de mediciones UT (consulte el paso 2), el AxP de origen 1408 calcula un nuevo tiempo de activación de traspaso (por ejemplo, THO recalc) y preconfigura el BxP objetivo 1406 para el traspaso antes del nuevo tiempo de activación de traspaso (por ejemplo, antes de THO recalc).
 - [0169] Las operaciones de los pasos 3 a 11 corresponden a los pasos 1 a 9 de la FIG. 13. Por lo tanto, estas

operaciones se analizarán brevemente. En el paso 3, el AxP de origen 1408 envía un mensaje de reconfiguración de conexión de radio al UT 1402. El contenido del mensaje se describe en el presente documento, incluido el tiempo de activación de traspaso. Opcionalmente, el mensaje también puede contener información de configuración de espacio de medición y tiempo de activación/desactivación de medición. El mensaje se envía al UT 1402 con suficiente antelación al tiempo de activación de traspaso para que el UT 1402 tenga el tiempo adecuado para recibir el mensaje. El UT 1402 inicia el temporizador T-4. Si el T-4 expira (por ejemplo, se produce un fallo de traspaso), entonces el UT 1402 realiza el procedimiento de restablecimiento de la conexión de radio. Además, si el AxP de origen 1408 no recibe el informe de mediciones del UT 1402 de manera oportuna, entonces el AxP de origen 1408 utiliza el tiempo de activación de traspaso anterior (por ejemplo, THO_a_priori) al configurar tanto el BxP objetivo 1406 como el UT 1402 para el traspaso.

[0170] En el paso 4, basándose en la fila individual de la tabla de transición de célula y satélite contenida en el mensaje de reconfiguración de conexión de radio en el paso 3, tanto el UT 1402 como el AxP de origen 1408 se preparan simultáneamente para el traspaso BxP en el nuevo tiempo de activación de traspaso (por ejemplo, THO recalc).

[0171] En el paso 5, el UT 1402 restablece el estado MAC. El UT 1402 adquiere la nueva célula (por ejemplo, sincronización FL).

- [0172] Con referencia a la FIG. 15, después de la activación de traspaso + tiempo de sintonización entre células, el BxP objetivo 1406 envía una orden FLCC al UT 1402 que contiene una firma de preámbulo dedicada para activar el UT 1402 para realizar un procedimiento de acceso aleatorio no basado en contienda. Esto permite que el UT 1402 logre posteriormente la sincronización RL.
- 25 **[0173]** En el paso 6, el UT 1402 envía un preámbulo de acceso aleatorio no basado en contienda en el acceso aleatorio al BxP objetivo 1406. Al recibir el preámbulo de acceso aleatorio no basado en contienda del UT 1402, el BxP objetivo 1406 valida la secuencia de firma recibida.
- [0174] En el paso 7, el BxP objetivo 1406 envía una respuesta de acceso aleatorio al UT 1402 que se dirige al RA-RNTI apropiado. La respuesta de acceso aleatorio contiene el área de búsqueda, la concesión de RL (que incluye una petición CQI) y la UT-ID temporal.
 - [0175] Al recibir la petición de concesión de RL + CQI del BxP objetivo 1406 (paso 10A), el UT 1402 detiene el temporizador T-4 (por ejemplo, el traspaso es exitoso) y envía un informe CQI al BxP objetivo 1406 (paso 10B) y un mensaje de reconfiguración de conexión de radio completa al BxP objetivo 1406/AxP de origen 1408 (paso 11). El mensaje de reconfiguración de conexión de radio completa no contiene IE y está protegido con integridad y cifrado con las claves antiguas (por ejemplo, Kint y Kenc, respectivamente). El flujo final de datos en paquetes está representado por las líneas 1424, 1426 y 1428.

40 Fallo de traspaso BxP

10

15

35

45

50

55

60

[0176] En un fallo intra-SNP, de antena SNP, un conjunto de antena que sirve al satélite ha fallado. En este caso, uno de dos escenarios es posible. En un primer escenario, el UT experimenta una breve interrupción en la conectividad y el servicio de datos que es administrado por el SNP como parte del funcionamiento normal (por ejemplo, programación de recursos FL y RL para el UT mediante el SNP, retransmisiones HARQ y retransmisiones ARQ). En un segundo escenario, el UT experimenta una pérdida de sincronización FL o hay una interrupción significativa en la conectividad y el servicio de datos que da como resultado un fallo de enlace de radio (RLF).

Traspaso AxP

[0177] Los traspasos entre AxP pueden realizarse con fines de equilibrio de carga o para UT no estacionarias que requieren un traspaso entre AxP debido a un cambio en la ubicación del UT que da como resultado un cruce de una frontera de región administrativa. Un procedimiento de traspaso AxP comprende tres fases distintas: Preparación de traspaso AxP, ejecución de traspaso AxP y finalización del traspaso AxP.

[0178] Los siguientes procedimientos se pueden usar para la preparación del traspaso AxP.

- [0179] Para los portadores de datos móviles (AM) reconocidos mediante radio control (RC), si se aplica el reenvío directo de datos, entonces se pueden establecer túneles por portador de datos RL-AM (unidireccional desde el AxP de origen al AxP objetivo) para el reenvío de datos de enlace directo y de enlace inverso. Por el contrario, si se aplica el reenvío indirecto de datos, entonces se pueden establecer túneles por portador de datos RL-AM (una vía desde el AxP de origen al AxP objetivo a través del SNP) para el reenvío de datos de enlace directo y de enlace inverso.
- 65 **[0180]** Para los portadores de datos móviles (UM) no reconocidos por RC, si se aplica el reenvío directo de datos, entonces se pueden establecer túneles por portador de datos RL-UM (una vía desde el AxP de origen al AxP

objetivo) solo para el reenvío de datos de enlace directo. Los datos de enlace inverso no se reenvían desde el AxP de origen al AxP objetivo, sino que el AxP de origen los envía al SNP. Por el contrario, si se aplica el reenvío indirecto de datos, entonces se pueden establecer túneles por portador de datos RL-UM (una vía desde el AxP de origen al AxP objetivo) solo para el reenvío de datos de enlace directo. Los datos de enlace inverso no se reenvían desde el AxP de origen al AxP objetivo, sino que el AxP de origen los envía al SNP.

[0181] Los siguientes procedimientos pueden usarse para la ejecución de traspaso AxP.

[0182] Para los portadores de datos RL-AM, los datos reenviados de enlace inverso contienen números de secuencia (SN). Los datos reenviados de enlace directo pueden contener SN o no si los datos de enlace directo se reciben del SNP sin que el AxP de origen todavía les haya asignado un SN. El AxP de origen envía tanto SN de enlace directo como de enlace inverso e información del número de tramas (FN) al AxP objetivo. Los estados MAC y RL se restablecen.

[0183] Para los portadores de datos RL-UM, los datos reenviados de enlace directo pueden contener SN o no si los datos de enlace directo se reciben del SNP sin que el AxP de origen todavía les haya asignado un SN. Si los datos reenviados de enlace directo contienen un SN, el AxP objetivo debe enviar primero estos datos al UT (después de restablecer tanto el SN como el FN). El estado se restablece (por ejemplo, se restablece el SN y el FN tanto de enlace directo como de enlace inverso). Los estados MAC y RL se restablecen.

[0184] Los siguientes procedimientos pueden usarse para completar el traspaso.

20

25

35

45

50

55

60

65

[0185] Para los portadores de datos RL-AM, el UT puede enviar una lista de unidades de datos de protocolo (PDU) de enlace directo que faltan/recibidas al AxP objetivo y el AxP objetivo puede enviar una lista de PDU de enlace inverso que faltan/recibidas al UT. Para los portadores de datos RL-AM y RL-UM, los túneles de enlace directo por portador de datos se conmutan desde el AxP de origen al AxP objetivo y los recursos UT se emiten en el AP de origen.

[0186] Las FIG. 16-18 ilustran un flujo de llamadas de traspaso AxP sin reubicación de gestión de movilidad (MM) y sin reubicación SNP. La FIG. 16 representa la preparación del traspaso. La FIG. 17 representa la ejecución de traspaso. La FIG. 18 representa la finalización del traspaso. A continuación se muestra una descripción de los pasos en el flujo de llamadas de traspaso AxP.

[0187] Con referencia inicialmente a la FIG. 14, el flujo de llamadas está entre un UT 1602, un BxP de origen 1604, un BxP objetivo 1606, un AxP de origen 1608, un AxP objetivo 1612, un componente de gestión de movilidad (MM) 1614 y un SNP 1610. El flujo inicial de datos en paquetes está representado por las líneas 1616, 1618 y 1620.

[0188] En el paso 1, el AxP de origen 1608 toma la decisión de entregar el UT 1602 a una célula objetivo y un 40 AxP objetivo 1612 basándose en la información de efemérides del satélite y los patrones del haz.

[0189] En el paso 2, el AxP de origen 1608 envía un mensaje de traspaso requerido a la MM 1614 para solicitar la preparación de recursos en el AxP objetivo 1612. El mensaje contiene el identificador de área de búsqueda (PAI) del AxP objetivo 1612 (para que la MM 1614 pueda determinar a qué AxP objetivo 1612 debe enviar el mensaje de petición de traspaso en el paso 3), independientemente de si hay disponible una ruta de reenvío directo de datos (por ejemplo, a través de una interfaz apropiada) y un contenedor transparente de origen a objetivo (pasado de forma transparente a través de la MM 1614) que lleva un mensaje de información de preparación de traspaso que comprende lo siguiente: la configuración de recursos de radio de UT en el AxP de origen 1608, la configuración de seguridad de UT en el AxP de origen 1608, la ID de célula objetivo (por ejemplo, la ID de BxP objetivo que indica el haz a preparar) y la información del portador de radio (incluyendo si el AxP de origen 1608 propone o no reenviar datos de enlace directo).

[0190] En el paso 3, la MM 1614 envía un mensaje de petición de traspaso al AxP objetivo 1612 para solicitar la preparación de recursos en el AxP objetivo 1612. El mensaje contiene el contenedor transparente de origen a objetivo que se incluye en el mensaje de traspaso requerido (consulte el paso 2), una lista de portadores de datos que se deben configurar (por ejemplo, información de calidad de servicio (QoS), información de direccionamiento de protocolo de túnel (TP) de SNP por portador de datos) e información de contexto de seguridad (por ejemplo, un par de NH, NCC para seguridad de 1 salto durante la obtención de nuevas claves de seguridad por parte del AxP objetivo para el tráfico del avión de usuario y la señalización de radio).

[0191] En el paso 4, al recibir el mensaje de petición de traspaso de la MM 1614, el AxP objetivo 1612 decide que puede establecer el contexto UE.

[0192] En el paso 5, el AxP objetivo 1612 envía un mensaje de confirmación de petición de traspaso a la MM 1614 para informar a la MM 1614 sobre los recursos preparados en el AxP objetivo 1612. El mensaje contiene un contenedor transparente de objetivo a origen (pasado de manera transparente a través de la MM 1614) que lleva

un mensaje de comando de traspaso para ser utilizado por el AxP de origen 1608 al construir el mensaje de reconfiguración de conexión de radio (consulte el paso 8). El mensaje de confirmación de petición de traspaso también contiene una lista de portadores de datos a configurar, que incluye la información de direccionamiento TP de enlace descendente del AxP objetivo en una interfaz designada por portador de datos (por ejemplo, para los datos enviados directamente al AxP objetivo 1612 desde el SNP 1610, no a través del AxP de origen 1608). El mensaje de petición de traspaso también puede incluir información de direccionamiento TP de enlace directo del AxP objetivo 1612 adicional por portador de datos (si el AxP de origen 1608 propuso hacer el reenvío de datos de enlace directo para un portador de datos y el AxP objetivo 1612 acepta la propuesta) y la información de direccionamiento de TP de enlace inverso del AxP objetivo por portador de datos (si el AxP objetivo 1612 solicita al AxP de origen 1608 que realice el reenvío de datos de enlace inverso para un portador de datos RL-AM).

10

15

20

25

30

35

40

45

50

60

65

[0193] En el paso 6, si se aplica el reenvío indirecto de datos (por ejemplo, a través de la interfaz designada), la MM 1614 envía un mensaje de petición de túnel de reenvío indirecto de datos al SNP 1610. El mensaje contiene una lista de portadores de datos que incluye la siguiente información por portador de datos: ID de portador de datos, ID de túnel y dirección IP del AxP objetivo para el reenvío indirecto de datos de enlace directo en una interfaz designada, e ID e túnel y dirección IP del AxP objetivo para el reenvío indirecto de datos de enlace inverso en la interfaz designada, según corresponda. Posteriormente, el SNP 1610 envía un mensaje de crear respuesta indirecta de túnel de reenvío de datos a la MM 1614. El mensaje contiene la siguiente información por portador de datos: ID de portador de datos, ID de túnel y dirección IP del SNP para el reenvío indirecto de datos de enlace directo en la interfaz designada, y la ID del túnel y la dirección IP del SNP para el reenvío indirecto de datos de enlace inverso en la interfaz designada, según corresponda.

[0194] En el paso 7, la MM 1614 envía un mensaje de comando de traspaso al AxP de origen 1608 para informar al AxP de origen 1608 que los recursos para el traspaso se han preparado en el AxP objetivo 1612. El mensaje contiene el contenedor transparente objetivo a origen transportado en el mensaje de confirmación de petición de traspaso (consulte el paso 5) para ser utilizado por el AxP de origen 1608 al construir el mensaje de Reconfiguración de conexión de radio (consulte el paso 8). El mensaje del comando de traspaso también contiene una lista de portadores de datos que se configurarán. Si se aplica el reenvío directo de datos (por ejemplo, a través de una interfaz apropiada), el mensaje puede contener la información de direccionamiento TP de enlace directo de AxP objetivo por portador de datos (si el AxP de origen 1608 propuso hacer el reenvío de datos de enlace directo para un portador de datos y el AxP objetivo 1612 acepta la propuesta), y la información de direccionamiento TP de enlace inverso de AxP objetivo por portador de datos (si el AxP objetivo 1612 solicita al AxP de origen 1608 que realice el reenvío de datos de enlace inverso para un portador de datos RL-AM). Si se aplica el reenvío indirecto de datos (por ejemplo, a través de la interfaz designada), el mensaje puede contener la información de direccionamiento TP de enlace de reenvío SNP por portador de datos (si el AxP de origen 1608 propuso reenviar datos de enlace reenvío para un portador de datos y el AxP objetivo 1612 acepta la propuesta), y la información de direccionamiento TP de enlace inverso SNP por portador de datos (si el AxP objetivo 1612 solicita al AxP de origen 1608 que realice el reenvío de datos de enlace inverso para un portador de datos RL-AM). Consulte el paso 6. Además, el mensaje contiene una nueva tabla de transición de célula y satélite. Al recibir el mensaje de comando de traspaso, el AxP de origen 1608 congela el estado del transmisor/receptor para los portadores de datos de UT.

[0195] En el paso 8, el AxP de origen 1608 envía un mensaje de reconfiguración de conexión de radio al UT 1602. El mensaje contiene una nueva UT-ID, la PCI y la frecuencia para el BxP objetivo 1606, información de seguridad, información de configuración común y dedicada de recursos de radio según sea necesario (por ejemplo, información de acceso aleatorio, información de informe CQI) e información de configuración del portador de datos objetivo (si hay algún cambio en la configuración actual). El mensaje también contiene un nuevo identificador de área de búsqueda que identifica de forma exclusiva el AxP objetivo 1612. Al recibir el mensaje de reconfiguración de conexión de radio del AxP de origen 1608, el UE inicia el temporizador T-4. Si el T-4 expira (por ejemplo, se produce un fallo de traspaso), entonces el UT 1602 realiza el procedimiento de restablecimiento de la conexión de radio.

[0196] En el paso 9, el UT 1602 obtiene los nuevos KAxP, KUPenc, Kint y Kenc que se utilizarán cuando el UT 1602 realice el traspaso al AxP objetivo 1612.

55 **[0197]** Con referencia a la FIG. 17, para los portadores de datos RL-AM, el UT 1602 restablece los estados MAC y RL (paso 10). Para los portadores de datos RL-UM, el UT 1602 restablece el MAC, RL y los estados. El UT 1602 posteriormente adquiere la nueva célula (por ejemplo, sincronización FL).

[0198] En los pasos 11 y 12, el AxP de origen 1608 envía un mensaje de transferencia de estado UT al AxP objetivo 1612 a través de la MM 1614. El AxP de origen 1608 envía este mensaje al AxP objetivo 1612 solo si al menos un portador de datos está configurado para la operación RL-AM. El mensaje contiene la siguiente información por portador de datos RL-AM: estado del receptor SN y FN de enlace inverso, estado del transmisor de SN y FN del enlace directo y (opcionalmente) el estado de recepción de las unidades de datos del servicio de enlace inverso (SDU) (si el AxP objetivo 1612 solicitó al AxP de origen 1608 que realice el reenvío de datos de enlace inverso para un portador de datos RL-AM y el AxP de origen 1608 aceptó la petición). Además, para los portadores de datos RL-AM y RL-UM, el AxP de origen 1608 comienza a reenviar en orden los datos de enlace de

reenvío (almacenados en las memorias intermedias de portadores de datos de AxP de origen 1608) al AxP objetivo 1612. Para los portadores de datos RL-AM, esto incluye todas las SDU de enlace directo con su SN para las cuales el UT 1602 no confirmó la entrega exitosa de la PDU correspondiente (por ejemplo, a través de la PDU de estado RL). Para los portadores de datos RL-AM y RL-UM, esto también incluye nuevos datos de enlace directo que llegan a la interfaz designada desde el SNP 1610. Para los portadores de datos RL-AM para los que se aplica el reenvío de datos de enlace inverso, el AxP de origen 1608 comienza a reenviar SDU de enlace inverso con su SN que se ha recibido fuera de secuencia al AxP objetivo 1612. Para los portadores de datos RL-AM para los que no se aplica el reenvío de datos de enlace inverso, el AxP de origen 1608 descarta las SDU de enlace inverso que se han recibido fuera de secuencia. Para los portadores de datos RL-UM, el AxP de origen 1608 envía las SDU de enlace inverso que se han recibido fuera de secuencia al SNP 1610 a través de la interfaz designada. Nota: Si se aplica el reenvío directo de datos, el AxP de origen 1608 reenvía los datos al AxP objetivo 1612 en una interfaz adecuada.

10

15

20

25

30

35

40

45

50

55

60

65

[0199] Si se aplica el reenvío indirecto de datos, el AxP de origen 1608 reenvía los datos 1622 al AxP objetivo 1612 en la interfaz designada a través del SNP 1610. Los datos reenviados se almacenan en las memorias intermedias de portadores de datos AxP objetivo (paso 12).

[0200] En el paso 12, el UT 1602 envía un preámbulo de acceso aleatorio basado en contienda en el acceso aleatorio al BxP objetivo 1606 (donde el BxP de origen 1604 y el BxP objetivo 1606 pueden ser la misma entidad). Al recibir el preámbulo de acceso aleatorio del UT 1602, el BxP objetivo 1606 valida la secuencia de firma recibida. Si hay una firma de preámbulo dedicada disponible en el BxP objetivo 1606 y al UT 1602 se le asigna una firma de preámbulo dedicada en el paso 8, entonces el UT 1602 envía un Preámbulo de acceso aleatorio sin contienda en el acceso aleatorio al BxP objetivo 1606 y, en consecuencia, no hay posibilidad de una colisión.

[0201] En el paso 14, el BxP objetivo 1606 envía una respuesta de acceso aleatorio al UT 1602 que se dirige al RA-RNTI apropiado. La respuesta de acceso aleatorio contiene el área de búsqueda, la concesión de RL y la UT-ID temporal.

[0202] En las operaciones del bloque 1630, el UT 1602 envía un mensaje de reconfiguración de conexión de radio completa al AxP objetivo 1612 (paso 15). El mensaje no contiene IE. El mensaje de reconfiguración de conexión de radio completa está protegido con integridad y cifrado con los nuevos Kint y Kenc, respectivamente, y se envía junto con un elemento de control (CE) UT-ID MAC y dos nuevos elementos de control MAC: un elemento de control PAI MAC y un elemento de control MAC de información de gestión de ubicación (LMI). El elemento de control UT-ID MAC contiene la UT-ID asignada al UT 1602 por el AxP objetivo 1612 en el mensaje de reconfiguración de conexión de radio (consulte el paso 8). El elemento de control PAI MAC contiene el PAI asignado al UT 1602 por el AxP objetivo 1612 en el paso 8. El elemento de control LMI MAC contiene la información de ubicación más reciente de UT. El BxP objetivo 1606 analiza el elemento de control PAI MAC para determinar a qué AxP debe reenviar el mensaje de reconfiguración de conexión de radio completa. El BxP objetivo 1606 puede enviar un mensaje de notificación de entrega a la MM 1614 en este momento (por ejemplo, en lugar de en el paso 19). El UT 1602 inicia el temporizador de resolución de contienda.

[0203] En el paso 16, el BxP objetivo 1606 envía al UT 1602 una concesión de RL para una nueva transmisión. La concesión de RL se dirige a la UT-ID que el AxP objetivo 1612 asignó al UT 1602 en el mensaje de reconfiguración de conexión de radio (consulte el paso 8). Al recibir la concesión de RL del BxP objetivo 1606, el UT 1602 detiene el temporizador de resolución de contienda y el temporizador T-4. El UT 1602 puede comenzar a enviar señalización de enlace inverso en portadores de radio de señalización (por ejemplo, SRB1 y SRB2) y datos de enlace inverso en todos los portadores de radio de datos (DRB). El UT 1602 también puede comenzar a recibir señalización de enlace directo en SRB1 y SRB2 y datos reenviados de enlace directo en todos los DRB.

[0204] Con referencia ahora a la FIG. 18, para los portadores de datos RL-AM para los que se aplica el reenvío de datos de enlace inverso, el AxP objetivo 1612 envía un mensaje de informe de estado al UT 1602 que contiene una lista de PDU de enlace inverso que faltan y recibidas (paso 17). El AxP objetivo 1612 utiliza la información en el mensaje de traspaso de estado de UT desde el AxP de origen 1608 a través de la MM 1614 (consulte el paso 11) para construir el informe de estado. Al recibir el mensaje de informe de estado del AxP objetivo 1612, el UT 1602 no realiza la retransmisión de ninguna PDU cuya entrega exitosa sea confirmada por el mensaje de informe de estado. Después de que las retransmisiones de PDU de enlace inverso se hayan completado con éxito, el UT 1602 comienza a enviar nuevas PDU de enlace inverso RL-AM al AxP objetivo 1612. Dado que el SN de enlace inverso se mantiene en una base de portador de datos RL-AM, el AxP objetivo 1612 utiliza un mecanismo basado en ventanas para la entrega en secuencia y para evitar la duplicación. Para los portadores de datos RL-UM, el UT 1602 comienza a enviar nuevas PDU de enlace inverso RL-UM al AxP objetivo 1612. El flujo de datos en paquetes anterior está representado por las flechas 1632, 1634 y 1636.

