Resumen de: WO2024068362A1
Wind turbine, comprising a rotor, a generator (6) driven by the rotor for producing energy, and an energy conversion device (7) comprising at least one energy conversion module (10) operatable both in an electrolyzer mode to produce hydrogen by electrolyzing water using energy provided by the generator (6) in a first operational mode of the wind turbine (1) and in a fuel cell mode to produce energy by reacting hydrogen and oxygen in a second operational mode of the wind turbine (1), wherein the energy conversion module (10) is switchable between the electrolyzer mode and the fuel cell mode.
Resumen de: WO2025098664A1
The present invention relates to a powdered catalyst material which is particularly suitable for the oxygen generation reaction in the electrolysis of water. The catalyst material comprises an unsupported ruthenium-iridium oxide, wherein the ratio of the proportions by weight of iridium (Ir) to ruthenium (Ru), in relation to the total weight of the unsupported ruthenium-iridium oxide, is not greater than 4.5. The non-supported ruthenium-iridium oxide exhibits a powder conductivity of at least 30 S/cm. The invention also relates to a method for producing such a powdered catalyst material, a composition, a catalyst layer, an electrode and an electrochemical device containing the powdered catalyst material, as well as a method for producing hydrogen using the powdered catalyst material.
Resumen de: DE102023211334A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend mindestens einen eine Vielzahl von Elektrolysezellen aufweisenden Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird, das in dem mindestens einen Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (9) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) abgeführt wird. Erfindungsgemäß wird beim Abschalten der Elektrolyseanlage (1) ein reduzierter Stackstrom aufrechterhalten und mit Hilfe des Stackstroms sowie eines zellseitigen Rekombinationskatalysators (10) wird anodenseitig vorhandener Sauerstoff mit Wasserstoff, der von der Kathodenseite auf die Anodenseite diffundiert, zu Wasser rekombiniert.Die Erfindung betrifft ferner eine Elektrolyseanlage (1), die zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Resumen de: WO2025099113A1
The invention relates to an electrolysis system comprising an electrolyzer (1) that has an inlet (2) through which a liquid can be introduced and an outlet (3) through which the liquid or gas can be discharged. The outlet (3) is connected, via an outlet line (4), to a gas-liquid separator (5) in which the gas exiting the electrolyzer (1) is separated from the exiting liquid. The inlet (2) can be connected to a pressure tank (10) in which liquid is kept available under a flushing pressure.
Resumen de: WO2025099110A1
The invention relates to an electrolysis system comprising an electrochemical stack (1) that has an inlet (8) through which water can be introduced and comprising an outlet (9) through which water or gas can be discharged out of the stack (1). The outlet (9) is connected, via a line (10), to a gas-water separator (11) in which the gas exiting the stack (1) is separated from the exiting water. The gas-water separator (11) is connected to a water tank (20) via a discharge line (13) in order to store the separated water, wherein the water tank (20) is connected to the inlet (8) of the stack (1) via a flushing line (22).
Resumen de: WO2025099646A1
The present disclosure relates generally to integrated processes for producing a H2/CO stream from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide from biogas and methane from biogas; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H2/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: WO2025097294A1
Disclosed in the present application are an apparatus for producing hydrogen from alkaline water and a system for producing hydrogen. The apparatus for producing hydrogen comprises an alkaline-water electrolytic cell, wherein a plurality of electrode plates are inserted into the alkaline-water electrolytic cell, and the plurality of electrode plates are sequentially arranged at set intervals; when the electrode plates are powered on, the plurality of electrode plates are arranged in a manner that an anode and a cathode face each other; and at least some of the plurality of electrode plates are each provided with an elastic assembly. In the present application, an elastic assembly is provided in an electrode plate to push the anode to the cathode as much as possible, thereby reducing the voltage of a unit cell; in addition, during process control, a gas-phase pressure on the anode side is maintained higher than that on the cathode side, such that the purity of a gas generated by means of an electrolytic reaction is reduced, and the safety of the electrolytic cell and process for producing hydrogen from alkaline water is improved.
Resumen de: WO2025097201A1
The present invention relates to a method of producing an electrocatalyst, an electrocatalyst obtained by the method, an electrode coated with the electrocatalyst, an electrolyser comprising the electrode and a method of producing hydrogen using the electrolyser In particular, the present invention relates to a bimetallic electrocatalyst for use in hydrogen evolution reaction (HER).
Resumen de: US2025154016A1
The present invention relates to a plant for the synthesis of ammonia, wherein the plant includes at least one reformer for converting a hydrocarbon into hydrogen, wherein the plant includes a converter for converting hydrogen and nitrogen into ammonia, wherein the converter is integrated into a recirculation loop, wherein a first carbon dioxide separator is arranged between the reformer and the recirculation loop, wherein the recirculation loop includes an ammonia separator.
Resumen de: US2025158098A1
The present invention relates to a process for the preparation of a membrane (M) containing a sulfonated polyarylenesulfone polymer (sP), the membrane (M) obtained by the inventive process, a fuel cell, an electrodialysis cell and an electrolytic cell comprising the membrane (M), the use of the membrane (M) in an electrolytic cell, an electrodialysis cell or a fuel cell and a process for the preparation of electrical energy and/or hydrogen.
Resumen de: US2025154670A1
An electrolysis cell comprises two elements, each comprising a central portion defining an anode chamber and a cathode chamber, respectively, and a circumferential flange portion, a sheet-like separator with a circumferential edge, the separator being disposed between the two elements and separating the anode and cathode chambers, and a sealing arrangement comprising at least a first and a second gasket, wherein the sealing arrangement is disposed in a gap between the flange portions, wherein the first gasket is an inner gasket positioned in a portion of the gap adjacent to the chambers and the second gasket is an outer gasket positioned in a portion of the gap distant to the chambers, wherein the gaskets are spaced apart from each other in the gap at an interval, and wherein the circumferential edge of the separator is located radially between a midpoint of the first gasket and a midpoint of the second gasket.
Resumen de: US2025154665A1
The present invention provides an oxyhydrogen preparation device capable of adjusting hydrogen content and a using method thereof. The device comprises a housing for accommodating an oxygen production device, a hydrogen production device, a control module (14), and a power supply module (19), wherein the power supply module (19) is configured to supply power to each said device; the oxygen production device is configured to separate oxygen from air and store the oxygen for backup supply; the hydrogen production device is configured to produce hydrogen or oxyhydrogen for backup supply based on the principle of water electrolysis; the control module (14) is configured to control and adjust the oxygen flow, detect the oxygen concentration, and adjust the flow of the oxyhydrogen and the hydrogen content to a preset range; and the oxygen produced by the oxygen production device converges with the hydrogen or the oxyhydrogen produced by the hydrogen production to a gas outlet (17) of the oxyhydrogen gas preparation device through a pipeline, and then discharged after humidification or discharged directly. Further disclosed is a using method of the device. The advantages such as long service life, adjustable hydrogen content, adjustable oxyhydrogen flow are achieved.
Resumen de: US2025152354A1
A tubular system comprising a catheter is configured to deliver an implant into the heart. The implant comprises a coupling head and a tissue-engaging element that comprises a first electrode. A driver is configured to, via engagement with the coupling head, (i) advance the implant out of a distal end of the tubular system and place the tissue-engaging element in contact with tissue of the heart, and (ii) secure the implant within the heart by fastening the tissue-engaging element to the tissue. A control unit, electrically couplable to (i) the first electrode via the driver, and (ii) a second electrode contacting the subject, is configured, to (i) receive an electrical signal from the electrodes, and (ii) based on the electrical signal, display information indicative of contact between the first electrode and the tissue. Other embodiments are also described.
Resumen de: US2025155119A1
Combustion process, comprising: a) a production step of a binary fuel gas consisting of hydrogen and at least of between 5 and 50 vol % of nitrogen, preferably between 15 and 35 vol % nitrogen, and b) a combustion step using as only fuel gas the binary fuel gas at a combustion chamber able to receive as fuel gas the binary fuel gas, wherein the combustion chamber is selected from the group of furnaces and fired process heaters.
Resumen de: US2025154882A1
An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
Resumen de: US2025158099A1
Method of manufacturing of a membrane with surface fiber structure, in particular for use in an electrolyzer or fuel cell, by inserting the polymer membrane into the vacuum chamber equipped with a magnetron sputtering system with a cerium oxide target in which an atmosphere of O2 and inert gas is formed and igniting the plasma which leads to simultaneous plasma etching of the membrane surface and deposition of cerium oxide onto the surface of etched membrane resulting in formation of fibers. The membrane is made of polymer and on at least one of its sides features porous surface made of fibers, the cross-sectional dimensions of which are lower than their length and which are integral and inseparable part of membrane body.
Resumen de: AU2023374771A1
Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.
Resumen de: WO2025101135A1
The invention relates to a pure hydrogen gas production system (A) for use in the field of hydrogen production technologies for various applications such as energy storage, fuel cells and industrial chemistry processes, characterized in that; at least a water inlet nozzle (30) for the introduction into the system (A) of water to which potassium hydroxide has been added, at least one anode acting as the positive pole (60) and at least one cathode (70) acting as the negative pole during the electrolysis process, conductive plates (100) that ensure efficient delivery of electric current to the electrolysis cell, at least one palladium alloy membrane (90) with high selectivity and permeability, which is positioned in the space (102) formed in the body of said conductive plates (100), and which enables the separation of pure hydrogen gas by purifying the HHO gas produced as a result of the separation of water molecules by the electric current passing between said anode (60) and cathode (70) during the electrolysis process.
Resumen de: WO2025099872A1
An electrolytic cell (3) comprises: a hydrogen electrode chamber (12); an oxygen electrode chamber (13); a metal support body (6) having a plurality of communication holes (6a) formed in a first main surface (6b); and a cell body section (7) disposed on the first main surface (6b). The cell body section (7) comprises: a hydrogen electrode (14) formed on the first main surface (6b) and disposed in the hydrogen electrode chamber (12); an oxygen electrode (15) disposed in the oxygen electrode chamber (13); an electrolyte (16) disposed between the hydrogen electrode (14) and the oxygen electrode (15); and a current collection member (18) disposed on the oxygen electrode (15) and inside the oxygen electrode chamber (13). The pressure in the oxygen electrode chamber (13) is higher than the pressure in the hydrogen electrode chamber (12).
Resumen de: WO2025099844A1
An electrolytic cell system (1) comprises: a plurality of cell stacks (11); a control device (40, 40a); and a power source (30). The plurality of cell stacks (11) generate a generated gas containing hydrogen by electrolyzing a raw material gas containing water. The plurality of cell stacks (11) are electrically connected in parallel. The control device (40, 40a) controls the operation of the plurality of cell stacks (11). The plurality of cell stacks (11) include two or more cell stacks (11) in which the steady power required for steady operation near thermal neutral voltage is mutually different. The control device (40, 40a) suspends the operation of at least one cell stack (11), of the two or more cell stacks (11), in a manner approximate to the amount of decrease in the power supplied from the power source (30).
Resumen de: WO2025100112A1
A production method for hydrogen according to the present invention includes a step for electrolyzing an electrolytic solution that has been heated to a temperature between a lower limit temperature that is at least 100°C and at least the melting point and an upper limit temperature that is less than the boiling point, the electrolytic solution being composed of sodium hydroxide, potassium hydroxide, and water and satisfying expressions (1)-(3). (1) 4≤x≤14. (2) 51≤y≤71. (3) 15≤z≤45.
Resumen de: WO2025099868A1
An electrolysis cell system (1) comprises an electrolysis cell (10), a first supply path (L1), a second supply path (L2), a first pressure adjustment unit (60), a second pressure adjustment unit (80), and a controller (130). The electrolysis cell (10) has a hydrogen electrode chamber (12) and an oxygen electrode chamber (13). The first supply path (L1) supplies a raw material gas containing water vapor to the hydrogen electrode chamber (12). The second supply path (L2) supplies compressed air to the oxygen electrode chamber (13). The first pressure adjustment unit (60) is provided in the first supply path (L1). The second pressure adjustment unit (80) is provided in the second supply path (L2). The controller (130) controls the first pressure adjustment unit (60) and the second pressure adjustment unit (80) to adjust a first pressure in the hydrogen electrode chamber (12) and a second pressure in the oxygen electrode chamber (13).
Resumen de: WO2025097621A1
A hydrogen refueling station, a hydrogen energy automobile, and a hydrogen refueling system. The hydrogen refueling system comprises a decomposition device (10), a transfer device (20), a storage device (30) and a recombination device (40); the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to transport hydrogen into the storage device and discharge oxygen into the environment; the storage device is configured to store the hydrogen transported by the transfer device; the recombination device is configured to receive the hydrogen provided by the storage device and the oxygen in the environment, and the hydrogen and the oxygen react in the recombination device to generate a current. When the hydrogen refueling system of the present invention is used for hydrogen refueling of the automobile, a way to perform real-time hydrogen production and hydrogen refueling is used, such that it is not necessary to build a large hydrogen storage tank, which saves the long-distance transportation of hydrogen and reduces the construction cost and operation cost of a hydrogenation system.
