Resumen de: CN119844918A
本发明提供地热源热能交换器,涉及地热源使用领域。地热源热能交换器,包括一根用于换热的并折弯成“U”字型的换热管,所述换热管分为进液管和出液管,进液管和出液管之间设置可以截断下方换热管循环的截断单元,截断单元连通进液管和出液管,截断单元的数量为多个,多个截断单元等间隔设置在进液管和出液管之间。该地热源热能交换器,当换热管发生泄漏时,通过逐一临时接通截断单元使得其下方的换热管不接入循环,进而能够寻找到换热管的漏点,并在找到漏点后,将漏点上方最接近漏点的截断单元永久接通,解决了现有技术中地热换热器出现损坏不易寻找漏点以及维修困难的问题。
Resumen de: CN119846015A
本发明涉及一种用于地热检测实验的集群实验装置,包括恒温箱和设置于恒温箱中的若干平行滚轴,平行滚轴通过齿轮组联动,每个平行滚轴转动方向一致,恒温箱外部设置有驱动电机,驱动电机通过皮带轮连接有变速轮,变速轮与平行滚轴连接,恒温箱内设置有若干反应辊组,反应辊组内可放置被检测材料,反应容器顶部及底部开口,分别连接有压力传感器和温度传感器。通过设置平行滚轴和反应辊组,可实现多反应容器自旋集群加热和等速搅拌,保证反应环境完全统一;删除原设备中搅拌和温度控制设计,消除冗余;简化反应器设计,减低单个成本,使得集群系统有极高的可扩展性。
Resumen de: CN119844919A
本发明提供了一种地下封闭取热系统、多能互补供暖系统及其运行方法,涉及可再生能源利用技术领域,地下封闭取热系统包括多孔岩层、定向井管和高导水泥,多孔岩层中钻设有定向井孔,定向井孔包括竖直井孔段以及与竖直井孔段下端连通的水平井孔段,定向井管置于定向井孔中,且包括相连通的竖直井管段和水平井管段,竖直井管段位于竖直井孔段中,水平井管段位于水平井孔段中,高导水泥填充于定向井孔的孔壁与定向井管的管壁之间,地下封闭取热系统的注采循环工质的冰点低于0℃。本发明可以相对增加系统在每次工质循环时于围岩中所获取的热量,即增加系统的取热量,进而可以提高系统的经济性,利于地下封闭取热技术的广泛应用。
Resumen de: CN119844074A
本发明公开了原位转化加热井用温度压力监测管柱,包括油管,所述油管的外壁上设置有压力测试工具以及温度测试工具,油管内设置有加热器,油管与油井的套管之间设置有封隔器。本发明用于在原位开采过程中实时、准确地获取油井井筒的温度、压力信息。
Resumen de: CN119844061A
本发明公开了一种干热岩地热立体井网开采方法,包括步骤:依据构建的立体井网模型呈交错的两排开凿垂直井、水平井和分支井;将两排垂直井、水平井和分支井分为注入井组和生产井组;对注入井组的分支井和生产井组的分支井进行同步对向压裂形成裂缝网络连通;向注入井组泵水并从生产井组抽采。本发明采用鱼骨井结构压裂形成复杂裂缝网络换热的方式,通过向干热岩岩层开凿两排呈交错分布的垂直井后水平对向开凿水平井,且相邻水平井之间对向开凿平行交错分布的分支井,形成鱼骨井结构,则在相邻对向分支井之间同步对向压裂后,在鱼骨井结构之间形成复杂的裂缝网络连通,连通施工操作较为方便,且能够通过大面积裂缝网络有效提升换热效率。
Resumen de: WO2024055199A1
Mainly disclosed in the present invention is a geothermal power generation system, comprising: a heat collection cover, comprising a cover body and a cover opening, wherein the cover body sequentially comprises a heat conducting layer, a thermoelectric conversion layer, and a heat dissipation layer from inside to outside, and the cover opening can face a geothermal well; a temperature measurement apparatus, capable of measuring the heat collection temperature of the heat conducting layer; a lifting/lowering apparatus; and a control circuit, controlling a distance between the heat collection cover and the geothermal well by means of the lifting/lowering apparatus according to the heat collection temperature, wherein if the heat collection temperature is higher than a set temperature interval, the heat collection cover is controlled to move away from the geothermal well, if the heat collection temperature is lower than the set temperature interval, the heat collection cover is controlled to move close to the geothermal well, and if the heat collection temperature is within the set temperature interval, the heat collection cover is controlled not to move.