[0205] Para todos los portadores de datos RL-AM para los cuales el AxP de origen 1608 ha configurado el UT 1602 para enviar un informe de estado en el enlace inverso durante el restablecimiento, el UT 1602 envía un mensaje de informe de estado al AxP objetivo 1612 que contiene una lista de PDU de enlace directo que faltan y recibidas (paso 18). Al recibir este mensaje, el AxP objetivo 1612 comienza a enviar PDU de enlace directo al UE que han sido reenviadas al AxP objetivo 1612 por el AxP de origen 1608 con y sin sus SN. Este flujo de datos en

paquetes está representado por las flechas 1638 y 1640. El AxP objetivo 1612 continúa haciendo esto hasta que recibe uno o más paquetes de marcador de extremo de TP del AxP de origen 1608 para ese portador de datos RL-AM. El AxP objetivo 1612 no realiza la retransmisión de ninguna PDU cuya entrega exitosa se confirma mediante el mensaje de informe de estado del UT 1602. Dado que el SN de enlace directo se mantiene en una base de portador de datos RL-AM, el UT 1602 utiliza un mecanismo basado en ventanas para la entrega en secuencia y para evitar la duplicación. Para los portadores de datos RL-UM, el AxP objetivo 1612 comienza a enviar PDU de enlace directo al UT 1602 que ha sido enviado al AxP objetivo 1612 por el AxP de origen 1608 (sin continuar sus SN originales porque el SN no se mantiene en base de portador de datos RL-UM). El AxP objetivo 1612 continúa haciendo esto hasta que recibe uno o más paquetes de marcador de extremo de TP del AxP de origen 1608 para cada portador de datos RL-UM.

[0206] El paso 19 pueden ocurrir inmediatamente después del paso 15. En el paso 19, el AxP objetivo 1612 envía un mensaje de notificación de traspaso a la MM 1614 para informar a la MM 1614 que el UT 1602 ha sido identificado en la célula objetivo y se ha completado el traspaso. El mensaje contiene el PAI del AxP objetivo 1612 y la ID de célula objetivo (por ejemplo, la ID de BxP objetivo que indica el haz en el que se ha identificado el UT 1602)

[0207] En el paso 20, la MM 1614 envía un mensaje de modificar petición de portador al SNP 1610. El mensaje contiene una lista de portadores de datos que incluye la siguiente información por portador de datos: ID de portador de datos y la ID del túnel del AxP objetivo y la dirección IP para el plano de usuario del enlace directo (con el fin de identificar de manera única los portadores de datos del UT).

[0208] En el paso 21, el SNP 1610 cambia la ruta de datos de enlace directo desde el AxP de origen 1608 al AxP objetivo 1612 y envía uno o más paquetes de marcador de extremo de TP 1642 por portador de datos al AxP de origen 1608. El SNP 1610 también comienza a enviar datos de enlace directo destinados al UT 1602 directamente al AxP objetivo 1612 (flechas 1644 y 1646). El AxP de origen 1608 reenvía el (los) paquete(s) de marcador de extremo de TP por portador de datos al AxP objetivo 1612. Al recibir el (los) paquete(s) de marcador de extremo de TP por portador de datos desde el AxP de origen 1608, el AxP objetivo 1612 puede comenzar a enviar datos de enlace directo recibidos directamente desde el SNP 1610 al UT 1602. Nota: Si se aplica el reenvío directo de datos, el AxP de origen 1608 reenvía el (los) paquete(s) de marcador de extremo de TP 1648 al AxP objetivo 1612 en una interfaz apropiada. Si se aplica el reenvío indirecto de datos, el AxP de origen 1608 reenvía datos al AxP objetivo 1612 a través del SNP 1610 (flecha 1650).

[0209] En el paso 22, el SNP 1610 envía un mensaje de modificar respuesta de portador a la MM 1614. El mensaje contiene una lista de portadores de datos que incluye la siguiente información por portador de datos: ID del portador de datos y causa (por ejemplo, petición aceptada).

En el paso 23A, la MM 1614 envía un mensaje de comando de emisión de contexto de UE al AxP de origen 1608 para solicitar la emisión de la conexión lógica S1 asociada a UT a través de la interfaz S1. Posteriormente, en el paso 23B, el AxP de origen 1608 envía un mensaje de comando de emisión de contexto de UE a la MM 1614 para confirmar la emisión de la conexión lógica asociada a UT a través de la interfaz apropiada. En el paso 24, el AxP de origen 1608 emite el contexto y los recursos de radio UT. En el paso 25, se elimina la petición indirecta del túnel de reenvío de datos (del paso 6). El flujo final de datos en paquetes está representado por las líneas 1652, 1654 y 1656

Uso de la tabla de transición de célula y satélite

10

15

20

25

30

35

40

45

50

55

60

65

[0210] En algunas implementaciones, un AxP puede generar y/o actualizar una tabla de transición de célula y satélite, según sea necesario, utilizando uno o más de: Ubicación y/o velocidad de UT, ubicación de satélite, patrones de haz/célula de satélite, horarios de encendido/apagado de haz/célula de satélite, o error al apuntar del satélite. La ubicación y/o de un UT, si se especifica, puede ser enviada por el UT a través de mensajes de señalización de radio. Las ubicaciones de un satélite a lo largo del tiempo pueden obtenerse a partir de los datos de efemérides. Por ejemplo, en una red de acceso por satélite (SAN) determinada que incluye múltiples SNP, el NOC/SOC en la SAN puede proporcionar la información actualizada de efemérides de satélite a todos los AxP en la SAN

[0211] En algunas implementaciones, el sistema proporciona a un UT una sola fila de la tabla de transición de célula y satélite (por ejemplo, una fila de la tabla 2 expuesta anteriormente) para usar en traspaso de modo conectado. Por ejemplo, el AxP/BxP de origen podría incluir la fila individual de la tabla de transición de célula y satélite en un elemento de información (IE) de un mensaje de reconfiguración de conexión de radio que se envía al UT mientras el UT aún está en la célula de servicio. Por lo tanto, mientras un UT está siendo servido por un haz/célula, el UT puede recibir información de transición de célula y satélite que el UT debe usar para hacer la transición a otro haz/célula.

Mensajes de configuración en el traspaso BxP

[0212] Como se ha mencionado anteriormente, cada haz de satélite puede considerarse como una célula separada con sus propios canales de datos y control, y señales. Cuando un UT se entrega de una célula a otra, algunos de los parámetros de configuración de radio que eran válidos para la célula de origen pueden cambiar y deben actualizarse para el funcionamiento de UT en la célula objetivo.

[0213] El mensaje de radio utilizado para la reconfiguración de radio de los parámetros de radio para la célula de servicio también se usa para entregar los parámetros de configuración actualizados para la célula objetivo.

[0214] El AxP comunica los parámetros de reconfiguración para la célula objetivo a la célula de origen (paso 1 en la FIG. 11, y también aplicable a la entrega de reconfiguración de conexión de radio en la FIG. 12, la FIG. 13 y la FIG. 14). El mensaje de reconfiguración para la célula objetivo se entrega a un UT mediante la célula de origen antes de que ocurra el traspaso, como se representa en el paso 1 en la FIG. 11. La transmisión del mensaje debe realizarse con suficiente antelación al traspaso, de modo que el UT tenga tiempo de recibir el mensaje de manera oportuna para permitir una transmisión fiable. Al recibir el mensaje de reconfiguración para la célula objetivo, el UT lo almacena y aplica la reconfiguración una vez que comienza la comunicación en la célula objetivo.

[0215] El traspaso se realiza basándose en la tabla de transición de traspaso (tabla 3), y sigue los procedimientos definidos para el traspaso BxP. La nueva configuración se aplica en el tiempo del traspaso, de modo que el UT se configura adecuadamente para la nueva célula de servicio antes de que comience el intercambio de datos y control.

[0216] El mensaje de reconfiguración de radio para el haz objetivo puede incluir los parámetros de radio que son específicos de UT (dedicados) y específicos de célula (comunes). Esos pueden ser los siguientes: Configuración MAC dedicada, parámetros relacionados con la recepción discontinua (DRX), informes de margen de potencia (PHR), petición de programación (SR) de informes de estado de memoria intermedia (BSR), configuración de SPS, HARQ, parámetros para programación semipersistente (periodicidad, recursos), configuración de PHY, parámetros de PHY dedicados relacionados con el control de potencia de datos y canales de control, informes CQI, señal de referencia de sondeo (SRS) y SR, configuración de acceso aleatorio, UT-ID, PCI, configuración de recursos de radio común, parámetros comunes para acceso aleatorio (como información de preámbulo, control de potencia, información de supervisión), acceso aleatorio físico (como información de secuencia raíz e índice de configuración de acceso aleatorio físico), potencia de señal de referencia y control de potencia, señales de referencia RL, asignación ACK/NACK y CQI, SRS (como el ancho de banda y la configuración de subtrama), p-Max (utilizado para limitar la potencia de transmisión RL de UT en la célula). Tener en cuenta que, dado que la UT-ID se proporciona a un UT para cada célula de servicio, la UT-ID de 16 bits puede ser suficiente para abordar de forma exclusiva el número provisto de aproximadamente 5000 UT por célula.

Fallo de enlace por radio

5

10

15

20

25

30

35

40

45

50

55

60

[0217] Durante el funcionamiento normal, cuando un UT se traspasa de un satélite o haz/célula a otro satélite o haz/célula, la señalización para el traspaso se completa entre la entidad SNP que soporta el traspaso y el UT. Si el UT pierde la comunicación con el SNP antes de que se complete la señalización de traspaso, se puede declarar un fallo de enlace de radio (RLF) (por ejemplo, en el UT). RLF puede ocurrir en el sistema debido a que UT pierde la conexión a una célula por varias razones posibles, por ejemplo, efectos de atenuación debida a la lluvia o la nieve, o debido al bloqueo de un edificio o un árbol. En este caso, el UT puede emplear un mecanismo de recuperación RLF para restablecer la comunicación con el SNP. El procedimiento RLF intenta volver a conectar el UT a la misma célula de origen o a una célula diferente (por ejemplo, objetivo).

[0218] La FIG. 19 ilustra un ejemplo de un flujo de llamadas para un procedimiento RLF. El flujo de llamadas se encuentra entre un UT 1902, un BxP de origen, un BxP objetivo 1904 y un AxP de origen o un AxP objetivo 1906. Sigue una descripción de los pasos del flujo de llamadas.

[0219] En el paso 1, los procedimientos de detección de enlace de radio se utilizan para detectar RLF (por ejemplo, problemas con la conexión de enlace de radio). Esto se puede hacer en la capa física (ejemplo: si la SNR es inferior a un cierto umbral), o en la capa MAC (ejemplo: si se descodifica un cierto número de paquetes por error), o en la capa RL (ejemplo: si se ha alcanzado el número máximo de retransmisiones RL para un mensaje). El UT 1902 inicia un procedimiento de restablecimiento de la conexión de radio iniciando un procedimiento de búsqueda y selección de satélite y célula objetivo.

[0220] Después de que el UT 1902 adquiera un satélite y una célula objetivo adecuados (paso 2), el UT 1902 envía un preámbulo de acceso aleatorio basado en contienda en el acceso aleatorio al BxP 1904 objetivo (paso 3). Al recibir el preámbulo de acceso aleatorio del UT 1902, el BxP objetivo 1904 valida la secuencia de firma recibida. El BxP 1904 objetivo podría ser el mismo que el BxP de origen (por ejemplo, el UT 1902 elige la misma célula a la que estaba conectado antes de que ocurriera el RLF).

[0221] En el paso 4, el BxP 1904 objetivo envía una respuesta de acceso aleatorio al UT 1902 que se dirige a la UT-ID apropiada. La respuesta de acceso aleatorio contiene el área de búsqueda, una concesión de RL y una UT-ID temporal.

[0222] En el paso 5, el UT 1902 envía un mensaje de petición de restablecimiento de conexión de radio junto con dos nuevos elementos de control MAC (elemento de control PAI MAC y elemento de control LMI MAC) al AxP 1906 objetivo apropiado. El mensaje de restablecimiento de la conexión de radio contiene la UT-ID antigua de UT, la PCI antigua y un MAC-I para verificación durante el procedimiento de restablecimiento de conexión de radio. El elemento de control PAI MAC contiene el PAI más reciente asignado al UT 1902 por el AxP de origen. El PAI pertenece al AxP objetivo si la entrega estaba en progreso antes de RLF; de lo contrario, el PAI pertenece al AxP de origen. El elemento de control LMI MAC contiene la información de ubicación más reciente de UT. El BxP 1904 objetivo analiza el elemento de control PAI MAC y el elemento de control LMI MAC para determinar a qué AxP debe reenviar el mensaje de petición de restablecimiento de conexión de radio. Si el elemento de control MAC de LMI indica una región Administrativa no manejada por el AxP asignado al elemento de control PAI MAC, entonces el BxP 1904 objetivo reenvía el mensaje de petición de Restablecimiento de conexión de radio al AxP objetivo apropiado (lo cual dará como resultado un fallo del procedimiento de restablecimiento de conexión de radio y hará que el UT 1902 inicia el temporizador T-3. Si el T-3 expira (por ejemplo, el procedimiento de restablecimiento de conexión de radio falla), el UT 1902 realiza el procedimiento de petición de servicio NAS.

[0223] En el paso 6, el AxP 1906 objetivo envía un mensaje de restablecimiento de conexión de radio junto con un elemento de control MAC de identidad de resolución de contienda de UE (para proporcionar resolución de contienda) al UT 1902. El mensaje de restablecimiento de la conexión de radio contiene información de configuración de seguridad que utiliza el UT 1902 para obtener nuevas claves de plano de control y plano de usuario (consulte el paso 7). El mensaje también puede contener información de configuración SRB1.

[0224] En el paso 7, el UT 1902 obtiene los nuevos KAxP, KUPenc, Kint y Kenc para ser utilizados con la conexión de radio restablecida.

[0225] En el paso 8, el UT 1902 envía un mensaje de restablecimiento de conexión de radio completa al AxP objetivo 1906. El mensaje no contiene IE y está protegido con integridad y cifrado con los nuevos Kint y Kenc, respectivamente.

[0226] En el paso 9, el AxP 1906 objetivo envía un mensaje de reconfiguración de conexión de radio al UT 1902. El mensaje contiene información de configuración SRB2 y DRB.

[0227] En el paso 10, el UT 1902 envía un mensaje de reconfiguración de conexión de radio completa al AxP objetivo 1906. El mensaje no contiene IE. El flujo final de datos en paquetes está representado por las líneas 1912 y 1914.

Operaciones de ejemplo

10

15

20

25

30

35

45

50

40 **[0228]** Con lo anterior en mente, ahora se describirán ejemplos adicionales de operaciones que pueden ser realizadas por un UT y/o un SNP en soporte del traspaso del UT con respecto a las FIG. 20-34.

[0229] La FIG. 20 es un diagrama que ilustra un ejemplo de proceso 2000 para generar y utilizar información de traspaso por satélite de acuerdo con algunos aspectos de la divulgación. El proceso 2000 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2000 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 2000 representa operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2000 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0230] En el bloque 2002, un SNP (u otro aparato adecuado) recibe opcionalmente información de un terminal de usuario. Por ejemplo, el SNP puede recibir capacidades de terminal de usuario e información de ubicación.

- [0231] En el bloque 2004, la generación de información de traspaso por satélite se activa en el SNP (u otro aparato adecuado). Esta información puede comprender parte o la totalidad de una tabla de transición de haz/célula y satélite. Por ejemplo, la generación de la tabla puede activarse basándose en el traspaso de un terminal de usuario a un satélite o basándose en la recepción de un mensaje de medición desde el terminal de usuario.
- 60 **[0232]** En el bloque 2006, el SNP (u otro aparato adecuado) genera información de traspaso por satélite que especifica un tiempo de traspaso para un haz particular de un satélite particular. Por ejemplo, la información puede ser una tabla que indica el tiempo para la transición entre células/haces y satélites. En algunos aspectos, la tabla se basa opcionalmente, en parte, en la información recibida del terminal de usuario en el bloque 2002.
- 65 **[0233]** En el bloque 2008, el SNP (u otro aparato adecuado) envía la información de traspaso por satélite al terminal de usuario.

[0234] En el bloque 2010, el SNP (u otro aparato adecuado) realiza traspaso para el terminal de usuario a diferentes células/haces y al menos un satélite basándose en la información de traspaso por satélite.

- [0235] La FIG. 21 es un diagrama que ilustra un ejemplo de proceso 2100 para utilizar información de traspaso por satélite de acuerdo con algunos aspectos de la divulgación. El proceso 2100 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2100 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2100 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2100 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.
- [0236] En el bloque 2102, un terminal de usuario (u otro aparato adecuado) opcionalmente envía un mensaje de medición.

20

60

65

- **[0237]** En el bloque 2104, el terminal de usuario (u otro aparato adecuado) recibe información de traspaso por satélite que especifica un tiempo de traspaso para un haz particular de un satélite particular. Por ejemplo, la información puede ser una tabla que indica el tiempo para la transición entre células/haces y satélites.
- **[0238]** En el bloque 2106, el terminal de usuario (u otro aparato adecuado) realiza traspasos a un haz particular de un satélite particular (por ejemplo, a diferentes células/haces y al menos un satélite) basándose en la información de traspaso por satélite.
- [0239] La FIG. 22 es un diagrama que ilustra un ejemplo de proceso 2200 para señalizar información de capacidad del terminal de usuario de acuerdo con algunos aspectos de la divulgación. El proceso 2200 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2200 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2200 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2200 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.
- [0240] En el bloque 2202, la transmisión de información de capacidad del terminal de usuario se activa en un terminal de usuario (u otro aparato adecuado). Por ejemplo, la transmisión puede activarse como resultado de una conexión inicial a un satélite.
- [0241] En el bloque 2204, el terminal de usuario (u otro aparato adecuado) genera un mensaje de capacidades. En algunos aspectos, el mensaje indica si el UT puede detectar múltiples células/haces y/o satélites y/o el mensaje indica el tiempo de sintonización entre células/haz y/o entre satélites UT.
 - [0242] En el bloque 2206, el terminal de usuario (u otro aparato adecuado) envía el mensaje de capacidades a un SNP.
- [0243] La FIG. 23 es un diagrama que ilustra un ejemplo de proceso 2300 para usar capacidades de terminal de usuario de acuerdo con algunos aspectos de la divulgación. El proceso 2300 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2300 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2.
 En algunas implementaciones, el proceso 2300 representa operaciones realizadas por el aparato 3500 de la FIG.
 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2300 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.
- [0244] En el bloque 2302, un SNP (u otro aparato adecuado) recibe un mensaje de capacidades desde un terminal de usuario. Este mensaje de capacidades incluye información de capacidad del terminal de usuario.
 - **[0245]** En el bloque 2304, el SNP (u otro aparato adecuado) genera información de traspaso por satélite. Por ejemplo, se puede generar una tabla o una parte de una tabla basándose, en parte, en la información de capacidad del terminal de usuario (por ejemplo, tiempos de sintonización), información de ubicación del terminal de usuario, movimiento del satélite, información de efemérides y una restricción debido a los sistemas establecidos.
 - **[0246]** En el bloque 2306, el SNP (u otro aparato adecuado) selecciona un procedimiento de traspaso para el terminal de usuario basándose, en parte, en la información de capacidad del terminal de usuario. Por ejemplo, la supervisión de un mensaje de medición desde un terminal de usuario puede habilitarse o deshabilitarse basándose en si el terminal de usuario es capaz de realizar detección doble. Por lo tanto, un aparato puede habilitar o deshabilitar si el aparato supervisa un mensaje de medición basándose en la información de capacidad del terminal

de usuario.

5

10

15

25

30

[0247] La FIG. 24 es un diagrama que ilustra un ejemplo de proceso 2400 para señalizar información de ubicación del terminal de usuario de acuerdo con algunos aspectos de la divulgación. El proceso 2400 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2400 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2400 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2400 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0248] En el bloque 2402, la transmisión de información de ubicación del terminal de usuario se activa en un terminal de usuario (u otro aparato adecuado). Esto puede ser el resultado de una conexión inicial, o basándose en si el UT está más allá de un límite geográfico (geocercado), o basándose en si se ha excedido un límite de error.

[0249] En el bloque 2404, el terminal de usuario (u otro aparato adecuado) genera un mensaje de ubicación. En algunos aspectos, el mensaje puede indicar la ubicación actual si el UT es estacionario, o indicar un vector de movimiento si el UT se está moviendo.

20 **[0250]** En el bloque 2406, el terminal de usuario (u otro aparato adecuado) envía el mensaje de ubicación a un SNP.

[0251] La FIG. 25 es un diagrama que ilustra un ejemplo de proceso 2500 para usar información de ubicación del terminal de usuario de acuerdo con algunos aspectos de la divulgación. El proceso 2500 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2500 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 2500 representa operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2500 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0252] En el bloque 2502, un SNP (u otro aparato adecuado) recibe un mensaje de ubicación desde un terminal de usuario. Este mensaje de ubicación incluye información de ubicación del terminal de usuario.

- [0253] En el bloque 2504, el SNP (u otro aparato adecuado) genera información de traspaso por satélite basada, en parte, en información de ubicación del terminal de usuario. Por ejemplo, si el UT es estacionario, el SNP puede generar una tabla o una parte de una tabla basándose en la ubicación actual del UT. Como otro ejemplo, si el UT se está moviendo, el SNP puede generar la tabla (o parte) basándose en un vector de movimiento UT.
- 40 [0254] La FIG. 26 es un diagrama que ilustra un ejemplo de proceso de traspaso de terminal de usuario 2600 de acuerdo con algunos aspectos de la divulgación. El proceso 2600 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2600 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2600 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2600 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.
- [0255] En el bloque 2602, se indica un próximo traspaso de terminal de usuario en un terminal de usuario (u otro aparato adecuado). Por ejemplo, el traspaso puede indicarse basándose en la información de traspaso por satélite.
 - **[0256]** En el bloque 2604, el terminal de usuario (u otro aparato adecuado) mide señales de satélite (por ejemplo, señales de los satélites indicados en la información de traspaso por satélite).
- 55 **[0257]** En el bloque 2606, el terminal de usuario (u otro aparato adecuado) determina si se debe enviar un mensaje de medición. En algunos aspectos, esta determinación puede implicar determinar si las señales del haz/célula y/o satélite actual o si las señales del haz/célula y/o satélite objetivo son inadecuadas.
- [0258] En el bloque 2608, si corresponde, el terminal de usuario (u otro aparato adecuado) envía un mensaje de medición y recibe nueva información de traspaso por satélite. En algunos aspectos, el mensaje puede incluir datos de medición y/o una petición para avanzar/retrasar el tiempo de traspaso. Por lo tanto, en algunos aspectos, el terminal de usuario puede enviar un mensaje de medición basándose en las señales medidas en el bloque 2604 y recibir la información de traspaso por satélite como resultado del envío del mensaje de medición.
- 65 **[0259]** En el bloque 2610, el terminal de usuario (u otro aparato adecuado) traspasa al haz/célula y/o satélite objetivo de acuerdo con la información de traspaso por satélite.

[0260] La FIG. 27 es un diagrama que ilustra un ejemplo de proceso de traspaso de SNP 2700 de acuerdo con algunos aspectos de la divulgación. El proceso 2700 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 2700 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 2700 representa operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 2700 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

10

[0261] En el bloque 2702, un SNP (u otro aparato adecuado) recibe un mensaje de medición desde un terminal de usuario.

15

[0262] En el bloque 2704, el SNP (u otro aparato adecuado) determina, basándose en el mensaje de medición, si se debe modificar la información de traspaso por satélite.