Resumen de: DE102023211251A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend mindestens einen Stack (2) mit einer Anode (2.1) und einer Kathode (2.2), wobei im Normalbetrieb- der Anode (2.1) über eine Wasserleitung (3) Wasser, insbesondere deionisiertes Wasser, aus einer Wasseraufbereitung (4) zugeführt wird,- aus der Anode (2.1) über eine erste Auslassleitung (5) im Stack (2) produzierter Sauerstoff abgeführt wird und- aus der Kathode (2.2) über mindestens eine weitere Auslassleitung (6, 7) im Stack (2) produzierter Wasserstoff aus der Kathode (2.2) abgeführt wird. Erfindungsgemäß wird bzw. werden im stromlosen Zustand der Elektrolyseanlage (1), insbesondere bei einem Not-Aus, die Anode (2.1) und/oder die Kathode (2.2) gespült, wobei zum Spülen Wasser, insbesondere deionisiertes Wasser, verwendet wird, das in mindestens einem Wasserreservoir (8) vorgehalten und über mindestens eine Spülleitung (9) mit integriertem Ventil (10), das stromlos die Spülleitung (9) mit der Wasserleitung (3) oder einer von zwei kathodenseitigen Auslassleitungen (6, 7) verbindet, der Anode (2.1) und/oder der Kathode (2.2) zugeführt wird.Die Erfindung betrifft ferner eine Elektrolyseanlage (1), die zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Resumen de: DE102023211184A1
Elektrolysemodul (1) mit einem Elektrolysestack (2), der eine Vielzahl elektrolytischer Zellen (3) zur elektrochemischen Spaltung von Wasser in Wasserstoff und Sauerstoff, und mit einem Leistungselektronikmodul (5) zur Versorgung des Elektrolysestacks (2) mit einer elektrischen Spannung, wobei das Leistungselektronikmodul (5) und der Elektrolysestack (2) auf einem gemeinsamen Trägerrahmen (10) montiert sind. Im Trägerrahmen (10) ist zumindest ein Hohlrohr (20) ausgebildet zur Durchleitung von Flüssigkeiten, Strom und/oder elektrischen Signalen zur Versorgung des Leistungselektronikmoduls (5) und/oder des Elektrolysestacks (2).
Resumen de: WO2025101433A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Resumen de: EP4553037A1
The invention concerns a method for producing hydrogen by continuous-flow photocatalytic water splitting allowing higher water concentration to be attained in the reaction volume and therefore higher rates of reaction in comparison with the prior art. The invention also concerns an associated apparatus.
Resumen de: EP4553193A1
The present disclosure relates generally to integrated processes for producing H<sub>2</sub> and CO from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H<sub>2</sub>/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.
Resumen de: EP4553195A1
This control device for a hydrogen production apparatus is intended to be used for a hydrogen production apparatus including an electrolyzer for electrolyzing water and a rectifier for supplying a direct-current electric power to the electrolyzer, the control device being provided with: a voltage control unit which is configured so as to adjust an output voltage output from the rectifier to the electrolyzer in such a manner that the output voltage of the rectifier is coincident with a set voltage; and a voltage set unit which is configured so as to set the set voltage to a first voltage that is larger than a rated voltage for the electrolyzer in at least a portion of the period during the start-up of the hydrogen production apparatus.
Resumen de: CN119403757A
The invention relates to a method for cracking ammonia gas, comprising:-feeding a first portion of the ammonia gas into a burner (14) arranged in a cracking vessel (12); -feeding an oxygen-containing gas into the burner (14); -combusting a first portion of the ammonia gas, forming a combustion zone (101) in the cracking vessel (12), generating heat; feeding a second portion of the ammonia gas into a cracking zone (102) of the cracking vessel (12) outside the combustion zone (101); and-cracking the second portion of the ammonia gas with heat generated by combustion of the first portion of the ammonia gas and generating a product gas comprising hydrogen and nitrogen from the second portion of the ammonia gas. The invention also relates to a cracking device (10) for cracking ammonia gas.
Resumen de: CN119497766A
The method 5 of operation of an electrolysis system with periodic polarity reversal in order to activate and/or regenerate electrodes (4, 5) in an electrolysis system (1), the polarity between the electrodes (4, 5) is periodically reversed, which results in the production of hydrogen gas in the oxygen gas in the anode chamber (2). In order to prevent the occurrence of explosive gas mixtures in the system, the duration of the activation and/or regeneration period 10 is limited to less than 2% of the duration of the normal production period.
Resumen de: AU2023303893A1
An estimation system for estimating current efficiency of an electrolyser comprises a data processing system (105) for computing heat loss of the electrolyser based on specific heat capacity of electrolyte, a flow rate of the electrolyte in a cathode side of the electrolyser, a flow rate of the electrolyte in an anode side, a temperature difference (T1c - T0c) between electrolyte circulation outlet and inlet of the cathode side, and a temperature difference (T1a - T0a) between electrolyte circulation outlet and inlet of the anode side. The current efficiency is estimated based on a difference between electric power supplied to the electrolyser and the computed estimate of the heat loss, and on a product of thermoneutral voltage of electrolysis cells of the electrolyser and electric current supplied to the electrolyser.
Resumen de: CN119547229A
The invention relates to a bipolar plate (100) for a chemical energy converter (200, 300). The bipolar plate (100) comprises:-a plurality of channels (101) for conducting an operating medium of the energy converter (200, 300),-a plurality of supply openings (103) for supplying the plurality of channels (101) with an operating medium,-a plurality of distribution channels (105) for distributing the operating medium onto the plurality of channels (101), each distribution channel (105) of the plurality of distribution channels (105) extends between a corresponding supply opening (103) of the plurality of supply openings (103) and a corresponding channel (101) of the plurality of channels (101), and wherein the distribution channels (105) of the plurality of distribution channels (105) extend between the corresponding supply opening (103) of the plurality of supply openings (103) and the corresponding channel (101) of the plurality of channels (101). Each supply opening (103) of the plurality of supply openings (103) has an at least partially curved edge region at least on a distribution channel side facing a corresponding distribution channel (105) of the plurality of distribution channels (105).
Resumen de: WO2024010614A1
The objective of the present invention is to take advantage of new and improved processes and catalysts that can facilitate the efficient, direct CO2 conversion (CO2C) reaction to e-methane at temperatures less than about 350°C in one step.
Resumen de: AU2023264575A1
Provided herein are systems and methods for generating hydrogen and ammonia. The hydrogen is generated in an anion exchange membrane-based electrochemical stack. The hydrogen generated in the stack may be used to generate ammonia or may be used for other applications requiring hydrogen. The feedstock for the anion exchange membrane-based electrochemical stack may be saline water, such as seawater. A desalination module or a chlor-alkali stack may be used to treat the saline water prior to electrolysis in the anion exchange membrane-based electrochemical stack.
Resumen de: AU2024267011A1
An electrolyzer stack is configured for high-speed manufacturing and assembly of a plurality of scalable electrolysis cells. Each cell comprises a plurality of water windows configured to maintain a 5 pressure loss, temperature rise and/or oxygen outlet volume fraction below predetermined thresholds. Repeating components of the cells are configured based on a desired roll web width for production and a stack compression system is configured to enablea variable quantity and variable area of said repeating cells in a single stack. A high-speed manufacturing system is configured to produce scalable cells and assemble scalable stacks at rates in excess of 1,000 MW-class stacks per year. 21352245_1 (GHMatters) P123344.AU.1
Resumen de: AU2024267011A1
An electrolyzer stack is configured for high-speed manufacturing and assembly of a plurality of scalable electrolysis cells. Each cell comprises a plurality of water windows configured to maintain a 5 pressure loss, temperature rise and/or oxygen outlet volume fraction below predetermined thresholds. Repeating components of the cells are configured based on a desired roll web width for production and a stack compression system is configured to enablea variable quantity and variable area of said repeating cells in a single stack. A high-speed manufacturing system is configured to produce scalable cells and assemble scalable stacks at rates in excess of 1,000 MW-class stacks per year. 21352245_1 (GHMatters) P123344.AU.1
Resumen de: WO2025093251A1
An energy production and storage system comprises a power input connection (10) for a renewable energy source (2); an electrolysis device (16) for electrolysis of water to produce oxygen, hydrogen, and heat; an electrical energy storage device (14); a two-way grid connection (12) coupled to an external electrical grid (4); and a controller (8). The controller (8) is configured to: (i) receive information relating to: actual or potential energy production from the renewable energy source (2), the amount of stored energy in the electrical energy storage device (14), and balancing requirements for the external electrical grid (4); (ii) use the energy from the renewable energy source (2) to power the electrolysis device (16) and/or for storage in the energy storage device (14); and (iii) based on the received information, operate the energy production and storage system as a balancing service provider by either: drawing power from the grid (4) to supply the electrolysis device (16), or supplying power to the grid (4) from the electrical energy storage device (14), thereby acting as a switch to aid in balancing for the external electrical grid (4).
Resumen de: US2025149608A1
A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes adding heat to (or removing heat from) a salinity gradient generator configured to generate a more concentrated and a less concentrated saline solution. The method further includes drawing the more concentrated saline solution and the less concentrated saline solution from the salinity gradient generator and feeding the more concentrated saline solution and the less concentrated saline solution into a power generator. Feeding the saline solutions into the power generator causes the power generator to receive the saline solutions and generate power by performing a controlled mixing of the more concentrated saline solution and the less concentrated saline solution. The method further includes drawing, from the power generator, a combined saline solution comprising the mixed saline solutions and feeding the combined saline solution to the salinity gradient generator.
Resumen de: AU2024227242A1
Abstract To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an 5 electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. Thecatalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part 10 (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 m or less.
Resumen de: AU2023373022A1
This determination method determines whether or not an object molecule containing elemental hydrogen is an electrolyzed hydrogen-containing molecule which contains a hydrogen molecule that is produced by water electrolysis or a molecule that is produced using a hydrogen molecule as a starting material. This determination method determines that the object molecule is an electrolyzed hydrogen-containing molecule if the deuterium abundance ratio relative to light hydrogen in the object molecule is equal to or lower than a predetermined threshold value that is lower than the deuterium abundance ratio relative to light hydrogen in nature.
Resumen de: WO2025092472A1
Disclosed in the present invention is a system for the on-line conversion of a sodium source into heat energy and hydrogen. A reactor is filled with hydrogen prior to a reaction, and liquid sodium and water vapor are injected into the reactor; when the water vapor comes into contact with the liquid sodium, a combustion reaction occurs to generate hydrogen and sodium hydroxide, and the water vapor which does not participate in the reaction absorbs heat to form high-temperature water vapor having a higher temperature; the temperature of a gas mixture of the hydrogen and the high-temperature water vapor is lower than 70°C after passing through a heat exchanger, the high-temperature water vapor is condensed into water and flows back to the bottom of the reactor, and the hydrogen is discharged from a hydrogen collecting pipe via a pressure relief valve; and a drain valve is controlled during the combustion reaction, and the height of a sodium hydroxide solution is made to be lower than the outlet end of a water vapor injection pipe. Potential safety hazards such as explosions caused by the reaction of sodium with water in the prior art are avoided, a heat source having a relatively high temperature and hydrogen can be formed, and the operation cost is reduced.
Resumen de: WO2025093091A1
An alkaline electrolyzer comprising a stack (17) of electrolytic cells (1) for producing hydrogen gas (8). Each of the cathode compartments (5) comprises a cathode gas outlet (23A) into a cathode electrolyte return conduit (28), the downstream end (41) of which is connected to a hydrogen purifier (33) configured for providing purified hydrogen gas by removing oxygen from the gas received from the cathode electrolyte return conduit (28). A cathode gas recirculation system (38) connects a downstream end of the hydrogen purifier (32, 33) to an upstream end (40) of the cathode electrolyte return conduit (28) for supplying purified hydrogen gas to the cathode electrolyte return conduit (28). Each of the anode compartments (6) comprises an anode gas outlet (23B) into an anode electrolyte return conduit (28), the downstream end (41) of which is connected to an oxygen purifier (33) which removes hydrogen from the gas coming from the anode electrolyte return conduit (28). An anode gas recirculation system (38) connects a downstream end (41) of the oxygen purifier (33) to an upstream end (40) of the anode electrolyte return conduit (28) for supplying purified oxygen gas to the anode electrolyte return conduit (28). Hereby the electrolyzer can be operated at part load, for example below 10% of the nominal load.
Resumen de: WO2025094641A1
A separator according to the present disclosure comprises: a separator body having a first surface and a second surface; a first supply hole and a first discharge hole that are formed on one diagonal line of the separator body on the first surface and pass through the separator body; a plurality of first groove parts that are formed in a region between the first supply hole and the first discharge hole; a trapezoidal first diffusion flow path that spreads from the first supply hole to the first groove part and gradually expands in the width direction from the first supply hole toward the first groove part; a trapezoidal first convergence flow path that spreads from the first groove part to the first discharge part and gradually contracts in the width direction from the first groove part toward the first discharge hole; a first diffusion guide part that is provided in the first diffusion flow path and guides a fluid from the first supply hole to the first groove part; and a first convergence guide part that is provided in the first convergence flow path and guides the fluid from the first groove part to the first discharge hole.
Resumen de: WO2025096156A1
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Resumen de: WO2025096690A1
A cyclic process for the capture of carbon dioxide (CO2) directly from air utilizing a three-compartment electrolytic cell coupled with a hydroxide-based CO2 capture system as well as a carbonate-based CO2 capture system. Air is passed over a hydroxide compound in the hydroxide-based CO2 capture system to extract carbon dioxide from the air and produce a carbonate compound which is transferred to the carbonate-based CO2 capture system, where air is passed over the carbonate compound to extract carbon dioxide from the air and produce a bicarbonate compound. The bicarbonate is then passed into the three-compartment electrolytic cell where CO2, hydrogen and oxygen gases are separately released and the bicarbonate solution is transformed into a hydroxide solution that is reused in the hydroxide-based CO2 capture system. The flow of input compounds from one system to the other enables efficient operation of the direct air capture of carbon dioxide system.
Resumen de: WO2025096412A1
Apparatus, system, and method for geothermally driven ammonia production. Hydrogen is generated using energy obtained from the underground magma reservoir and nitrogen is captured from air using the energy obtained from the underground magma reservoir. At least a portion of the generated hydrogen is combined with at least a portion of the generated nitrogen and heated at least to a reaction temperature using the energy obtained from the underground magma reservoir. The heated hydrogen contacts the heated nitrogen for a residence time to form the ammonia.
Resumen de: US2025145457A1
A method for ammonia (NH3) decomposition to hydrogen (H2) and nitrogen (N2) includes introducing and passing a H2-containing feed gas stream into a reactor containing an industrial waste-based nickel (Ni-SMR) catalyst at a temperature of 500 to 900° C. to form a reduced Ni-SMR catalyst; introducing and passing an NH3-containing feed gas stream through the reactor in contact with the reduced Ni-SMR catalyst at a temperature of 100 to 1000° C. thereby converting at least a portion of the NH3 to H2 and regenerating the Ni-SMR catalyst particles to form a regenerated Ni-SMR catalyst, and producing a residue gas stream leaving the reactor; and separating the H2 from the residue gas stream to generate a H2-containing product gas stream.
