

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 806 987

(51) Int. CI.:

B65B 9/20 (2012.01) **B65B 63/02** (2006.01) B65B 51/30 (2006.01) B65B 35/40 (2006.01) B65B 51/28 (2006.01) B65B 59/00 (2006.01) B65B 25/14 (2006.01) B65B 61/02 B65B 61/10 (2006.01) B65B 61/14 (2006.01) B65B 61/28

(2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

04.07.2016 PCT/IB2016/054007 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 19.01.2017 WO17009737

(96) Fecha de presentación y número de la solicitud europea: 04.07.2016 E 16736628 (5)

29.04.2020 (97) Fecha y número de publicación de la concesión europea: EP 3319878

(54) Título: Máquina de embalaje para un único producto o para productos agrupados y/o apilados, en paquetes de material termoplástico obtenido a partir de una película desenrollada de una bobina, y método de funcionamiento asociado

(30) Prioridad:

10.07.2015 IT UB20152063

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.02.2021

(73) Titular/es:

CPS COMPANY S.R.L. (100.0%) Via Modigliani, 13 40033 Casalecchio di Reno, IT

(72) Inventor/es:

CASSOLI, STEFANO; CASSOLI, MARCO y **CASSOLI, PAOLO**

(74) Agente/Representante:

RUO, Alessandro

DESCRIPCIÓN

Máquina de embalaje para un único producto o para productos agrupados y/o apilados, en paquetes de material termoplástico obtenido a partir de una película desenrollada de una bobina, y método de funcionamiento asociado

[0001] La invención se refiere a una máquina para embalar un único producto o productos agrupados y/o apilados, especialmente de papel o productos no tejidos, para uso sanitario o para otros usos, en paquetes de material termoplástico obtenido a partir de una película desenrollada de una bobina y está relacionada con el método de funcionamiento de esta máquina.

5

10

15

20

25

30

35

40

45

50

[0002] Cabe destacar que los términos «antes» y «después» utilizados de aquí en adelante se refieren a la dirección de avance de los paquetes.

- [0003] Como estado de la técnica más próximo a la invención, presentada en la clase internacional B65B63/02, se cita la patente US 4 679 379, presentada en 1983 por el mismo inventor de la presente solicitud de patente. Este documento describe una máquina de envasado equipada con un mandril horizontal hueco, del tipo que tiene forma de nudo marinero, en un extremo del cual se incorpora una lámina o película continua de material termoplástico, desenrollada a partir de una bobina, que procede hacia el extremo opuesto del mandril, que se forma en un tubo con solapamiento y termosellado de sus bordes longitudinales y que, tras su suministro desde el mismo mandril, se cierra transversalmente mediante un conjunto estático transversal que, cuando se le indica, realiza una operación de refuerzo previo en los lados opuestos del mismo embalaje tubular y que, en la porción reforzada del mismo tubo, realiza dos sellados térmicos transversales y un corte intermedio para cerrar el extremo trasero del paquete llenado y conformado en el ciclo anterior, para cerrar el extremo trasero del futuro paquete que se va a formar y para separar el paquete completado del que se está formando. Antes del mandril conformador de tubos de la película de envasado, se proporciona una estación de carga de los productos que se van a envasar, por ejemplo, rollos de papel higiénico, papel absorbente para la cocina o para otros usos, paquetes de servilletas o toallas para las manos, también en material no tejido, donde estos productos están agrupados entre sí y/o apilados para formar un lote que, preferiblemente, se somete a una ligera presión en dirección transversal y que, tras esta etapa, presenta una sección transversal con una forma y longitud ligeramente menores a las de la sección transversal interna de dicho mandril hueco, en cuya parte exterior se desliza dicho embalaje tubular, se refuerza y se cierra en el extremo delantero. En la fase correcta, se activa un impulsor para expulsar el lote de dicha estación de carga, deslizarlo a lo largo de dicho mandril hueco y, en la salida de este, empujarlo contra el extremo delantero cerrado del embalaje tubular, provocando que este embalaje avance y, al salir del mandril hueco, se acople al lote, que, debido a la ligera compresión transversal anterior a la que se sometió en dicha estación de carga y debido a su memoria elástica, se expande ligeramente y se acopla estrechamente a la porción del paquete tubular expulsado del mandril y que se soporta con este mediante medios de transporte por debajo. El impulsor termina su movimiento activo después del mandril y ligeramente después del conjunto de corte y termosellado transversal, el cual está en posición abierta, después de lo cual el mismo impulsor invierte su movimiento y vuelve a la posición inicial del ciclo, para liberar la estación de carga y para permitir la repetición de un nuevo ciclo de funcionamiento. De forma secuencial, se activan los medios de refuerzo laterales de la porción de embalaje tubular situados entre el extremo trasero del lote embolsado y la boca de descarga del mandril conformador de tubos y, a continuación, se activa el conjunto de corte y termosellado transversal, que realiza el cierre del extremo trasero del paquete llenado, que cierra el extremo delantero del paquete que se está formando y que todavía no se ha llenado, tras lo cual dicho conjunto se abre ligeramente para liberar los sellados térmicos y para permitir la acción en estos, de medios de enfriamiento con ventilador situados en el mismo conjunto, que, de forma secuencial, se abre completamente para permitir la repetición de un nuevo ciclo de funcionamiento, mientras que el paquete producido se aleja a través del transportador que lo soporta. Cuando se repite un nuevo ciclo de funcionamiento, dicho conjunto de corte y termosellado transversal se debe abrir totalmente para permitir que el paquete tubular avance empujado por el producto introducido en este mediante el impulsor que realiza su movimiento de funcionamiento activo. Para impedir que el sellado térmico del extremo delantero del paquete tubular se llene cediendo al empuje del producto en la etapa de embolsado y, por lo tanto, para impedir que el paquete se rasgue y se rompa, también debido al aire que está comprimido por el producto cuando avanza en el paquete tubular cerrado longitudinalmente y en el extremo delantero, en el estado actual de la técnica es posible actuar de la siguiente manera:
 - a) para asegurar un enfriamiento adecuado del sellado térmico del extremo delantero del paquete tubular, se extienden los tiempos muertos entre un ciclo de funcionamiento y el siguiente;
 - b) el producto se inserta en el paquete tubular que se forma y se cierra en el extremo delantero, a velocidad lenta, para permitir que el aire que sigue atrapado en la parte frontal del paquete escape pasando entre el producto y el paquete. Al igual que en la solución anterior, esta solución limita inevitablemente la velocidad de funcionamiento y, en consecuencia, la productividad de las máquinas de envasado de la técnica anterior.
- [0004] La invención pretende superar estas y otras limitaciones de la técnica anterior para producir máquinas de envasado fiables con altas tasas de producción por hora, con la idea de una solución de acuerdo con la reivindicación 1) anexa y con las siguientes reivindicaciones dependientes 2, 3 y 5, para la cual el conjunto de corte y termosellado transversal está provisto de prensadoras al menos antes de los medios de termosellado con el fin de sujetar firmemente la película previamente, durante y tras la etapa de realización de los sellados térmicos transversales. En combinación con dichas prensadoras, el mismo conjunto de corte y termosellado transversal se puede mover en la dirección de formación del paquete, primero cerrado y alejándose de dicho mandril conformador de tubos y a continuación abierto y

en la dirección opuesta, para volver a la posición inicial del ciclo para la repetición de un posterior ciclo de funcionamiento. El paquete tubular puede ahora avanzar a lo largo del mandril conformador de tubos arrastrado por el nuevo conjunto doble de corte y termosellado transversal con prensadoras, por lo cual es posible:

1. Producir sellados térmicos fuertes y eficientes, con los tiempos necesarios para asegurar su implementación adecuada, ya que estos sellados térmicos se llevan a cabo en la etapa de conformado y llenado de cada paquete tubular posterior, mientras que el conjunto de corte y termosellado transversal está cerrado y se aleja del mandril;