[0263] En el bloque 2706, si corresponde, el SNP (u otro aparato adecuado) modifica la información de traspaso por satélite (por ejemplo, adelanta o retrasa la temporización de transición) y envía la información de traspaso por satélite modificada al terminal de usuario.

20

[0264] En el bloque 2708, el SNP (u otro aparato adecuado) realiza un traspaso del terminal de usuario de acuerdo con la información de traspaso por satélite.

25

[0265] La FIG. 28 es un diagrama que ilustra otro ejemplo de proceso de señalización de traspaso entre satélites 2800 de acuerdo con algunos aspectos de la divulgación. El proceso 2800 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP, un terminal de usuario o algunos otros aparatos (dispositivos) adecuados. En algunas implementaciones, el proceso 2800 representa una o más operaciones realizadas por el controlador SNP 280 de la FIG. 2. En algunas implementaciones, el proceso 2800 representa una o más operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2800 representa una o más operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). En algunas implementaciones, el proceso 2800 representa una o más operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 2800 se puede implementar

35

30

[0266] En el bloque 2802, un terminal de usuario (u otro aparato adecuado) se conecta a un primer satélite controlado por un primer NAC en un SNP.

mediante cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0267] En el bloque 2804, se indica el traspaso del terminal de usuario (u otro aparato adecuado) a un segundo satélite controlado por un segundo NAC en el SNP.

40 s

[0268] En el bloque 2806, el segundo NAC (u otro aparato adecuado) genera información de traspaso por satélite para el terminal de usuario.

45

[0269] En el bloque 2808, el segundo NAC (u otro aparato adecuado) envía la información de traspaso por satélite al primer NAC.

[0270] En el bloque 2810, el primer NAC (u otro aparato adecuado) envía la información de traspaso por satélite al terminal de usuario.

50

[0271] En el bloque 2812, el terminal de usuario (u otro aparato adecuado) se traspasa a un segundo satélite de acuerdo con la información de traspaso por satélite.

55

60

[0272] La FIG. 29 es un diagrama que ilustra un ejemplo de proceso 2900 para señalizar información de efemérides de acuerdo con algunos aspectos de la divulgación. El proceso 2900 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP, un terminal de usuario o algunos otros aparatos (dispositivos) adecuados. En algunas implementaciones, el proceso 2900 representa una o más operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 2900 representa una o más operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 2900 representa una o más operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). En algunas implementaciones, el proceso 2900 representa una o más operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 2900 se puede implementar mediante cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

65

[0273] En el bloque 2902, un SNP (u otro aparato adecuado) envía información de efemérides a un terminal de

usuario.

10

15

25

45

55

60

[0274] En el bloque 2904, el terminal de usuario (u otro aparato adecuado) recibe la información de efemérides.

5 **[0275]** En el bloque 2906, el terminal de usuario (u otro aparato adecuado) usa la información de efemérides para sincronizar con un satélite.

[0276] La FIG. 30 es un diagrama que ilustra un ejemplo de proceso de fallo de enlace de radio 3000 de acuerdo con algunos aspectos de la divulgación. El proceso 3000 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 3000 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 3000 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 3000 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0277] En el bloque 3002, un terminal de usuario (u otro aparato adecuado) pierde conectividad con un haz/célula o un satélite.

20 **[0278]** En el bloque 3004, el terminal de usuario (u otro aparato adecuado) accede al modo de fallo de enlace de radio.

[0279] En el bloque 3006, el terminal de usuario (u otro aparato adecuado) identifica un haz/célula y/o satélite alternativos (por ejemplo, basándose en la información de efemérides almacenada en el terminal de usuario).

[0280] En el bloque 3008, el terminal de usuario (u otro aparato adecuado) establece una conexión utilizando el haz/célula y/o satélite alternativos.

[0281] En el bloque 3010, el terminal de usuario (u otro aparato adecuado) se comunica con un SNP a través de 30 la nueva conexión.

[0282] En el bloque 3012, el terminal de usuario (u otro aparato adecuado) sale del modo de fallo de enlace de radio

[0283] La FIG. 31 es un diagrama que ilustra un ejemplo de proceso relacionado con el espacio de medición 3100 de acuerdo con algunos aspectos de la divulgación. El proceso 3100 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 3100 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 3100 representa operaciones realizadas por el aparato 3500 de la FIG.
 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 3100 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0284] En el bloque 3102, un SNP (u otro aparato adecuado) determina si se necesita un espacio de medición para medir las señales de satélite.

[0285] En el bloque 3104, si no se necesita un espacio de medición, el SNP (u otro aparato adecuado) no incluye un tiempo de sintonización en la información de traspaso por satélite.

50 **[0286]** En el bloque 3106, si se necesita un espacio de medición, el SNP (u otro aparato adecuado) determina el espacio de medición que se utilizará para medir las señales de satélite.

[0287] En el bloque 3108, el SNP (u otro aparato adecuado) envía información indicativa del espacio de medición a un terminal de usuario.

[0288] La FIG. 32 es un diagrama que ilustra un ejemplo de proceso relacionado con el espacio de medición 3200 de acuerdo con algunos aspectos de la divulgación. El proceso 3200 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 3200 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 3200 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 3200 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

65 **[0289]** En el bloque 3202, un terminal de usuario (u otro aparato adecuado) recibe información indicativa de un espacio de medición para medir señales de satélite (por ejemplo, desde un SNP).

[0290] En el bloque 3204, el terminal de usuario (u otro aparato adecuado) mide señales de al menos un satélite durante el espacio de medición (indicado por la información recibida).

[0291] La FIG. 33 es un diagrama que ilustra un ejemplo de un proceso de cola de usuarios 3300 de acuerdo con algunos aspectos de la divulgación. El proceso 3300 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un SNP o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 3300 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. En algunas implementaciones, el proceso 3300 representa operaciones realizadas por el aparato 3500 de la FIG. 35 (por ejemplo, por el circuito de procesamiento 3510). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 3300 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0292] En el bloque 3302, un SNP (u otro aparato adecuado) determina un tiempo de traspaso de un terminal de usuario.

[0293] En el bloque 3304, el SNP (u otro aparato adecuado) transfiere al menos una cola de usuarios antes del traspaso.

20 [0294] La FIG. 34 es un diagrama que ilustra un ejemplo de un proceso de acceso aleatorio 3400, de acuerdo con algunos aspectos de la divulgación. El proceso 3400 puede tener lugar dentro de un circuito de procesamiento que puede estar ubicado en un terminal de usuario o en algún otro aparato (dispositivo) adecuado. En algunas implementaciones, el proceso 3400 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. En algunas implementaciones, el proceso 3400 representa operaciones realizadas por el aparato 3800 de la FIG. 38 (por ejemplo, por el circuito de procesamiento 3810). Por supuesto, en varios aspectos dentro del alcance de la divulgación, el proceso 3400 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones relacionadas con la comunicación.

[0295] En el bloque 3402, un terminal de usuario (u otro aparato adecuado) recibe una firma de preámbulo dedicada (por ejemplo, un UT recibe una firma de preámbulo dedicada de un SNP en un orden de canal de control).

[0296] En el bloque 3404, el terminal de usuario (u otro aparato adecuado) realiza un procedimiento de acceso aleatorio no basado en contienda usando la firma de preámbulo dedicada.

35 Aparato de ejemplo

15

30

40

50

55

60

65

[0297] La FIG. 35 ilustra un diagrama de bloques de una implementación de hardware de ejemplo de un aparato 3500 configurado para comunicarse de acuerdo con uno o más aspectos de la divulgación. Por ejemplo, el aparato 3500 podría funcionar o implementarse dentro de un SNP o algún otro tipo de dispositivo que soporte la comunicación por satélite. Así, en algunos aspectos, el aparato 3500 podría ser un ejemplo del SNP 200 o el SNP 201 de la FIG. 1. En diversas implementaciones, el aparato 3500 podría funcionar o implementarse dentro de una pasarela, una estación terrestre, un componente vehicular o cualquier otro dispositivo electrónico que tenga circuitos.

[0298] El aparato 3500 incluye una interfaz de comunicación (por ejemplo, al menos un transceptor) 3502, un medio de almacenamiento 3504, una interfaz de usuario 3506, un dispositivo de memoria (por ejemplo, un circuito de memoria) 3508 y un circuito de procesamiento (por ejemplo, al menos un procesador) 3510. En diversas implementaciones, la interfaz de usuario 3506 puede incluir uno o más de: un teclado, una pantalla, un altavoz, un micrófono, una pantalla táctil, de algún otro circuito para recibir una entrada desde o enviar una salida a un usuario.

[0299] Estos componentes se pueden acoplar a y/o colocar en comunicación eléctrica entre sí por medio de un bus de señalización u otro componente adecuado, representado en general por las líneas de conexión en la FIG. 35. El bus de señalización puede incluir un número cualquiera de buses y puentes de interconexión, dependiendo de la aplicación específica del circuito de procesamiento 3510 y de las restricciones de diseño globales. El bus de señalización enlaza conjuntamente diversos circuitos de modo que cada uno de la interfaz de comunicación 3502, el medio de almacenamiento 3504, la interfaz de usuario 3506 y el dispositivo de memoria 3508 están acoplados a y/o en comunicación eléctrica con el circuito de procesamiento 3510. El bus de señalización también puede enlazar otros circuitos diversos (no mostrados) tales como fuentes de temporización, dispositivos periféricos, reguladores de voltaje y circuitos de gestión de potencia, que son bien conocidos en la técnica y, por lo tanto, no se describirán en mayor detalle.

[0300] La interfaz de comunicación 3502 proporciona un medio para comunicarse con otros aparatos por un medio de transmisión. En algunas implementaciones, la interfaz de comunicación 3502 incluye circuitos y/o programas adaptados para facilitar la comunicación de información bidireccionalmente con respecto a uno o más dispositivos de comunicación en una red. En algunas implementaciones, la interfaz de comunicación 3502 está adaptada para facilitar la comunicación inalámbrica del aparato 3500. En estas implementaciones, la interfaz de

comunicación 3502 puede estar acoplada a una o más antenas 3512 como se muestra en la FIG. 35 para la comunicación inalámbrica dentro de un sistema de comunicación inalámbrica. La interfaz de comunicación 3502 se puede configurar con uno o más receptores y/o transmisores independientes, así como uno o más transceptores. En el ejemplo ilustrado, la interfaz de comunicación 3502 incluye un transmisor 3514 y un receptor 3516. La interfaz de comunicación 3502 sirve como un ejemplo de un medio para recibir y/o un medio para transmitir.

5

10

25

30

35

40

55

[0301] El dispositivo de memoria 3508 puede representar uno o más dispositivos de memoria. Como se indica, el dispositivo de memoria 3508 puede mantener información relacionada con satélite 3518 junto con otra información usada por el aparato 3500. En algunas implementaciones, el dispositivo de memoria 3508 y el medio de almacenamiento 3504 se implementan como un componente de memoria común. El dispositivo de memoria 3508 también se puede usar para almacenar datos que se manipulan por el circuito de procesamiento 3510 o algún otro componente del aparato 3500.

[0302] El medio de almacenamiento 3504 puede representar uno o más dispositivos legibles por ordenador, legibles por máquina y/o legibles por procesador para almacenar programas, tales como código o instrucciones ejecutables por procesador (por ejemplo, software, firmware), datos electrónicos, bases de datos u otra información digital. El medio de almacenamiento 3504 también se puede usar para almacenar datos que se manipulan por el circuito de procesamiento 3510 cuando se ejecutan los programas. El medio de almacenamiento 3504 puede ser cualquier medio disponible al que se pueda acceder por un procesador de propósito general o de propósito especial, incluyendo dispositivos de almacenamiento portátiles o fijos, dispositivos de almacenamiento ópticos y otros medios diversos que puedan almacenar, contener o transportar programas.

[0303] A modo de ejemplo y sin limitación, el medio de almacenamiento 3504 puede incluir un dispositivo de almacenamiento magnético (por ejemplo, disco duro, disquete, banda magnética), un disco óptico (por ejemplo, un disco compacto (CD) o un disco versátil digital (DVD)), una tarjeta inteligente, un dispositivo de memoria flash (por ejemplo, una tarjeta, una memoria USB o un lápiz USB), una memoria de acceso aleatorio (RAM), una memoria de solo lectura (ROM), una ROM programable (PROM), una PROM borrable (EPROM), una PROM borrable eléctricamente (EEPROM), un registro, un disco extraíble y cualquier otro medio adecuado para almacenar software y/o instrucciones a las que se pueda acceder y se puedan leer mediante un ordenador. El medio de almacenamiento 3504 puede estar incorporado en un artículo de fabricación (por ejemplo, un producto de programa informático). A modo de ejemplo, un producto de programa informático puede incluir un medio legible por ordenador en materiales de embalaje. En vista de lo anterior, en algunas implementaciones, el medio de almacenamiento 3504 puede ser un medio de almacenamiento no transitorio (por ejemplo, tangible).

[0304] El medio de almacenamiento 3504 puede estar acoplado al circuito de procesamiento 3510 de manera que el circuito de procesamiento 3510 pueda leer información de, y escribir información en, el medio de almacenamiento 3504. Es decir, el medio de almacenamiento 3504 se puede acoplar al circuito de procesamiento 3510 de modo que el medio de almacenamiento 3504 sea al menos accesible por el circuito de procesamiento 3510, incluyendo ejemplos donde al menos un medio de almacenamiento esté integrado en el circuito de procesamiento 3510 y/o ejemplos donde al menos un medio de almacenamiento esté separado del circuito de procesamiento 3510 (por ejemplo, residente en el aparato 3500, externo al aparato 3500, distribuido a través de múltiples entidades, etc.).

45 **[0305]** Cuando los programas almacenados por el medio de almacenamiento 3504 son ejecutados por el circuito de procesamiento 3510, esto hace que el circuito de procesamiento 3510 lleve a cabo una o más de las diversas funciones y/u operaciones de proceso descritas en el presente documento. Por ejemplo, el medio de almacenamiento 3504 puede incluir operaciones configuradas para regular operaciones en uno o más bloques de hardware del circuito de procesamiento 3510, así como para utilizar la interfaz de comunicación 3502 para la comunicación inalámbrica utilizando sus respectivos protocolos de comunicación.

[0306] El circuito de procesamiento 3510 está adaptado, en general, para procesar, incluyendo la ejecución de dichos programas almacenados en el medio de almacenamiento 3504. Como se usa en el presente documento, los términos "código" o "programas" se deben interpretar ampliamente para incluir sin limitación instrucciones, conjuntos de instrucciones, datos, código, segmentos de código, código de programa, programas, programación, subprogramas, módulos de software, aplicaciones, aplicaciones de software, paquetes de software, rutinas, subrutinas, objetos, ejecutables, hilos de ejecución, procedimientos, funciones, etc., ya sea que se denominen software, firmware, middleware, microcódigo, lenguaje de descripción de hardware o de otro modo.

[0307] El circuito de procesamiento 3510 está dispuesto para obtener, procesar y/o enviar datos, controlar el acceso y almacenamiento de datos, emitir comandos y controlar otras operaciones deseadas. El circuito de procesamiento 3510 puede incluir circuitos configurados para implementar programas deseados proporcionados por medios apropiados en al menos un ejemplo. Por ejemplo, el circuito de procesamiento 3510 se puede implementar como uno o más procesadores, uno o más controladores y/u otra estructura configurada para ejecutar programas ejecutables. Los ejemplos del circuito de procesamiento 3510 pueden incluir un procesador de propósito general, un procesador de señales digitales (DSP), un circuito integrado específico de la aplicación (ASIC), una

matriz de puertas programables *in situ* (FPGA) u otro componente de lógica programable, lógica de transistor o de puertas discretas, componentes de hardware discretos o cualquier combinación de los mismos diseñada para realizar las funciones descritas en el presente documento. Un procesador de propósito general puede incluir un microprocesador, así como cualquier procesador, controlador, microcontrolador o máquina de estados convencional. El circuito de procesamiento 3510 también se puede implementar como una combinación de componentes informáticos, tal como una combinación de un DSP y un microprocesador, un número de microprocesadores, uno o más microprocesadores junto con un núcleo de DSP, un ASIC y un microprocesador u otro número cualquiera de configuraciones variables. Estos ejemplos del circuito de procesamiento 3510 son para ilustración y también se contemplan otras configuraciones adecuadas dentro del alcance de la divulgación.

5

10

15

30

35

55

60

65

[0308] De acuerdo con uno o más aspectos de la divulgación, el circuito de procesamiento 3510 se puede adaptar para realizar cualquiera o todos los rasgos característicos, procedimientos, funciones, operaciones y/o rutinas para cualquiera o todos los aparatos descritos en el presente documento. Por ejemplo, el circuito de procesamiento 3510 se puede configurar para realizar uno o más de los pasos, funciones y/o procesos descritos con respecto a las FIG. 7, 8, 11 - 20, 23, 25, 27 - 29, 31, 33, 36 y 37. Como se usa en el presente documento, el término "adaptado" en relación con el circuito de procesamiento 3510 se puede referir al circuito de procesamiento 3510 que está uno o más de configurado, empleado, implementado y/o programado para realizar un proceso, función, operación y/o rutina particular de acuerdo con diversos rasgos característicos descritos en el presente documento.

20 [0309] El circuito de procesamiento 3510 puede ser un procesador especializado, tal como un circuito integrado específico de la aplicación (ASIC) que sirve como un medio para (por ejemplo, estructura para) llevar a cabo una o más de las operaciones descritas junto con las FIG. 7, 8, 11 - 20, 23, 25, 27 - 29, 31, 33, 36 y 37. El circuito de procesamiento 3510 sirve como un ejemplo de un medio para transmitir y/o un medio para recibir. En algunas implementaciones, el circuito de procesamiento 3510 incorpora la funcionalidad del controlador SNP 250 de la FIG. 2.

[0310] De acuerdo con al menos un ejemplo del aparato 3500, el circuito de procesamiento 3510 puede incluir uno o más de un circuito/módulo para generar 3520, un circuito/módulo para enviar 3522, un circuito/módulo para realizar traspasos 3524, un circuito/módulo para emitir 3526, un circuito/módulo para determinar si modificar 3528, un circuito/módulo para seleccionar 3530, un circuito/módulo para determinar un tiempo 3532, un circuito/módulo para transferir 3534, un circuito/módulo para determinar un espacio de medición 3536 o un circuito/módulo para determinar que no se necesita un espacio de medición 3538. En diversas implementaciones, el circuito/módulo para generar 3520, el circuito/módulo para enviar 3522, el circuito/módulo para realizar traspasos 3524, el circuito/módulo para recibir 3526, el circuito/módulo para determinar si se debe modificar 3528, el circuito/módulo para seleccionar 3530, el circuito/módulo para determinar un tiempo 3532, el circuito/módulo para transferir 3534, el circuito/módulo para determinar un espacio de medición 3536 y el circuito/módulo para determinar que no se necesita un espacio de medición 3538 pueden corresponder, al menos en parte, al controlador SNP 250 de la FIG.

40 [0311] El circuito/módulo para generar 3520 puede incluir circuitos y/o programación (por ejemplo, código para generar 3540 almacenado en el medio de almacenamiento 3504) adaptado para realizar varias funciones relacionadas, por ejemplo, con la generación de información satelital y de transición de célula que especifica un tiempo para inicio y un tiempo para terminar la comunicación con una célula particular de un satélite particular. En algunas implementaciones, el circuito/módulo para generar 3520 calcula la información (por ejemplo, los datos para la Tabla 1) basándose en datos de efemérides de satélite y datos de ubicación del terminal de usuario. Con este fin, el circuito/módulo para generar 3520 recopila estos datos, procesa los datos para generar la información y envía la información a un componente del aparato 3500 (por ejemplo, el dispositivo de memoria 3508). Por ejemplo, para una ubicación determinada de un terminal de usuario, el circuito/módulo para generar 3520 puede determinar cuándo una célula particular de un satélite particular proporcionará cobertura para el terminal de usuario basándose en la ubicación del satélite y la direccionalidad y cobertura de las células del satélite a lo largo del tiempo.

[0312] El circuito/módulo para enviar 3522 puede incluir circuitos y/o programas (por ejemplo, código para enviar 3542 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con el envío de información (por ejemplo, datos) a otro aparato. Inicialmente, el circuito/módulo para enviar 3522 obtiene la información a enviar (por ejemplo, desde el dispositivo de memoria 3508, el circuito/módulo para generar 3520 o algún otro componente). En diversas implementaciones, la información a enviar puede incluir información de transición de célula y satélite para enviar a un terminal de usuario. En diversas implementaciones, la información a enviar puede incluir información indicativa de un espacio de medición. A continuación, el circuito/módulo para enviar 3522 puede formatear la información para enviar (por ejemplo, en un mensaje, de acuerdo con un protocolo, etc.). El circuito/módulo para enviar 3522 hace que la información se envíe a través de un medio de comunicación inalámbrica (por ejemplo, a través de señalización satelital). Con este fin, el circuito/módulo para enviar 3522 puede enviar los datos a la interfaz de comunicación 3502 (por ejemplo, un subsistema digital o un subsistema de RF) o algún otro componente para la transmisión. En algunas implementaciones, la interfaz de comunicación 3502 incluye el circuito/módulo para enviar 3522 y/o el código para enviar 3542.

[0313] El circuito/módulo para realizar un traspaso 3524 puede incluir circuitos y/o programación (por ejemplo, código para realizar un traspaso 3544 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas con, por ejemplo, realizar traspasos para un terminal de usuario para diferentes células y al menos un satélite. En algunas implementaciones, el circuito/módulo para realizar un traspaso 3524 identifica el satélite objetivo y/o la célula objetivo basándose en la información de transición del satélite y la célula (por ejemplo, tabla 1). Con este fin, el circuito/módulo para realizar un traspaso 3524 recopila esta información, procesa la información para identificar el objetivo y reconfigura sus parámetros de comunicación para hacer que la comunicación con el terminal de usuario se realice a través del objetivo. Por ejemplo, para una ubicación determinada de un terminal de usuario, el circuito/módulo para realizar un traspaso 3524 puede determinar si una célula particular de un satélite particular proporcionaría cobertura suficiente para el terminal de usuario basándose en la ubicación del satélite y la direccionalidad y cobertura de las células del satélite a lo largo del tiempo. Si el satélite/célula proporcionaría una cobertura suficiente, el circuito/módulo para realizar un traspaso 3524 puede designar a ese satélite/célula como el objetivo para el traspaso y comenzar la señalización de traspaso en consecuencia.