Resumen de: US2025146622A1
Hydrogen refueling station, hydrogen-powered vehicle, and hydrogen refueling system are provided. The hydrogen refueling system comprises a decomposition device, a transfer device, a storage device, and a recombination device; wherein the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to deliver the hydrogen into the storage device and to discharge the oxygen into an environment; the storage device is configured to store the hydrogen delivered from the transfer device; the recombination device is configured to receive the hydrogen from the storage device and the oxygen from the environment, the hydrogen and oxygen reacting in the recombination device to produce an electric current. The hydrogen refueling system adopts real-time hydrogen production and refueling, thereby eliminating the need to construct large hydrogen storage tanks, and the need for the long-distance transportation of the hydrogen.
Resumen de: US2025146478A1
A well 1 is drilled or exists that passes through the earth's surface 2 and underlying rocks 3 to connect with a subterranean hydrocarbon reservoir 4 that contains hydrocarbons 5 and commonly brine 6 (which can include formation, interstitial, connate and injected water). Well 1, (there may be a plurality of well 1's) allows the contents of reservoir 4, either hydrocarbons 5 or brine 6, to flow to the surface.
Resumen de: US2025146154A1
A system and method for producing hydrogen wherein the system comprises at least one electrolyzer adapted to be located within a subterranean formation, at least one electrical supply cable having a length selected to extend from the at least one electrolyzer to a ground surface power supply, at least one supply tubing string having a length selected to extend from the at least one electrolyzer to a water supply at the ground surface and at least one collection tubing string having a length selected to extend from the at least one electrolyzer to a collection location at the ground surface. The method comprises providing a well from a surface to an underground formation, locating at least one electrolyzer in the well, supplying the at least one electrolyzer with supply electricity, supplying the at least one electrolyzer with supply water, producing hydrogen gas at the electrolyzer and collecting and transporting the produced hydrogen gas to the surface.
Resumen de: US2025146142A1
A method for the generation of a gas mixture including carbon monoxide, carbon dioxide, and hydrogen for use in hydroformylation plants, including: evaporating water to steam; feeding the steam to a solid oxide electrolysis cell (SOEC) while supplying an electrical current to the SOEC to effect a partial conversion of steam to hydrogen; utilizing the effluent SOEC gas including H2 together with CO2 from an external source as feed for a RWGS reactor in which the RWGS reaction takes place, converting some of the CO2 and H2 to CO and H2O; removing some of or all the remaining steam from the raw product gas stream by cooling the raw product gas stream allowing for condensation of at least part of the steam as liquid water and separating the remaining product gas from the liquid; using the gas mixture for liquid phase hydroformylation, while recycling CO2 to the RWGS reactor.
Resumen de: US2025146141A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Resumen de: US2025145554A1
The present invention proposes a process for producing synthesis gas, in particular synthesis gas for methanol synthesis. The process includes the steps of providing a sulfur-containing hydrocarbon stream; providing an electrolytically produced hydrogen stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the sulfur-containing hydrocarbon stream to obtain a hydrogen-enriched sulfur-containing hydrocarbon stream; desulfurizing the stream obtained according to step (c) in a hydrodesulfurization unit (HDS unit) to obtain a sulfur-free hydrocarbon stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the stream obtained according to step (d) to obtain a hydrogen-enriched sulfur-free hydrocarbon stream and converting at least a portion of the stream obtained according to step (e) into a synthesis gas stream in the presence of oxygen as oxidant in a reforming step.
Resumen de: US2025146147A1
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Resumen de: US2025145498A1
A system is provided in at least one embodiment to process water to produce gas that can be separated into at least two gas flows using a water treatment system having a disk-pack rotating in it to cause out gassing from the water. In a further embodiment, the system use the gas released from the water to produce substantially fresh water from the processed salt water.
Resumen de: US2025145504A1
The present invention relates to processes for electrolysis of water to generate hydrogen by means of osmotic membrane distillation plants, and to osmotic membrane distillation plants designed and suitable for such processes.
Resumen de: US2025145505A1
There is provided a producing device that can easily individually obtain acidic electrolyzed water, alkaline electrolyzed water, and mixed water while saving a space. A producing device includes: an electrolytic bath configured to produce acidic electrolyzed water and alkaline electrolyzed water; an adjuster configured to adjust discharge and merging of the acidic electrolyzed water and the alkaline electrolyzed water produced in the electrolytic bath; a flow rate adjuster configured to adjust flow rates of the acidic electrolyzed water and the alkaline electrolyzed water merged by the adjuster; and discharge portions capable of separately discharging the acidic electrolyzed water, the alkaline electrolyzed water, and the mixed water produced by merging the acidic electrolyzed water and the alkaline electrolyzed water.
Resumen de: DE102023211004A1
Elektrolysesystem mit einem elektrochemischen Stack (1), der einen Einlass (8) aufweist, durch den Wasser eingeleitet werden kann, und mit einem Auslass (9), durch den Wasser oder Gas aus dem Stack (1) ausgeleitet werden kann. Der Auslass (9) ist über eine Leitung (10) mit einem Gas-Wasser-Separator (11) verbunden, in dem das aus dem Stack (1) austretende Gas vom austretenden Wasser getrennt wird. Der Gas-Wasser-Separator (11) ist über eine Ablaufleitung (13) mit einem Wassertank (20) zur Speicherung des abgetrennten Wassers verbunden, wobei der Wassertank (20) mit dem Einlass (8) des Stacks (1) über eine Spülleitung (22) verbunden ist.
Resumen de: DE102023211007A1
Elektrolysesystem mit einem Elektrolyseur (1), der einen Einlass (2) aufweist, durch den eine Flüssigkeit eingeleitet werden kann, und einen Auslass (3), durch den Flüssigkeit oder Gas ausgeleitet werden kann, wobei der Auslass (3) über eine Auslassleitung (4) mit einem Gas-Flüssig-Separator (5) verbunden ist, in dem das aus dem Elektrolyseur (1) austretende Gas von der austretenden Flüssigkeit getrennt wird. Der Einlass (2) ist mit einem Drucktank (10) verbindbar, in dem Flüssigkeit unter einem Spüldruck vorgehalten wird.
Resumen de: US2025145547A1
A hydrocarbon production equipment includes: a first reaction device that receives a source gas and causes the source gas to react by using a catalyst to generate a first intermediate gas; a second reaction device that causes the first intermediate gas to react by using a catalyst to generate a second intermediate gas; a heat supplier that can supply heat for heating the catalyst to a reactor and can supply heat for heating the catalyst to the reactor; and a controller that controls an operation of the heat supplier. The controller selectively outputs a first control signal for supplying heat to each of the first reaction device and the second reaction device and a second control signal for supplying heat to only one of the first reaction device and the second reaction device to the heat supplier. The controller selects any one of the first control signal and the second control signal based on the amount of hydrogen included in the source gas.
Resumen de: US2025149600A1
A mixed metal oxide catalyst, particularly Pt and Ru containing oxide catalysts, based catalysts for polymer electrolyte membrane (PEM) fuel cells, water electrolysis, regenerative fuel cells (RFC) or oxygen generating electrodes in various electrolysis applications.
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Resumen de: WO2025091059A1
The invention relates to a cooling system for an electrolysis device for producing hydrogen, wherein the electrolysis device has at least one electrolysis stack (1) and at least one installation component, wherein the cooling system has at least two coolant circuits (2, 2') which are separate from one another, wherein a first coolant circuit (2) is designed only for cooling the electrolysis stack (1) of the electrolysis device, and a second coolant circuit (2') is provided only for cooling the installation component of the electrolysis device, and wherein the temperature of the coolant in the first coolant circuit (2) differs from the temperature of the coolant in the second coolant circuit (2').
Resumen de: EP4549630A1
The embodiments of the present disclosure disclose an electrolytic cell operation temperature control method and system based on heat balance. The method comprises: acquiring an actual cell front temperature of an electrolytic cell that is collected by a temperature collection device; if the actual cell front temperature deviates from a preset cell front temperature, controlling a refrigerant flow controller to control an inlet temperature of an electrolyte, wherein the preset cell front temperature is determined based on a preset cell end temperature, a correction coefficient, net heat power of the electrolytic cell, a volume flowrate of the electrolyte, a density of the electrolyte and a specific heat capacity of the electrolyte; within a current iteration period, determining an opening degree of the refrigerant flow controller based on the actual cell front temperature and the preset cell front temperature; and at the beginning of a subsequent iteration period, determining a set cell front temperature after iteration based on the preset cell end temperature, the correction coefficient, size information of the electrolytic cell, an actually measured voltage, an actually measured current, an actually measured surface temperature of the electrolytic cell, an actually measured ambient temperature, the volume flowrate of the electrolyte, the density of the electrolyte and the specific heat capacity of the electrolyte.
Resumen de: GB2635098A
A process for generating electricity, hydrogen, sulphuric acid and hydrogen sulphide comprising the steps of i) combusting hydrogen sulphide with air/oxygen in a combustion chamber; ii) passing the products of the combustion to generate electricity by turning a turbine or to generate steam; ii) the separation of the products of the combustion using water to isolate the nitrogen and sulphur dioxide; iii) the passing of the sulphur dioxide into an electrolyzer, wherein the electrolysis of sulphur dioxide and water generates hydrogen and sulphuric acid; iv) the sulphuric acid is placed in a reactor with sulphate-reducing bacteria to produce hydrogen sulphide that subsequently used as the fuel of the process and combusted in a combustion chamber to restart the cycle. The nitrogen, hydrogen, and carbon dioxide that are produced during the process but are not used as part of the process are stored using conventional storage methods. The hydrogen sulphide may be produced by placing the sulphuric acid in a microbial reactor with sulphate-reducing bacteria.
Resumen de: EP4549617A1
A process for the preparation of a saturated or ethylenically unsaturated aliphatic or cycloaliphatic compound comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating an ethylenically unsaturated compound to form the corresponding saturated compound, or at least partially hydrogenating an acetylenically unsaturated compound to form the corresponding saturated or ethylenically unsaturated compound
Resumen de: EP4549618A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, preferably in the range of from 10 to 95 ppm, more preferably in the range of from 15 to 90 ppm, most preferably in the range of from 20 to 80 ppm, especially in the range of from 30 to 75 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with a nitrile compound or hydrogen cyanide (I) R-CN (I)in the presence of hydrogen from step (a) to form the corresponding amine (II) RCH2-NH2 (II).
Resumen de: EP4549616A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with a carbonyl compound (I) R1R2C=O (I)in the presence of hydrogen from step (a) to form the corresponding amine (II) R1R2HC-NH2 (II).
Resumen de: EP4549621A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with an alcohol R-OH in the presence of hydrogen from step (a) to form the corresponding primary, secondary and/or tertiary amines R-NH2, R2NH and/or R3N.
Resumen de: EP4549619A1
A process for the preparation of an amine compound comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating a nitro compound to form the corresponding amine compound.
Resumen de: EP4549433A1
A process for the preparation of a hydrogenation product of a carbohydrate or furfural comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating a carbohydrate or furfural to form the corresponding hydrogenation product of the carbohydrate or furfural.
Resumen de: EP4549620A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, preferably in the range of from 10 to 95 ppm, more preferably in the range of from 15 to 90 ppm, most preferably in the range of from 20 to 80 ppm, especially in the range of from 30 to 75 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with a nitrile compound or hydrogen cyanide (I) R-CN (I)to form the corresponding primary amine (II), secondary amine (III) and/or tertiary amine IV) RCH2-NH2 (II), (RCH2)2NH (III) (RCH2)3N (IV)or mixture thereof.
Resumen de: EP4549419A1
A process for the preparation of a cycloaliphatic or heterocycloaliphatic compound containing at least one aromatic or heteroaromatic ring comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) hydrogenating an aromatic or heteroaromatic compound using the hydrogen provided in step (a) to form the corresponding cycloaliphatic or heterocycloaliphatic compound wherein the at least one aromatic or heteroaromatic ring is partially or fully hydrogenated.
Resumen de: EP4549622A1
A process for the hydrogenation of carbonyl compounds consisting of the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) hydrogenating a carbonyl compound using the hydrogen provided in step (a) to form the corresponding hydrogenation product, wherein at least one carbonyl group of the carbonyl compound is hydrogenated.
Resumen de: EP4549628A1
This control device is for a hydrogen production facility and comprises: a plurality of electrolysis cells for electrolyzing water or steam; and a plurality of rectifiers for supplying DC power to each of the plurality of electrolysis cells. The control device is provided with: a degradation coefficient acquisition unit configured to acquire a plurality of degradation coefficients indicating the degrees of deterioration of the respective electrolysis cells, an individual necessary current calculation unit configured to calculate, on the basis of a total necessary current corresponding to a hydrogen generation volume required for the hydrogen production facility and the plurality of degradation coefficients, a plurality of individual necessary currents indicating necessary currents required for the electrolysis cells; and a control unit configured to control the respective rectifiers on the basis of the plurality of individual necessary currents. The degradation coefficient acquisition unit is configured to acquire, for the respective electrolysis cells, the degradation coefficients on the basis of a first correlation indicating the correlation between applied voltages to the respective electrolysis cells and currents flowing through circuits including the electrolysis cells at a beginning of life of the electrolysis cells, and a second correlation indicating the correlation at an end of life of the electrolysis cells.
Resumen de: WO2024003510A1
Method for upgrading carbon dioxide comprising: (a) a step of providing a gaseous effluent to be upgraded containing a volume ratio of carbon dioxide of at least 0.5; (b) a step of electrolysis of the gaseous effluent to be upgraded producing a first effluent containing carbon monoxide, during which at least one portion of the carbon dioxide contained in the gaseous effluent to be upgraded is converted to carbon monoxide by electrolysis; (c) at least one step of converting the carbon monoxide from the first effluent, which step is catalyzed by a plasma generated by a dielectric barrier discharge process coupled to a catalyst, said step (c) producing a value-added effluent, during which at least one portion of the carbon monoxide contained in the first effluent is converted to at least one product chosen from methane and/or dihydrogen.