Resumen de: US2025067481A1
A heat extraction system for extracting heat from a reservoir, the system including a co-axial tool configured to be placed underground, the co-axial tool having an outer pipe and an inner pipe located within the outer pipe, each of the outer pipe and the inner pipe being connected to a shoe so that a fluid flows through an annulus defined by the inner and outer pipes, reaches the shoe, and flows through a bore of the inner pipe; and a power generator fluidly connected to a chemical processing unit to receive a fluid, and also fluidly connected with a first port to the inner pipe and with a second port to the outer pipe of the co-axial tool. A temperature difference of the fluid at the power generator and at the co-axial tool drives the power generator to generate energy.
Resumen de: AU2023416997A1
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111i1111liiiii International Bureau (10) International Publication Number (43) International Publication Date W O 2024/141507 Al 04 July 2024 (04.07.2024) W IPO I PCT (51) InternationalPatent Classification: (81) Designated States (unless otherwise indicated, for every F24T 10/17 (2018.0 1) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, PCT/EP2023/087738 CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG, 22 December 2023 (22.12.2023) KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA, (25)FilingLanguage: English NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, (26) Publication Language: English RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV SY, TH, (30)PriorityData: TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, FR2308348 01 August 2023 (01.08.2023) FR ZA,ZMZW. (84) Designated States (unless otherwise indicated, for every (71)Applicant: CGG SERVICESSASFR/FR;27,Avenue kind of regional protection available): ARIPO (BW, CV, Carnot,91300MASSY(FR). GH, GM, KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST, (72) Inventors: PETER-BORIE
Resumen de: WO2025077225A1
Disclosed in the embodiments of the present application is a geothermal exploitation system, comprising an interference-free well, an exploitation well and a recharge well, the recharge well being located upstream of the interference-free well, and the exploitation well being located downstream of the interference-free well. This solution combines two geothermal exploitation techniques, i.e., water extraction and recharge and interference-free well heat exchange, but does not simply superpose the two techniques. Specifically, the hydraulic gradient of a heat storage flow field between upstream and downstream of the interference-free well can be further additionally increased while the exploitation well and the recharge well utilize geothermal energy, so as to increase the flow rate of underground water and promote the recovery of a geothermal field. As the flow rate of underground water of the heat storage flow field is increased, the heat exchange efficiency of an interference-free heat exchange system tends to gradually increase, and thus the phenomenon of heat and cold accumulation of the interference-free heat exchange system can be effectively alleviated.
Resumen de: WO2025079002A1
A fissure with controlled geometry is formed in hot dry rock by iterative application of increasing mechanical and hydraulic stresses in which the mechanical stress is applied by a contact device with typically opposing contact elements to incrementally open a mouth portion of the fissure while the hydraulic stress is used to then expand the fissure. However, it is also contemplated that the contact device may also be used for expansion and/or propagation of existing fissures that are naturally occurring or initiated by hydraulic fracturing. Fissures created with the devices and methods presented herein will avoid thermal bottlenecks in thermally conductive materials placed within such fissures. Moreover, the wide mouth portion of such fissures will help ensure continuous heat transfer from the thermally conductive materials placed within such fissures to a thermally conductive materials placed within a wellbore from which the fissures originate.
Resumen de: US2025122865A1
Provided is a method of constructing a geothermal heat exchanger comprised of a geothermal well(s) that maximizes heat transfer from sweet spots of geothermal energy of a geothermal reservoir to the geothermal well(s). The method involves dynamically identifying the sweet spots, and selecting a predetermined shape and/or increasing a dimension of the geothermal well(s) within the sweet spots to increase a surface area of contact between the geothermal well(s) and the sweet spots. The method further involves calculating a mathematical best fit line to minimize a distance between the geothermal well(s) and the sweet spots, and forming at least a part of the geothermal well(s) to, or to a proximity of, the sweet spots along the mathematical best fit line. Methods may include increasing an effective thermal radius of the geothermal well(s) by geothermal fracturing, geothermal acidizing, or geothermal multilateral wells, and embedding thermal energy storage (TES) materials therein.
Resumen de: GB2634584A
Methods and systems are provided for extracting thermal energy from a geothermal reservoir. One aspect involves drilling at least one sidetrack that extends from a primary wellbore and intersects at least one fracture target in the geothermal reservoir. The at least one sidetrack can be configured to increase fluid flow into the primary wellbore from the at least one fracture target. The increase of fluid flow into the primary wellbore from the at least one fracture target as provided by the at least one sidetrack can increase the amount of captured heat from the geothermal reservoir.