5

10

15

20

25

30

35

40

45

- 2. Mientras que el nuevo paquete tubular avanza arrastrado por el conjunto de corte y termosellado transversal con prensadoras, que ha sellado por calor el extremo delantero del nuevo paquete, ha cerrado el extremo trasero del paquete del ciclo anterior y acompaña a este último para descargarse, el mismo paquete nuevo se puede llenar rápidamente mediante dicho impulsor, ya que la prensadora situada después de este conjunto de corte y termosellado transversal aísla mecánicamente el sellado térmico transversal del extremo delantero realizado en el nuevo paquete, de manera que este sellado térmico transversal no se someta a esfuerzo mediante la inserción del producto en el nuevo paquete tubular y mediante el empuje del aire atrapado en el mismo paquete y situado delante del producto, y también porque en esta etapa es posible que el impulsor inserte el producto en el nuevo paquete con una velocidad relativa que permita una descarga lenta y progresiva hacia atrás del aire que se ha comprimido antes del producto:
- 3. Durante su movimiento para alejarse del mandril conformador de tubos, el conjunto de corte y termosellado transversal ha necesitado todo el rato que se realicen sus operaciones principales de corte y termosellado transversal y, en la última parte del mismo movimiento, también tiene tiempo para abrir ligeramente los sellados térmicos y permitir la acción de los medios para un enfriamiento natural o forzado de los sellados térmicos transversales realizados, mientras que la película situada antes y después se conserva todo el tiempo mediante las prensadoras para impedir incluso un esfuerzo mínimo en los mismos sellados térmicos transversales:
- 4. El movimiento de retorno a la posición inicial del ciclo del conjunto de corte y termosellado transversal, tras haberse abierto, se solapa con el movimiento de retorno a la misma velocidad del impulsor para embolsar el producto y, tras esta etapa de retorno, un paquete lleno y listo para el cierre del extremo trasero se sitúa ya después del conjunto de corte y termosellado transversal.

[0005] Resulta evidente cómo, con la nueva solución de acuerdo con la invención, se pueden producir máquinas de envasado que son más fiables y más rápidas que las de la técnica anterior.

[0006] Otras características de la invención, y las ventajas que se derivan de esta, quedarán más claras a partir de la siguiente descripción de una forma de realización preferida de la misma, representada únicamente a modo de ejemplo no limitativo en las figuras de los ocho dibujos adjuntos, en los cuales:

- las figuras 1 y 2 son, respectivamente, vistas en alzado lateral y de planta superior de una máquina de envasado de acuerdo con la invención;
- las figuras 3 y 4 son, respectivamente, una vista lateral y frontal, con partes en sección, de uno de los paneles laterales del conjunto de corte y termosellado transversal móvil de la máquina de envasado;
- las figuras 5, 5a y 5b son vistas transversales del conjunto de corte y termosellado transversal en la solución útil para producir paquetes con asa incorporada, estando representado el mismo conjunto respectivamente en la posición abierta, en la posición cerrada y en la posición semiabierta o semicerrada, con los medios de corte y termosellado transversal abiertos y con las prensadoras exteriores todavía cerradas en los paquetes antes y después;
- la figura 6 es una vista en perspectiva de un paquete con asa que se puede obtener con el conjunto de corte y termosellado transversal de la figura 5;
- la figura 7 representa, en posición abierta y en una vista transversal, el conjunto de corte y termosellado transversal de acuerdo con una variante de forma de realización útil para producir un paquete con sellados térmicos simétricos del extremo delantero y trasero, sin el asa de la figura 6;
- la figura 8 representa una vista en perspectiva de un paquete sin un asa que se puede producir con el conjunto de corte y termosellado transversal de la figura 7;
- la figura 9 representa una vista de planta esquemática de los medios para el refuerzo lateral previo de la porción de embalaje tubular que está acoplada cíclicamente mediante el conjunto doble de corte y termosellado transversal;
- 50 la figura 10 representa una vista lateral, ampliada y con partes en sección, de la zona de discontinuidad variable del transportador asociado al conjunto de corte y termosellado transversal, para soportar los paquetes en las etapas posteriores del ciclo de funcionamiento en el que los mismos paquetes pasan cíclicamente a través de esta discontinuidad en la que funcionan las barras opuestas del conjunto de corte y termosellado transversal;
- las figuras 11 a 16 representan vistas laterales esquemáticas de los componentes principales de la máquina de envasado de acuerdo con la invención, en algunas etapas posteriores y significativas del ciclo de funcionamiento de estos componentes.

[0007] A partir de las figuras 1 y 2, se puede observar que la máquina de envasado comprende como componente intermedio un mandril axialmente hueco 1 en forma de nudo con una sección transversal rectangular o cuadrada, ajustable cuando cambia el formato del paquete que se quiere producir, situada horizontalmente con respecto a su eje longitudinal, equipada a la izquierda cuando se observan las figuras con un extremo abierto 101 desde el cual entra la película 102 procedente de una bobina debajo 2 y que, mediante medios de guía típicos de los mandriles en forma de nudo marinero, está hecha para adoptar una forma tubular, para moverse longitudinalmente a lo largo del mismo mandril 1 hacia la salida 201 de este, con solapamiento mutuo de las solapas longitudinales de la misma película y con termosellado mutuo y continuo de estas mediante un dispositivo de termosellado del tipo conocido 3, para que la misma película salga desde la salida 201 del mandril 1 en forma de saco y con una sección transversal con un tamaño ligeramente mayor que la sección transversal interna del mismo mandril 1 que guía externamente y soporta dicho saco de película y que, con su superficie lateral interna, está destinado en cambio para guiar el producto que se va a envasar. Antes del mandril 1, se proporciona la ya conocida estación de carga 4 en la que unos medios, también conocidos, forman un lote de productos agrupados y/o apilados, procedentes de al menos cualquier línea de alimentación, no representada, ya que no es necesaria para comprender la invención. La estación de carga 4 también es aiustable cuando el formato de los paquetes que se van a producir cambia, y puede estar caracterizada ventajosamente por someter el lote de producto de papel a una compresión transversal adecuada para que, cuando el mismo lote se expulse longitudinalmente desde la estación de carga 4, pueda introducirse fácilmente en el mandril hueco 1 y pueda deslizarse a lo largo de este en una condición de compresión transversal adecuada.

10

15

20

25

30

35

40

45

50

55

60

[0008] En la figura 1, la línea de puntos y rayas 5 indica el plano horizontal ideal en el que se desplaza el fondo del lote y los paquetes producidos por la máquina de envasado en cuestión. Antes de la estación de carga 4, se proporciona el impulsor 6 apoyado en el extremo frontal de una barra horizontal 106, cuyo eje longitudinal es paralelo al eje longitudinal común de las estaciones anteriormente mencionadas 1 y 4 y que se extiende hacia la izquierda al observar las figuras 1 y 2. En el extremo al lado del impulsor 6, la barra 106 se guía longitudinalmente mediante medios de rodadura 7 apoyados en una placa de base 8 en forma de portal, sobre la que también se monta un conjunto de motor de engranajes 9, sobre cuyo árbol de salida vertical se coloca a presión una polea dentada 10 que coopera con una correa dentada 11 guiada sobre un par de poleas de guía 12 y paralela a la polea 10, también apoyada en el portal 8 para llevar la misma correa dentada 11 en una trayectoria paralela a la barra 106 y para poder fijarse a esta con los extremos opuestos, con el fin de formar el equivalente a una cremallera fijada longitudinalmente a la barra 106 y que engrana con el piñón 10, de manera que, al girar la unidad de movimiento en una u otra dirección, sea posible accionar el impulsor 6 en el movimiento útil para transferir el lote formado en la estación de carga 4 a lo largo del mandril conformador de tubos 1 después de este y del conjunto de corte y termosellado transversal (véase abajo), para la introducción del mismo lote en el paquete tubular producido por el mismo mandril 1 y por el dispositivo de termosellado longitudinal 3, con un movimiento que se señala con una A en las figuras 1 y 2. El conjunto 9 está equipado con un motor eléctrico que no solo puede girar en dos direcciones, sino que también presenta control de velocidad electrónico para permitir el funcionamiento del impulsor 6 con un movimiento modificado, con rampas de aceleración y desaceleración correctas (véase abajo).