5

10

15

20

25

30

50

55

60

[0314] El circuito/módulo para recibir 3526 puede incluir circuitos y/o programas (por ejemplo, código para recibir 3546 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con la recepción de información (por ejemplo, datos) de otro aparato. En diversas implementaciones, la información a recibir puede incluir un mensaje de medición desde un terminal de usuario. En diversas implementaciones, la información a recibir puede incluir información de capacidad de un terminal de usuario. En diversas implementaciones, la información a recibir puede incluir un mensaje desde un terminal de usuario. Inicialmente, el circuito/módulo para recibir 3526 obtiene la información recibida. Por ejemplo, el circuito/módulo para recibir 3526 puede obtener esta información de un componente del aparato 3500 (por ejemplo, la interfaz de comunicación 3502 (por ejemplo, un subsistema digital o un subsistema de RF), el dispositivo de memoria 3508 o algún otro componente) o directamente desde un dispositivo (por ejemplo, un satélite) que transmitió la información desde el terminal de usuario. En algunas implementaciones, el circuito/módulo para recibir 3526 identifica una ubicación de memoria de un valor en el dispositivo de memoria 3508 e invoca una lectura de esa ubicación. En algunas implementaciones, el circuito/módulo para recibir 3526 procesa (por ejemplo, descodifica) la información recibida. El circuito/módulo para recibir 3526 emite la información recibida (por ejemplo, almacena la información recibida en el dispositivo de memoria 3508 o envía la información a otro componente del aparato 3500). En algunas implementaciones, la interfaz de comunicación 3502 incluye el circuito/módulo para recibir 3526 y/o el código para recibir 3542.

35 [0315] El circuito/módulo para determinar si modificar 3528 puede incluir circuitos y/o programas (por ejemplo, código para determinar si modificar 3548 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con la determinación de si modificar la información de transición de célula y satélite. En algunas implementaciones, el circuito/módulo para determinar si se debe modificar 3528 toma esta determinación basándose en el mensaje de medición recibido. Con este fin, el 40 circuito/módulo para determinar si modificar 3528 recopila esta información del mensaje de medición (por ejemplo, del circuito/módulo para recibir 3526, el dispositivo de memoria 3508 o algún otro componente del aparato 3500). El circuito/módulo para determinar si se debe modificar el 3528 puede procesar la información para determinar si los parámetros de temporización actuales deben cambiarse (por ejemplo, debido a malas condiciones de RF o mejores condiciones de RF). Por ejemplo, el circuito/módulo para determinar si modificar 3528 puede comparar la 45 información de calidad de señal contenida en un mensaje de medición con uno o más umbrales de calidad de señal. Finalmente, el circuito/módulo para determinar si se debe modificar 3528 genera una indicación de esta determinación (por ejemplo, indicativa del avance de un traspaso o retraso de un traspaso).

[0316] El circuito/módulo para seleccionar 3530 puede incluir circuitos y/o programas (por ejemplo, código para seleccionar 3550 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con la selección de un procedimiento de traspaso para un terminal de usuario. En algunas implementaciones, el circuito/módulo para seleccionar 3530 toma esta determinación basándose en la información de capacidad recibida del terminal de usuario. Con este fin, el circuito/módulo para seleccionar 3530 recopila esta información de capacidad, procesa la información para identificar un procedimiento de traspaso y genera una indicación de esta determinación. Por ejemplo, la selección del procedimiento de traspaso puede implicar determinar si el terminal de usuario es capaz de realizar doble detección y habilitar o deshabilitar la supervisión de un mensaje de medición desde el terminal de usuario basándose en si el terminal de usuario es capaz de realizar doble detección. Por lo tanto, en algunas implementaciones, el circuito/módulo para seleccionar 3530 adquiere información de configuración sobre el terminal de usuario (por ejemplo, desde el dispositivo de memoria 3508, desde el receptor 3516 o desde algún otro componente), comprueba esta información para identificar la capacidad del terminal de usuario para seleccionar un procedimiento de traspaso soportado y genera una indicación de esta determinación (por ejemplo, que se envía al dispositivo de memoria 3508, el circuito/módulo para realizar un traspaso 3524 o algún otro componente).

65 **[0317]** El circuito/módulo para determinar un tiempo 3532 puede incluir circuitos y/o programas (por ejemplo, código para determinar un tiempo 3552 almacenado en el medio de almacenamiento 3504) adaptados para realizar

varias funciones relacionadas, por ejemplo, con determinar un tiempo de traspaso de un terminal de usuario. En algunas implementaciones, el circuito/módulo para determinar un tiempo 3532 toma esta determinación basándose en la información de transición de célula y satélite (por ejemplo, Tabla 1). Con este fin, el circuito/módulo para determinar un tiempo 3532 adquiere esta información (por ejemplo, del circuito/módulo para recibir 3526, el dispositivo de memoria 3508 o algún otro componente del aparato 3500). A continuación, el circuito/módulo durante un tiempo 3532 puede procesar la información para determinar el tiempo (por ejemplo, el número de tramas) para el próximo traspaso del terminal de usuario. Por ejemplo, el circuito/módulo durante un tiempo 3532 puede comparar una indicación de tiempo actual (por ejemplo, un número de tramas) con las indicaciones de temporización en la Tabla 1. El circuito/módulo para determinar un tiempo 3532 genera una indicación de esta determinación (por ejemplo, indicativa del tiempo de traspaso) y envía la indicación a un componente del aparato 3500 (por ejemplo, el circuito/módulo para transferir 3534, el dispositivo de memoria 3508, o algún otro componente).

[0318] El circuito/módulo para transferir 3534 puede incluir circuitos y/o programas (por ejemplo, código para transferir 3554 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con la transferencia de colas de usuarios antes del traspaso. Inicialmente, el circuito/módulo para transferir 3534 recibe una indicación de un tiempo de traspaso (por ejemplo, desde el dispositivo de memoria 3508, el circuito/módulo para determinar un tiempo 3532 o algún otro componente). A continuación, antes del tiempo del traspaso, el circuito/módulo para transferir 3534 obtiene información de cola a enviar (por ejemplo, desde el dispositivo de memoria 3508 o algún otro componente). En diversas implementaciones, esta información puede enviarse a otro SNP. El circuito/módulo para transferir 3534 puede a continuación formatear la información de la cola para enviar (por ejemplo, en un mensaje, de acuerdo con un protocolo, etc.). A continuación, el circuito/módulo para transferir 3534 hace que la información de la cola se envíe a través de un medio de comunicación apropiado (por ejemplo, a través de la infraestructura 106 de la FIG. 1). Para este fin, el circuito/módulo para transferir 3534 puede enviar los datos a la interfaz de comunicación 3502 o algún otro componente para la transmisión. En algunas implementaciones, la interfaz de comunicación 3502 incluye el circuito/módulo para transferir 3534 y/o el código para transferir 3554.

[0319] El circuito/módulo para determinar un espacio de medición 3536 puede incluir circuitos y/o programas (por ejemplo, código para determinar un espacio de medición 3556 almacenado en el medio de almacenamiento 3504) adaptados para realizar varias funciones relacionadas, por ejemplo, con la determinación de un espacio de medición para medir señales de satélite. En algunas implementaciones, el circuito/módulo para determinar un espacio de medición 3536 determina que puede haber un error al apuntar del satélite que necesita un cambio en un tiempo de traspaso. Como resultado de esta determinación o algún otro activador, el circuito/módulo para determinar un espacio de medición 3536 genera una indicación de un espacio de medición para ser utilizado por un UT (por ejemplo, un patrón de espacio de medición indicativo de los momentos en que el SNP no está transmitiendo al UT). A continuación, el circuito/módulo para determinar un espacio de medición 3536 envía la indicación a un componente del aparato 3500 (por ejemplo, el circuito/módulo para enviar 3522, el dispositivo de memoria 3508 o algún otro componente).

[0320] El circuito/módulo para determinar que no se necesita un espacio de medición 3538 puede incluir circuitos y/o programación (por ejemplo, código para determinar que no se necesita un espacio de medición 3558 almacenado en el medio de almacenamiento 3504) adaptado para realizar varias funciones relacionadas con, por ejemplo, determinar que no se necesita un espacio de medición para medir señales de satélite. En algunas implementaciones, el circuito/módulo para determinar que no se necesita un espacio de medición 3538 obtiene información sobre el estado de uno o más satélites. Basándose en esta información, el circuito/módulo para determinar que no se necesita un espacio de medición 3538 determina que no hay un error al apuntar del satélite que requiera un cambio en el tiempo de traspaso. Como resultado de esta determinación o algún otro activador, el circuito/módulo para determinar que no se necesita un espacio de medición 3538 genera una indicación de esta determinación y envía la indicación a un componente del aparato 3500 (por ejemplo, el circuito/módulo para generar 3520, el dispositivo de memoria 3508 o algún otro componente).

[0321] Como se ha mencionado anteriormente, los programas almacenados por el medio de almacenamiento 3504, cuando son ejecutados por el circuito de procesamiento 3510, hacen que el circuito de procesamiento 3510 realice una o más de las diversas funciones y/u operaciones de proceso descritas en el presente documento. Por ejemplo, los programas, cuando son ejecutados por el circuito de procesamiento 3510, pueden hacer que el circuito de procesamiento 3510 realice una o más de las diversas funciones, pasos y/o procesos descritos en el presente documento con respecto a las FIG. 7, 8, 11 - 20, 23, 25, 27 - 29, 31, 33, 36 y 37 en diversas implementaciones. Como se muestra en la FIG. 35, el medio de almacenamiento 3504 puede incluir uno o más del código para generar 3540, el código para enviar 3542, el código para realizar traspaso 3544, el código para recibir 3546, el código para determinar si se debe modificar 3548, el código para seleccionar 3550, el código para determinar un tiempo 3552, el código para transferir 3554, el código para determinar un espacio de medición 3556, o el código para determinar que no se necesita un espacio de medición 3558.

Procedimientos de ejemplo

[0322] La FIG. 36 ilustra un proceso 3600 para comunicación de acuerdo con algunos aspectos de la divulgación. El proceso 3600 puede tener lugar dentro de un circuito de procesamiento (por ejemplo, el circuito de procesamiento 3510 de la FIG. 35), que se puede ubicar en un SNP o algún otro aparato adecuado. En algunas implementaciones, el proceso 3600 puede ser realizado por un SNP para al menos un satélite no geosíncrono. En algunas implementaciones, el proceso 3600 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 3600 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones de comunicación.

[0323] En el bloque 3602, un aparato (por ejemplo, un SNP) genera información de traspaso por satélite que especifica un tiempo de traspaso para una célula particular de un satélite particular. En algunos aspectos, las operaciones del bloque 3602 pueden corresponder a las operaciones del bloque 2006 de la FIG. 20.

15

20

25

30

35

40

50

55

60

65

[0324] En algunos aspectos, la generación de la información de traspaso por satélite puede basarse en al menos una de: información de capacidades para un terminal de usuario o información de ubicación para un terminal de usuario. En algunos aspectos, la información de capacidades puede indicar al menos uno de: si el terminal de usuario puede detectar múltiples haces o si el terminal de usuario puede detectar múltiples satélites. En algunos aspectos, la información de capacidades puede indicar al menos uno de: un tiempo de sintonización entre haces para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario. En algunos aspectos, la información de ubicación puede incluir al menos uno de: una ubicación actual para el terminal de usuario o un vector de movimiento para el terminal de usuario.

[0325] En algunos aspectos, la generación de la información de traspaso por satélite puede basarse en al menos una de: información de efemérides, una restricción debida a un sistema establecido o un error al apuntar del satélite. En algunos aspectos, la generación de la información de traspaso por satélite puede activarse basándose en al menos uno de: el traspaso del terminal de usuario a un satélite diferente o la recepción de un mensaje de medición desde el terminal de usuario.

[0326] En algunas implementaciones, el circuito/módulo para generar 3520 de la FIG. 35 realiza las operaciones del bloque 3602. En algunas implementaciones, el código para generar 3540 de la FIG. 35 se ejecuta para realizar las operaciones del bloque 3602.

[0327] En el bloque 3604, el aparato envía la información de traspaso por satélite a un terminal de usuario. En algunos aspectos, esta información se envía a través de un satélite. En algunos aspectos, las operaciones del bloque 3604 pueden corresponder a las operaciones del bloque 2008 de la FIG. 20.

[0328] La información de traspaso por satélite puede tomar varias formas como se enseña en el presente documento. En algunos aspectos, la información de traspaso por satélite puede incluir una tabla que incluye un tiempo de activación de entrega. En algunos aspectos, la información de traspaso por satélite puede incluir al menos un tiempo de sintonización. En algunos aspectos, la información de traspaso puede ser para al menos un traspaso futuro (por ejemplo, el próximo traspaso, un traspaso posterior o algún otro traspaso que ocurrirá en el futuro). En algunos aspectos, la información de traspaso puede ser para el próximo traspaso de haz y para al menos un futuro traspaso por satélite (por ejemplo, para los siguientes dos traspasos que ocurrirán, el próximo traspaso y algún otro traspaso posterior, etc.).

45 **[0329]** En algunas implementaciones, el circuito/módulo para enviar 3522 de la FIG. 35 realiza las operaciones del bloque 3604. En algunas implementaciones, el código para enviar 3542 de la FIG. 35 se ejecuta para realizar las operaciones del bloque 3604.

[0330] En algunos aspectos, el proceso 3600 puede incluir además realizar traspasos para el terminal de usuario a diferentes haces y al menos un satélite basándose en la información de traspaso por satélite. Los traspasos pueden implicar un cambio de al menos uno de: una red de acceso por satélite (SAN) o una antena de portal de red de satélites (SNP). Los traspasos pueden implicar un cambio de al menos uno de: un haz de satélite o una frecuencia de enlace de servicio directo (FSL). En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2010 de la FIG. 20. En algunas implementaciones, el circuito/módulo para realizar un traspaso 3524 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para realizar un traspaso 3544 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0331] En algunos aspectos, el proceso 3600 puede incluir además recibir un mensaje de medición desde el terminal de usuario y determinar, basándose en el mensaje de medición, si se debe modificar la información de traspaso por satélite. La modificación de la información de traspaso por satélite puede incluir adelantar el tiempo de traspaso o retrasar el tiempo de traspaso. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2702 y 2704 de la FIG. 27. En algunas implementaciones, el circuito/módulo para recibir 3526 de la FIG. 35 realiza las operaciones de recepción. En algunas implementaciones, el código para recibir 3546 de la FIG. 35 se ejecuta para realizar las operaciones de recepción. En algunas implementaciones, el circuito/módulo para determinar si se debe modificar 3528 de la FIG. 35 realiza las operaciones de determinación. En algunas implementaciones, el código para determinar si se debe modificar 3548 de la FIG. 35 se ejecuta para

realizar las operaciones de determinación.

10

15

20

25

30

45

50

55

60

65

[0332] En algunos aspectos, el proceso 3600 puede incluir además determinar un espacio de medición para medir señales de satélite y enviar información indicativa del espacio de medición al terminal de usuario, en el que el mensaje de medición incluye una indicación de una medición de señales de al menos un satélite realizada durante el espacio de medición. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 3106 y 3108 de la FIG. 31. En algunas implementaciones, el circuito/módulo para determinar un espacio de medición 3536 de la FIG. 35 realiza las operaciones de determinación. En algunas implementaciones, el código para determinar un espacio de medición 3556 de la FIG. 35 se ejecuta para realizar las operaciones de determinación. En algunas implementaciones, el circuito/módulo para enviar 3522 de la FIG. 35 realiza las operaciones de envío. En algunas implementaciones, el código para enviar 3542 de la FIG. 35 se ejecuta para realizar las operaciones de envío.

[0333] En algunos aspectos, el proceso 3600 puede incluir además recibir información de capacidad del terminal de usuario, y seleccionar un procedimiento de traspaso para el terminal de usuario basándose en la información de capacidad recibida. La información de capacidad puede indicar si el terminal de usuario tiene capacidad de doble detección. La selección del procedimiento de traspaso puede incluir habilitar o deshabilitar la supervisión de un mensaje de medición desde el terminal de usuario basándose en si el terminal de usuario tiene capacidad de doble detección. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2302 y 2306 de la FIG. 23. En algunas implementaciones, el circuito/módulo para recibir 3526 de la FIG. 35 realiza las operaciones de recepción. En algunas implementaciones, el código para recibir 3546 de la FIG. 35 se ejecuta para realizar las operaciones de recepción. En algunas implementaciones, el código para seleccionar 3530 de la FIG. 35 realiza las operaciones de selección. En algunas implementaciones, el código para seleccionar 3550 de la FIG. 35 se ejecuta para realizar las operaciones de selección.

[0334] En algunos aspectos, el proceso 3600 puede incluir además determinar un tiempo de traspaso del terminal de usuario y transferir al menos una cola de usuarios antes del traspaso. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 3302 y 3304 de la FIG. 33. En algunas implementaciones, el circuito/módulo para determinar un tiempo 3532 de la FIG. 35 realiza las operaciones de determinación. En algunas implementaciones, el código para determinar un tiempo 3552 de la FIG. 35 se ejecuta para realizar las operaciones de determinación. En algunas implementaciones, el circuito/módulo para transferir 3534 de la FIG. 35 realiza las operaciones de transferencia. En algunas implementaciones, el código para transferir 3554 de la FIG. 35 se ejecuta para realizar las operaciones de transferencia.

[0335] En algunos aspectos, el proceso 3600 puede incluir además recibir, desde el terminal de usuario, un mensaje que comprende al menos uno de: información de área de búsqueda de terminal de usuario o información de ubicación de terminal de usuario. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2502 de la FIG. 25. En algunas implementaciones, el circuito/módulo para recibir 3526 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para recibir 3546 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0336] En algunos aspectos, el proceso 3600 puede incluir además determinar que no se necesita un espacio de medición para medir señales de satélite, en el que, como resultado de la determinación, la generación de la información de traspaso por satélite implica no incluir un tiempo de sintonización en la información de traspaso por satélite. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 3102 y 3104 de la FIG. 31. En algunas implementaciones, el circuito/módulo para determinar que no se necesita un espacio de medición 3538 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para determinar que no se necesita un espacio de medición 3558 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0337] La FIG. 37 ilustra un proceso 3700 para comunicación de acuerdo con algunos aspectos de la divulgación. El proceso 3700 puede tener lugar dentro de un circuito de procesamiento (por ejemplo, el circuito de procesamiento 3510 de la FIG. 35), que se puede ubicar en un SNP o algún otro aparato adecuado. En algunas implementaciones, el proceso 3700 puede ser realizado por un SNP para al menos un satélite no geosíncrono. En algunas implementaciones, el proceso 3700 representa operaciones realizadas por el controlador SNP 250 de la FIG. 2. Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 3700 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones de comunicación.

[0338] En el bloque 3702, un aparato (por ejemplo, un SNP) genera información de transición de célula y satélite que especifica un tiempo para comenzar y un tiempo para terminar la comunicación con una célula particular de un satélite particular. En algunos aspectos, las operaciones del bloque 3702 pueden corresponder a las operaciones del bloque 2006 de la FIG. 20.

[0339] En algunos aspectos, la información de transición de célula y satélite se genera basándose en al menos uno de: información de capacidades para el terminal de usuario, información de ubicación para el terminal de usuario, información de efemérides o una restricción debido a un sistema establecido. En algunos aspectos, la

información de capacidades indica al menos uno de: si el terminal de usuario puede detectar múltiples células, si el terminal de usuario puede detectar múltiples satélites, un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario. En algunos aspectos, la información de ubicación incluye una ubicación actual para el terminal de usuario o un vector de movimiento para el terminal de usuario.

[0340] En algunos aspectos, la generación de la información de transición de célula y satélite se activa basándose en al menos uno de: el traspaso del terminal de usuario a un satélite diferente, o la recepción de un mensaje de medición desde el terminal de usuario.

[0341] En algunas implementaciones, el circuito/módulo para generar 3520 de la FIG. 35 realiza las operaciones del bloque 3702. En algunas implementaciones, el código para generar 3540 de la FIG. 35 se ejecuta para realizar las operaciones del bloque 3702.

15 **[0342]** En el bloque 3704, el aparato envía la información de transición de célula y satélite a un terminal de usuario. En algunos aspectos, esta información se envía a través de un satélite. En algunos aspectos, las operaciones del bloque 3704 pueden corresponder a las operaciones del bloque 2008 de la FIG. 20.

[0343] En algunas implementaciones, el circuito/módulo para enviar 3522 de la FIG. 35 realiza las operaciones del bloque 3704. En algunas implementaciones, el código para enviar 3542 de la FIG. 35 se ejecuta para realizar las operaciones del bloque 3704.

[0344] En algunos aspectos, el proceso 3700 incluye además realizar traspasos para el terminal de usuario a diferentes células y al menos un satélite basándose en la información de transición de célula y satélite. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2010 de la FIG. 20. En algunas implementaciones, el circuito/módulo para realizar un traspaso 3524 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para realizar un traspaso 3544 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0345] En algunos aspectos, el proceso 3700 incluye además recibir un mensaje de medición desde el terminal de usuario; y determinar, basándose en el mensaje de medición, si se modificará la información de transición de célula y satélite. En algunos aspectos, la modificación de la información de transición de célula y satélite incluye avanzar un traspaso o retrasar un traspaso. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2702 y 2704 de la FIG. 27. En algunas implementaciones, el circuito/módulo para recibir 3526 y/o el circuito/módulo para determinar si se debe modificar 3528 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para recibir 3546 y/o el código para determinar si se debe modificar 3548 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0346] En algunos aspectos, el proceso 3700 incluye además seleccionar un procedimiento de traspaso para el terminal de usuario basándose en la información de capacidad recibida desde el terminal de usuario. En algunos aspectos, la selección del procedimiento de traspaso incluye habilitar o deshabilitar la supervisión de un mensaje de medición desde el terminal de usuario basándose en si el terminal de usuario puede realizar doble detección. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2306 de la FIG. 23. En algunas implementaciones, el circuito/módulo para seleccionar 3530 de la FIG. 35 realiza estas operaciones.
45 En algunas implementaciones, el código para seleccionar 3550 de la FIG. 35 se ejecuta para realizar estas operaciones.

[0347] En algunos aspectos, el proceso 3700 incluye además determinar un tiempo de traspaso del terminal de usuario y transferir colas de usuarios antes del traspaso. En algunas implementaciones, el circuito/módulo para determinar un tiempo 3532 y/o el circuito/módulo para transferir 3534 de la FIG. 35 realiza estas operaciones. En algunas implementaciones, el código para determinar un tiempo 3552 y/o el código para transferir 3554 de la FIG. 35 se ejecuta para realizar estas operaciones.

Aparato de ejemplo

5

10

20

25

50

55

60

[0348] La FIG. 38 ilustra un diagrama de bloques de una implementación de hardware de ejemplo de otro aparato 3800 configurado para comunicarse de acuerdo con uno o más aspectos de la divulgación. Por ejemplo, el aparato 3800 podría funcionar o implementarse dentro de un UT o algún otro tipo de dispositivo que soporte la comunicación inalámbrica. De este modo, en algunos aspectos, el aparato 3800 podría ser un ejemplo del UT 400 o el UT 401 de la FIG. 1. En diversas implementaciones, el aparato 3800 podría funcionar o implementarse en un teléfono móvil, un teléfono inteligente, una tablet, un ordenador portátil, un servidor, un ordenador personal, un sensor, un dispositivo de entretenimiento, un componente para vehículos, dispositivos médicos o cualquier otro dispositivo electrónico que tenga circuitos.

65 **[0349]** El aparato 3800 incluye una interfaz de comunicación (por ejemplo, al menos un transceptor) 3802, un medio de almacenamiento 3804, una interfaz de usuario 3806, un dispositivo de memoria 3808 (por ejemplo, para

almacenar información relacionada con satélite 3818) y un circuito de procesamiento (por ejemplo, al menos un procesador) 3810. En diversas implementaciones, la interfaz de usuario 3806 puede incluir uno o más de: un teclado, una pantalla, un altavoz, un micrófono, una pantalla táctil, de algún otro circuito para recibir una entrada desde o enviar una salida a un usuario. La interfaz de comunicación 3802 puede estar acoplada a una o más antenas 3812, y puede incluir un transmisor 3814 y un receptor 3816. En general, los componentes de la FIG. 38 pueden ser similares a los componentes correspondientes del aparato 3500 de la FIG. 35.