Resumen de: AU2023296834A1
The present invention describes a method for storing electricity and producing liquefied natural gas (LNG) or synthetic natural gas referred to as substitute natural gas (SNG) and using carbon dioxide and producing electricity, natural gas (NG) or synthetic natural gas (SNG).
Resumen de: AU2023300562A1
Bipolar plates (1) adapted for use in an electrolyser cell stack (4) and wherein each plate comprises a plate midplane (2) whereby the plate (1) comprises spaced apart uniform spacers (7) extending in opposed directions from the midplane (2). All spacers (7) are arranged along concentric circles (8) in the midplane (2) with spacers (7) alternatingly protruding in opposite directions relative to the midplane (2) along each concentric circle (8) and an even number of spacers (7) are provided in each circumferential circle (8), apart from an innermost circle (9) which comprises a single spacer (7).
Resumen de: CN119317736A
An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
Resumen de: WO2024003272A1
The invention relates to a high pressure electrolyzer module comprising a first external electrode which has a shape permitting to define a delimited volume, a second inner electrode provided inside the delimited volume defined by the first external electrode, an electrolyte provided under high pressure inside the first external electrode and an electrical power source, wherein the electrical power source is controlled so as to alternate potential to the first and second electrodes such that they are alternatively submitted to oxidation and reduction..
Resumen de: EP4549624A1
Disclosed is a system and method for alternately performing urea electrolysis-based hydrogen production and carbon reduction, and an application system. The system for alternately performing urea electrolysis-based hydrogen production and carbon reduction includes a housing, a first electrode chamber, a second electrode chamber and a third electrode chamber. A first electrode, a first separator, a second electrode, a second separator and a third electrode are sequentially arranged in the housing. The first electrode chamber is a closed cavity formed by the first electrode, the first separator and the inner wall of the housing, and is used for producing a hydrogen evolution reaction. The third electrode chamber and the second electrode chamber can alternately produce the oxidation reaction of urea and the reduction reaction of carbon dioxide.
Resumen de: WO2024070179A1
A method for producing a tantalum nitride material that includes a nitriding step that heats a precursor containing a lithium tantalum composite oxide in the presence of a nitrogen compound.
Resumen de: AU2023262052A1
A water splitting system includes a hydrogen production chamber including a hydrogen production port, an oxygen production chamber including an oxygen collection port, an ion exchange membrane coupling the hydrogen production chamber and the oxygen production chamber, and a photocatalytic structure including a first catalytic portion disposed in the hydrogen production chamber and a second catalytic portion disposed in the oxygen production chamber. The first catalytic portion is configured for production of hydrogen via the hydrogen production port. The second catalytic portion is configured for production of oxygen via the oxygen production port.
Resumen de: JP2025070545A
【課題】マグネシウムを燃料して発電をする。【解決手段】溶融工程12(液体化工程)において、マグネシウム21を溶融(液体化)する。噴霧工程13において、溶融工程12(液体化工程)で溶融(液体化)したマグネシウム(混合液体23)を噴霧する。燃焼工程14(酸化工程)において、噴霧工程13で噴霧したマグネシウム(霧状混合物25)を燃焼(酸化)して、酸化マグネシウム27を生成する。発電工程15において、燃焼工程14で発生する反応熱29を利用して発電する。【選択図】図1
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: SA523442668B1
Hydrogen purification devices and their components are disclosed. In some embodiments, the devices may include at least one foil-microscreen assembly disposed between and secured to first and second end frames. The at least one foil-microscreen assembly may include at least one hydrogen-selective membrane and at least one microscreen structure including a non-porous planar sheet having a plurality of apertures forming a plurality of fluid passages. The planar sheet may include generally opposed planar surfaces configured to provide support to the permeate side. The plurality of fluid passages may extend between the opposed surfaces. The at least one hydrogen-selective membrane may be metallurgically bonded to the at least one microscreen structure. Fig 1.
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: US2023021049A1
A system for hydrogen generation includes at least one cabinet defining a first volume, a second volume, and a third volume, where the first volume, the second volume and the third volume are fluidically isolated from each other, a water circuit located in the first volume, an electrochemical module including an electrolyzer electrochemical stack located in the second volume, a hydrogen circuit located in the third volume, at least one first fluid connector fluidly connecting the water circuit and the electrolyzer electrochemical stack, and at least one second fluid connector fluidly connecting the electrolyzer electrochemical stack and the hydrogen circuit.
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: CN119183617A
The present invention relates to an electrochemical cell assembly (10) comprising a first end plate assembly (12), a stack (14) of battery repeating units (18), and a second end plate assembly (16). The stack is held in a compressed state between the first end plate assembly and the second end plate assembly. The first end plate assembly and/or the second end plate assembly each comprises an end plate (32) and an insulating plate (34) located between the end plate and the stack, in which at least one through-hole (36) is provided in the insulating plate, and in which a sealing insert (40) is provided in the at least one through-hole of the insulating plate, which sealing insert defines a fluid channel (42) in the direction of the stack. The invention also relates to an end plate assembly and a method of manufacturing an electrochemical cell assembly.
Resumen de: US2025129491A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane, a gas diffusion layer, and a catalyst layer. The gas diffusion layer is positioned on one side with respect to the electrolyte membrane. The gas diffusion layer is a porous layer. The catalyst layer is positioned between the electrolyte membrane and the gas diffusion layer. The catalyst layer is made of a catalyst material. A penetration part formed in the gas diffusion layer by the penetration of the catalyst material having a thickness of 1 μm or less.
Resumen de: JP2025069496A
【課題】反りを簡易に低減できる電気化学セル、セルスタック、ホットモジュール及び水素製造装置を提供する。【解決手段】電気化学セルは、順に燃料極、固体電解質、空気極を含み、燃料極は、順に基板層および機能層を含む固体酸化物形であって、基板層の内部に配置された拘束層を備え、拘束層は、空気極が重なる部分に位置する線状部を複数含む第1部と、空気極が重ならない部分に位置する枠状の第2部と、を含み、線状部の両端は第2部につながり、第1部および第2部の気孔率は、基板層の気孔率よりも小さい。【選択図】図2
Resumen de: WO2025087496A1
The invention relates to the combination of a dry cell and a flooded (wet) cell in a single cell, wherein stainless steel or metal strips (10) used in electrochemical analysis are arranged horizontally and circular openings are made in a geometrically balanced manner such that electricity is evenly distributed within the cell, allowing hydroxy gas to escape from the openings instead of getting caught between the stainless steel or metal strips (10). The stainless steel or metal strips (10) are connected directly to a thermal acrylic cylinder (3) without connectors or tubes, preventing the hydroxy gas, and even the electrolyte solution, from being carried to the stainless steel strips, as the thermal acrylic cylinder (3) is positioned on top of the stainless steel or metal strips (10). An effective result of this distinctive new design is that the device is smaller, enabling installation in small vehicles. In addition, the distinctive design makes the device easy to install and maintain, since the base of the device is only 7 x 7 cm, which facilitates installation in motors, vehicles and generators that use petroleum hydrocarbons as fuel, in addition to significantly reducing the production cost of this type of device.
Resumen de: WO2025090834A1
Disclosed herein are systems and methods for tandem hydrogen (H2) production and carbon dioxide (CO2) capture. For example, described herein are methods comprising tandem H2 production and CO2 capture and conversion to a carbonate mineral. In some examples, the method is an electrochemical method. In some examples, the method comprises dissolving CO2 in water and applying an electrochemical potential sufficient to drive the H2 evolution reaction, thereby producing H2 and CO3 2-. In some examples, the methods further comprise contacting the CO3 2- with a cation to thereby form an insoluble carbonate compound.
Resumen de: WO2025091024A1
A hydrogen generation system suitable for outdoor use is described. The system vents to the atmosphere to help to prevent accumulation of hazardous gas buildup within the system while also protecting hydrogen generation components from extreme weather conditions. The system includes walls that the allow ventilation while inhibiting moisture and wind from entering an interior of the system.
Resumen de: WO2025089500A1
The present invention relates to a catalytic activity promoter to be dissolved in an alkaline electrolyte solution of a water electrolysis apparatus so as to promote the catalytic activity of an oxygen-generating electrode. The catalytic activity promoter comprises 2,2,6,6-tetramethylpiperidine-1-oxyl, which is oxidized in a dissolved state in the oxygen evolution reaction of the water electrolysis apparatus, and then meets an oxygen evolution reaction intermediate so as to be spontaneously reduced, and oxidizes the oxygen evolution reaction intermediate.
Resumen de: WO2025089434A2
The present invention relates to an apparatus and method for producing, storing, and transferring hydrogen. According to the present invention, in order to address the problems of conventional systems and methods for producing, storing, and transferring marine green hydrogen, which are configured with a fixed structure in a small-scale offshore wind power generator on a coast or in a shallow sea area with a shallow depth of water, and thus, have low efficiency due to the difficulty in mass production of hydrogen, and a large storage space is occupied when the produced hydrogen is converted into a compressed gas form, and when the produced hydrogen is converted into ammonia, additional energy is required to extract the hydrogen again and there is a risk of environmental pollution and casualty in the event of an outflow accident, provided is a marine platform for producing, storing, and transferring marine green hydrogen, which is configured such that marine green hydrogen is produced through a floating marine structure configured to produce marine green hydrogen using electricity produced using renewable energy from the ocean, and simultaneously, the produced marine green hydrogen is stored, transferred, and offloaded through a single offshore platform (FPSO), thereby being possible to easily construct a large-scale production facility capable of producing, storing, and transferring marine green hydrogen without greenhouse gas emission on the basis of eco-friendly energy.
Resumen de: WO2025089546A1
An aspect of the present invention provides a system for producing sodium hypochlorite and hydrogen gas, comprising: a desalination unit for desalinating seawater to generate a fresh water stream and a concentrated water stream; a crystallization unit for crystallizing the concentrated water stream to generate a solid raw material containing sodium chloride; an electrolysis unit for electrolyzing reactants, derived from the solid raw material and water, to generate sodium hypochlorite and by-product gas; and a gas purification unit for purifying the by-product gas to generate hydrogen gas.
Resumen de: WO2025088755A1
An ammonia decomposition apparatus according to one aspect is provided with: a preheating flow path through which a reaction gas flows in a first direction; a first reaction flow path which is connected to the preheating flow path and through which the reaction gas that has passed through the preheating flow path flows in a second direction opposite to the first direction; a second reaction flow path which is connected to the first reaction flow path and through which the reaction gas that has passed through the first reaction flow path flows in the first direction; a first heating gas flow path which heats the reaction gas in the first reaction flow path and the second reaction flow path by a high-temperature gas; and a second heating gas flow path which is connected to the first heating gas flow path and which heats the reaction gas in the preheating flow path and the first reaction flow path by the high-temperature gas that has passed through the first heating gas flow path. In the first reaction flow path and the second reaction flow path, an ammonia decomposition catalyst is disposed. The first heating gas flow path, the first reaction flow path, the second heating gas flow path, and the preheating flow path are arranged concentrically or elliptic-concentrically around the axis of the second reaction flow path in this order from the side closer to the second reaction flow path.
Resumen de: WO2025087088A1
Disclosed in the present application are a catalyst, and a preparation method therefor and the use thereof. By using a chromium-manganese co-doped ruthenium-based catalyst, in cooperation with a coordination dispersion effect of a chelating agent structure, the catalyst provided in the present application effectively inhibits sintering agglomeration of chromium, manganese and ruthenium components, and the prepared catalyst has better uniformity. Chromium and manganese regulate and control a d electron center of a ruthenium active site at the same time and serve as a high-corrosion resistance protective layer, such that when an OER reaction is carried out under a strong-acidity electrolyte system, the catalyst can effectively maintain high-activity characteristics thereof, long-cycle stable operation is achieved, and the use cycle can reach 2000 hours. The catalyst serving as a high-performance acidic oxygen evolution reaction electrocatalyst can be used for stably and efficiently carrying out an oxygen evolution reaction (OER) in an acidic electrolyte environment, and can be used as an anode material for water electrolysis hydrogen production in a proton conduction polymer electrolysis hydrogen production electrolytic tank, thereby solving the problems of few types, low performance and a short service life of existing acidic oxygen evolution catalysts.
Resumen de: WO2025088185A1
The invention relates to a method of operating a solid oxide electrolysis cell (SOEC) stack for producing hydrogen, and a system for carrying out the method, said SOEC stack comprising at least one solid oxide electrolysis cell (SOEC), said at least one SOEC comprising an electrolyte layer interposed between a fuel-side and an oxy-side, the method comprising transient operation, in which the transient operation comprises: - providing a feed gas comprising ammonia; - supplying at least a portion of said feed gas comprising ammonia to a guard bed reactor, said guard bed reactor comprising a catalyst active in the cracking of ammonia to nitrogen and hydrogen; and withdrawing from said guard bed reactor a forming gas comprising nitrogen and hydrogen; - supplying at least a portion of the intermediate gas comprising nitrogen and hydrogen to the fuel-side of the at least one of the solid oxide electrolysis cells (SOECs) of the SOEC stack; and withdrawing from said at least one of the SOECs of the SOEC stack, a first fuel-side exit gas.