[0009] Después del mandril 1, a corta distancia de su salida 201, se proporciona el innovador conjunto 13 que realiza el doble sellado térmico transversal y el corte intermedio en el paquete y que, de acuerdo con la invención, tras el cierre en el plano vertical, funciona primero con un movimiento horizontal que se aparta del mismo mandril 1 para acompañar al paquete en la etapa de termosellado transversal y corte y, a continuación, tras abrirse en el plano vertical, se traslada horizontalmente en la dirección opuesta a la anterior, para volver a la posición de partida inicial representada con una línea continua en las figuras 1 y 2, para repetir un nuevo ciclo de funcionamiento, realizando un movimiento alternativo B, cuya longitud o rango estará correlacionado con la longitud de los paquetes que se quieren producir y, por lo tanto, será variable (véase abajo).

[0010] Para llevar a cabo dicho movimiento de traslación horizontal B, como se representa también en los detalles de las figuras 3 y 4, el conjunto 13 está montado sobre un carro 14 que, por medio de rodamientos laterales con recirculación 15, se desliza sobre pares de guías rectilíneas y horizontales 115 fijadas longitudinalmente en las caras internas de los paneles laterales de la porción de placa de base 116 de la máquina de envasado que se extiende después de la 16 (figura 2) soporta las estaciones 1, 4 y 6 anteriormente descritas. Paralelamente a los pares de guías 115, entre estos y en paralelo a estos, los paneles laterales interiores de la placa de base 106 soporta correas dentadas 17 cerradas en bucle y guiadas sobre respectivas poleas de extremo 18, un par de las cuales está interconectado mediante un árbol transversal 19, conectado a su vez por medio de una transmisión de movimiento positivo 20 a un conjunto de movimiento 21 con motor eléctrico que gira en dos direcciones y preferiblemente del tipo con control electrónico de velocidad y de fase. Los dos paneles laterales del carro 14, que se pueden transportar en el movimiento rectilíneo alternativo del rango B anteriormente mencionado mediante el conjunto de movimiento 20, están fijados a la rama superior de las dos correas dentadas 17 con sargentos 22 (figura 3).

[0011] El conjunto 13 comprende dos elementos 113' y 113" paralelos y opuestos entre sí, situados en un plano ideal vertical común, transversal a la dirección longitudinal del plano ideal 5 de avance de los paquetes, de los cuales el inferior 113" se sitúa debajo de este plano 5 al principio de cada ciclo, mientras que el elemento superior 113' está elevado y a una distancia desde el plano 5 que permite que los paquetes que salen cíclicamente del mandril 1 pasen por debajo sin interferencias. En la etapa de funcionamiento activo, los elementos 113', 113" se mueven hacia el otro con un movimiento de centrado automático en el plano ideal vertical común, para encontrarse aproximadamente en la mitad de la altura de los paquetes que se van a cerrar. Para permitir que la máquina produzca paquetes de altura distinta, la

posición en altura del soporte y de los medios de guía de dichos elementos 113' y 113" se puede ajustar simultáneamente, sin ajustar la distancia relacionada en reposo. A tal fin, según se representa en las figuras 3 y 4, los medios de soporte de dichos elementos 113' y 113" están montados sobre respectivos rieles verticales 23 situados dentro de los paneles laterales del carro 14 que soporta estos rieles con medios de guía 24. Cada riel 23 está equipado con un apéndice intermedio sobresaliente 123, con un tornillo de avance 125 que coopera con un tornillo vertical 25, conectado a su vez, con la interposición de un acoplamiento de seguridad 26, a una triple caja de engranajes cónica 27, cuyo recorrido vertical actúa en el tornillo 25, mientras que uno de los recorridos horizontales conecta el tornillo 25 de un riel al del riel del lado opuesto, al que sirve una doble caja de engranajes cónica, mientras que el tercer recorrido horizontal de la caja de engranajes 27 está conectado a un conjunto de movimiento 28 con motor eléctrico que gira en dos direcciones y, preferiblemente, del tipo con control electrónico de velocidad y de fase, para permitir el ajuste automático o semiautomático de la posición en altura del conjunto de corte y termosellado transversal 13.

10

15

20

25

30

35

40

45

50

55

60

[0012] Fijadas a los lados interiores de los rieles verticales 23 mencionados anteriormente con soportes 29 y 30 que los soportan respectivamente mediante el extremo inferior y mediante una zona intermedia, hay barras de guía verticales 31, con una sección circular, sobre las cuales se deslizan, con la interposición de rodamientos de bolas con recirculación, unos manguitos 32 y 33, de los cuales el inferior 32 se desliza entre dichos soportes 29, 30 y sostiene el extremo del elemento inferior de corte y termosellado transversal 113", mientras que los manguitos superiores 33 se deslizan por encima de los soportes 30 de las respectivas barras 31 y sostienen los extremos del elemento superior de corte y termosellado transversal. En las figuras 3 y 4, se puede observar también que los manguitos 32 y 33 de cada barra 31 están fijados por medio de respectivos sargentos 132, 133 a las ramas opuestas de las correas dentadas 34 guiadas en una polea 35 apoyada de manera ajustable en el extremo superior de cada barra 31 y en una polea dentada 36 apoyada en el extremo inferior de cada riel vertical 23 y las mismas poleas inferiores 26 están conectadas entre sí mediante un árbol sincronizador 37 que está conectado, por medio de una transmisión de movimiento positivo 38, a un conjunto de movimiento 39 con motor eléctrico que gira en dos direcciones y preferiblemente del tipo con control electrónico de velocidad y de fase. Los elementos opuestos 113' y 113" del conjunto de movimiento, con las rampas de aceleración y desaceleración necesarias, según se indica más adelante.

[0013] A partir de las figuras 1 y 2 y de 10 a 12, se puede observar que el mismo plano ideal vertical sobre el cual se desplazan los elementos 113' and 113" de conjunto de corte y termosellado transversal 13, está provisto de la apertura transversal o discontinuidad 40 de la rama superior de un transportador 41, que se mueve con la misma rama superior en la dirección de la flecha 42 se encuentra en el plano de funcionamiento horizontal 5 para sostener los paquetes durante la salida desde el mandril 1, durante su movimiento para alejarse de este, al mismo tiempo que se lleva a cabo el termosellado transversal de los extremos delantero y trasero y el corte intermedio dinámicamente en los mismos paquetes (véase abajo). Cuando los elementos 113', 113" del conjunto 13 están en la posición abierta en reposo y deben realizar el movimiento de retorno para disponerse antes del nuevo paquete que se ha descargado del mandril 1 (véase abajo), debe ser posible cerrar sustancialmente dicha discontinuidad transversal 40 para permitir que este nuevo paquete pase sobre la misma. Para este fin, la rama superior del transportador 41 se guía sobre un rodillo 43 situado en la salida del mandril 1 y apoyado de manera giratoria en el panel lateral de la placa de base 116 de la máquina de envasado, junto con el rodillo del extremo 143. La rama inferior del transportador 41 se quía en cambio sobre rodillos locos 44, en al menos un rodillo bailarín 44' y en una polea dentada 45 colocada a presión en el árbol de salida lento de un conjunto de movimiento 46. A una distancia corta desde el rodillo superior 43, la rama superior del transportador 41 se guía sobre un rodillo 47 paralelo al rodillo 43 y situado a la misma altura que el rodillo 43 y, a continuación, se guía sobre tres rodillos inferiores 48, 49 y 50, también paralelos entre sí, locos y paralelos al rodillo 47, y que, con este, toman la misma rama superior del transportador 41 para formar dicha discontinuidad 40 en la cual se puede situar el elemento inferior 113" del conjunto de corte y termosellado transversal 13, en su posición baja de reposo, y a través de la cual se puede elevar el mismo elemento 113", cuando se le indica, para cooperar con el elemento superior 113'. Los rodillos 47 a 50 se apoyan de manera giratoria en el carro 14 y se mueven con este. El rodillo 50 se sitúa a una altura inferior que el rodillo 47, de manera que los dos rodillos locos 51 y 52, situados respectivamente después y antes del mismo rodillo 50, y estando el último de estos a la misma altura que el rodillo 47, se puedan situar por encima del mismo rodillo 50. Al pasar sobre los rodillos 50, 51 y 52, la cinta transportadora 41 adopta una trayectoria de zigzag. Los rodillos 51 y 52 están montados en rotación sobre un pequeño carro secundario 53 montado en el carro principal 14 y que es capaz de realizar, cuando se le indica, un movimiento horizontal controlado que puede desplazar los mismos rodillos 51 y 52 desde la posición de retroceso de la figura 11, en la que la discontinuidad 40 está sustancialmente cerrada y el paquete puede pasar fácilmente sobre los rodillos 47 y 52, hasta la posición extendida de la figura 12, en la que la discontinuidad 49 está abierta para permitir la libertad de movimiento en la vertical del elemento inferior 113" del conjunto de corte y termosellado transversal 13.