5

10

15

20

25

30

35

40

45

50

55

60

65

[0350] De acuerdo con uno o más aspectos de la divulgación, el circuito de procesamiento 3810 se puede adaptar para realizar cualquiera o todos los rasgos característicos, procedimientos, funciones, operaciones y/o rutinas para cualquiera o todos los aparatos descritos en el presente documento. Por ejemplo, el circuito de procesamiento 3810 se puede configurar para realizar uno o más de los pasos, funciones y/o procesos descritos con respecto a las FIG. 7, 8, 11 - 19, 21, 22, 24, 26, 28 - 30, 32, 34, 39 y 40. Como se usa en el presente documento, el término "adaptado" en relación con el circuito de procesamiento 3810 se puede referir al circuito de procesamiento 3810 que está uno o más de configurado, empleado, implementado y/o programado para realizar un proceso, función, operación y/o rutina particular de acuerdo con diversos rasgos característicos descritos en el presente documento.

[0351] El circuito de procesamiento 3810 puede ser un procesador especializado, tal como un circuito integrado específico de la aplicación (ASIC) que sirve como un medio para (por ejemplo, estructura para) llevar a cabo una o más de las operaciones descritas junto con las FIG. 7, 8, 11 - 19, 21, 22, 24, 26, 28 - 30, 32, 34, 39 y 40. El circuito de procesamiento 3810 sirve como un ejemplo de un medio para transmitir y/o un medio para recibir. En diversas implementaciones, el circuito de procesamiento 3810 puede incorporar la funcionalidad del procesador de control 420 de la FIG. 4.

[0352] De acuerdo con al menos un ejemplo del aparato 3800, el circuito de procesamiento 3810 puede incluir uno o más de un circuito/módulo para recibir 3820, un circuito/módulo para realizar un traspaso 3822, un circuito/módulo para medir señales 3824, un circuito/módulo para enviar 3826, un circuito/módulo para determinar si enviar 3828, o un circuito/módulo para realizar un procedimiento de acceso aleatorio 3830. En diversas implementaciones, el circuito/módulo para recibir 3820, el circuito/módulo para realizar un traspaso 3822, el circuito/módulo para medir señales 3824, el circuito/módulo para enviar 3826, el circuito/módulo para determinar si enviar 3828, y el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 puede corresponder, al menos en parte, al procesador de control 420 de la FIG. 4.

[0353] El circuito/módulo para recibir 3820 puede incluir circuitos y/o programas (por ejemplo, código para recibir 3832 almacenado en el medio de almacenamiento 3804) adaptados para realizar varias funciones relacionadas, por ejemplo, con la recepción de información (por ejemplo, datos) de otro aparato. En diversas implementaciones, la información que se recibirá puede incluir información de transición de célula y satélite que especifica un tiempo para comenzar y un tiempo para terminar la comunicación con una célula particular de un satélite particular. En diversas implementaciones, la información a recibir puede incluir información indicativa de un espacio de medición. En diversas implementaciones, la información que se recibirá puede incluir una firma de preámbulo dedicada. Inicialmente, el circuito/módulo para recibir 3820 obtiene la información recibida. Por ejemplo, el circuito/módulo para recibir 3820 puede obtener esta información de un componente del aparato 3800 o directamente de un dispositivo (por ejemplo, un satélite) que transmite la información desde un SNP. En el primer caso, el circuito/módulo para recibir 3820 puede obtener esta información de la interfaz de comunicación 3802 (por ejemplo. un transceptor UT como se describió anteriormente para el UT 400 de la FIG. 4), el dispositivo de memoria 3808 o algún otro componente. En algunas implementaciones, el circuito/módulo para recibir 3820 identifica una ubicación de memoria de un valor en el dispositivo de memoria 3808 e invoca una lectura de esa ubicación. En algunas implementaciones, el circuito/módulo para recibir 3820 procesa (por ejemplo, descodifica) la información recibida. El circuito/módulo para recibir 3820 envía la información recibida (por ejemplo, envía la información recibida al dispositivo de memoria 3808, el circuito/módulo para realizar un traspaso 3822, o algún otro componente del aparato 3800). En algunas implementaciones, la interfaz de comunicación 3802 incluye el circuito/módulo para recibir 3820 y/o el código para recibir 3832.

[0354] El circuito/módulo para determinar 3822 puede incluir circuitos y/o programas (por ejemplo, código para determinar 3834 almacenado en el medio de almacenamiento 3804) adaptados para realizar varias funciones relacionadas, por ejemplo, con la realización de un traspaso a una célula particular de un satélite particular. En algunas implementaciones, el circuito/módulo para realizar un traspaso 3822 identifica una célula particular de un satélite particular basándose en información de transición de célula y satélite (por ejemplo, Tabla 1). Con este fin, el circuito/módulo para realizar un traspaso 3822 recopila esta información, procesa la información para identificar el satélite y la célula, y reconfigura sus parámetros de comunicación para hacer que la comunicación con un SNP se realice a través del satélite y la célula identificados. Por ejemplo, en un punto particular en el tiempo, el circuito/módulo para realizar un traspaso 3822 puede usar la información en la Tabla 1 para determinar si el terminal de usuario debe cambiar a una célula de satélite diferente. Como otro ejemplo, los activadores pueden establecerse en los tiempos de transición de célula/satélite (por ejemplo, números de tramas) indicados en la Tabla 1.

[0355] El circuito/módulo para medir señales 3824 puede incluir circuitos y/o programas (por ejemplo, código para medir señales 3836 almacenado en el medio de almacenamiento 3804) adaptados para realizar varias

funciones relacionadas, por ejemplo, con la recepción y el procesamiento de señales de al menos un satélite. Inicialmente, el circuito/módulo para medir señales 3824 recibe señales. Por ejemplo, el circuito/módulo para medir señales 3824 puede obtener información de señal de un componente del aparato 3800 o directamente de un satélite que transmite las señales. Como ejemplo del primer caso, el circuito/módulo para medir señales 3824 puede obtener información de señal desde la interfaz de comunicación 3802 (por ejemplo, un transceptor UT como se describe anteriormente para el UT 400 de la FIG. 4), el dispositivo de memoria 3808 (por ejemplo, si las señales recibidas se han digitalizado), o algún otro componente del aparato 3800. A continuación, el circuito/módulo para medir las señales 3824 procesa las señales recibidas (por ejemplo, para determinar al menos una calidad de señal de las señales). Finalmente, el circuito/módulo para medir señales 3824 genera una indicación de esta medición y envía la indicación al dispositivo de memoria 3808, el circuito/módulo para enviar 3824, o algún otro componente del aparato 3800. En algunas implementaciones, la interfaz de comunicación 3802 incluye el circuito/módulo para medir señales 3824 y/o el código para medir señales 3836.

10

15

20

25

30

35

40

45

50

55

60

65

[0356] El circuito/módulo para enviar 3826 puede incluir circuitos v/o programas (por ejemplo, código para enviar 3838 almacenado en el medio de almacenamiento 3804) adaptados para realizar varias funciones relacionadas, por ejemplo, con el envío de información (por ejemplo, mensajes) a otro aparato. Inicialmente, el circuito/módulo para enviar 3826 obtiene la información a enviar (por ejemplo, desde el dispositivo de memoria 3808, el circuito/módulo para medir señales 3824, o algún otro componente). En diversas implementaciones, la información a enviar puede incluir un mensaje de medición basado en señales medidas, un mensaje que incluye información de capacidad del terminal de usuario o un mensaje que incluye información de ubicación del terminal de usuario. En diversas implementaciones, la información a enviar puede incluir un mensaje que incluye información de capacidad del terminal de usuario. En diversas implementaciones, la información a enviar puede incluir un mensaje que incluye información de ubicación del terminal de usuario. En diversas implementaciones, la información a enviar puede incluir un mensaje que incluye información del área de búsqueda del terminal de usuario. El circuito/módulo para enviar 3826 puede formatear la información para enviar (por ejemplo, de acuerdo con un formato de mensaje, de acuerdo con un protocolo, etc.). El circuito/módulo para enviar 3826 hace que la información se envíe a través de un medio de comunicación inalámbrica (por ejemplo, a través de señalización satelital). Con este fin, el circuito/módulo para enviar 3826 puede enviar los datos a la interfaz de comunicación 3802 (por ejemplo, un transceptor UT como se describió anteriormente para el UT 400 de la FIG. 4) o algún otro componente para la transmisión. En algunas implementaciones, la interfaz de comunicación 3802 incluye el circuito/módulo para enviar 3826 y/o el código para enviar 3838.

[0357] El circuito/módulo para determinar si enviar 3828 puede incluir circuitos y/o programas (por ejemplo, código para determinar si enviar 3840 almacenado en el medio de almacenamiento 3804) adaptados para realizar varias funciones relacionadas, por ejemplo, con la determinación de si enviar un mensaje. En algunas implementaciones, la información a enviar puede incluir un mensaje de medición que se basa en señales medidas. Inicialmente, el circuito/módulo para determinar si enviar 3828 obtiene información que se utiliza para tomar una decisión de envío (por ejemplo, desde el dispositivo de memoria 3808, el circuito/módulo para medir señales 3824 o algún otro componente). Por ejemplo, el circuito/módulo para determinar si enviar 3828 puede obtener información de calidad de señal del circuito/módulo para medir las señales 3824. En este caso, el circuito/módulo para determinar si enviar 3828 puede determinar si las señales de un satélite en servicio actual y/o de un satélite objetivo son inadecuadas (por ejemplo, comparando la información de calidad de señal con un umbral de calidad de señal). Por ejemplo, el envío de un mensaje de medición puede activarse si las señales son inadecuadas. Finalmente, el circuito/módulo para determinar si enviar 3828 genera una indicación de la determinación y envía la indicación al dispositivo de memoria 3808, el circuito/módulo para enviar 3826, o algún otro componente del aparato 3800.

[0358] El circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 puede incluir circuitos y/o programación (por ejemplo, código para realizar un procedimiento de acceso aleatorio 3842 almacenado en el medio de almacenamiento 3804) adaptado para realizar varias funciones relacionadas, por ejemplo, con procedimiento de acceso aleatorio basado en la contienda utilizando una firma de preámbulo dedicada. En algunas implementaciones, el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 realiza las operaciones de acceso aleatorio descritas anteriormente junto con la FIG. 13. En algunas implementaciones, el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 realiza las operaciones de acceso aleatorio descritas anteriormente junto con la FIG. 15. En algunas implementaciones, el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 realiza las operaciones de acceso aleatorio descritas anteriormente junto con la FIG. 17. En algunas implementaciones, el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 realiza las operaciones de acceso aleatorio descritas anteriormente junto con la FIG. 19. En algunas implementaciones, el circuito/módulo para realizar un procedimiento de acceso aleatorio 3830 realiza las operaciones descritas anteriormente junto con la FIG. 34.

[0359] Como se ha mencionado anteriormente, los programas almacenados por el medio de almacenamiento 3804, cuando son ejecutados por el circuito de procesamiento 3810, hacen que el circuito de procesamiento 3810 realice una o más de las diversas funciones y/u operaciones de proceso descritas en el presente documento. Por ejemplo, los programas, cuando son ejecutados por el circuito de procesamiento 3810, pueden hacer que el circuito de procesamiento 3810 realice una o más de las diversas funciones, pasos y/o procesos descritos en el presente

documento con respecto a las FIG. 7, 8, 11 - 19, 21, 22, 24, 26, 28 - 30, 32, 34, 39 y 40 en varias implementaciones. Como se muestra en la FIG. 38, el medio de almacenamiento 3804 puede incluir uno o más del código para recibir 3832, el código para realizar traspasos 3834, el código para medir señales 3836, el código para enviar 3838, el código para determinar si enviar 3840, o el código para realizar un procedimiento de acceso aleatorio 3842.

Procedimientos de ejemplo

5

10

35

40

55

60

- [0360] La FIG. 39 ilustra un proceso 3900 para comunicación de acuerdo con algunos aspectos de la divulgación. El proceso 3900 puede tener lugar dentro de un circuito de procesamiento (por ejemplo, el circuito de procesamiento 3810 de la FIG. 38), que se puede ubicar en un UT o algún otro aparato adecuado. En algunas implementaciones, el proceso 3900 representa operaciones realizadas por el procesador de control 420 de la FIG. 4. Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 3900 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones de comunicación.
- [0361] En el bloque 3902, un aparato (por ejemplo, un UT) recibe información de traspaso por satélite que especifica un tiempo de traspaso para una célula particular de un satélite particular. En algunos aspectos, las operaciones del bloque 3902 pueden corresponder a las operaciones del bloque 2104 de la FIG. 21.
- [0362] La información de traspaso por satélite puede tomar varias formas como se enseña en el presente documento. En algunos aspectos, la información de traspaso por satélite puede incluir una tabla que incluye un tiempo de activación de entrega. En algunos aspectos, la información de traspaso por satélite puede incluir al menos un tiempo de sintonización. En algunos aspectos, la información de traspaso puede definirse basándose, en parte, en un error al apuntar del satélite. En algunos aspectos, la información de traspaso puede ser para al menos un traspaso futuro (por ejemplo, el próximo traspaso, un traspaso posterior o algún otro traspaso que ocurrirá en el futuro). En algunos aspectos, la información de traspaso puede ser para el próximo traspaso de haz y para al menos un futuro traspaso por satélite (por ejemplo, para los siguientes dos traspasos que ocurrirán, el próximo traspaso y algún otro traspaso posterior, etc.).
- [0363] En algunas implementaciones, el circuito/módulo para recibir 3820 de la FIG. 38 realiza las operaciones del bloque 3902. En algunas implementaciones, el código para recibir 3832 de la FIG. 38 se ejecuta para realizar las operaciones del bloque 3902.
 - **[0364]** En el bloque 3904, el aparato realiza el traspaso a la célula particular del satélite particular basándose en la información de traspaso por satélite. En algunos aspectos, las operaciones del bloque 3904 pueden corresponder a las operaciones del bloque 2106 de la FIG. 21.
 - [0365] En algunos aspectos, el traspaso puede implicar un cambio de al menos uno de: una red de acceso por satélite (SAN), una antena de portal de red de satélites (SNP), un haz de satélite o una frecuencia de enlace de servicio directo (FSL).
 - [0366] En algunas implementaciones, el circuito/módulo para realizar un traspaso 3822 de la FIG. 38 realiza las operaciones del bloque 3904. En algunas implementaciones, el código para realizar un traspaso 3834 de la FIG. 38 se ejecuta para realizar las operaciones del bloque 3904.
- 45 **[0367]** En algunos aspectos, el proceso 3900 puede incluir además señales de medición de al menos un satélite, y enviar un mensaje de medición basándose en las señales medidas, en el que la información de traspaso por satélite se recibe como resultado del mensaje de medición que se envía. El mensaje de medición puede incluir al menos uno de: datos de medición basados en las señales medidas, una petición para adelantar el tiempo de traspaso o una petición para retrasar el tiempo de traspaso. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2604 y 2608 de la FIG. 26.
 - [0368] En algunos aspectos, el proceso 3900 puede incluir además recibir información indicativa de un espacio de medición para medir señales de satélite, en el que la medición de las señales del al menos un satélite se realiza durante el espacio de medición. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 3202 y 3204 de la FIG. 32.
 - [0369] En algunos aspectos, el proceso 3900 puede incluir además determinar si enviar el mensaje de medición basándose en al menos uno de: si las señales de un satélite en servicio actual son inadecuadas o si las señales de un satélite objetivo son inadecuadas. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2606 de la FIG. 26.
 - [0370] En algunos aspectos, el proceso 3900 puede incluir además enviar un mensaje que incluye información de capacidad del terminal de usuario, en el que la información de traspaso por satélite recibida se basa en la información de capacidad del terminal de usuario. La información de capacidad del terminal de usuario puede indicar al menos uno de: si un terminal de usuario puede detectar múltiples haces, si un terminal de usuario puede detectar múltiples satélites, un tiempo de sintonización entre haces de terminal de usuario o un tiempo de

sintonización entre satélites de terminal de usuario. El envío del mensaje, incluida la información de capacidad del terminal de usuario, puede activarse como resultado de una conexión inicial a un satélite. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2206 de la FIG. 21.

- [0371] En algunos aspectos, el proceso 3900 puede incluir además enviar un mensaje que incluye información de ubicación del terminal de usuario, en el que la información de traspaso por satélite recibida se basa en la información de ubicación del terminal de usuario. La información de ubicación del terminal de usuario puede incluir al menos uno de: una ubicación actual del terminal de usuario o un vector de movimiento del terminal de usuario. El envío del mensaje que incluye información de ubicación del terminal de usuario puede activarse como resultado de al menos uno de: una conexión inicial a un satélite, si un terminal de usuario está más allá de un límite geográfico o si se ha excedido un límite de error. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2406 de la FIG. 24.
- [0372] En algunos aspectos, el proceso 3900 puede incluir además recibir una firma de preámbulo dedicada y realizar un procedimiento de acceso aleatorio no basado en contienda usando la firma de preámbulo dedicada. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 3402 y 3404 de la FIG. 34.
- [0373] En algunos aspectos, el proceso 3900 puede incluir además determinar si enviar el mensaje de medición basándose en al menos uno de: si las señales de un satélite en servicio actual son inadecuadas o si las señales de un satélite objetivo son inadecuadas. En algunos aspectos, estas operaciones pueden corresponder a las operaciones del bloque 2406 de la FIG. 24.
- [0374] La FIG. 40 ilustra un proceso 4000 para comunicación de acuerdo con algunos aspectos de la divulgación.
 El proceso 4000 puede tener lugar dentro de un circuito de procesamiento (por ejemplo, el circuito de procesamiento 3810 de la FIG. 38), que se puede ubicar en un UT o algún otro aparato adecuado. En algunas implementaciones, el proceso 4000 representa operaciones realizadas por el procesador de control 420 de la FIG.
 4. Por supuesto, en diversos aspectos dentro del alcance de la divulgación, el proceso 4000 puede ser implementado por cualquier aparato adecuado que pueda soportar operaciones de comunicación.

30

- [0375] En el bloque 4002, un aparato (por ejemplo, un UT) recibe información de transición de célula y satélite que especifica un tiempo para comenzar y un tiempo para terminar la comunicación con una célula particular de un satélite particular. En algunos aspectos, las operaciones del bloque 4002 pueden corresponder a las operaciones del bloque 2104 de la FIG. 21.
- [0376] En algunas implementaciones, el circuito/módulo para recibir 3820 de la FIG. 38 realiza las operaciones del bloque 4002. En algunas implementaciones, el código para recibir 3832 de la FIG. 38 se ejecuta para realizar las operaciones del bloque 4002.
- 40 **[0377]** En el bloque 4004, el aparato realiza el traspaso a la célula particular del satélite particular basándose en la información de transición de célula y satélite. En algunos aspectos, las operaciones del bloque 4004 pueden corresponder a las operaciones del bloque 2106 de la FIG. 21.
- [0378] En algunas implementaciones, el circuito/módulo para realizar un traspaso 3822 de la FIG. 38 realiza las operaciones del bloque 4004. En algunas implementaciones, el código para realizar un traspaso 3834 de la FIG. 38 se ejecuta para realizar las operaciones del bloque 4004.
- [0379] En algunos aspectos, el proceso 4000 incluye además: medir señales de al menos un satélite; y enviar un mensaje de medición basado en las señales medidas, en el que la información de transición de célula y satélite se recibe como resultado del envío del mensaje de medición. En algunos aspectos, el mensaje de medición incluye al menos uno de: datos de medición, una petición para adelantar el tiempo de traspaso o una petición para retrasar el tiempo de traspaso. En algunos aspectos, el proceso 4000 incluye además determinar si enviar el mensaje de medición basándose en al menos uno de: si las señales de un satélite en servicio actual son inadecuadas o si las señales de un satélite objetivo son inadecuadas. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2604 2608 de la FIG. 26. En algunas implementaciones, el circuito/módulo para medir las señales 3824 y/o el circuito/módulo para determinar si enviar 3828 de la FIG. 38 realiza estas operaciones. En algunas implementaciones, el código para medir las señales 3836 y/o el código para determinar si enviar 3840 de la FIG. 38 se ejecuta para realizar estas operaciones.
- [0380] En algunos aspectos, el proceso 4000 incluye además enviar un mensaje que incluye información de capacidad del terminal de usuario, en el que la información de transición de célula y satélite se basa en la información de capacidad del terminal de usuario. En algunos aspectos, la información de capacidad del terminal de usuario indica al menos uno de: si un terminal de usuario puede detectar múltiples células, si un terminal de usuario puede detectar múltiples satélites, un tiempo de sintonización entre células de terminal de usuario o un tiempo de sintonización entre satélites de terminal de usuario. En algunos aspectos, el envío del mensaje, incluida la información de capacidad del terminal de usuario, se activa como resultado de una conexión inicial a un satélite.

En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2202 - 2206 de la FIG. 22. En algunas implementaciones, el circuito/módulo para enviar 3826 de la FIG. 38 realiza estas operaciones. En algunas implementaciones, el código para enviar 3838 de la FIG. 38 se ejecuta para realizar estas operaciones.

[0381] En algunos aspectos, el proceso 4000 incluye además enviar un mensaje que incluye información de ubicación del terminal de usuario, en el que la información de transición de célula y satélite se basa en la información de ubicación del terminal de usuario. En algunos aspectos, la información de ubicación del terminal de usuario. En algunos aspectos, el envío del mensaje, incluida la información de ubicación del terminal de usuario, se activa como resultado de al menos uno de: una conexión inicial a un satélite, si un terminal de usuario está más allá de un límite geográfico, o si se ha excedido un límite de error. En algunos aspectos, estas operaciones pueden corresponder a las operaciones de los bloques 2402 - 2406 de la FIG. 24. En algunas implementaciones, el circuito/módulo para enviar 3826 de la FIG. 38 realiza estas operaciones. En algunas implementaciones, el código para enviar 3838 de la FIG. 38 se ejecuta para realizar estas operaciones.

Aspectos Adicionales

15

20

25

30

35

60

65

[0382] Muchos aspectos se describen en términos de secuencias de acciones que se van a realizar, por ejemplo, mediante elementos de un dispositivo informático. Se reconocerá que diversas acciones descritas en el presente documento se pueden realizar por circuitos específicos, por ejemplo, unidades centrales de procesamiento (CPU), unidades de procesamiento gráfico (GPU), procesadores de señales digitales (DSP), circuitos integrados específicos de la aplicación (ASIC), matrices de puertas programables *in situ* (FPGA), u otros tipos diversos de procesadores o circuitos de propósito general o de propósito especial, por instrucciones de programa que se ejecutan por uno o más procesadores o por una combinación de ambas cosas. Adicionalmente, se puede considerar que esta secuencia de acciones descritas en el presente documento se incorporan por completo dentro de cualquier forma de medio de almacenamiento legible por ordenador que tenga almacenado en el mismo un conjunto correspondiente de instrucciones informáticas que, al ejecutarse, harían que un procesador asociado realizara la funcionalidad descrita en el presente documento. Por tanto, los diversos aspectos de la divulgación se pueden realizar de varias formas diferentes, todas ellas contempladas dentro del alcance de la materia objeto reivindicada. Además, para cada uno de los aspectos descritos en el presente documento, la forma correspondiente de cualquiera de dichos aspectos se puede describir en el presente documento como, por ejemplo, "lógica configurada para" realizar la acción descrita.