Resumen de: WO2025087866A1
The invention relates to a method of operating a solid oxide electrolysis cell (SOEC) stack for producing hydrogen, and a system for carrying out the method, said SOEC stack comprising at least one solid oxide electrolysis cell (SOEC), said at least one SOEC comprising an electrolyte layer interposed between a fuel-side and an oxy-side, the method comprising transient operation, in which the transient operation comprises: - operating the SOEC stack under open-circuit voltage (OCV); - providing a feed gas comprising ammonia; - supplying at least a portion of said feed gas comprising ammonia to a guard bed reactor, said guard bed reactor comprising a catalyst active in the cracking of ammonia to nitrogen and hydrogen; and withdrawing from said guard bed reactor a forming gas comprising nitrogen and hydrogen; - supplying at least a portion of the forming gas comprising nitrogen and hydrogen to the fuel-side of the at least one of the solid oxide electrolysis cells (SOECs) of the SOEC stack; and withdrawing from said at least one of the SOECs of the SOEC stack, a first fuel-side exit gas.
Resumen de: WO2025087865A1
The present invention relates to a guard bed reactor for silicon removal, a solid oxide electrode system for producing hydrogen comprising a guard bed reactor for silicon removal, a method of operating the system to produce hydrogen and a use of the guard bed reactor for silicon removal for depleting a stream of steam from volatile silica species.
Resumen de: WO2025087819A1
The invention relates to a catalyst comprising a nickel(II) complex comprising a bis(thiosemicarbazone) ligand derived from 2,2'-thenil, the nickel(II) complex having the general formula Chem 6 wherein R1 and R2 each independently represent a phenyl group optionally having one or more identical or different substituents R3, R3 is selected from a halogen, a hydroxy group, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 thioalkyl group, a C1-C4 dialkylamino group, a cyano group, a CF3 group and an O-CF3 group.
Resumen de: WO2025087614A1
Process (2) for the production of an enhanced fuel gas (4) containing at least hydrogen gas from a fuel stream, in particular from an ammonia fuel stream (6). Said process comprises the following steps: - providing the fuel stream (6) (S100); - providing a condensable medium (8), preferably water steam (8), to a cracker unit (10); - at least one step of performing an endothermic cracking reaction of the fuel stream (6) in the cracker unit comprising at least one catalyst suitable for cracking said fuel stream (6), so as to produce an at least partially cracked fuel stream as said enhanced fuel gas (4) (S300); and - condensing at least partially said condensable medium (8) to provide said heat for the endothermic cracking reaction of the fuel stream (6).
Resumen de: WO2025088418A1
Electrochemical device (1), preferably of the electrolyser type for hydrogen production, characterised by comprising: - at least one support frame (2), with a substantially laminar development, which is provided with at least one seat (3) for an electrochemical module (10), said support frame (2) comprising a first face (12') and a second face (12") which are opposite to each other, at least one electrochemical module (10) which is mounted in said at least one seat (3) and which comprises a separation membrane interposed between two electrodes, respectively between an anode and a cathode, at least one bipolar plate (20) for applying/transferring electrical energy to the electrodes of said at least one electrochemical module (10), said bipolar plate (20) comprising a first surface (21') and a second surface (21") which are opposite to each other, said bipolar plate (20) being superimposed on said support frame (2) and being configured so that the first surface (21') of said bipolar plate (20) rests, at least in part, on a first face (12') of said support frame (2).
Resumen de: US2025136442A1
A plant for producing hydrogen from scission of methane molecules with production of carbon dust includes a reactor having an inner chamber delimited by a holding wall. The reactor includes an inlet opening for feeding methane (CH4), an outlet opening for allowing hydrogen (H2) in gaseous form to flow out. A discharge opening is for discharging carbon dust (C) from the inner chamber through a sealing rotary valve. A refractory lining, and an electromagnetic induction heater are for heating the inner chamber of the reactor.
Resumen de: US2025136457A1
Apparatus, system, and method for geothermally driven ammonia production. Hydrogen is generated using energy obtained from the underground magma reservoir and nitrogen is captured from air using the energy obtained from the underground magma reservoir. At least a portion of the generated hydrogen is combined with at least a portion of the generated nitrogen and heated at least to a reaction temperature using the energy obtained from the underground magma reservoir. The heated hydrogen contacts the heated nitrogen for a residence time to form the ammonia.
Resumen de: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: US2025137139A1
A metal compound thin film, a method of forming the same and a thin film catalyst for water electrolysis are provided. The method includes providing a substrate; and performing plural ink-jet printing operations to the substrate to form the metal compound thin film on the substrate. The substrate is a non-hydrophobic substrate. Each of the ink-jet printing operations includes depositing a first precursor on the substrate by using a first nozzle of an ink-jet system; and depositing a second precursor on the substrate by using a second nozzle of the ink-jet system. A chemical reaction occurs between the first precursor and the second precursor to form a metal compound, and the metal compound thin film includes plural layers of the metal compound. Therefore, patterning the thin film can be easily accomplished, and chemical solution can be effectively saved.
Resumen de: US2025137153A1
A hydrogen generation and carbon dioxide storage system has increased processing capacity of carbon dioxide. The system includes a metal-carbon dioxide battery comprising an anode, a cathode, and an ion exchange membrane positioned between the anode and the cathode, a first supply unit configured to provide a first electrolyte to the anode, a second supply unit configured to provide a second electrolyte comprising hydrogen ions and an aqueous solution of alkali bicarbonate to the cathode, a separation unit, an electrolyte circulation unit located at a rear end of the separation unit, a dissolution unit located at a rear end of the electrolyte circulation unit, and a carbon dioxide purification unit.
Resumen de: US2025137151A1
A boiler system (1) according to one aspect of the present invention includes a water electrolysis device (20) that electrolyzes electrolysis target water with electric power supplied from a natural energy power generation device (10) to generate hydrogen and oxygen, a boiler (30) that heats makeup water by combusting fuel to generate steam, a heat exchange device (40) that exchanges heat between the electrolysis target water and a heat medium, and a control device (70) having a cooling controller (71) that cools the electrolysis target water by supplying the makeup water as the heat medium to the heat exchange device when a preset cooling start condition is satisfied.
Resumen de: US2025141341A1
A power supply device according to an embodiment is configured to supply DC power to an electrolytic cell producing hydrogen by electrolysis. The power supply device includes a power converter, a reactor, and a filter circuit; the power converter is self-commutated and includes a first output terminal and a second output terminal; the second output terminal is configured to output a positive voltage with respect to the first output terminal; the reactor is connected in series to at least one of the first output terminal or the second output terminal; and the filter circuit is connected between an anode and a cathode of the electrolytic cell. The filter circuit is a low-pass filter. A cutoff frequency of the filter circuit is set to be less than a switching frequency of the power converter.
Resumen de: AU2025202662A1
Abstract Embodiments of the present invention relates to two improved catalysts and associated processes that directly converts carbon dioxide and hydrogen to liquid fuels. The catalytic converter is comprised of two catalysts in series that are operated at the same pressures to directly produce synthetic liquid fuels or synthetic natural gas. The carbon conversion efficiency for C02 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as "drop-in" fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly applicable to the conversion of C02 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement. Fig 1 FIG. 1 - Integrated Catalytic Converter and Process for the Production of Renewable Liquid fuels Electrolysis Captured CO 2 H, CO2 104 Catalytic Conversion System 103 Gas 105 Syngas 106 Heat 107 Blending/Heating C t #1 Exchanger Catalyst #2 Syngas --------------------------- -------------------------------------- ----------- Conversion 109Tailg
Resumen de: AU2023366065A1
Abstract A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: AU2023343512A1
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: AU2023343512A1
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: EP4545192A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: EP4545479A1
Provided are a carbon nanotube molded body including carbon nanotubes, and a method of producing the same, wherein the carbon nanotube molded body has a specific surface area of 700 m<sup>2</sup>/g or more, the carbon nanotube molded body has a pore distribution from 3 to 15 nm, the carbon nanotube molded body has a tensile strength of 45 MPa or more, and the carbon nanotube molded body has a Young's modulus of 1600 MPa or more. Also provided are an electrochemical water-splitting electrode comprising the carbon nanotube molded body and platinum supported on the carbon nanotube molded body, a method of producing the same, and an electrochemical water-splitting apparatus comprising the electrochemical water-splitting electrode.
Resumen de: EP4545690A1
An electrolysis device of the present disclosure includes an electrolytic cell, an electrolyte supply unit, and an ion concentration adjustment unit. The electrolytic cell includes an anode chamber, a cathode chamber, and an ion exchange membrane disposed between the anode chamber and the cathode chamber. The electrolyte supply unit includes at least one tank accommodating an electrolyte, circulates a portion of the electrolyte as a first electrolyte between the at least one tank and the anode chamber, and circulates another portion of the electrolyte as a second electrolyte between the at least one tank and the cathode chamber. The ion concentration adjustment unit supplies an adjustment solution for adjusting a hydrogen ion concentration to the electrolyte supply unit.
Resumen de: EP4545687A1
An object of the present invention is to provide an electrolyte membrane having an excellent joining property between an electrolyte membrane and a catalyst layer. The present invention mainly relates to an electrolyte membrane including a layer (A) containing a polymer electrolyte, and a layer (B) on at least one of the faces of the layer (A), wherein porosity (X1) in an interface region of the layer (B), on the layer (A) side, is higher than porosity (X2) in another interface region of the layer (B), on the opposite side to the layer (A).
Resumen de: AU2023288544A1
Disclosed herein are low voltage electrolyzers and methods and systems of using those low voltage electrolyzers. Specifically, the electrolyzers can include a pH buffer in the catholyte and/or anolyte of the electrolyzer and generating a gas at the cathode or anode that is consumed at the other of the cathode or anode to reduce the open-circuit potential.
Resumen de: KR20250058602A
본 발명의 일 실시예에 따른 암모니아 분해 장치는, 암모니아가 공급되는 암모니아 공급부, 암모니아가 이동하면서 분해되는 분해 공간, 분해된 암모니아 분해가스가 배출되는 분해가스 배출부, 연료전지의 애노드 배가스가 공급되는 제1 배가스 공급부, 연료전지의 캐소드 배가스가 공급되는 제2 배가스 공급부, 상기 애노드 배가스와 상기 캐소드 배가스가 연소되는 연소 공간, 및 상기 연소 공간에서 연소된 배가스를 이동시키는 배가스 유로를 포함하고, 상기 분해 공간은 상기 연소 공간과 상기 배가스 유로 사이에 위치할 수 있다.
Resumen de: EP4545689A1
The present invention relates to a method for operating a Power-To-Hydrogen system (10) comprising at least one electricity source (1), at least one electrolyzer (2), a first hydrogen storage device (3) with permanent availability and a hydrogen transfer station (4). The hydrogen transfer station (4) is adapted and configured to be coupled temporarily to one or multiple second hydrogen storage devices (5,51,52) with time-dependent availability for a transfer of hydrogen to the one or multiple second hydrogen storage devices (5,51,52). A hydrogen production rate (P(t)) of the electrolyzer (2) is controlled based on a forecasted total available hydrogen storage capacity, wherein the forecasted total available hydrogen storage capacity comprises a storage capacity (X) of the first hydrogen storage device (3) and a time-dependent storage capacity of the second hydrogen storage device (5,51,52) provided by a hydrogen storage capacity model (C(t)).The method according to invention allows for an optimized hydrogen production planning and thus improves both profitability and sustainability of the Power-To-Hydrogen system.
Resumen de: EP4545476A1
Process (2) for the production of an enhanced fuel gas (4) containing at least hydrogen gas from a fuel stream, in particular from an ammonia fuel stream (6). Said process comprises the following steps:- providing the fuel stream (6) (S100);- providing a condensable medium (8), preferably water steam (8), to a cracker unit (10);- at least one step of performing an endothermic cracking reaction of the fuel stream (6) in the cracker unit comprising at least one catalyst suitable for cracking said fuelstream (6), so as to produce an at least partially cracked fuel stream as said enhanced fuel gas (4) (S300); and- condensing at least partially said condensable medium (8) to provide said heat for the endothermic cracking reaction of the fuel stream (6).
Resumen de: US2024139707A1
Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
Resumen de: WO2025089546A1
An aspect of the present invention provides a system for producing sodium hypochlorite and hydrogen gas, comprising: a desalination unit for desalinating seawater to generate a fresh water stream and a concentrated water stream; a crystallization unit for crystallizing the concentrated water stream to generate a solid raw material containing sodium chloride; an electrolysis unit for electrolyzing reactants, derived from the solid raw material and water, to generate sodium hypochlorite and by-product gas; and a gas purification unit for purifying the by-product gas to generate hydrogen gas.
Resumen de: US2025129001A1
In a process for producing methanol, a synthesis gas that has been recovered from biomass is fed to a methanol synthesis apparatus. In a main operating mode in which sufficient electrical power is available for electrolytic hydrogen recovery, correspondingly electrolytically recovered hydrogen is fed to the methanol synthesis apparatus. In a secondary operating mode in which insufficient electrical power is available for electrolytic production of hydrogen, a tail gas that arises from a biogas recovered from a biomass on removal of the synthesis gas is fed to a generator in order to provide electrical power for apparatuses involved in the process.
Resumen de: CN119897105A
本发明涉及氨分解催化剂制备领域,公开了一种含铁催化剂及其制备方法和应用以及氨分解制氢的方法。一种含铁催化剂,所述催化剂包含钛酸镁载体以及负载于钛酸镁载体上的铁元素;其中,以催化剂的总重量为基准,以铁元素计,铁的含量为5‑20重量%。该催化剂具有较高的活性,应用于氨分解制氢中,在低温下以及较高的反应空速下具有更高的氨分解转化率。
Resumen de: KR20250057352A
본 발명의 일 실시예는 제1 금속을 포함하는 전극 기재, 제2 금속 내지 제4 금속을 포함하는 이중층 수산화물 구조체, 및 인화물 질소를 포함하는 수전해용 촉매를 제공한다.