[0014] A partir de los detalles de la figura 10, se puede observar que los rodillos 51, 52 están montados transversalmente en los extremos opuestos de dicho carro secundario 53, equipado lateralmente con guías horizontales y longitudinales 153 que se deslizan sobre rieles 54 fijados en la parte superior de un miembro transversal 55, fijado a su vez con sus extremos a los paneles laterales del carro principal 14. El miembro transversal 55 sostiene, de manera giratoria y en voladizo, un par de tornillos 56 paralelos entre sí y paralelos a las guías 54 y tornillos de avance 156, integrados con apéndices 253 del carro secundario 53, que cooperan con estos tornillos 56. Los dos tornillos 56, de los cuales solo se puede observar uno en la figura 10, se accionan por medio de una transmisión de movimiento positivo 57 mediante un conjunto de movimiento 58 embridado al miembro transversal 55 y se accionan mediante un motor eléctrico que gira en dos direcciones y, opcionalmente, también con control electrónico de fase.

[0015] En la figura 10, el carro secundario 53 con los rodillos 51 y 52 se representan con una línea continua en la posición extendida que cierra la discontinuidad 40, mientras que se representa con una línea discontinua en la posición de retroceso que abre la misma discontinuidad 40. La misma figura muestra claramente cómo los rodillos 51 y 52 ejecutan los movimientos D de rango equivalente y de tal manera que, cuando el rodillo 52 retroceda hacia la izquierda, al observar la figura 10, y provoque un doble acortamiento D de la parte superior del transportador 41, el rodillo inferior 51 se desplace también a la izquierda y provoque un doble alargamiento D de la parte inferior del mismo transportador 41 para que los movimientos del carro secundario 53 no modifiquen la tensión longitudinal del mismo transportador 41 y no modifiquen su movimiento.

[0016] A partir de las figuras 1, 2 y 9, se puede observar que se proporcionan plegadoras opuestas 59, 59' en el lado del transportador 41 y en el conjunto de corte y termosellado transversal 13 que, con anterioridad al funcionamiento del mismo conjunto 13, actúan en los lados de la porción de paquete tubular que sale del mandril 1, que no está engranada por el producto que se va a envasar (véase abajo) y que va a estar engranada por el mismo conjunto 13, para producir un refuerzo lateral encastrado en la misma porción del paquete, que resultan útiles para impedir que la zona de termosellado sobresalga lateralmente desde el paquete y para asegurar que la misma zona embala el extremo de los productos envasados. Las plegadoras 59, 59' pueden estar montadas de manera ajustable sobre respectivos rieles 60, 60' que se deslizan sobre guías 61, 61' limitadas al marco fijo 116 de la máquina de envasado, accionándose los mismos rieles 60, 60' mediante respectivos conjuntos de cilindro-pistón con presión fluida 62, 62' o mediante otros activadores adecuados de movimiento lineal alternativo.

10

15

20

25

30

40

45

50

55

60

[0017] En referencia a las figuras 5, 5a y 5b, se describe a continuación la composición de los medios que forman los elementos 113' y 113" del conjunto doble de corte intermedio y termosellado transversal 13. En la figura 5, los elementos 113' y 113" se representan en la etapa de movimiento de uno hacia el otro y que, con una mayor distancia entre los elementos, equivale a la posición de reposo de los mismos elementos 113', 113" del conjunto 13. El conjunto de corte y termosellado transversal, que se describe ahora en referencia a la figura 5, puede producir un paquete C1, según se muestra en la figura 6, cerrado longitudinalmente por el sellado de calor SL formado por el dispositivo de termosellado 3 que se muestra en las figuras 1 y 2, equipado en los extremos con las porciones F encastradas y reforzadas por las plegadoras 59, 59' de la figura 9, cerradas en el extremo delantero por un sellado térmico transversal ST1, cerradas en el extremo trasero por un termosellado transversal ST2 y equipadas con una porción aplanada y reforzada M del mismo paquete, también cerrada longitudinalmente por el sellado térmico SL, que se cierra en el borde libre B2 mediante fusión del material obtenido a partir de la separación con un corte en caliente entre paquetes subsiguientes, y que está equipada con un corte intermedio G con forma de C, que resulta útil para utilizar la misma porción M del paquete como asa para transportar el mismo paquete C1. En el sellado transversal del extremo delantero ST1, el paquete C1 presenta un pequeño apéndice sobresaliente del mismo paquete, cuyo borde frontal B1, paralelo a ST1, está cerrado mediante la fusión del material obtenido a partir de la separación con un corte en caliente entre paquetes subsiquientes.

[0018] El conjunto 13 debe ser capaz de llevar a cabo simultáneamente, en la porción del paquete tubular sobre la que se presiona transversalmente, los sellados térmicos paralelos ST2 para el paquete ya llenado y que se va a cerrar en el extremo trasero, el sellado térmico paralelo ST1 para el siguiente paquete que todavía se tiene que llenar de producto, el corte intermedio que produce los bordes B2, B1 y la separación mutua de los paquetes, así como de llevar a cabo el perforado para formar la abertura G que actúa como asa.

[0019] A partir de la figura 5, se puede observar que el elemento superior 113' del conjunto 13 está equipado, al menos antes, aunque preferiblemente tanto antes como después, con prensadoras 63, 63', con las que su borde inferior con perfil redondeado se proyecta hacia abajo con respecto a la superficie de funcionamiento inferior del mismo elemento 113', y que puede retroceder hacia esta superficie de funcionamiento, en contra de la acción de los contrarresortes 64, 64'. En la superficie de funcionamiento inferior del elemento 113', en una posición desplazada hacia atrás vertical y horizontalmente con respecto a las prensadoras 63, 63' y dispuesta coplanaria con respecto a la otra, se proporcionan los dispositivos de termosellado 65 y 66 para llevar a cabo los sellados térmicos ST1 y ST2 de la figura 6, así como los medios de corte en caliente 67 para separar los paquetes entre sí y para formar los bordes fusionados B1 y B2 del mismo paquete de la figura 6. En la parte intermedia de la superficie de funcionamiento inferior del elemento 113', se proporcionan dos pequeñas prensadoras 68, 68' accionadas por resortes, cuyo borde inferior y convenientemente redondeado se proyecta ligeramente hacia abajo con respecto al plano ideal que contiene los dispositivos de termosellado 65, 66 y, en una posición desplazada hacia atrás con respecto a estas prensadoras intermedias 68, 68', se proporciona una unidad de perforación 69 para formar el corte G en el asa M del paquete C1 de la figura 6. El conjunto completo 113' está sostenido por la parte de soporte 70 situada por encima conectada a los manguitos 33 que se muestran en las figuras 3 y 4, con la interposición de medios de resorte y compensación 71, comunes en los medios de corte y termosellado transversal en cuestión.