Resumen de: JP2025063387A
【課題】掘削孔に地中熱交換器を安全に適正な落下速度で挿入できる。【解決手段】掘削ヘッド21のロッドレデューサー23の下端に、ブレーキ付きウインチ3を取り付ける。掘削機械のウインチ24の第3のワイヤ25の下端にウエイト6を接続し、掘削孔17の井戸口に持って行く。次に、図5の挿入工程2に示すように、ウエイト6を掘削機械1のクランプ15で挟み、第3のワイヤ25をウエイト6から切り離す。次に、クランプ15に挟んだウエイト6に、必要な数だけの追加のウエイト6を接続し、必要な重さにする。【選択図】図2
Resumen de: CN119826375A
本发明属于水源热泵技术领域,具体公开了一种矿井水结合水源热泵供暖循环系统,地下水源热泵,地下水源热泵上连接有辅热装置以及防堵式进水装置;地下水源热泵的底部具有水源热泵进水管以及水源热泵排水管,水源热泵进水管远离地下水源热泵的一端连接在辅热装置上,防堵式进水装置连接在防堵式进水装置上,通过防堵式进水装置塞入矿井内抽取矿井内部水源,随后水源经过辅热装置借助环境热能对矿井水进行辅助加热,使得矿井水进入地下水源热泵后通过换热器得到更多的热能。
Resumen de: CN119826353A
本发明涉及热泵热水设备技术领域,具体涉及一种智能多源热泵热水装置,包括热泵箱基体,所述热泵箱基体的内壁固定安装有隔断板,隔断板的上方形成有蒸发腔,隔断板的下方形成有冷凝腔,热泵箱基体的顶部配置安装有排风扇。本发明克服了现有技术的不足,通过冷凝管一先与冷凝腔内部的水进行加热使用,流经冷凝管一的气体介质能够在后续进入到换热腔内部,由冷凝管一进入冷凝盘的高温介质流失将会降低,从而提高介质在冷凝腔内部流动的时间,从而能够通过冷凝盘表面的换热翅片对冷凝腔内部的水进行高效的热交互,从而能够对冷凝腔内部的水进行高效加热使用。
Resumen de: CN119825291A
本发明公开了一种用于钻孔孔壁修复的自动注浆装置及施工方法,自动注浆装置,包括:浆液箱,用于装载浆液;注浆锚杆,与所述浆液箱连接;注浆泵,包括:液氮箱,装载液氮;冷水箱,装载第一冷却液,所述第一冷却液的温度低于液氮的沸点;热水箱,装载第二冷却液,所述第二冷却液的温度高于液氮的沸点;导热管,盘绕于所述液氮箱,所述导热管可选择地与所述冷水箱或所述热水箱连通,以将所述液氮液化或气化;可移动推杆,可移动地设于所述液氮箱与所述浆液箱之间,当所述液氮气化时,推动所述可移动推杆以对所述浆液箱加压,使浆液注入所述注浆锚杆中。本发明通过温度控制实现气压驱动的效果,降低了钻孔修复的成本,提高了安全性。
Resumen de: CN119825391A
本发明涉及隧道施工技术领域,尤其涉及一种高地温地层隧道分步开挖装置及施工方法。分步开挖装置,包括:破碎组件和冷缩气体供应机构;所述破碎组件包括固定杆、外框架和隔离板,所述固定杆竖向固定安装在掌子面的中间,所述外框架的轮廓为掌子面轮廓的一半,外框架的侧边转动安装在所述固定杆上;所述隔离板安装在所述外框架中,并能沿垂直于掌子面方向相对外框架移动,所述隔离板、外框架和掌子面围成冷缩气体流动空间,所述隔离板上开设有进气孔和出气孔,所述冷缩气体供应机构与所述进气孔连通。通过控制高温岩体的热胀冷缩过程,实现隧道的静态、分步、快速开挖,提高了施工效率,保障了施工安全。
Resumen de: CN119825468A
本发明属于能源管理领域,涉及电力调峰技术,用于解决现有技术中无法高效消纳和利用波动性的可再生能源,以降低电力系统的调峰负担的问题,具体是基于工业烟气的废弃油气井碳封存与储能调峰系统,包括烟气注入子系统、深地碳封存及储能联合子系统和地热增强的压缩烟气发电子系统,烟气注入子系统包括压缩装置,压缩装置的入口与工厂排放烟气出口连通,压缩装置与热量回收装置连接进行换热;本发明是通过三个子系统的协同工作,取消烟气中二氧化碳富集的高耗能分离过程,并自发利用地热资源,将弃用地层作为光伏风电储能和自发碳封存的介质,将富余的光伏风电等待储能源转化为压缩烟气势能。
Resumen de: CN119826396A
本发明涉及一种一种用于铁路路桥过渡段冻害防治的能源桩系统及使用方法,能源桩系统包括桥桩埋管子系统、热泵机组、路基布管子系统和供能子系统,可利用能源桩技术将换热管植入路桥过渡段桩基础和冻害路基内部形成闭合回路,通过制冷剂在换热管回路循环流动实现热量交换,使得在寒冷季节将冻结深度控制在有害临界范围之内,并使冻结锋面保持在地下水毛细迁移高度以上,进而有效消除水分对冻胀的影响,在气温回暖时可延缓冻胀区双向融化速度,防止出现翻浆冒泥、沉降过大等冻害现象。本发明的有益效果在于:能够有效利用恒温带和增温带的浅层地热能,实现路桥过渡段冻害问题的“热能转化式”主动控温防治,具有良好的应用前景。
Resumen de: CN119826384A