[0383] Los expertos en la técnica apreciarán que la información y las señales pueden representarse usando cualquiera de una variedad de tecnologías y técnicas diferentes. Por ejemplo, los datos, instrucciones, comandos, información, señales, bits, símbolos y chips que pueden haberse referenciado a lo largo de la descripción anterior se pueden representar mediante voltajes, corrientes, ondas electromagnéticas, campos o partículas magnéticos, campos o partículas ópticos o cualquier combinación de los mismos.

40 [0384] Además, los expertos en la técnica apreciarán que los diversos bloques lógicos, módulos, circuitos y pasos de algoritmo ilustrativos descritos en relación con los aspectos divulgados en el presente documento se pueden implementar como hardware electrónico, software informático o combinaciones de ambos. Para ilustrar claramente esta intercambiabilidad de hardware y software, anteriormente se han descrito diversos componentes, bloques, módulos, circuitos y pasos ilustrativos, en general, en lo que respecta a su funcionalidad. Que dicha funcionalidad se implemente como hardware o software depende de las restricciones particulares de aplicación y de diseño impuestas al sistema global. Los expertos en la técnica pueden implementar la funcionalidad descrita de maneras distintas para cada aplicación particular, pero no se debería interpretar que dichas decisiones de implementación provoquen una desviación del alcance de la presente divulgación.

[0385] Los procedimientos, secuencias o algoritmos descritos en relación con los aspectos divulgados en el presente documento se pueden realizar directamente en hardware, en un módulo de software ejecutado por un procesador o en una combinación de ambos. Un módulo de programa informático puede residir en una memoria RAM, en una memoria flash, en una memoria ROM, en una memoria EPROM, en una memoria EEPROM, en registros, en un disco duro, en un disco extraíble, en un CD-ROM o en cualquier otro medio de almacenamiento conocido en la técnica. Un ejemplo de medio de almacenamiento está acoplado al procesador de modo que el procesador puede leer información de, y escribir información en, el medio de almacenamiento. De forma alternativa, el medio de almacenamiento puede estar integrado en el procesador.

[0386] En consecuencia, un aspecto de la divulgación puede incluir un medio legible por ordenador que incorpora un procedimiento para la sincronización de tiempo o frecuencia en sistemas de comunicación por satélite no geosíncronos. En consecuencia, la divulgación no se limita a los ejemplos ilustrados, y cualquier medio para realizar las funciones descritas en el presente documento está incluido en los aspectos de la divulgación.

[0387] La expresión "a modo de ejemplo" se usa en el presente documento en el sentido de "que sirve de ejemplo, caso o ilustración". Cualquier aspecto descrito en el presente documento como "a modo de ejemplo" no ha de interpretarse necesariamente como preferente o ventajoso con respecto a otros aspectos. Del mismo modo, el

término "aspectos" no requiere que todos los aspectos incluyan el rasgo característico, ventaja o modo de funcionamiento analizados.

[0388] La terminología usada en el presente documento solo es para el propósito de describir aspectos particulares y no pretende limitar los aspectos. Como se usa en el presente documento, las formas en singular "un", "una", "el" y "la" pretenden incluir también las formas en plural, a menos que el contexto lo indique claramente de otro modo. Se entenderá además que los términos "comprende", "comprendiendo", "incluye" o "incluyendo", cuando se usan en el presente documento, especifican la presencia de rasgos característicos, enteros, pasos, operaciones, elementos o componentes citados, pero no excluyen la presencia ni adición de uno o más de otros rasgos característicos, enteros, pasos, operaciones, elementos, componentes o grupos de los mismos. Además, se entiende que la palabra "o" tiene el mismo significado que el operador lógico "OR", es decir, engloba las posibilidades de "cualquiera de los dos" y "ambos" y no se limita a una "o exclusiva" ("XOR"), a menos que se indique expresamente de otro modo. También se entiende que el símbolo "/" entre dos palabras contiguas tiene el mismo significado que "o" a menos que se indique expresamente de otro modo. Además, expresiones tales como "conectado a", "acoplado a" o "en comunicación con" no se limitan a conexiones directas a menos que se indique expresamente de otro modo.

[0389] Aunque la divulgación anterior muestra aspectos ilustrativos, cabe destacar que se pueden realizar diversos cambios y modificaciones en el presente documento sin apartarse del alcance de las reivindicaciones adjuntas. No es necesario que las funciones, pasos o acciones de las reivindicaciones de procedimiento de acuerdo con los aspectos descritos en el presente documento se realicen en ningún orden particular, a menos que se indique expresamente de otro modo. Además, aunque los elementos se pueden describir o reivindicar en singular, también se contempla el plural a menos que se indique explícitamente la limitación al singular.

25

20

5

10

REIVINDICACIONES

1. Un procedimiento (2000) de comunicación en un dispositivo de pasarela, con el procedimiento que comprende:

5

recibir información de capacidad (2002) de un terminal de usuario, indicando dicha información de capacidad al menos uno de: un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite:

15

10

generar información de traspaso por satélite (2004) que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la generación de información de traspaso por satélite se basa en la información de capacidad del terminal de usuario; y

enviar (2008) la información de traspaso por satélite al terminal de usuario.

20 2

- 2. El procedimiento según la reivindicación 1, en el que la información de capacidad indica además al menos uno de: si el terminal de usuario puede detectar múltiples células o si el terminal de usuario puede detectar múltiples satélites.
- 25 El procedimiento según la reivindicación 1, en el que la información de traspaso por satélite permite que el terminal de usuario traspase, y el traspaso implica al menos uno de: un cambio de una red de acceso por satélite, SAN o un cambio a una antena de dispositivo de pasarela diferente.
- El procedimiento según la reivindicación 1, en el que la información de traspaso por satélite permite que el terminal de usuario realice el traspaso, y el traspaso implica un cambio de al menos uno de: una frecuencia de un enlace de servicio directo, FSL, o una célula de satélite.
 - 5. El procedimiento según la reivindicación 1, que comprende además:
 - recibir un mensaje de medición desde el terminal de usuario; y

35

determinar, basándose en el mensaje de medición, si se modificará la información de traspaso por satélite.

- 6. El procedimiento según la reivindicación 5, en el que la modificación de la información de traspaso por satélite comprende avanzar el tiempo de traspaso o retrasar el tiempo de traspaso.
 - 7. El procedimiento según la reivindicación 5, que comprende además:
 - determinar un espacio de medición para medir señales de satélite; y

45

enviar información indicativa del espacio de medición al terminal de usuario, en el que el mensaje de medición comprende una indicación de una medición de señales de al menos un satélite realizada durante el espacio de medición.

50 **8.** El procedimiento según la reivindicación 1, en el que:

la información de capacidad indica además si el terminal de usuario es capaz de realizar doble detección con respecto a detectar múltiples haces, o detectar múltiples células, o detectar múltiples satélites; y

una selección de un procedimiento de traspaso comprende habilitar o deshabilitar la supervisión de un mensaje de medición desde el terminal de usuario basándose en si el terminal de usuario es capaz de realizar doble detección.

9. El procedimiento según la reivindicación 1, que comprende además:

60

55

determinar el tiempo de un traspaso del terminal de usuario; y

transferir al menos una cola de usuarios antes del traspaso.

65 **10.** El procedimiento según la reivindicación 1, en el que la información de traspaso por satélite comprende al menos un tiempo de sintonización.

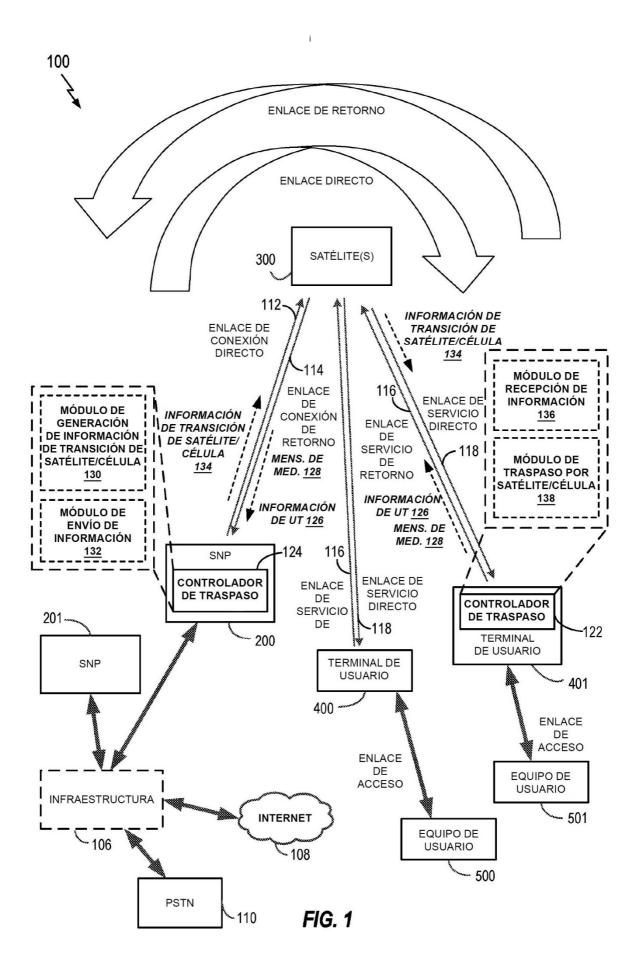
	11.	Un aparato (3500), en un dispositivo de pasarela, para comunicación, con el aparato que comprende:
5		medios (3516) para recibir información de capacidad desde un terminal de usuario, indicando dicha información de capacidad al menos uno de: un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite;
10		
15		medios (3520) para generar información de traspaso por satélite que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la generación de la información de traspaso por satélite se basa en la información de capacidad del terminal de usuario; y
13		medios (3514) para enviar la información de traspaso por satélite al terminal de usuario.
20	12.	Un medio legible por ordenador no transitorio (3504), en un dispositivo de pasarela, que almacena código ejecutable por ordenador, incluido el código para:
20		recibir información de capacidad (3546) de un terminal de usuario, indicando dicha información de capacidad al menos uno de: tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de
25		sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite;
30		generar (3540) información de traspaso por satélite que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la generación de la información de traspaso por satélite se basa en la información de capacidad del terminal de usuario; y
		enviar (3542) la información de traspaso por satélite al terminal de usuario.
35	13.	Un procedimiento (2200) de comunicación en un terminal de usuario, con el procedimiento que comprende:
40		enviar (2206) un mensaje que comprende información de capacidad del terminal de usuario, indicando dicha información de capacidad al menos uno de: un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite;
45		recibir (2104) información de traspaso por satélite que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la información de traspaso por satélite recibida se basa en la información de capacidad del terminal de usuario; y
50		realizar (2106) un traspaso a la célula particular del satélite particular basándose en la información de traspaso por satélite.
	14.	Un aparato (3800), en un terminal de usuario, para comunicación, comprendiendo el aparato:
55 60		medios (3826) para enviar un mensaje que comprende información de capacidad del terminal de usuario, indicando dicha información de capacidad al menos uno de: un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite;
		medios (3820) para recibir información de traspaso por satélite que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la información de traspaso por satélite recibida se basa en la información de capacidad del terminal de usuario; y

medios (3822) para realizar un traspaso a la célula particular del satélite particular basándose en la

información de traspaso por satélite.

15. Un medio legible por ordenador no transitorio (3804), en un terminal de usuario, que almacena el código ejecutable por ordenador, incluido el código para:

5


enviar (3838) un mensaje que comprende información de capacidad del terminal de usuario, indicando dicha información de capacidad al menos uno de: un tiempo de sintonización entre células para el terminal de usuario o un tiempo de sintonización entre satélites para el terminal de usuario, en el que dicho tiempo de sintonización entre células indica la duración para que el terminal de usuario sintonice desde un haz/célula a otro haz/célula de un satélite actual y en el que dicho tiempo de sintonización entre satélites indica la duración para que el terminal de usuario sintonice desde un haz/célula de un satélite actual a un haz/célula de otro satélite;

10

recibir (3832) información de traspaso por satélite que especifica un tiempo de traspaso del terminal de usuario para una célula particular de un satélite particular, en el que la información de traspaso por satélite recibida se basa en la información de capacidad del terminal de usuario; y

15

realizar (3842) un traspaso a la célula particular del satélite particular basándose en la información de traspaso por satélite.

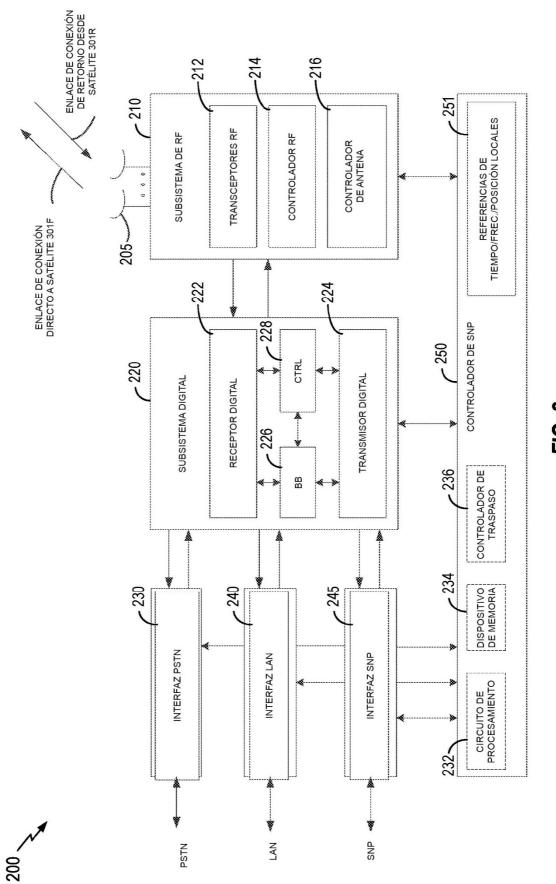
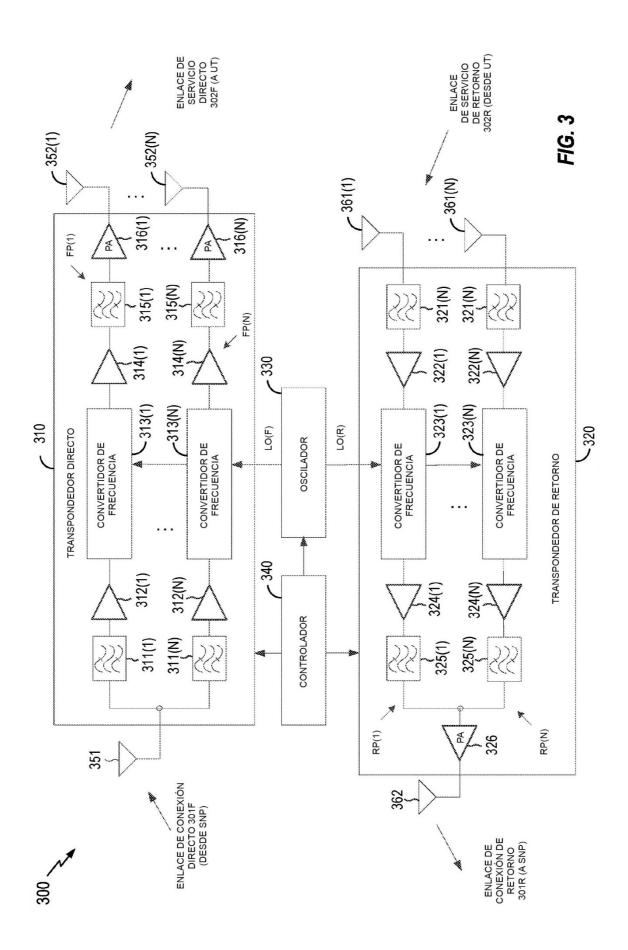



FIG. 2

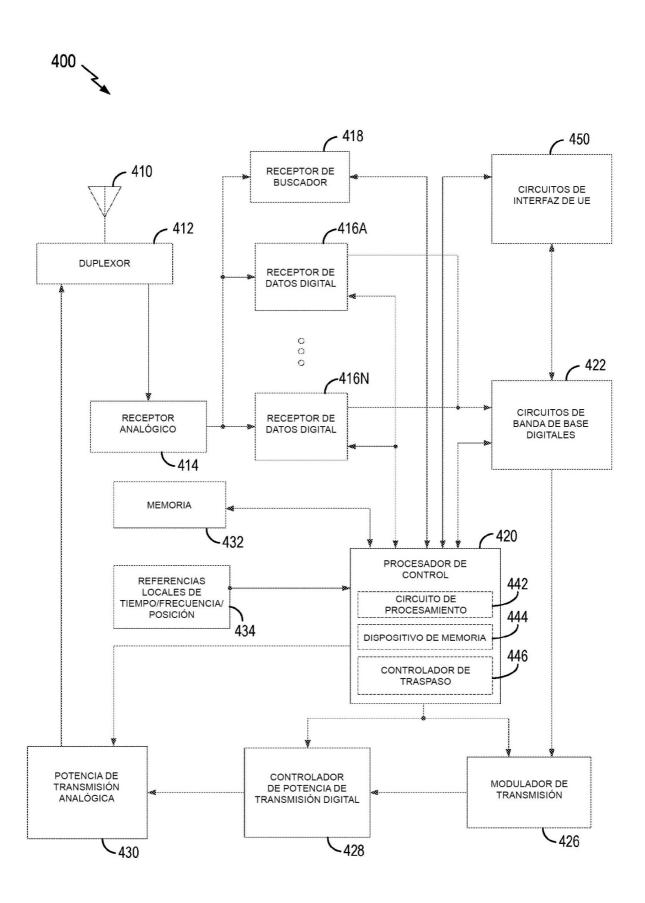


FIG. 4

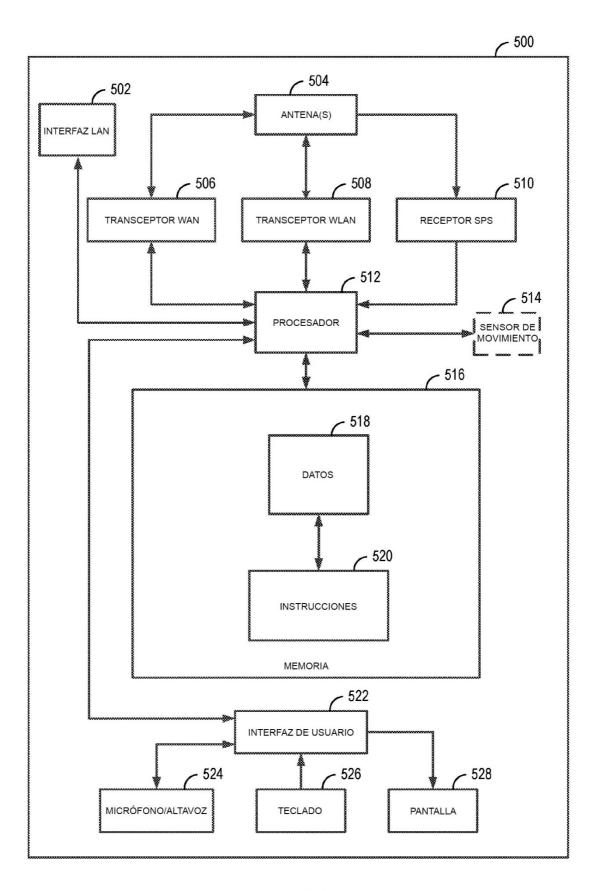
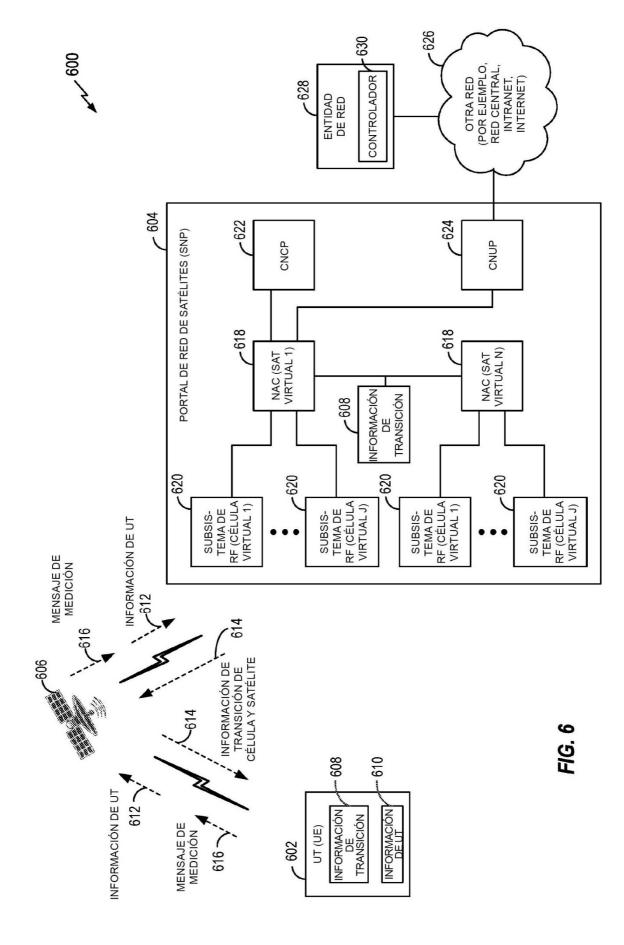