[0020] El elemento inferior 113" del conjunto 13 que se muestra en la figura 3 comprende, con disposición en un plano ideal horizontal común, medios contrarios 163, 163' frente a las prensadoras 63, 63', contradispositivos de termosellado 165, 166 frente a los dispositivos de termosellado 65, 66, un medio contrario 167 para los medios de corte 67, medios contrarios 168, 168' para las prensadoras intermedias 68, 68' y una perforadora 169 para la unidad de perforación superior 69. Las prensadoras 63, 63' y los respectivos medios contrarios 163, 163' se producen o fabrican para que presenten un alto coeficiente de fricción en contacto con la película que forma los paquetes y que sale del mandril conformador de tubos 1.

[0021] Al mover los elementos 113' y 113" del conjunto de corte y termosellado transversal 13 uno hacia el otro en paralelo, según se muestra en la figura 5, con un movimiento de centrado automático en el plano ideal vertical común, las prensadoras externas 63, 163 y 63', 163', según se muestra en la figura 5b, actúan primero sujetando firmemente en dirección transversal el paquete tubular interpuesto (no representado), y después, continuando el movimiento del uno hacia el otro, los mismos elementos 113', 113" alcanzan la condición de la figura 5a, que resulta útil para producir en el paquete C1 dichos sellados térmicos ST1, ST2, el corte intermedio B1-B2, con acción en la fase correcta de las prensadoras intermedias 68, 168, 68', 168', que retienen con firmeza la porción del paquete que está provista del corte G mediante los elementos de la unidad de perforación y la perforadora 69, 169. Tras haber tenido lugar dichas operaciones de corte y termosellado transversal, los elementos 113', 113" del conjunto 13 pasan temporalmente a una condición parcialmente abierta, como se muestra en la figura 5b, con elevación de los sellados térmicos 65, 66 y de los medios de corte 67 mediante los respectivos medios contrarios inferiores 165, 166, 167, para permitir un rápido enfriamiento natural o forzado de los sellados térmicos y del corte transversal realizado, mientras que el paquete sigue sujeto entre las prensadoras externas y las contraprensadoras 63, 163 y 63', 163', de manera que pueda ser arrastrado por el conjunto 13, según se indica abajo.

10

25

30

35

40

45

50

55

60

[0022] Si la máquina es para producir paquetes C2 como los que se muestran en la figura 8, sin un asa, pero equipados solo con los sellados térmicos transversales del extremo delantero y trasero ST1 y ST2 con los bordes fusionados B1 y B2, como resultado de la operación de corte en caliente del paquete, a una pequeña distancia con respecto a estos, el conjunto de corte y termosellado transversal 13 quedará simplificado, según se muestra en la figura 7, con el elemento superior 113' equipado únicamente con las prensadoras externas 63, 63', los sellados térmicos 65, 66 y los medios de corte en caliente 67, mientras que el elemento inferior 113" llevará los medios contrarios 163, 163', 165, 166, 167 para los medios de funcionamiento anteriormente mencionados situados arriba.

[0023] En la figura 1, el número 72 indica un procesador programable a través de una unidad 73, y en la que se conectan todos los motores eléctricos de los conjuntos de movimiento anteriormente mencionados para permitir un funcionamiento automático y seguro de la máquina de envasado, según se describirá a continuación en referencia a las figuras 11 a 16.

[0024] La figura 11 representa el conjunto de corte y termosellado transversal 13, que realizó previamente el termosellado del extremo trasero del paquete terminado C1, el termosellado del extremo delantero del nuevo paquete C1' y el corte transversal intermedio para separar el paquete C1 del nuevo paquete C1', que se aleja a través de la rama superior del transportador 41 que se mueve en la dirección 42 para su descarga, así como para mantener el siguiente paquete C1' que sale del mandril 1 situado longitudinalmente como resultado del hecho de que el mismo conjunto 13 haya tirado anteriormente en el movimiento anterior hacia la derecha, si se observa la figura 11, mientras que el mismo paquete nuevo C1' ha sido llenado en la fase correcta mediante el impulsor 6, que, en la fase correcta, se desplaza hacia atrás, según se indica con la línea discontinua. Los elementos 113', 113" del conjunto 13 están separados entre sí o abiertos, situándose el elemento inferior 113" dentro de la discontinuidad 40 y el elemento superior 113' en posición elevada para no interferir con el nuevo paquete C1'. En esta fase, la discontinuidad 40 está cerrada para prevenir interferencias al pasar por debajo del mismo paquete nuevo C1' y se dispone antes de este paquete C1'.

[0025] En la etapa posterior representada en la figura 12, el carro secundario 53 se mueve hacia la derecha y abre la discontinuidad 40 para liberar el plano ideal vertical en el que se mueven los elementos 113', 113" del conjunto de corte y termosellado transversal 13. Una vez que las plegadoras 59, 59' de la figura 9 hayan actuado lateralmente en la porción de embalaje tubular 102' entre la salida del mandril 1 y el producto P introducido en el nuevo paquete C1', para equipar esta porción de embalaje con refuerzos laterales encastrados, de acuerdo con la técnica anterior, se ordena que los elementos 113' y 113" del conjunto 13 realicen un movimiento de cierre de centrado automático que los cierre inmediatamente después del producto P envasado en C1' y en la mitad de la altura de este mismo paquete, en la condición completamente cerrada que se muestra en la figura 5a o en la condición parcialmente cerrada que se muestra en la figura 5 o en la figura 5b. En la fase correcta con el cierre total o parcial de los elementos 113', 113", las plegadoras laterales 59, 59' se mueven de vuelta a la posición de reposo y, de forma secuencial, el carro principal 14 que lleva el conjunto 13 se traslada a la izquierda. Si los elementos 113', 113" del conjunto 13 no están completamente cerrados, como se muestra en la figura 5 o en la figura 5b, el movimiento inicialmente lento del mismo conjunto 13 que se aleja del mandril 1 y la resistencia creada por el tubo de película 102 que impacta en el mandril conformador de tubos 1 puede provocar que el paquete C1' se acerque al conjunto 13 para permitir que se forme un embalaje convenientemente apretado también en la dirección longitudinal. De forma secuencial, los elementos 113', 113" del conjunto 13 están cerrados, según se muestra en la figura 5a, para sujetar firmemente el extremo trasero del paquete C1' y para realizar en este el sellado térmico transversal ST2 de la figura 6, la separación con corte en caliente (que forma los bordes cerrados B2 y B1, así como su separación) del siguiente paquete C1" que sale del mandril 1 que empieza a arrastrar el conjunto 13 y para realizar el corte en frío G con el fin de equipar al mismo paquete C1' con el asa de transporte M.

[0026] Mientras el conjunto 13 se mueve hacia la derecha, como se representa en la figura 14, el impulsor 6 introduce el producto P que se va a envasar en el futuro paquete C1", en el que el mismo producto se expande transversalmente debido a la compresión transversal previa a la que ha sido sometido en la estación de carga 4 ilustrada en las figuras 1 y 2, y la velocidad de inserción de dicho producto en el envase de C1" puede ser tal como para que el aire atrapado en este paquete y situado antes del producto P que se está envasando salga lentamente después, sin dañar dicho paquete C1", el cual, no obstante, está retenido firmemente mediante la prensadora situada antes 63, 163 del conjunto 13,

considerándose este último en la fase correcta para la condición que se muestra en la figura 5b para permitir un rápido enfriamiento de los sellados térmicos llevados a cabo por el mismo conjunto 13.

[0027] A partir de la figura 14, resulta evidente, por lo tanto, que, mientras que el conjunto 13 realiza de forma dinámica sus operaciones de termosellado transversal y corte doble con las que se ha diseñado, al mismo tiempo, se forma un paquete nuevo ya llenado con el producto P que se va a envasar después de este conjunto (véase la condición de partida de la figura 11).

[0028] De forma secuencial, como se representa en la figura 15, cuando el carro 14 alcanza o está a punto de alcanzar el final de su movimiento hacia la derecha, los elementos 113', 113" del conjunto 13 se abren, con el elemento inferior 113" que vuelve a la discontinuidad abierta 40 y con el elemento superior 113' que está dispuesto a mayor altura que la de la parte superior del paquete C1".