Resumen de: CN119900040A
本发明公开了一种集成式气液分离式双极板、电解槽及制氢方法,双极板包括极框和极框内的隔板,极框底部设置有碱液流道孔、顶部设置有第一气体流道孔和第二气体流道孔,隔板顶部与极框连接处设置有气液分离盒,气液分离盒内设置有分割板,分割板将气液分离盒分割为前侧进气腔和后侧分离腔且上部设置有网孔,前侧进气腔底部设置有进气孔,后侧分离腔顶部设置有出气孔,出气孔与对应的第一气体流道孔或第二气体流道孔之间的极框上设置有通气槽,极框两侧表面均设置有回流槽,回流槽顶部与后侧分离腔底部一侧以及与极框内侧贯通连接。电解槽运用上述的双极板并提供一种制氢方法,有效提高气体纯度,并且可以有效降低碱液循环量,提高制备效率。
Resumen de: CN119906161A
本申请提供一种制氢电源系统及其控制方法,包括:交流变压装置,配置为将交流电网输入的第一交流电压进行变压后分配输出第二交流电压;调压支路,配置为将第二交流电压转换调整得到第二直流电压;恒压支路,配置为将第二交流电压转换得到第一直流电压;投切装置,配置为将调压支路的输出端与恒压支路的输出端串联形成总输出电压输出给电解槽;储能装置,配置为接入总输出电压并与电解槽并联;其中,投切装置还配置为根据电解槽的工作电压调整接入的调压支路和/或恒压支路的数量。通过上述方案,本申请的制氢电源系统能根据电解槽的负载情况,投入相应数量的恒压支路和调压支路,提高了制氢电源的运行效率。
Resumen de: CN119898831A
本申请公开了一种低结晶度金红石相钌锰氧化物催化剂及其制备方法和应用,属于电催化技术领域。所述的低结晶度金红石相钌锰氧化物催化剂为纳米颗粒结构,其结构为低结晶度金红石相结构,其制备方法如下:将制备的或者市售的四氧化三锰粉末与钌前驱体溶液混合,通过搅拌或超声使二者充分发生反应;再经过过滤洗涤干燥处理,得到前驱体粉末;对所述的前驱体粉末进行煅烧处理,然后冷却至室温后得到所述低结晶度金红石相钌锰氧化物催化剂。本申请提供的方法操作简单,条件温和,生产成本低,所述的低结晶度金红石相钌锰氧化物催化剂在电催化水氧化方面具有突出的活性和稳定性,在质子交换膜电解水制氢领域具有良好的应用前景。
Resumen de: CN119900047A
本发明属于电解水催化技术领域,具体涉及一种卤素修饰的双金属磷化物及其制备方法和应用。卤素修饰的双金属磷化物,包括镍基底和镍基底上生长的卤素修饰的双金属磷化物,掺杂有卤素,所述的卤素为氯或溴,含有金属钴和镍的磷化物,存在金属钴和锰以及磷与氧的成键。制备方法:将镍基底材料预处理后作为基底,使用钴源物质、锰源物质,在NH4X,X为Cl或Br,和(NH2)2CO的存在下进行水热反应于基底上沉积形成卤素修饰的钴锰前驱物;使用NaH2PO2经高温磷化法制备得到卤素修饰的双金属磷化物。本发明提供的卤素修饰的双金属磷化物具有优异的HER和OER催化活性。
Resumen de: CN119900053A
本发明公开了用于电解水制氢装置的控制系统和方法,所述系统用于稳定SOEC背压的背压稳定单元、数据采集单元、预测单元和控制单元;背压稳定单元与SOEC电堆阴极出口连接,包括设于阴极换热及冷却单元上游的背压传感器、设于阴极换热及冷却单元下游的第一调压阀和变频调速引风机;数据采集单元用于获取用于电解水制氢装置的控制系统的多种运行参数的运行数据;预测单元用于以预设运行数据的当前值为输入,根据预测模型生成包括预设时间段后背压预测值的预测结果;控制单元用于根据预测结果生成调压阀和\或变频调速引风机的调节指令。本发明可以进行预防性的先馈控制,有效的避免了SOEC电堆阴极背压的超标波动,进而也就有效的提高了SOEC背压的稳定性。
Resumen de: CN119897111A
本发明涉及氨分解催化剂制备领域,公开了负载型镍基催化剂及其制备方法和应用以及氨分解制氢的方法。一种负载型镍基催化剂,所述催化剂含有钛酸钡载体以及负载于钛酸钡载体的镍元素;以催化剂的总重量为基准,以氧化镍计,镍的含量为2‑15重量%;其中,所述催化剂的平均粒径为1‑10微米。该催化剂具有较高的活性,应用于氨分解制氢中,在低温下以及较大的空速下具有较高的氨分解转化率。
Resumen de: AU2023359368A1
Electrolyser (1) for production of hydrogen gas and comprising a stack of bipolar electrodes (9) sandwiching ion-transporting membranes (2) between each two of the bipolar electrodes (9). Each bipolar electrode comprises two metal plates (9A, 9B) welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates (9A, 9B) are embossed with a major vertical channel (10A, 10B) and minor channels (11A, 11B) in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates (9A, 9B) so as to also provide coolant channels (11B) in a herringbone pattern inside the coolant compartment.
Resumen de: CN119900043A
本发明涉及电解水制氢技术领域,具体涉及一种基于云母‑金属氧化物复合纳米材料及其制备方法与应用。复合纳米材料以云母粉末为载体,负载有氧化镍纳米颗粒。将云母粉末作为氧化镍纳米颗粒的载体,不仅可以解决氧化镍纳米颗粒因团聚而降低催化效果的问题,同时因其具有良好的耐磨性,可以提升复合纳米材料整体的催化寿命。
Resumen de: CN119900042A
本发明公开了一种大电流高稳定析氢铂基催化剂及其制备方法和电解水制氢方法。本发明析氢铂基催化剂的制备方法,包括如下步骤:S1、将二甲基咪唑、硫源、锌源和钴源在水中进行沉淀反应,得到钴锌双金属有机骨架材料;S2、将钴锌双金属有机骨架材料在惰性气体保护下进行热解,以在碳化的同时使锌蒸发留下空位,得到钴纳米颗粒负载的氮硫共掺杂碳载体;S3、将钴纳米颗粒负载的氮硫共掺杂碳载体与铂盐在还原剂的作用下进行化学还原反应,以在载体上负载铂纳米颗粒,得到析氢铂基催化剂。本发明中硫元素可提高基底材料比表面积及铂、钴元素分散性,从而实现活性位点的大大提高;催化剂具有优异的析氢活性和稳定性,可有效提高贵金属铂的利用率。
Resumen de: CN119898859A
本发明涉及一种电解组件及富氢水杯,该电解组件包括第一密封主体,第一密封主体上开设有第一腔体,第一腔体的内壁上设置有定位槽;电解主体卡接在定位槽中,电解主体包括自上至下依次设置的负极片、质子交换膜和正极片,负极片和正极片上均至少设置有一个第一通孔,第一通孔和第一腔体相连通。本发明还公开了一种富氢水杯。本发明具有良好的密封性,可以有效提升电解组件的电解效率,提高使用效果。
Resumen de: CN119897143A
本发明属于光催化剂技术领域,具体公开了一种掺磷氮化碳复合CdS@CdIn2S4复合光催化剂及其制备方法和应用,将尿素通过热聚合法重结晶制备超薄氮化碳,再将P元素掺入氮化碳(PCN)中去调节氮化碳的能带结构,再将PCN与CdS@CdIn2S4(CSCIS)复合,形成PCN/CdS@CdIn2S4三元异质材料(PCNCSCIS),二维纳米片状的CdS@CdIn2S4与超薄PCN复合后,形成了大量的纳米级接触界面,构建了丰富的异质结构。这种结构不仅增强了光的散射和折射几率,显著提升了光利用率,还通过形成双Z型异质结机制,有效促进了光生载流子的分离与传输,从而提高了光催化性能,产氢效率高达7614μmol·g‑1·h‑1。
Resumen de: WO2025087088A1
Disclosed in the present application are a catalyst, and a preparation method therefor and the use thereof. By using a chromium-manganese co-doped ruthenium-based catalyst, in cooperation with a coordination dispersion effect of a chelating agent structure, the catalyst provided in the present application effectively inhibits sintering agglomeration of chromium, manganese and ruthenium components, and the prepared catalyst has better uniformity. Chromium and manganese regulate and control a d electron center of a ruthenium active site at the same time and serve as a high-corrosion resistance protective layer, such that when an OER reaction is carried out under a strong-acidity electrolyte system, the catalyst can effectively maintain high-activity characteristics thereof, long-cycle stable operation is achieved, and the use cycle can reach 2000 hours. The catalyst serving as a high-performance acidic oxygen evolution reaction electrocatalyst can be used for stably and efficiently carrying out an oxygen evolution reaction (OER) in an acidic electrolyte environment, and can be used as an anode material for water electrolysis hydrogen production in a proton conduction polymer electrolysis hydrogen production electrolytic tank, thereby solving the problems of few types, low performance and a short service life of existing acidic oxygen evolution catalysts.
Resumen de: CN119897123A
本发明属于光催化材料技术领域,具体涉及一种Cu掺杂MnMoO4光催化剂及其制备方法和应用。制备方法是将五水硫酸铜研磨入MnMoO4的前驱体中,通过改变铜源的摩尔比得到不同摩尔比例的MnMoO4‑x%Cu复合材料,其可以应用于光催化分解水析氢领域。相较于现有的光催化剂,本发明Cu掺杂MnMoO4作为催化剂可控性良好,有利于进一步提升载流子的分离效率,应用于光催化分解水有较高的产氢量和较好的稳定性。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN119902434A
本发明公开一种兼顾新能源消纳的多类型电制氢优化控制方法,涉及控制策略技术领域。本发明根据不同电解技术的动态响应速度差异,将其分别匹配不同波动特征的新能源发电负荷,从而实现差别化利用,提高了工作效率,优化协同运行。对多类型电制氢系统的容量配置进行了优化,以增强制氢装置的运行灵活性,使其与新能源发电的波动特性相适应。改善新能源发电与电解制氢过程之间的动态耦合效果,为高效可再生能源制氢技术的发展提供新的思路和实践依据,助力实现更为可持续的能源利用模式。
Resumen de: KR20250057686A
본 발명에 따른 촉매의 제조 방법은, 금속 전구체, 및 전자화물을 준비하는 단계, 상기 금속 전구체에 상기 전자화물을 제공하고 습식환원 방법으로 음전하로 대전된 금속 입자를 제조하는 단계, 및 상기 금속 입자를 카본 입자와 혼합하여, 음전하로 대전된 상기 금속 입자, 및 상기 카본 입자를 포함하는 상기 촉매를 제조하는 단계를 포함하고, 상기 금속 입자는, 상기 금속 전구체의 금속의 고유의 일함수보다 낮은 일함수를 갖는 것을 포함할 수 있다.
Resumen de: CN119898169A
本发明涉及电解雾化技术领域,公开了一种氢氧分离且雾化效果较好的车载式氢雾设备,其包括用于承载水体的杯体(100)、固定组件(300)、电解组件(301)、雾化组件及盖体(200),其中,第一通道(300b)与第一开口(200a)连通,氢气经第一通道(300b)及第一开口(200a)输出,第二通道(300c)与第二开口(200b)连通,气雾经第二通道(300c)及第二开口(200b)输出。
Resumen de: KR20250056777A
본 발명은 수전해용 촉매 및 이의 제조방법에 관한 것으로서, 산소발생반응(Oxygen Evolution Reaction, OER)의 활성이 증대된 수전해용 촉매 및 이의 제조방법에 관한 것이다.
Resumen de: FR3154331A1
L’invention concerne un catalyseur comprenant un complexe de nickel(II) comprenant un ligand bis(thiosemicabazone) dérivé du 2,2’-thénil, ledit complexe de nickel(II) répondant à la formule générale Chem 6 suivante : Chem 6dans laquelle,R1 et R2 représentent chacun indépendamment un groupe phényle ayant optionnellement un ou plusieurs substituants R3 identiques ou différents, R3 est sélectionné parmi un halogène, un groupe hydroxy, groupe alkyle en C1-C4, un groupe alkoxy en C1-C4, un groupe thioalkyl en C1-C4, un groupe dialkylamino en C1-C4, un groupe cyano, un groupe CF3 et un groupe O-CF3.