FIG. 5

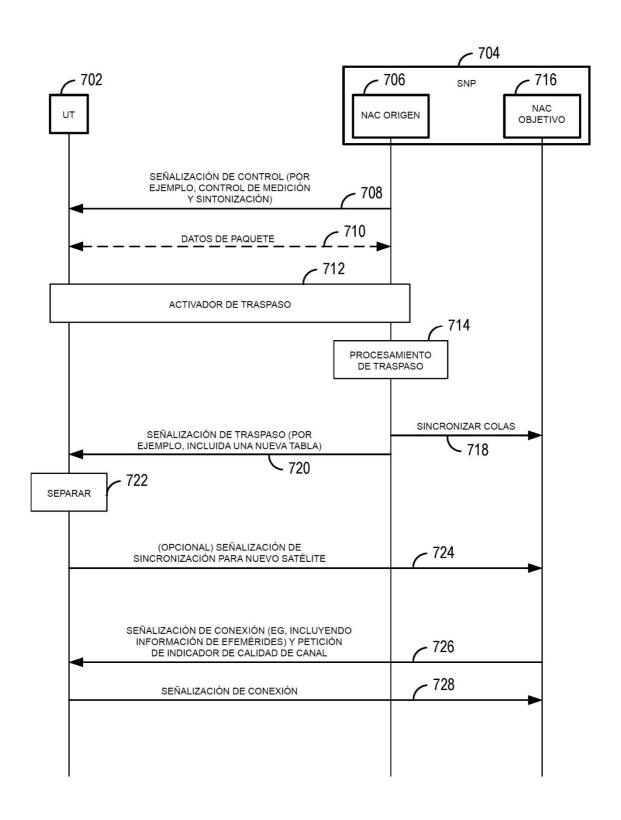
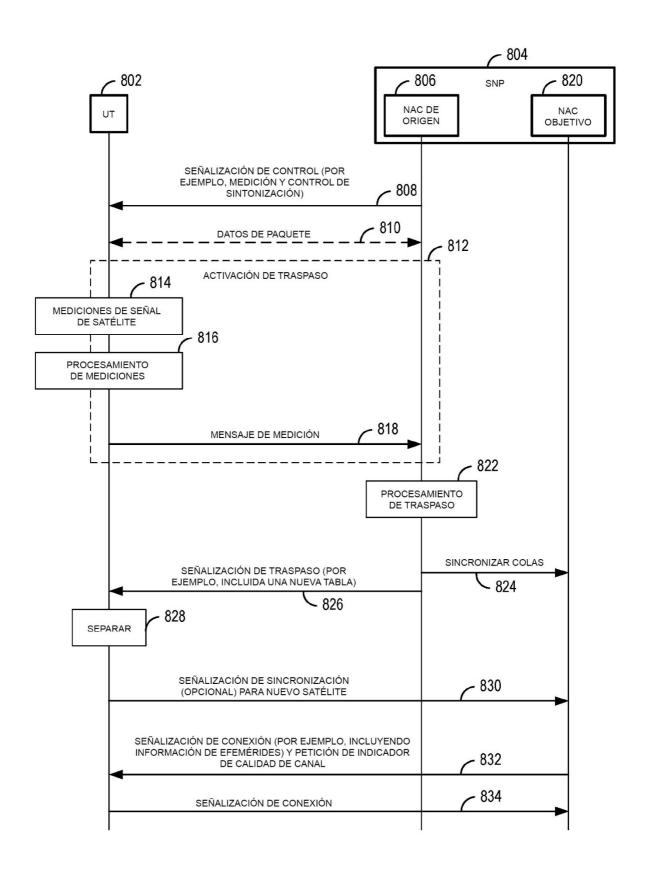
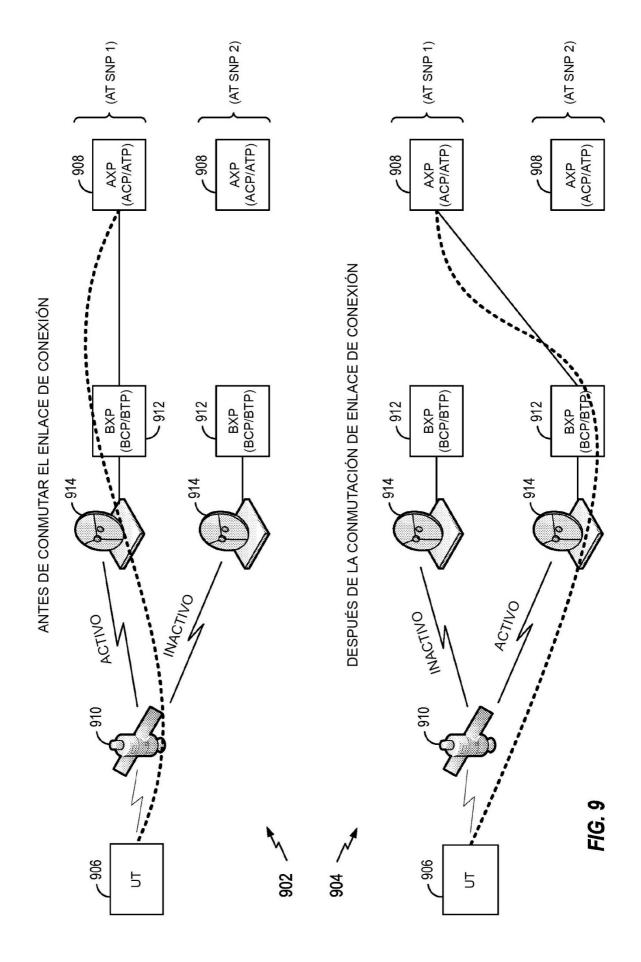
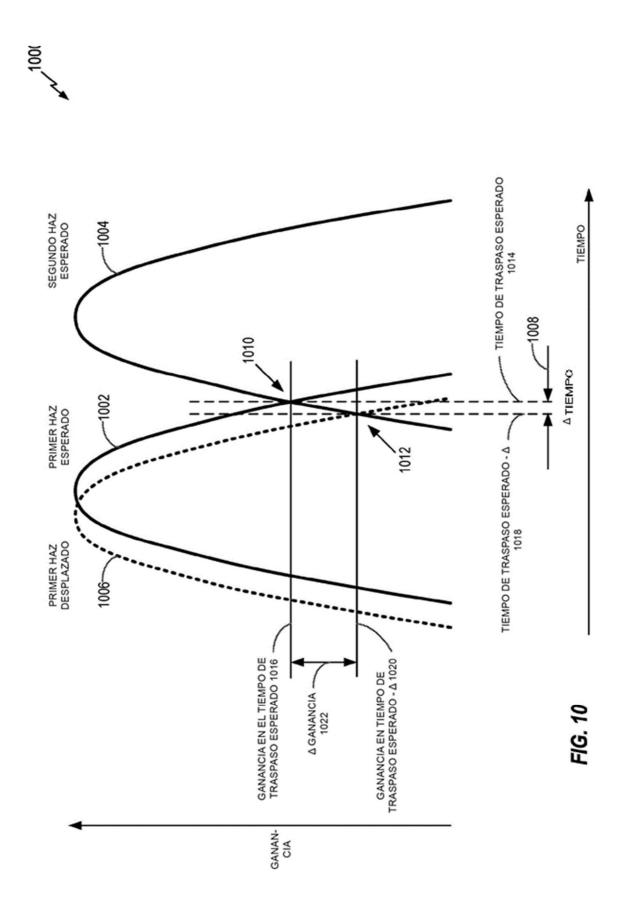
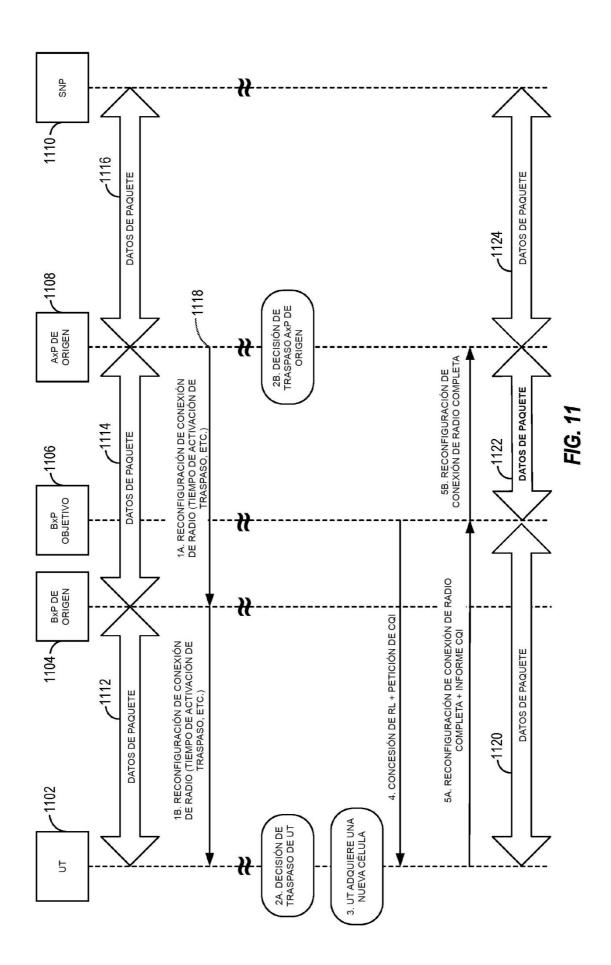
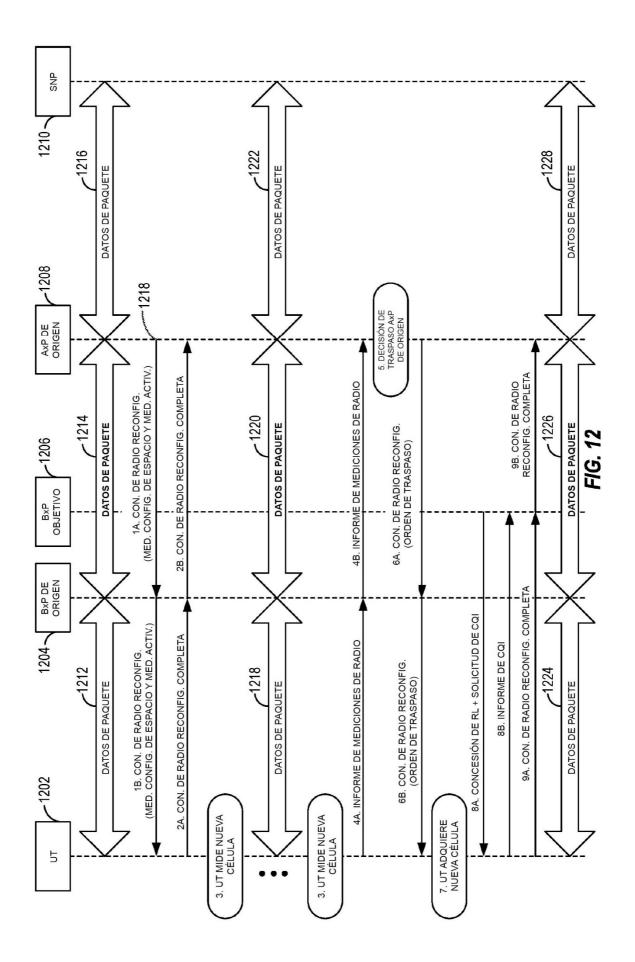
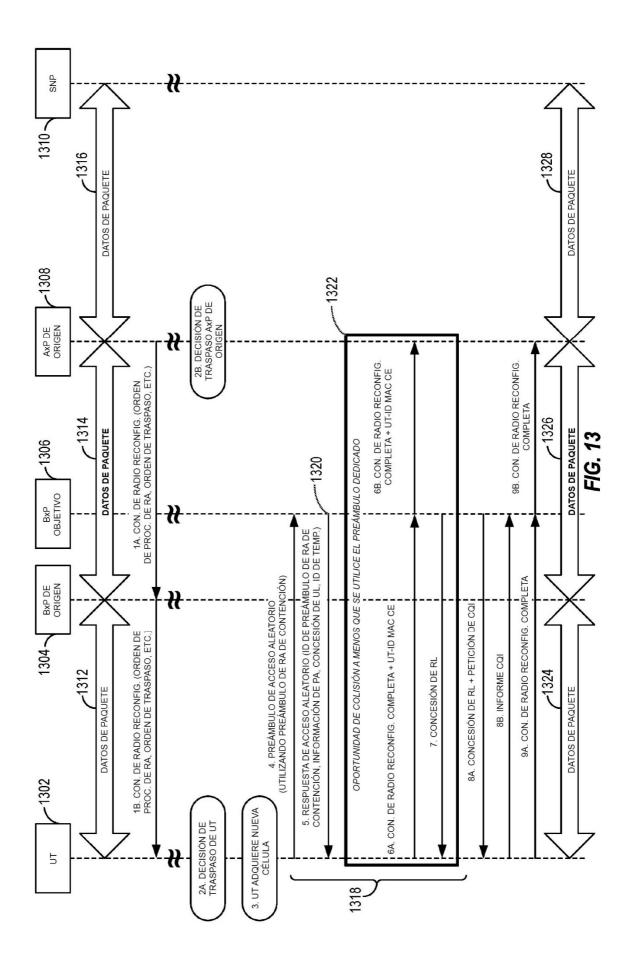
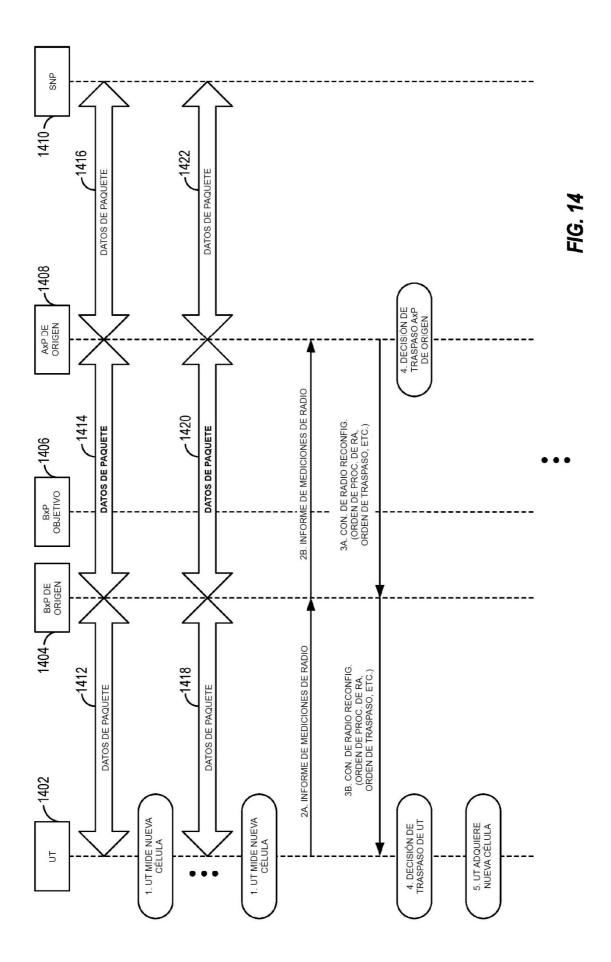
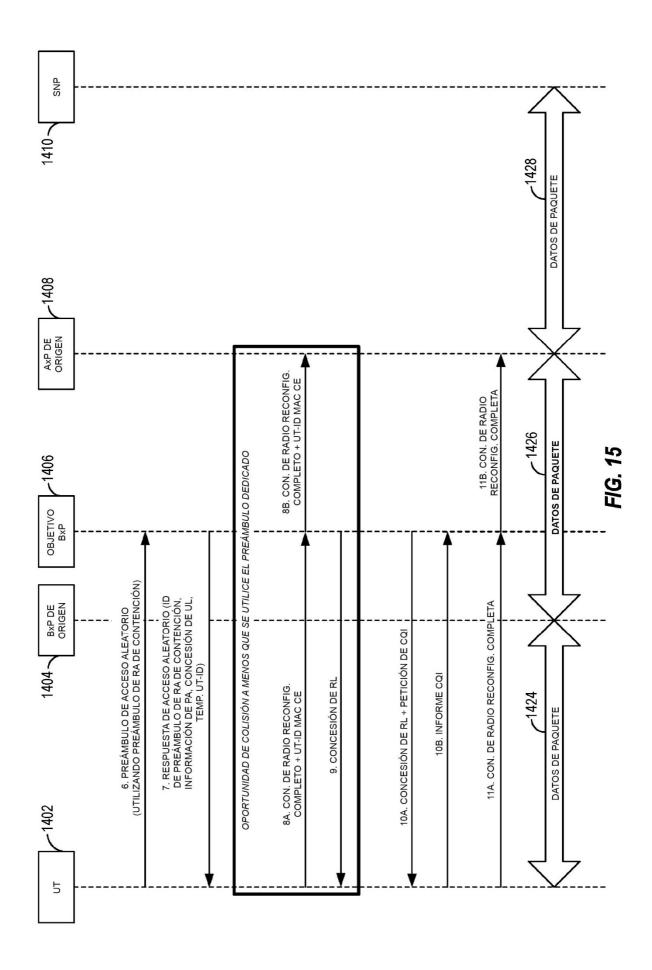