10

15

20

[0029] Según se representa en la figura 16, consecutivamente a la etapa anterior, el carro secundario 53 se desplaza hacia la izquierda para cerrar la discontinuidad 40 y, a continuación, el carro principal también se traslada a la izquierda para volver a la posición inicial del ciclo que se muestra en la figura 1, sin la más mínima interferencia con el fondo del paquete nuevo C1", que se mantiene plano mediante el movimiento activo 42 del transportador 41. El impulsor 6 se desplaza hacia atrás, o ya se encuentra desplazado hacia atrás, en la fase correcta para repetir un nuevo ciclo de funcionamiento. El movimiento de retorno al inicio del ciclo por parte del conjunto 13 en posición abierta puede tener lugar muy rápidamente, incrementando además la productividad de la máquina de envasado.

[0030] Se entiende que la descripción hace referencia a una forma de realización preferida de la invención, en la que se pueden aplicar numerosas variaciones y modificaciones, todo ello sin apartarse del principio básico de la invención, cuyo alcance queda definido por las reivindicaciones anexas.

[0031] En las reivindicaciones, las referencias indicadas entre paréntesis son únicamente indicativas, y no limitan el alcance de protección de estas reivindicaciones.

REIVINDICACIONES

- 1. Máquina de embalaje para embalar productos individuales o agrupados y/o apilados, en paquetes de material termoplástico, comprendiendo dicha máquina:
 - un dispositivo de termosellado (3),

5

10

15

25

30

35

40

45

50

- un conjunto de corte y termosellado transversal (13) para realizar un doble termosellado transversal y un corte intermedio en los paquetes de material termoplástico.
- plegadoras (59, 59') provistas en el conjunto de corte y termosellado transversal (13),
- un mandril horizontal hueco (1) en cuyo extremo de carga (101) se incorpora una película continua de material termoplástico (102), desenrollada a partir de una bobina (2), que procede hacia el extremo de descarga (201) de este mandril, está formado en un tubo con solapamiento y termosellado mutuo de sus bordes longitudinales mediante el dispositivo de termosellado (3) y que sale del mismo mandril (1) en forma de un embalaje tubular (102'), que se cierra transversalmente mediante el conjunto de corte y termosellado transversal (13) situado después del mismo mandril (1) y que, en la parte del embalaje tubular previamente reforzada por las plegadoras (59, 59'), realiza dos termosellados transversales (ST1, ST2) y un corte intermedio (B1, B2), llenado y formado en el ciclo anterior, para cerrar el extremo delantero del siguiente paquete (C1'') y para separar el paquete completo (C1') del que se está formando (C1''), comprendiendo la máquina antes de dicho mandril (1) y alineada longitudinalmente con este:
- una estación de carga (4) de los productos (P) que se van a envasar, agrupar y/o apilar y comprimir en dirección transversal, y comprendiendo la máquina, además, antes de dicha estación (4) y alineado longitudinalmente con esta
- un impulsor (6) que, cuando se le indica, transfiere el producto o productos (P) desde la estación de carga (4) hasta el paquete tubular producido por dicho mandril (1), pasando a través de este último en la totalidad de su longitud y más allá,
 - caracterizada por que dicho conjunto de corte y termosellado transversal (13) comprende elementos paralelos y opuestos (113', 113") para realizar el doble termosellado transversal por medio de dispositivos de termosellado (65, 66) y el corte intermedio a través de medios de corte (67), estando equipados dichos elementos (113, 113') antes de dichos dispositivos de termosellado (65, 66) con respectivas prensadoras (63, 63') y contraprensadoras (163, 163') para sujetar firmemente en dirección transversal la porción de embalaje reforzado (102') en la que se cierra, cuando se le indica, el conjunto de corte y termosellado transversal (13), comprendiendo la máquina, además, un carro principal (14), estando montado el conjunto de corte y termosellado transversal (13) sobre el carro principal (14) con un movimiento horizontal accionado por medios de movimiento para que, en la fase correcta, sea capaz de alejarse del mandril conformador de tubos (1) para seguir el paquete completado durante el termosellado del extremo trasero y para extraer del mandril (1) una nueva porción de embalaje tubular (102') en la que, en la fase correcta, dicho impulsor (6) inserta un producto (P) para formar dicho paquete posterior (C1"), proporcionándose medios para que dicho carro principal (14) vuelva rápidamente a la posición inicial movido hacia el mandril (1), para disponerse después del nuevo paquete (C1") ya llenado y para cerrarse en el extremo trasero, comprendiendo la máquina, además, un transportador motorizado (41) para soportar los paquetes que se forman después de dicho mandril (1) y siendo guiada una rama superior de este transportador (41) sobre rodillos paralelos (47, 48, 49, 50) soportados de manera giratoria por dicho carro principal (14) y siendo guiados en una trayectoria de zigzag sobre otros rodillos (51, 52) apoyados en un carro secundario (53) montado sobre el carro principal (14) y deslizándose horizontalmente, cuando se le indica, sobre el carro principal (14), todo ello para formar, en dicho conjunto de corte intermedio y termosellado transversal (13), una discontinuidad (40), en cuyo interior se aloja normalmente el elemento inferior (113") de dicho conjunto (13), y abriéndose esta discontinuidad (40) mediante el movimiento en una dirección de dicho carro secundario (53) para permitir un margen de acción de este elemento inferior (113") y la misma discontinuidad (40), al acoplarse a dicho elemento inferior (113"), cerrándose mediante el movimiento de dicho carro secundario (53) en la dirección opuesta, de manera que dicho transportador (41) soporte correctamente los paquetes que se forman durante el movimiento de retorno de dicho carro principal (14).
 - 2. Máquina de embalaje de acuerdo con la reivindicación 1), donde el carro principal (14) que lleva dicho conjunto de corte y termosellado transversal (13) está equipado lateralmente con rieles (15) que se deslizan sobre pares de guías rectilíneas y horizontales (115) fijadas longitudinalmente a los paneles laterales de la porción de placa de base (116) de la misma máquina, y estos paneles laterales también soportan, en paralelo a dichos pares de guías (115), correas dentadas (17), cerradas en un circuito y guiadas sobre respectivas poleas de extremo (18), un par de las cuales están interconectadas mediante un árbol transversal (19) conectado, a su vez, a un conjunto de movimiento (20, 21) con motor eléctrico que gira en dos direcciones y del tipo con control electrónico de velocidad y de fase, estando conectados los dos paneles laterales del carro principal (14) a una rama de dichas dos correas dentadas (17) mediante sargentos (22) para recibir el movimiento rectilíneo alternativo necesario con las rampas de aceleración y desaceleración necesarias.
- 3. Máquina de embalaje de acuerdo con la reivindicación 1), donde los medios de soporte de los dos elementos paralelos y opuestos (113', 113") que forman dicho conjunto de corte y termosellado transversal (13) están montados sobre respectivos rieles verticales (23) situados dentro de los paneles laterales del carro principal (14) que soportan dichos rieles (23) con medios de guía (24), estando equipado cada riel (23) con un apéndice intermedio sobresaliente (123), con un tornillo de avance (125) que coopera con un tornillo vertical (25), conectado a su vez a una triple caja de engranajes cónicos (27), cuyo recorrido vertical actúa sobre dicho tornillo (25), mientras que uno de los recorridos

horizontales conecta dicho tornillo (25) de un riel (23) al del riel (23) del lado opuesto, al que servirá una doble caja de engranajes cónicos, mientras que el tercer recorrido horizontal de dicha caja de engranajes (27) está conectado a un conjunto de movimiento (28) con motor eléctrico que gira en dos direcciones y preferiblemente del tipo con control electrónico de velocidad y de fase, para permitir el ajuste automático o semiautomático de la posición en altura del conjunto de corte y termosellado transversal (13) cuando varía la altura de los paquetes que se van a producir.