Resumen de: CN119876977A
本发明属于绿色氢能源生产技术领域,具体涉及无泡界面优化电解槽系统。电解槽包括:槽体,槽体上设置有氢气通道、氧气通道、进液孔和出液孔,氢气通道和氧气通道位于槽体的上部,槽体内设置有隔膜,隔膜两侧和槽体之间分别设置有阳极室和阴极室,阳极室与氧气通道连通,阴极室与氢气通道连通;阳极室和阴极室内分别设置有阳极板和阴极板;隔膜与电极贴合,隔膜的中部覆盖电极且隔膜的外周超出电极外周;隔膜超出电极外周的部分伸入进液通道且其上设置有微孔,微孔的孔径为1~5μm。本发明电解槽突破了传统碱性电解槽的性能界限,跃升至93%以上的高效区间,有效缓解了传统电解过程中存在的效率限制,降低了氢气生产的成本负担。
Resumen de: CN119877030A
本发明涉及一种碱性水电解制氢用隔膜及其制备方法,碱性水电解制氢用隔膜包括纤维基材层以及位于纤维基材层两侧的涂料层;纤维基材层上设置多个贯通的孔状连接点,纤维基材层两侧的涂料层通过孔状连接点连接成一体;制备时先通过无纺布工艺制得无纺布结构基材,对其进行冲孔加工,再加入高分子聚合物、致孔剂和亲水性无机颗粒,或者进一步地还加入树脂强韧剂得到涂料溶液,然后将涂料溶液同时涂布于纤维基材层上的两侧,最后入水进行相转化,固化后清洗后得到碱性水电解制氢用隔膜。本发明的制备方法简单,制得的产品具有使用耐久性特点,涂层不易脱落,使用时适合电解槽在高压力工况下运行。
Resumen de: CN119876989A
本发明公开了一种大型模块化制氢电解槽,该大型模块化制氢电解槽电极组件,电极组件包括基板,所述基板上设置有电极A和电极B,电极A与电极B相互独立供电,所述电极A与电极B交替通电,所述交替频率为30Hz~120Hz;当电极组件工作时,所述电极A与电极B总有一个处于通电状态。本发明提供的一种大型模块化制氢电解槽,通过电极A与电极B之间高频交替通电,能够减少电极极化现象发生,从而提高电解液的电解效率。
Resumen de: CN119877000A
本发明涉及电催化析氢技术领域,公开了一种富硫空位非晶态硫化镍析氢电极的制备方法。本发明提供的一种富硫空位非晶态硫化镍析氢电极的制备方法以硫脲、硫化镍、盐酸、硼氢化钠为原料,通过一步电沉积工艺、硼氢化钠水溶液浸泡,在泡沫镍载体表面生长富硫空位的非晶态硫化镍,得到所述富硫空位非晶态硫化镍析氢电极。本发明提供的一种富硫空位非晶态硫化镍析氢电极的制备方法过程环保、便捷、高效,制备得到的富硫空位非晶态硫化镍析氢电极在大电流密度下具有较好析氢性能,电荷转移快、电子结构可调、电化学过程能垒低,催化性能甚至超过了某些贵金属催化剂。
Resumen de: CN119869587A
本发明公开了一种负载固废金属的硫化氮化碳光催化剂及其制备方法和应用,制备方法采取以下步骤:将电镀污泥粉末加入酸溶液中,得到浸出液;取三聚氰胺加入浸出液中,得到含有金属元素的硫化三聚氰胺;将硫化三聚氰胺在H2/Ar氛围条件下煅烧,得到淡黄色粉末;最后,在二甲基甲酰胺溶液中球磨淡黄色粉末,得到负载固废金属原子的硫化氮化碳光催化剂。本发明通过将固体废弃物中回收提取的金属转化为光催化剂的活性组分,不仅可以实现光解水制氢性能的提升,还实现了电镀污泥固废资源的二次利用,节约了成本,制备工艺简单,值得推广应用。
Resumen de: CN119877031A
本发明涉及电解水制氢技术领域,具体涉及一种电解水用改性隔膜及其制备方法和应用。电解水用改性隔膜由改性隔膜浆料制备而成;改性隔膜浆料包括隔膜浆料和酸性化合物;隔膜浆料包括聚砜、氧化锆纳米颗粒和有机溶剂;酸性化合物包括有机酸或无机酸中的一种或多种。酸性化合物的用量为隔膜浆料总质量的0.1‑10%。本发明的电解水用改性隔膜通过向包含有氧化锆纳米颗粒的隔膜浆料中添加酸性化合物,修饰纳米氧化锆颗粒表面,对隔膜进行改性,大幅度降低了隔膜的面电阻,使其导离子性能得到显著提高,通过添加酸性化合物,提高了隔膜的亲水性,接触角显著降低,增强了电解质的润湿能力和离子传导效率,进而能提升电解水制氢的整体效率。
Resumen de: CN119877004A
本发明公开了析氢催化剂及其制备方法,属于可再生能源领域。析氢催化剂的制备方法包括:将氯铂酸溶解后,向体系中加入丙三醇,搅拌至溶解后得到混合液A;将硼氢化钠溶解于碱性溶液中,搅拌至溶解后得到混合液B;在搅拌状态下,将混合液B缓慢滴加到混合液A中,升温至预设温度反应,并且在反应后将黑色沉淀物经过离心机洗涤,并置于烘箱内烘干处理;将干燥后的粉末放置于真空干燥箱内进行热处理。通过该方法可以方便且高质量地制备析氢催化剂。
Resumen de: CN119877009A
本公开涉及一种用于电解水的复合催化剂及其制备方法、水电解阴极催化剂、水电解装置和电解水制氢气的方法。该复合催化剂包括所述复合催化剂的XRD谱图中存在面心立方结构的PtNi合金衍射峰及α相Ni(OH)2的衍射峰。本公开的复合催化剂显著降低催化剂中铂含量,提高催化剂的质量比活性,同时降低催化剂的析氢过电位,还可以简化制备工艺。
Resumen de: CN119877025A
本发明提供了一种镍基电催化剂及其制备方法和应用,涉及碱水电解技术领域。具体而言,所述镍基电催化剂包括由内至外的镍基底、硫化层、磺化层和封端层;其中,所述磺化层包括磺酸基团,所述封端层包括苯胺基、吡咯基或噻吩基中的至少一种。本发明通过依次将镍基底金属原料进行预硫化、硫化、磺化和封端,得到了一种表面固定有磺化基团并由聚合物封端的增强型镍基电催化材料;本发明的镍基电催化剂能够实现在保证提高电解碱水催化效率的同时具有极高的稳定性,且成本低廉、制备方法简单易行;当应用于碱水裂解制氢工艺中时,可显著降低槽电压,解决高能耗问题,具有良好的应用前景。
Resumen de: CN119877002A
本发明公开一种过渡金属元素掺杂的二氧化铅电解水催化剂及其制备方法与应用,其中,过渡金属元素掺杂的二氧化铅电解水催化剂元素组成为铅、氧和过渡金属元素,其中过渡金属元素为锰、铁、钴、镍的一种或几种。本发明通过阳极氧化沉积法合成了过渡金属元素掺杂的二氧化铅电极,其中二氧化铅作为基体材料,具备较佳的导电性,且在酸性溶液中具备较佳的稳定性;掺杂的过渡金属元素作为析氧反应的活性元素,提高了催化剂在酸性溶液中析氧反应的催化活性;本发明实现了酸性析氧催化剂的较高的稳定性和活性,降低了质子交换膜阳极材料的制造成本;制造工艺简单易行,具有规模化生产的潜力。综上,本发明具有较高的经济效益和应用价值。
Resumen de: CN119879304A
本发明公开了一种集成供暖降温加湿制氧制氢的多功能装置,涉及环保设备的技术领域。包括降温单元、包括横向管道和竖向管道、所述横向管道和竖向管道设置有多组、设置于所述竖向管道上端的移动盖板、以及设置于所述竖向管道内的加装组件;电解水单元,包括反应室、所述反应室通过连接管与横向管道连接、设置于所述反应室内的检测组件。该装置在夏季使用时,不需要通过电热水器加热水,直接使用常温的水流经暖气片,暖气片上每个可移动盖板处于打开状态,套筒每个网状隔板与网状隔板之间可以放置冰块或者干冰,水流经过时产生反应,起到室内降温作用,通过电解水的工作原理达到加湿和制氧制氢的效果。
Resumen de: CN119877026A
本公开涉及一种纳米复合电催化剂及制备方法与应用,所述纳米复合电催化剂包括催化剂和包覆所述催化剂的含氟烷基磺酸盐;所述催化剂包括活性金属和负载所述活性金属的导电载体。本公开的方法操作简单、易于控制、条件温和。本公开的纳米复合电催化剂可以缓解催化界面的气泡传质阻碍问题,进一步提高在电解水中的能量转化效率和稳定性。
Resumen de: CN119876983A
本发明涉及一种水电解膜电极制备中提高浆料供料稳定性的装置及方法,其中浆料容器设于磁力搅拌器上且通过第一管路与连接三通连接,第一管路上设有第一电磁阀,进样器系统包括进样筒和推杆,其中推杆可抽插地插装于进样筒中,进样筒的输出端通过第二管路与连接三通连接,第二管路上设有第二电磁阀,套管组件两端均设有连接组件,且套管组件输入端的连接组件通过第三管路与连接三通连接、输出端的连接组件与出料管路连接,出料管路上设有第三电磁阀和料泵,套管组件包括温度调节套管和浆料管路,且第三管路、浆料管路、出料管路依次连通,温度调节套管上设有套管三通与冷水机连接。本发明能够保证水电解膜电极制备过程中的浆料供料稳定。
Resumen de: CN119877029A
本发明提供一种低载量RuPdPt三元贵金属电催化剂的制备方法,将泡沫镍放入盐酸溶液中蚀刻后再放入含氯化铁、氯化铜和氯化钠的混合溶液中浸泡3‑12小时后得到NixFeyCuzOOH基底;将钌盐、铂盐、钯盐混合后研磨,加水调配成混合溶液后加入丁二酮肟二钠盐八水合物的醇溶液,超声分散后形成贵金属混合溶液;将NixFeyCuzOOH基底浸泡于贵金属混合溶液中,搅拌并加热条件下浸渍1‑6小时,得到的产物经水洗、干燥后得到RuPdPt‑NixFeyCuzOOH复合催化剂。本发明中贵金属Ru、Pd、Pt与基底NixFeyCuzOOH纳米片通过M1‑M2‑O键进行结合,有效地锚定了贵金属Ru、Pd、Pt单原子‑团簇位点,极大地提升了催化剂在大电流密度的稳定性。
Resumen de: CN119877024A
本发明公开了一种负载型纳米铱催化剂、其制备方法和应用,属于化工技术领域。本发明的制备方法包括将丙醇、水和锡酸四丁酯混合,得到第一溶液;向第一溶液中加入铱源,得到第二溶液;将第二溶液在空气中静置后干燥,得到烘干产物;将烘干产物置于马弗炉中煅烧,得到负载型纳米铱催化剂。本发明还公开了采用上述制备方法制成的负载型纳米铱催化剂及其在电解水制氢阳极催化剂中的应用。本发明制备的负载型纳米铱催化剂具有低贵金属载量、较高活性及化学稳定性,可以用于电解水制氢领域;采用溶胶凝胶法制备,通过调控反应物摩尔比,可以有效提升铱利用率,使催化剂在具有较高反应活性的同时减少铱使用量。
Resumen de: CN119891768A
本发明属于一种电力电子电能变换技术,具体涉及一种适用于中压直流母线的多隔离输出制氢变换器,包括中压侧平波电抗器、N个功率单元模块及三个电解槽负载;中压侧平波电抗器与中压母线正极相连,N个功率模块单元输入侧串联、输出侧并联;每个功率模块单元均有三个独立输出,三个独立输出均分别与三个电解槽负载相连。采用半桥子模块串联结构匹配中压直流母线,将后级隔离型降压变换器级联在半桥子模块后级,解决了中压侧直流母线高压,低压侧输出大电流问题,通过调整单元数量可灵活匹配中压侧母线电压。
Resumen de: CN116043250A
The invention provides an electrolytic bath which comprises a cathode end plate, a cathode insulating layer, an electrolytic unit, an anode insulating layer and an anode end plate which are sequentially arranged, the electrolytic bath is provided with a first ventilation channel, a second ventilation channel, a first liquid passing channel and a second liquid passing channel, and the cross section of each channel is triangular; in the direction from the cathode end plate to the anode end plate, each small electrolysis chamber comprises a cathode plate, a cathode sealing ring, a cathode gas diffusion layer, a diaphragm, an anode gas diffusion layer and an anode plate which are sequentially arranged, each cathode plate comprises a cathode surface, each anode plate comprises an anode surface, and the cathode plates and the anode plates at the series connection parts between the small electrolysis chambers form a bipolar plate; a cathode reaction cavity is formed between the cathode surface and the cathode gas diffusion layer, an anode reaction cavity is formed between the anode surface and the anode gas diffusion layer, the first ventilation channel and the first liquid channel are communicated with the cathode reaction cavity, and the second ventilation channel and the second liquid channel are communicated with the anode reaction cavity; and flow guide channels are arranged in the cathode reaction cavity and the anode reaction cavity.
Resumen de: CN119876827A
本发明提供了一种用于输氢管道的涂层自修复方法及其应用。本发明提供的所述方法针对输氢管道的焊接区域(包括焊缝及焊接热影响区)外表面从内到外依次制备铝涂层、氧化铝涂层,构成自修复阻氢涂层;然后在输氢管道实际输氢过程中,向其中输送掺氧氢气,完成自修复过程。本发明提供的方法仅针对输氢管线中对氢脆最为敏感的焊接区域外表面构建自修复阻氢涂层,结合掺氧氢气的输入,便可以大幅提升整个输氢管线系统的使用寿命,大大降低了需要构建自修复阻氢涂层的面积,降低了输氢管线系统的氢脆预防成本。
Resumen de: CN119876981A
本发明公开了一种水解制氢设备,涉及氢气制造技术领域,包括:电解组件,其设置有电解液输入端、电解液输出端、氢气输出端以及氧气输出端,电解液输入端连接有电解液回收器,电解液回收器另一端连接有气液分离罐,气液分离罐还设置有电解液输入口以及氢气输出口,气液分离罐的电解液输入口连接有电解组件的电解液输出端;气液分离罐的氢气输出口与电解组件的氢气输出端均连接在冷却洗涤器上,冷却洗涤器另一端连接有脱氧器,脱氧器固定在支撑架上,且脱氧器另一端连接有干燥器,干燥器另一端连接有压缩机,压缩机另一端设置有氢气储存架,氢气储存架上有多个氢气瓶;氧气处理装置,连接在电解组件的氧气输出端上;本装置可以进一步提高制氢效率。
Resumen de: CN119877035A
本发明涉及电解水设备领域,具体涉及一种电解槽系统监测控制方法、电解槽系统。在成本、体积不增加太多的基础上,通过设置多个传感器及控制单元,分别对于电解槽氢气及氧气管道的增压风险、工况进行实时监测并控制,且为了提升系统的可靠性,均设置了两种控制方法。氢气管道通过压力监测传感器及机械式泄压阀,结合程序进行控制;氧气管道通过流量传感器、电磁阀及温度传感器,结合程序进行控制。通过该种电解槽压力监测及控制方法,使电解槽的工况适应性得到了较大的提升,同时更极大地提升了电解槽使用过程中的参数可控性、使用安全性。
Resumen de: CN119877001A
本发明公开了一种铁钴镍铬氧化物催化剂的制备方法、装置和应用。该铁钴镍铬氧化物材料的制备方法包括如下步骤:在一定电流密度条件下通过电沉积,制备铁钴镍层状氢氧化物中间体,进一步通过硝酸铬溶液钝化以及高温处理,即得所述铁钴镍铬氧化物催化材料。铁钴镍铬氧化物材料可分别作为阳极催化剂和阴极催化剂应用于电催化过程,阳极析氧和阴极析氢反应的法拉第效率均能达到并维持在90%以上,本发明构建的装置能够在600个小时内保持稳定的槽电压,以及阴极析氢和阳极氧化的高效作用,可用于阳极氧化去除水中有机污染物、阴极海水制氢等多个领域,具有较为广泛的应用前景。
Resumen de: CN119877016A
本发明提供了一种基于四丁基氯化膦/丙三醇低共熔溶剂制备的磷掺杂的金属镍催化剂及其制备方法与应用。该磷掺杂的金属镍催化剂的制备方法,包括步骤:将四丁基氯化膦和丙三醇于55‑120℃下混合反应,得到低共熔溶剂;将硝酸镍加入低共熔溶剂中,超声混合均匀后,进行加热处理;经冷却、洗涤、干燥,得到基于四丁基氯化膦/丙三醇低共熔溶剂制备的磷掺杂的金属镍催化剂。本发明的催化剂的制备方法简单,掺杂过程可控,成本低,所得催化剂的催化性能优异。
Resumen de: CN119877014A
本发明提供了一种适用于电解水析氧的铁镍‑MOF/NF复合材料及其制备方法,调整铁镍比例制备电催化性能最佳的复合材料;制备过程是以采用简单的一步水热法合成了装载在泡沫镍上的FeNi‑MOF/NF材料,以FeCl2·4H2O、NiCl2·6H2O和对苯二甲酸为原料,加入NH4F、CO(NH2)2溶解在DMF/乙醇/水的混合溶液中,连续连续搅拌30分钟后,将溶液倒入50mL聚四氟乙烯衬里的高压釜中,并将干燥的泡沫镍以一定角度倾斜于壁放入高压釜中;然后,将高压釜密封并在烘箱中在140℃下保持12小时,并在烘箱中冷却至室温。本发明的制备方法简单,易于操作,环保。本发明制备得到的电极材料具有较好的电催化性能,是理想的析氧电极材料。
Resumen de: US2025129492A1
A spring plate assembly. The assembly includes spring plates with each of the spring plates having a perimeter section extending in a first plane, at least one bridge section extending from a first portion of the perimeter section to a second portion of the perimeter section, and spring elements that extend from the at least one bridge section. A first pair of adjacent spring plates are configured to engage a corresponding one of the perimeter sections when stacked in a first configuration and the first pair of adjacent spring plates are configured to engage a corresponding one of the plurality of spring elements when stacked in a second configuration.