本发明涉及地热开发技术领域,提供一种用于中深层地热井开发的开式同井换热装置,包括井口装置、主体部件和温度监测装置。井口装置设有换热介质采出孔和换热介质注入孔,采出孔和注入孔均通过地面换热管线与换热器循环连接;主体部件包括换热管柱串、套管和换热机组,换热管柱串和套管均设于井口装置的底部,换热管柱串的内部构造出换热采出通道,换热采出通道与换热介质采出孔连通,换热管柱串和套管之间构造出井下回注通道,井下回注通道与换热介质注入孔连通;温度监测装置设于换热管柱串和套管之间。本发明将现有技术中的废弃井改造为地热井时可进行同井开发,以达到“取热不取水”的目的,进而实现地热资源清洁高效利用的目的,延长废弃井的服务年限。
Resumen de: CN119825296A
本发明公开了一种基于能源桩的隧道地热防冻系统,涉及隧道地热防冻技术领域,包括隧道、隧道内热交换器、热泵机组和多组隧道能源桩,所述多组隧道能源桩连接有隧道桩基础内热交换器,所述隧道内热交换器、热泵机组和隧道桩基础内热交换器之间通过管道循环连接,本发明提供,通过隧道能源桩的钢筋混凝土桩体包裹住热交换管二,起到吸热和承载的作用,把换热管二埋设在桩基中与热泵系统相连,隧道能源桩和周围土体进行热量交换,热泵机组将热量进行循环以达到预期保温隧道的作用,衬砌里面的热交换管为隧道内部持续供暖,而且将隧道能源桩桩基作为换热井这样既可减少地源热泵系统的打井环节,也可减少换热井的灌浆回填工序。
Resumen de: WO2023199183A1
The invention relates to a tubing apparatus (101, 201) for use in a geothermal well (100). The tubing apparatus (101, 201) includes a vacuum insulated tubing string (102, 202) describing a conduit (122, 222) and a cooling string (107, 207) received within the conduit (122, 222). The conduit (122, 222) is configured to convey a working fluid between a surface location (A) and a subsurface location (B). The cooling string (107, 207) is configured to inject a cooling fluid into the conduit (122, 222) so as to adjust the temperature of the working fluid.
Resumen de: CN119804549A
本发明涉及岩心夹持器技术领域,提出了一种一种裂缝内对流传热实验岩板夹持装置及方法,其包括装置本体,装置本体两侧相对设有第一集成块和第二集成块,装置本体还包括活动连接的第一压盖和第二压盖,第一压盖和第二压盖均设有用于放置岩板的容纳槽,第一压盖和第二压盖连接并在两岩板之间形成模拟裂缝,第一压盖和第二压盖均开设有滤液出口,两滤液出口均与容纳槽连通,其能够用于流体裂缝内对流传热实验,全面、准确地评价流体在裂缝内的对流传热规律,并综合流体滤失对流体裂缝内对流传热效果的影响,得到更加准确的对流传热数据。
Resumen de: CN119802898A
本发明涉及重力热管监测技术领域,公开了一种基于重力热管的中深层地热源热泵监测方法,包括:基于重力热管的功能分区位置信息以及历史数据设置多类型监测点;基于每种类型监测点获取对应的监测数据集,并获取全部监测点的监测数据集生成当前监测时间节点的综合监测数据集D;基于监测点历史数据构建运行状态识别模型,并结合全部运行状态识别模型生成运行状态识别模型库;结合当前监测时间节点的综合监测数据集D以及运行状态识别模型库生成当前监测时间节点的地热源热泵的运行状态评价值。本发明能够全面、准确地监测地热源热泵的运行状态,为系统的优化运行和故障诊断提供有力支持。
Nº publicación: CN119807581A 11/04/2025
Solicitante:
中国电建集团西北勘测设计研究院有限公司
Resumen de: CN119807581A
本发明公开了一种地热储量的动态计算方法,属于地热储量估算技术领域,能够解决现有计算方式无法准确反映地热储层的复杂动态特性,导致储量计算结果与实际情况误差较大的问题。所述方法包括:S1、确定目标区域在目标深度处的当前热储温度,并根据当前热储温度确定目标区域中热储岩石的孔隙度的温度影响系数;S2、确定孔隙度的压力影响系数和流体影响系数,并根据温度影响系数、压力影响系数和流体影响系数确定热储岩石的当前孔隙度;S3、根据当前热储温度和当前孔隙度确定目标区域的当前地热储量。本发明用于地热储量的估算。