5

10

15

20

25

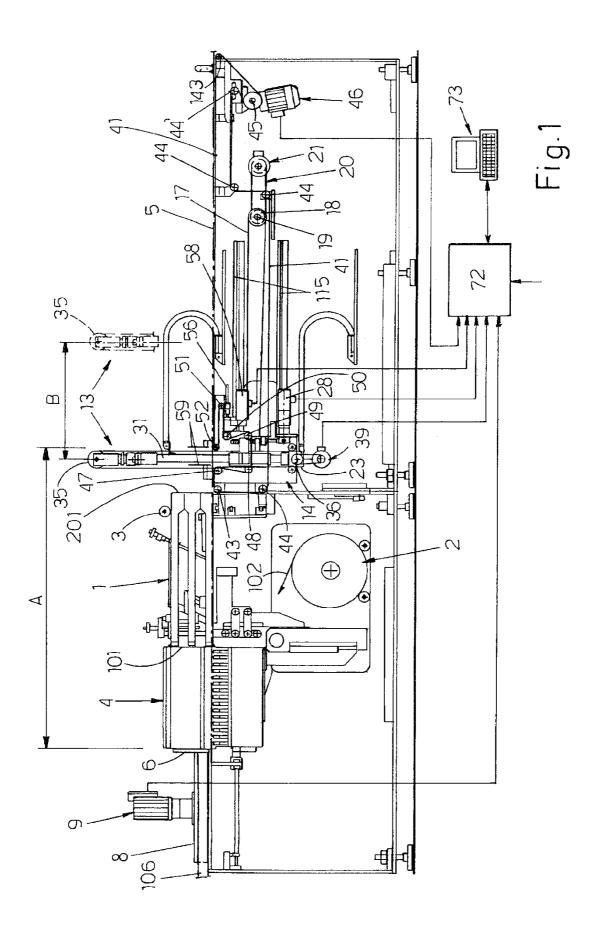
30

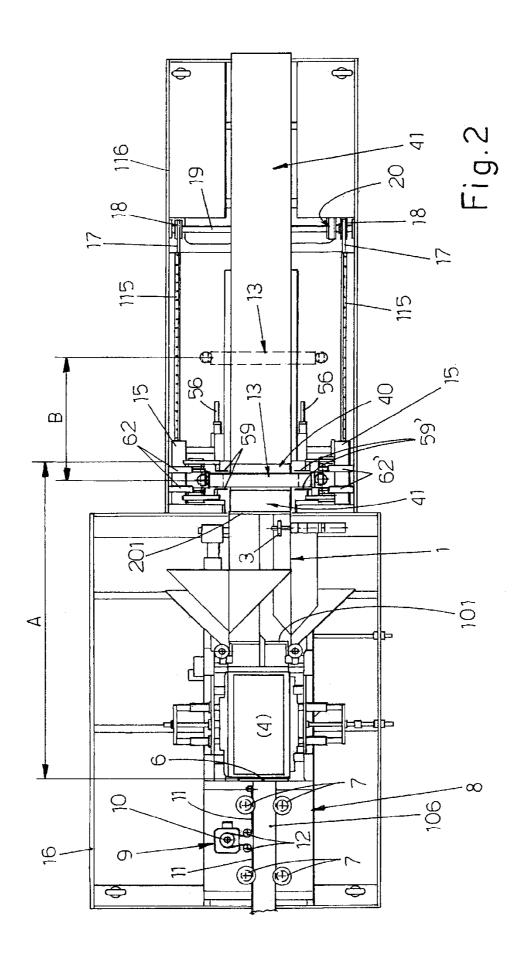
35

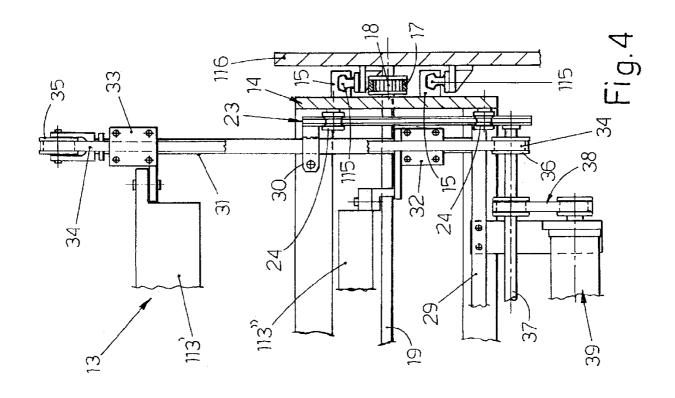
40

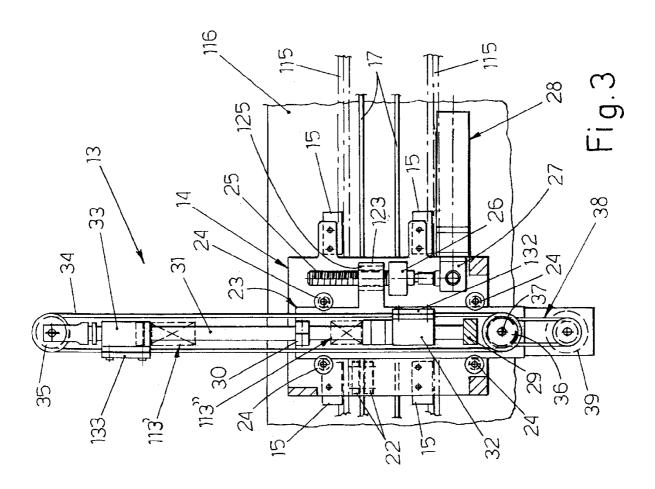
45

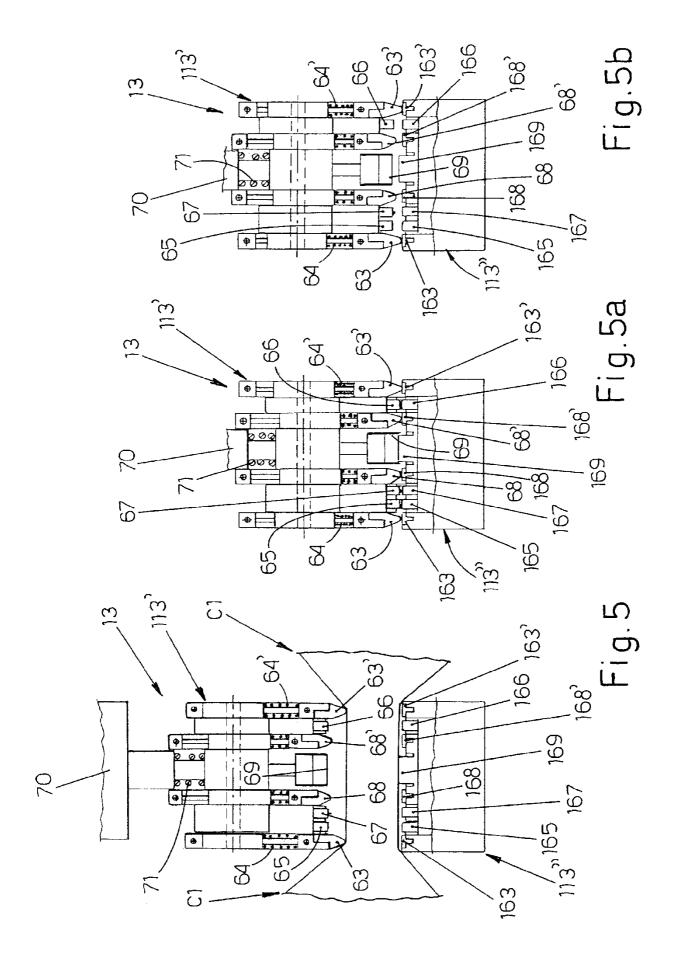
50


55


60


- 4. Máquina de embalaje de acuerdo con la reivindicación 3), donde, fijadas a los lados interiores de dichos rieles verticales (23) con soportes (29, 30) que las sostienen, respectivamente, mediante el extremo inferior y mediante una zona intermedia, hay barras de guía verticales (31), con una sección circular, sobre las cuales se deslizan, con la interposición de rodamientos de bolas con recirculación, unos manguitos (32, 33), de los cuales el inferior (32) se desliza entre dichos soportes (29, 30) y sostiene el extremo del elemento de corte y termosellado transversal inferior (113"), mientras que los manguitos superiores (33) se deslizan por encima de los soportes superiores (30) de las respectivas barras (31) y sostienen los extremos del elemento de corte y termosellado transversal superior (113'), estando fijados los manguitos (32, 33) de cada una de dichas barras (31) mediante unos respectivos sargentos (132, 133) a las ramas opuestas de las correas dentadas (34) guiadas sobre una polea (35) apoyada de manera ajustable en el extremo superior de cada barra (31) y sobre una polea dentada (36) apoyada en el extremo inferior de cada uno de dichos rieles verticales (32) y las mismas poleas inferiores (26) están conectadas entre sí mediante un árbol sincronizador (37), conectado a su vez a un conjunto de movimiento (38, 39) con motor eléctrico que gira en dos direcciones y preferiblemente del tipo con control electrónico de velocidad y de fase, que transmite a los elementos opuestos (113', 113") del conjunto de corte y termosellado transversal (13) los movimientos para un cierre total o parcial o para una apertura total o parcial, con las rampas de aceleración y desaceleración necesarias.
- 5. Máquina de embalaje de acuerdo con la reivindicación 1), donde las prensadoras (63, 63') situadas antes y después de los dispositivos de termosellado (65, 66) del elemento superior (113') del conjunto de corte y termosellado transversal (13) se someten a esfuerzo en extensión hacia abajo mediante unos respectivos contrarresortes (64, 64') para que, cuando estén en reposo, los bordes inferiores con perfil redondeado de las mismas prensadoras estén separados convenientemente entre sí mediante la superficie de funcionamiento inferior del mismo elemento superior (113'), mientras que el elemento inferior (113") del mismo conjunto (13) comprende, con disposición en un plano ideal horizontal común, medios contrarios (163, 163') frente a dichas prensadoras superiores (63, 63') que, al igual que estos medios contrarios (163, 163'), se producen o fabrican para que presenten un alto coeficiente de fricción en contacto con el embalaje tubular (102') de película que forma los paquetes y que sale de dicho mandril conformador de tubos (1), todo ello para que, también en combinación con la acción de dichos contrarresortes (64, 64'), dicho embalaje de película (102') sea capaz de sujetarse firmemente entre estas prensadoras (63, 63') y los respectivos medios contrarios (163, 163) tanto cuando dichos elementos (113', 113") se empujan entre sí para realizar los dos termosellados transversales y el corte intermedio de los que son responsables, como cuando estos elementos (113', 113") están cerca el uno del otro, pero con los medios de termosellado transversal y corte intermedio (65, 66, 67) elevados mediante los respectivos medios contrarios (165, 166, 167), para liberar y enfriar las porciones termosellados y cortadas del embalaje.
- **6.** Máquina de embalaje de acuerdo con la reivindicación 2), donde dicho carro secundario (53) que soporta los rodillos de guía de zigzag (51, 52) de la rama superior del transportador (41) está equipado lateralmente con guías horizontales y longitudinales (153) que se deslizan sobre rieles (54) fijos en la parte superior de un miembro transversal (55), fijado a su vez con sus extremos a los paneles laterales del carro principal (14), sosteniendo este miembro transversal (55), de manera giratoria y en voladizo, un par de tornillos (56) paralelos entre sí y con respecto a dichas guías (54), y estos tornillos (56) cooperan con los respectivos tornillos de avance (156), integrados con apéndices (253) del carro secundario (53) y accionándose estos tornillos (56) mediante un conjunto de movimiento (57, 58) embridado a dicho miembro transversal (55) y accionado mediante un motor eléctrico que gira en dos direcciones y, opcionalmente, también del tipo con control electrónico de fase.