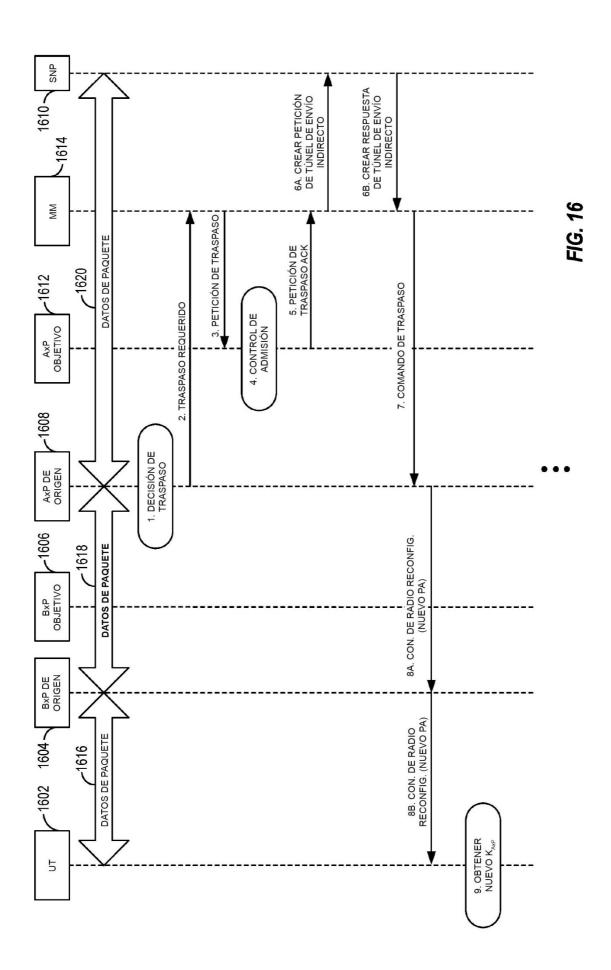
FIG. 7

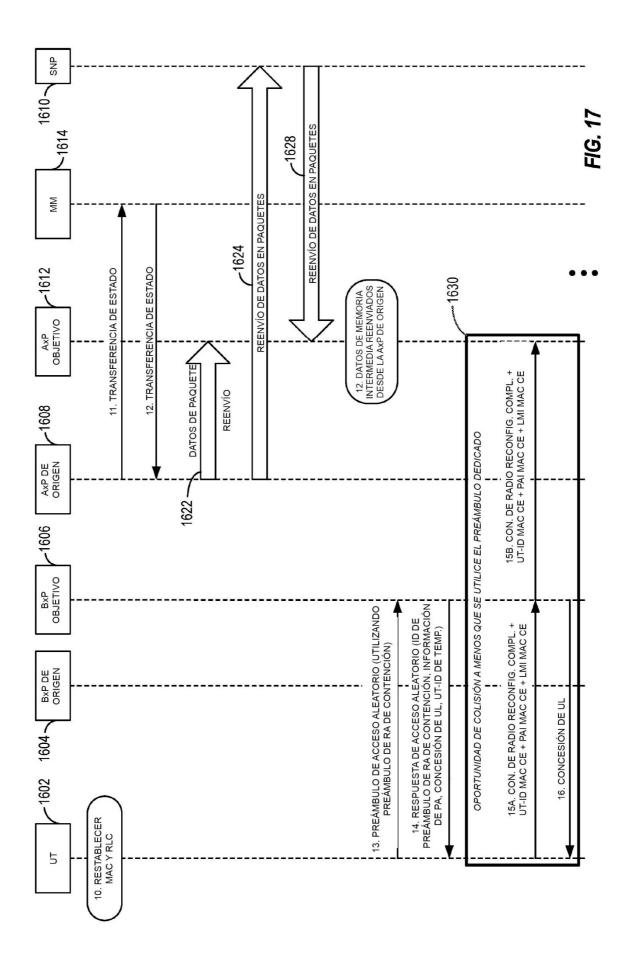






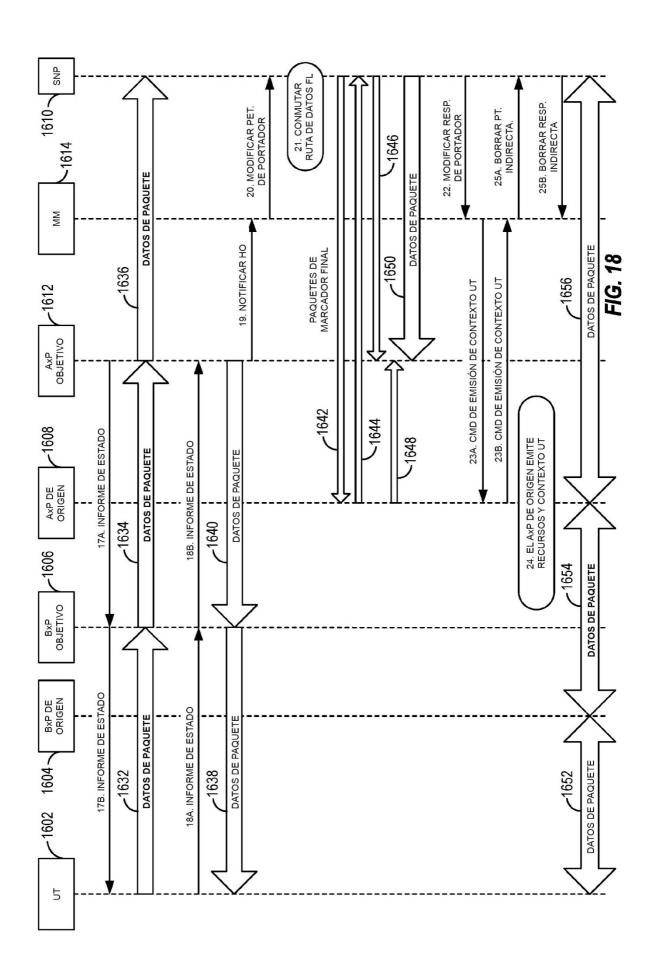

FIG. 8

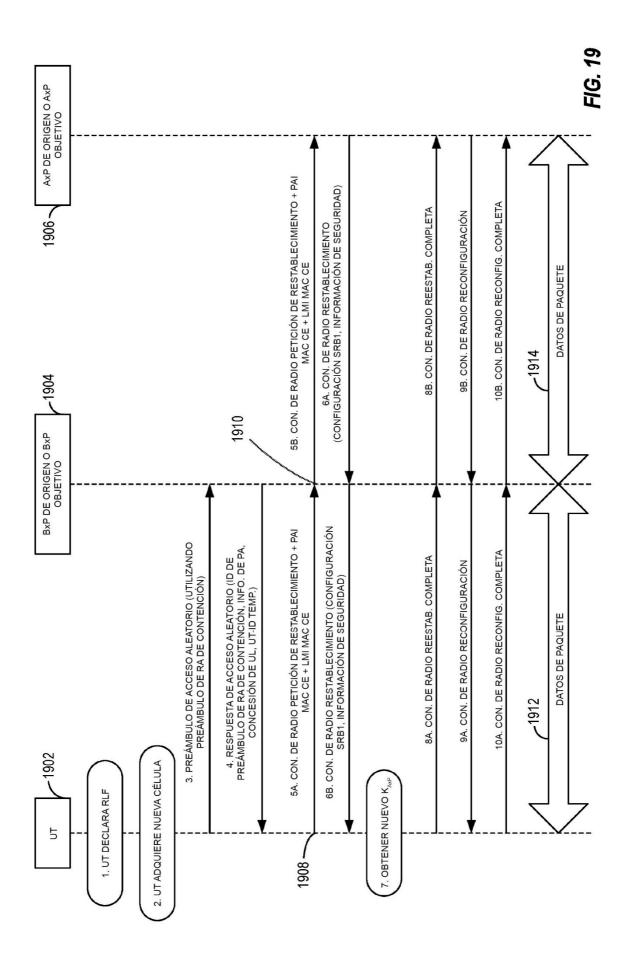












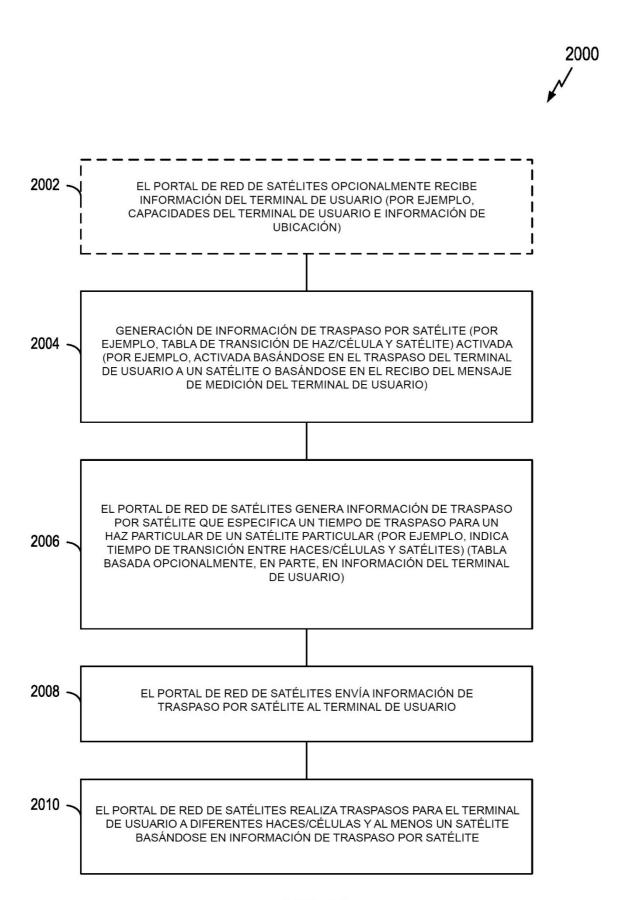


FIG. 20

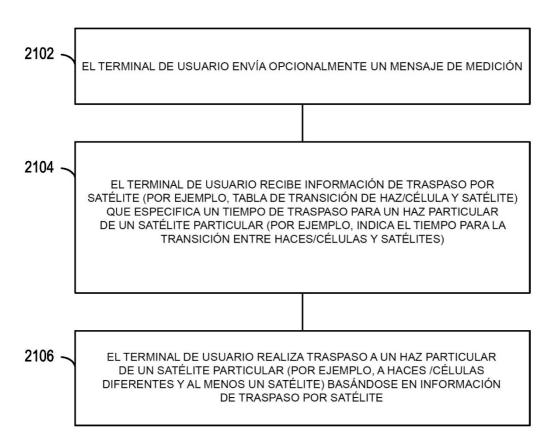


FIG. 21

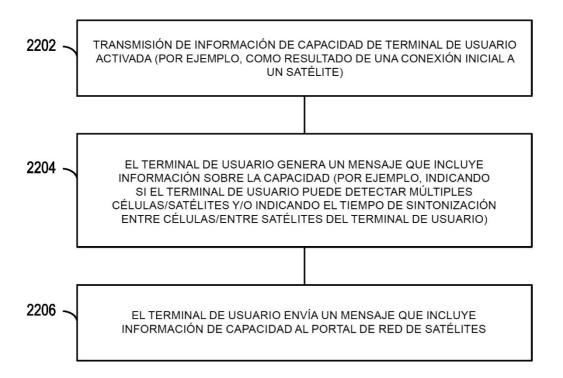


FIG. 22

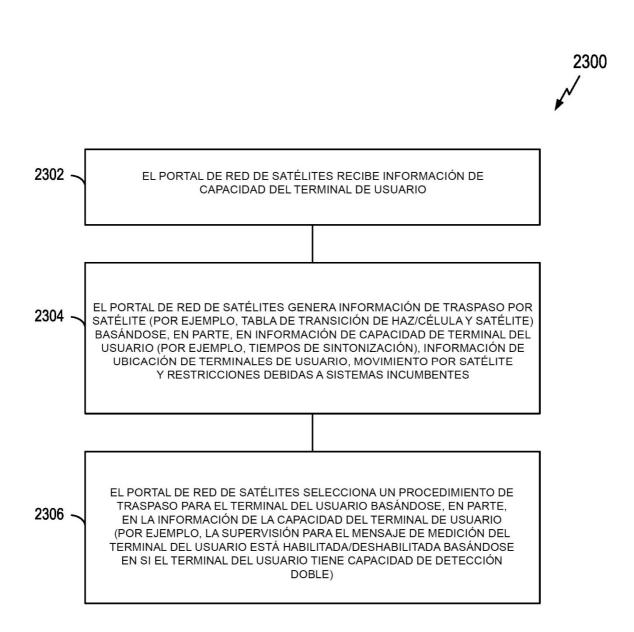


FIG. 23

2400

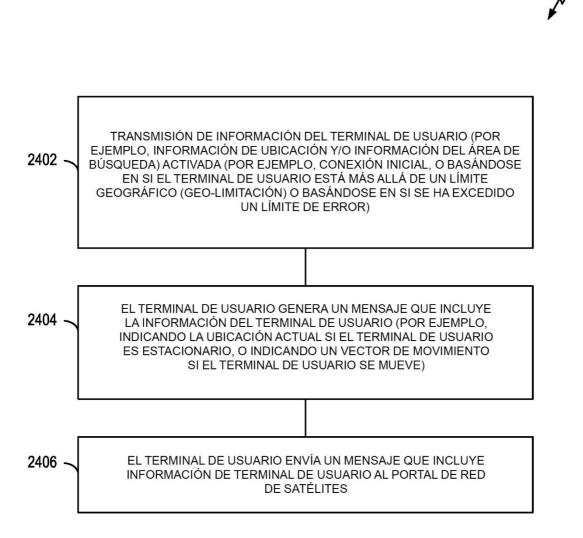


FIG. 24

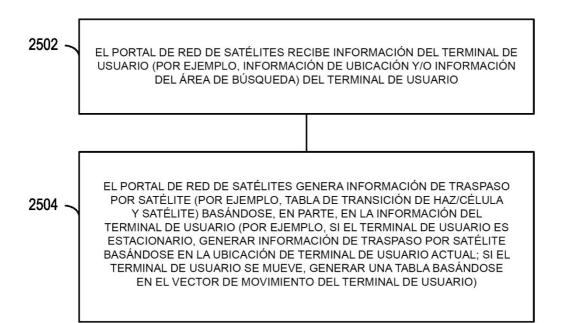


FIG. 25

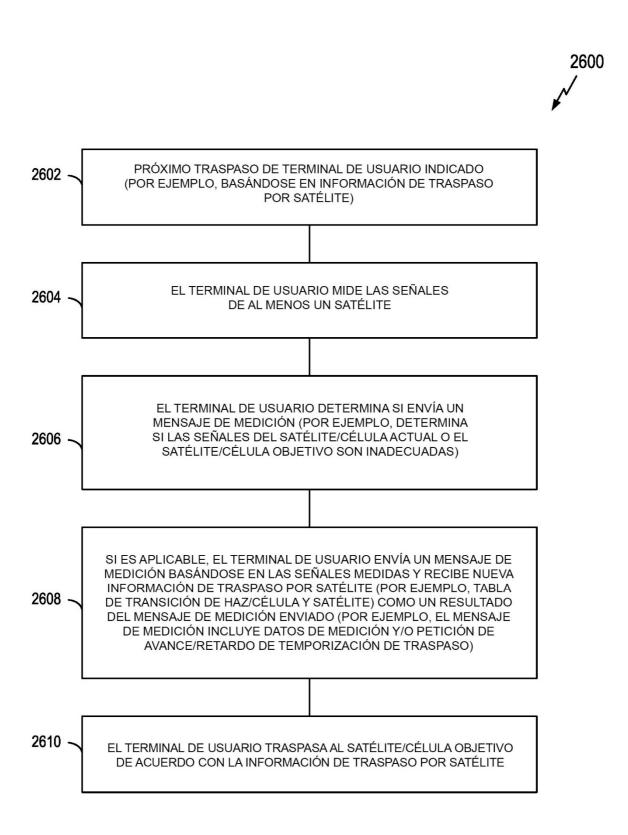


FIG. 26

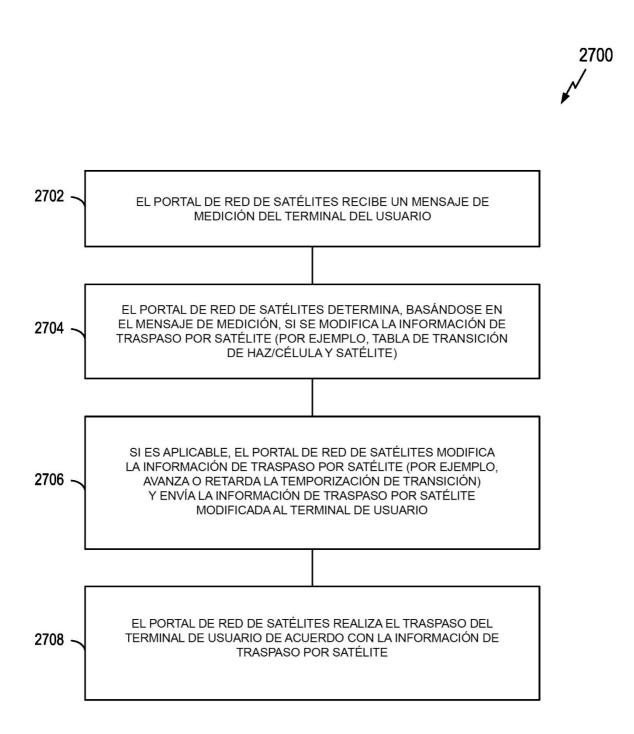


FIG. 27

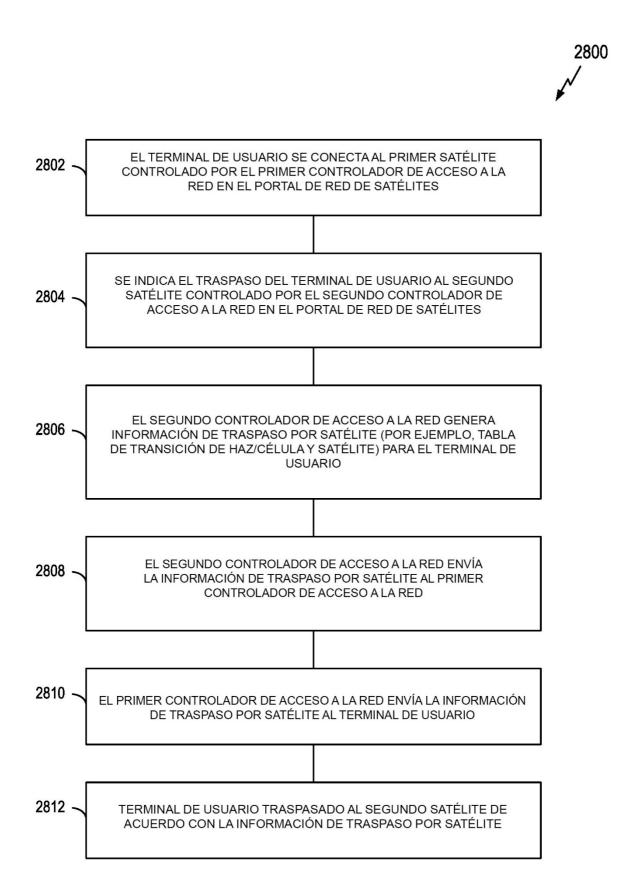


FIG. 28

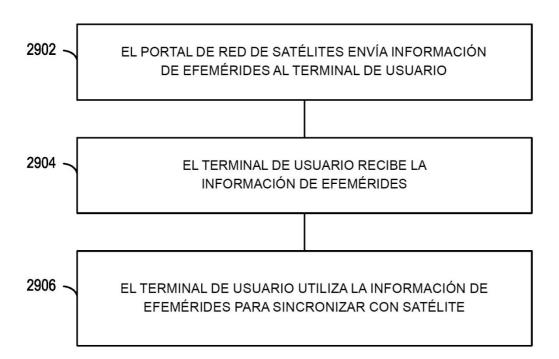


FIG. 29

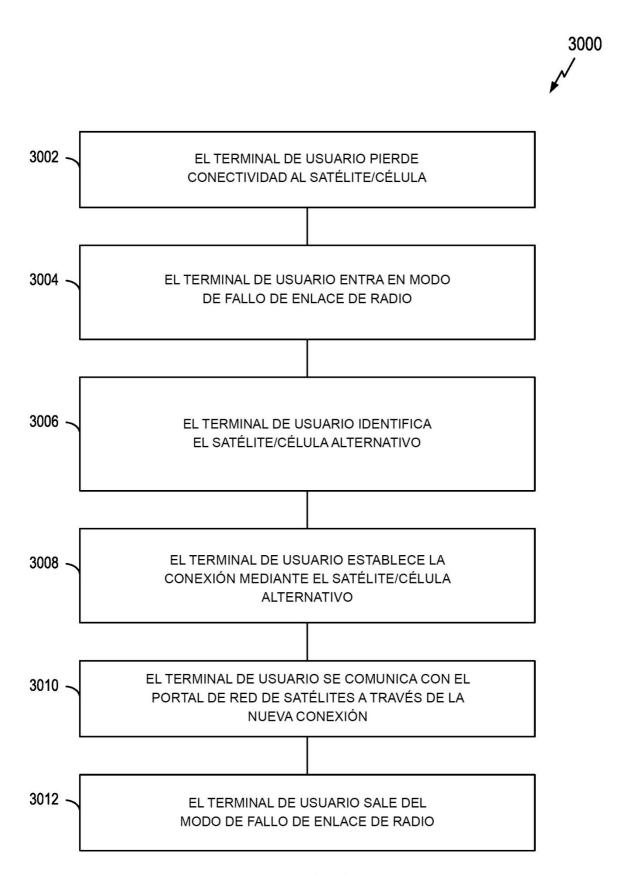


FIG. 30

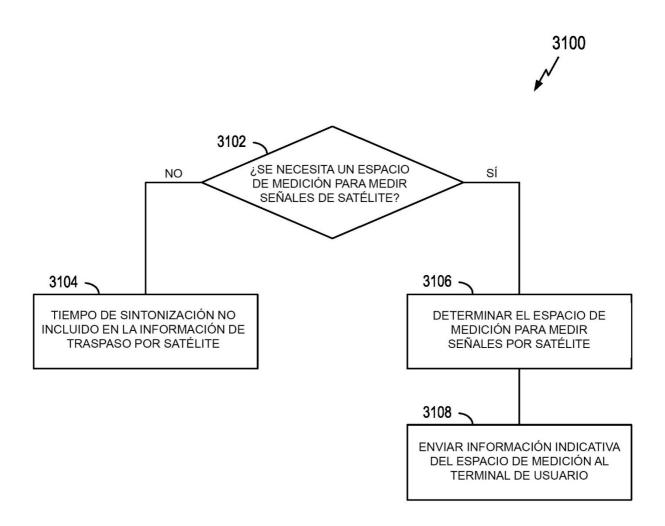


FIG. 31

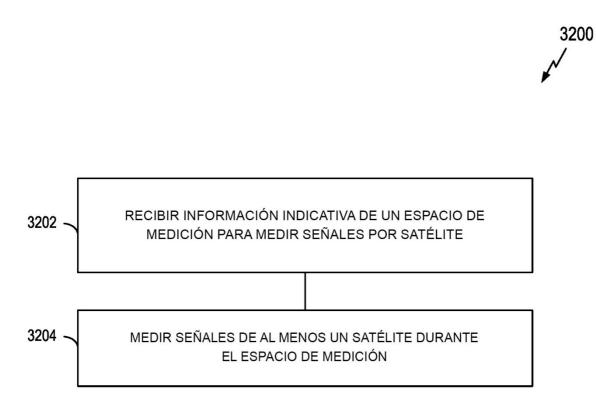


FIG. 32

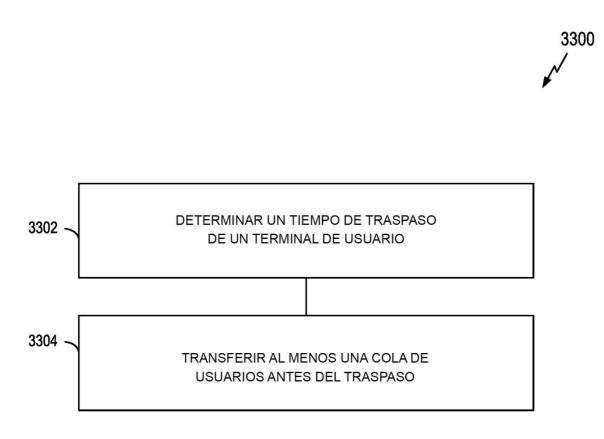


FIG. 33

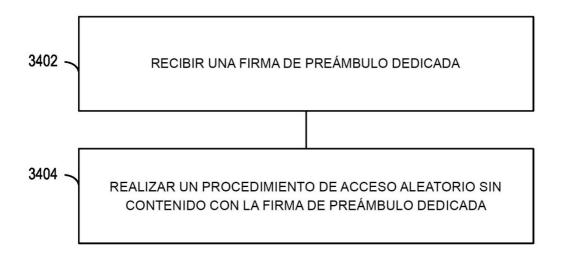


FIG. 34

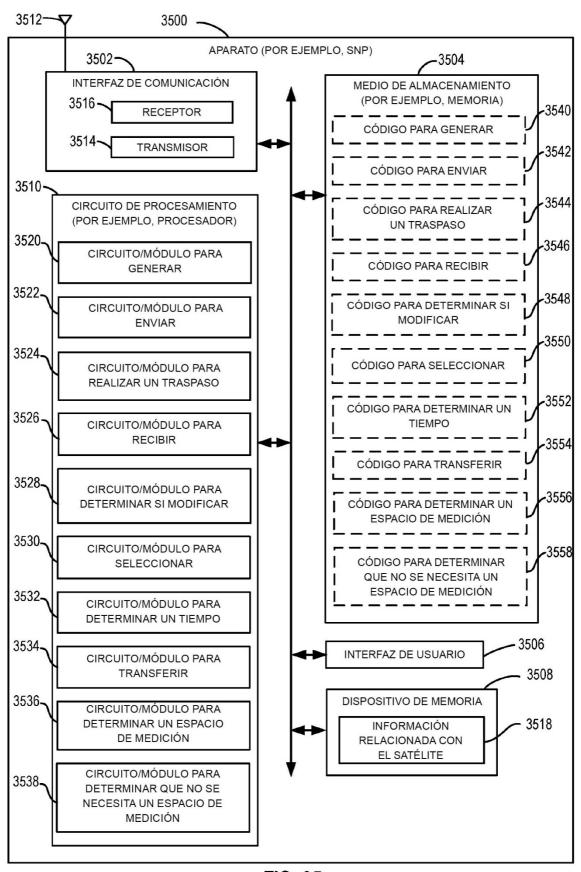


FIG. 35

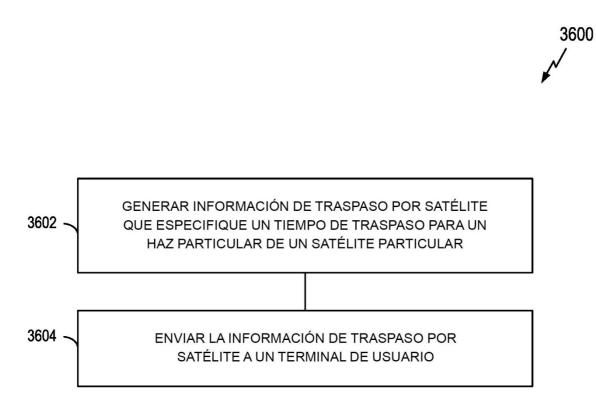


FIG. 36

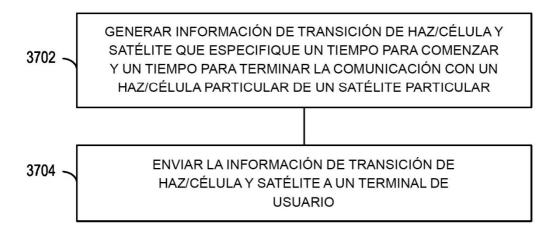


FIG. 37

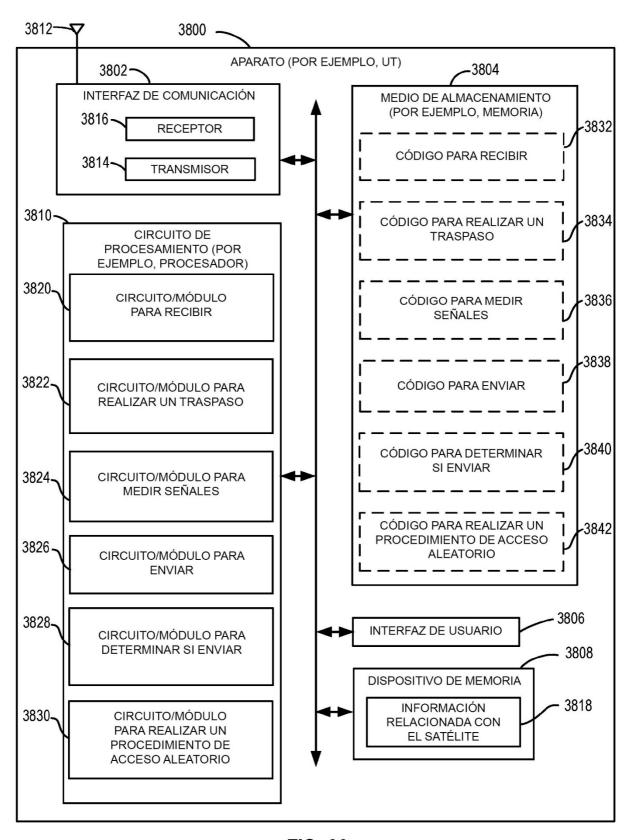


FIG. 38

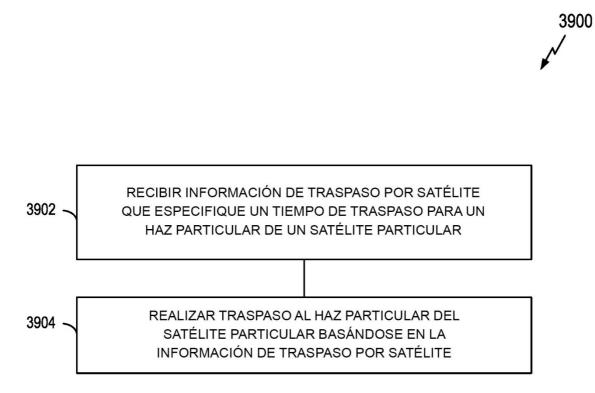


FIG. 39

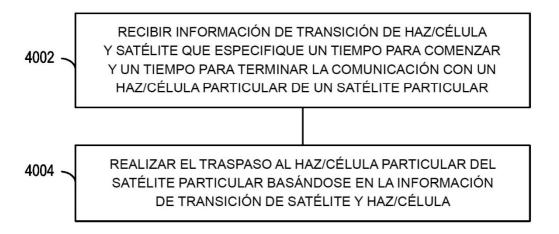


FIG. 40