- 7. Método para embalar un único producto o productos (P) agrupados y/o apilados, en paquetes de material termoplástico obtenido a partir de película desenrollada de una bobina, con una máquina de acuerdo con las reivindicaciones anteriores 1 a 6, con un conjunto de corte y termosellado transversal (13) equipado con prensadoras y contraprensadoras (63, 163, 63', 163') antes y después de los medios de corte y termosellado transversal (65, 165, 67, 167, 66, 166), para poder sujetar firmemente el paquete tubular de película durante la etapa de realización de los termosellados transversales y en la que el mismo conjunto de corte y termosellado transversal (13) se puede mover en la dirección de formación del paquete, primero cerrado y alejándose del mandril conformador de tubos (1) y, a continuación, abierto y en la dirección opuesta, para volver a la posición inicial del ciclo para repetir un ciclo de funcionamiento posterior, todo ello para que pueda tener lugar el avance del embalaje tubular (102') a lo largo del mandril conformador de tubos (1) arrastrado por el mismo conjunto de corte y termosellado transversal (13) con prensadoras, caracterizado por que, con este conjunto (13), se puede realizar la etapa de conformado y llenado de cada paquete tubular posterior (C1, C1', C1", etc.), mientras que el conjunto de corte y termosellado transversal (13) está cerrado y se aleja del mandril (1) y también está caracterizado por que el movimiento de retorno a la posición inicial del ciclo del conjunto de corte y termosellado transversal (13), tras haberse abierto, se solapa con el movimiento de retorno a la misma velocidad que el impulsor (6) para embolsar el producto y, tras esta etapa de retorno, un paquete (C1") llenado y listo para el cierre del extremo trasero se sitúa ya después del conjunto de corte y termosellado
 - 8. Método de acuerdo con la reivindicación 7), caracterizado por que, mientras el nuevo paquete tubular (C1') avanza y es arrastrado por el conjunto de corte y termosellado transversal (13) con prensadoras (63, 163, 63', 163'), que sella por


calor el extremo delantero de este nuevo paquete, cierra el extremo trasero del paquete (C1) del ciclo anterior y acompaña a este último para su descarga, dicho paquete nuevo (C1') se puede llenar rápidamente mediante el impulsor designado (6), ya que la prensadora (63, 163) situada después de este conjunto de corte y termosellado transversal (13) aísla mecánicamente el sellado térmico del extremo delantero (ST1) realizado en el nuevo paquete, de manera que este sellado térmico transversal (ST1) no se someta a esfuerzo mediante la inserción del producto (P) en el nuevo paquete tubular (C1') y mediante el empuje del aire atrapado en el mismo paquete nuevo (C1') y situado delante del producto (P) y, también, ya que en esta etapa es posible que el impulsor inserte el producto (P) en el nuevo paquete con una velocidad relativa que permita una descarga lenta y progresiva hacia atrás del aire que se ha comprimido antes en el mismo producto (P) y contra el extremo delantero del paquete nuevo (C1').


- 9. Método de acuerdo con las reivindicaciones anteriores, donde, durante el movimiento activo para alejarse del mandril conformador de tubos (1), se le proporciona al conjunto de corte y termosellado transversal (13) todo el tiempo necesario para llevar a cabo sus operaciones principales de corte y termosellado y, en la última parte del mismo movimiento activo, para abrir ligeramente los termoselladores y los medios de corte para liberar los sellados térmicos transversales (ST1, ST2) y para permitir la acción de los medios para un enfriamiento natural o forzado de estos sellados térmicos, mientras que el embalaje de los paquetes antes y después se mantiene en todo momento por la acción de las prensadoras (63, 163, 63', 163'), que impiden incluso un esfuerzo mínimo en dichos sellados térmicos transversales (ST1, ST2).
- 10. Método de acuerdo con las reivindicaciones anteriores, caracterizado por que, en la etapa inicial de su ciclo de funcionamiento, el conjunto de corte y termosellado transversal (13) puede estar cerrado solo parcialmente en el embalaje tubular reforzado (102') y, en esta condición parcialmente cerrada, se puede alejar lentamente del mandril conformador de tubos (1) para desplazarse hacia el paquete posterior (C1') y comprimirlo longitudinalmente, tras lo cual dicho conjunto (13) se cierra completamente y aumenta su velocidad de movimiento para llevar a cabo las etapas de doble termosellado transversal y corte intermedio de las cuales es responsable.