Resumen de: CN119885908A
本发明涉及一种基于机器学习技术辅助电解槽流道优化设计方法,属于电解水制氢技术领域,该方法包括以下步骤:S1.基于碱性电解水制氢电解槽内的气液混合流动对电化学性能的影响,选取流道流动场模型,构建流道优化仿真基础模型;S2.采用回归方法筛选流道几何参数关键变量;S3.利用关键变量并通过遗传算法优化流动场模型,获得优化后的关键变量的参数。该方法以电解槽内部气液两相流动行为作为电解槽流道性能关键指标,使最终获得的流道设计方案最优化,以流动均匀性系数为依据对关键变量的组合进行迭代更新,减少流动死区或局部区域的过高流速,促进氢气和氧气排出效率。
Resumen de: CN119877005A
本发明公开了一种纳米二氧化钛光阳极的两步快速电热制备方法及其应用,属于新能源材料领域,制备步骤如下:将钛金属片剪切成长方形,依次用丙酮、乙醇、蒸馏水超声清洗,干燥,放置在电热装置中,在50到100伏的电压下通电20‑30秒,即完成第一步电热处理;自然冷却;继续放置在电热装置中,在50到100伏的电压下再次通电20‑30秒,即完成第二步电热处理,制得所述纳米二氧化钛光阳极。本发明使用两步电热的方式直接快速的在钛金属片上生长纳米二氧化钛光阳极,具有便捷高效的特点,可以大幅度缩短二氧化钛光阳极的制备时间、可避免过多使用化学试剂。
Resumen de: CN119877012A
本发明涉及一种CoP‑Vp纳米立方体复合材料及其制备方法和应用,包括CoP和纳米立方体,CoP为纳米颗粒分布在纳米立方体内部及表面,形成的复合材料表面更加粗糙且增加多孔结构,进而增加复合材料的比表面积,极大地暴露析氢活性位点,为电荷的快速传输提供了丰富的路径,有利于氢离子吸附在由CoP‑Vp纳米立方体复合材料制备而成的电催化材料表面上,为氢离子提供扩散空间;且CoP的晶体中具有磷空位Vp,通过磷空位Vp调整CoP的电子结构提升复合材料的导电性,更进一步地,磷空位Vp的存在降低了反应的活化能,有效加速催化反应的动力学,同时也可以作为活性吸附位点,提升CoP‑Vp纳米立方体复合材料的催化活性和耐久性。
Resumen de: KR20250055655A
본 발명은 수소흡착율 및 산화·환원 반응전환효율이 우수한 전이금속 기반의 비귀금속계 고효율, 고내구성 수전해 촉매 및 상기 수전해 촉매의 제조방법에 관한 것이다.
Resumen de: KR20250055696A
본 발명은 인산코발트 (CoPi)가 증착된 황화카드뮴 (CdS) 및 인화니켈 (Ni2P)이 증착된 황화주석 (SnS2)을 포함하는 하이브리드 광촉매 및 이의 제조 방법에 관한 것이다.
Resumen de: CN119880031A
本申请公开了一种适用于混联制氢系统的传感系统及电解槽原位诊断方法,其中,传感系统包括:光源,用于发出光;解调器;传导光纤,与所述光源连接,传导所述光源发出的光;其中,所述传导光纤包括传导段与检测段,所述检测段有多个;所述传导段也设有多个,连接在多个检测段之间;所述检测段内设有检测光栅,沿所述传导光纤传导的光,部分被所述检测光栅反射;所述解调器也与所述传导光纤连接。通过设置的传感系统进行多点位、多参量进行检测,简化整体结构,降低仪器成本;此外,本申请实施例提供的传感系统通过光纤进行信号传输,不易受到外部干扰而造成失真或是数据丢失的问题,在偏远山区、海岛等无人值守制氢场景中,提高系统的安全性。
Resumen de: CN119869623A
本发明公开了一种分解水制氢的ZnIn2S4/Cu‑Cu3P光催化复合材料及其制备方法和应用,涉及光催化材料技术领域。所述方法包括制备ZnIn2S4粉末;将ZnIn2S4粉末和铜源粉末混合均匀,得到混合粉末;将混合粉末和磷源粉末置于加热容器中的两个区域,并在氢气和惰性气体的混合气氛中进行煅烧,即得ZnIn2S4/Cu‑Cu3P光催化复合材料。本发明通过调节催化剂之间的相互作用,制备了具备有效载流子分离能力的ZnIn2S4/Cu‑Cu3P肖特基异质结光催化剂,实现了高效的析氢性能。
Resumen de: CN119869367A
一种多功能的氨分解制氢系统,属于清洁能源技术领域。由电磁感应冷启动子系统、热催化分解氨子系统和动力子系统组成。在冷启动阶段,电磁感应冷启动子系统通过利用磁感应加热技术对导电及铁磁性催化剂进行非接触式加热,在极短时间内(约5秒)驱动氨分解反应。在正常使用阶段,热催化分解氨子系统利用高效整体式催化剂在较低温度下(<500℃)促进氨分解,为发动机提供稳定而充足的氢气供应。动力子系统及其与氢燃料电池发电和回收发动机尾气余热集成的方法,提高了能源利用效率,从而解决了电加热器温度响应速度慢、能量利用率低下以及氨分解转化率不高等问题,系统各部分之间的协同工作为清洁能源汽车的发展提供了强有力的支持。
Resumen de: CN119877013A
本发明基于碱性环境析氢反应的Ni0.85Se/NiMoOx异质结催化剂制备方法,包括:S1、在泡沫镍基底上通过水热反应生产NiMoO4纳米棒;S2、引入镍钼金属氧化物,通过在NiMoO4纳米棒上负载Ni(OH)2纳米片形成NiMoO‑NH;S3、通过硒化还原和离子交换合成Ni0.85Se/NiMoOx异质结催化剂。本发明所得到的Ni0.85Se/NiMoOx异质结催化剂具有纳米片包覆纳米棒多级结构、丰富的活性位点、充分的物质传递,同时晶态Ni0.85Se与非晶态的NiMoOx组合调节了催化剂表界面的电子结构,优化了反应中间体的吸脱附,加速HER动力学。
Resumen de: CN119876968A
本发明属于一种制氢方法,针对传统的电解水制氢方案谐波电流大,网侧谐波污染严重,以及无法实现大功率制氢的技术问题,提供一种电解水制氢装置及控制方法,包括N个并联的三相电流源型整流单元,有效解决了网侧谐波电流大的问题,功率因数高,传输效率好,可以满足大功率制氢的需求。另外,通过控制组件,能够实现并联三相电流源型整流单元的恒流控制,以及单个三相电流源型整流单元的功率因数控制,可实现大规模交流微网制氢,具有高电能质量、高稳定性、高功率等级的特点。
Resumen de: CN119873905A
本发明公开了一种钡基B位高熵钙钛矿型氧化物及其制备方法,钡基B位高熵钙钛矿型氧化分子式表示为ABO3,A位为Ba元素,B位为Ti、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr元素中的至少5种,A位元素摩尔含量为50%,B位元素摩尔含量范围为5%‑20%;通过对构型熵的优化,制备了一种新型的钡基B位高熵钙钛矿OER催化剂,大幅提高了钙钛矿的OER活性和稳定性。在碱性电解槽和阴离子交换膜电解槽等装置中,高OER活性的催化剂可有效降低电解水的过电位,大幅降低电解槽的制氧和制氢成本。
Resumen de: CN119877007A
本发明属于电催化技术领域,具体涉及一种Ni3Ga0.8Pt0.2/CC催化剂及其制备方法和应用,包括碳布及负载在碳布上的Ni3Ga0.8Pt0.2催化剂。本发明通过浸渍法实现了三金属位点在碳布上的负载,最后通过10%氢氮混合气还原获得Ni3Ga0.8Pt0.2/CC催化剂,经实验,Ni3Ga0.8Pt0.2/CC催化剂能够高效地电解模拟海水,在碱性环境下具备高HER催化活性。
Resumen de: CN119870491A
本发明公开了一种核壳结构的氢氧化镍/镍纳米线的制备方法及其应用,所述制备方法包括以下步骤:将镍源、碱源、分散剂、还原剂和溶剂混合,在磁场作用下进行加热反应,得到镍纳米线;再将所述镍纳米线分散在改性剂中进行表面改性反应,使所述镍纳米线的至少部分表面生成氢氧化镍,得到所述核壳结构的氢氧化镍/镍纳米线;所述改性剂包括水、氨水溶液或镍源水溶液中的至少一种。本发明首先制备得到镍纳米线,然后通过将镍纳米线分散在改性剂中,发生表面改性反应,形成氢氧化镍/镍纳米线异质结构,有效改善镍纳米线容易团聚的问题,同时增加镍纳米线的分散度和比表面积,增加活性位点的暴露数量,从而具有优异的电催化析氧和析氢性能。
Resumen de: CN119877034A
本发明属于可再生能源制氢技术领域,具体涉及一种ALK‑PEM电解槽制氢系统功率分配方法和系统,包括:获取ALK电解槽和PEM电解槽的运行特性,构建ALK‑PEM电解槽联合制氢系统;基于所构建的ALK‑PEM电解槽联合制氢系统的电解槽启停特性,考虑PEM电解槽的秒级启停特性,采用电解槽阵列双层轮值运行方式确定制氢系统电解槽的运行方式;根据所确定的电解槽运行方式,以混合电解槽制氢系统净收益最大为目标,构建计及电解槽启停的最优功率分配模型;求解所构建的最优功率分配模型,完成ALK‑PEM电解槽制氢系统的功率分配。
Resumen de: CN119873886A
本申请属于电解水制氢用隔膜技术领域,具体涉及一种改性氧化锆及其制备方法和应用。本申请所述改性氧化锆包括氧化锆、添加剂和水;所述添加剂包括十二烷基磺酸钠、1‑己烷磺酸钠、己酸钠、辛酸钠、正庚胺和N、N‑二甲基己胺中的一种或多种。本申请的有益效果包括:本申请所述改性氧化锆比非改性氧化锆亲水性更强,制备成的复合膜具有更低的面电阻,更高的泡点和机械性能。
Resumen de: CN119265595A
The invention belongs to the technical field of hydrogen production electrolytic cells, and particularly discloses an electrode catalyst for a hydrogen production electrolytic cell and a preparation method thereof, an electrode and an electrolytic cell, the electrode catalyst comprises first metal nanoparticles, the size of the first metal nanoparticles is smaller than or equal to 10 nm, the first metal nanoparticles form a first metal nanoparticle aggregation structure, and the first metal nanoparticles form a second metal nanoparticle aggregation structure; the size of the first nano-particle agglomerated structure is less than or equal to 65 nm; the second metal nanoparticles are distributed among the first metal nanoparticles and at least partially cover at least one part of the first metal nanoparticles, and the size of the second metal nanoparticles is smaller than or equal to 10 nm. The size of the electrode catalyst nano-particles can be controlled, agglomeration is limited, the crystallinity is reduced, and defect active sites are enriched.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: CN119889946A
本发明公开了一种碳布上原位生长的钴掺杂镍钼双金属磷化物及其制备方法和应用,属于柔性超级电容器电极材料制备领域,所述方法通过水热法在碳布上生长钴掺杂钼酸镍水合物,得到钴掺杂钼酸镍水合物/碳布复合材料,之后将钴掺杂钼酸镍水合物/碳布复合材料在无氧环境下退火处理,得到钴掺杂镍钼双金属氧化物/碳布复合材料;将钴掺杂镍钼双金属氧化物/碳布复合材料和红磷按100:(50‑400)的质量比在650‑750℃无氧气氛下保温处理,得到碳布上原位生长的钴掺杂镍钼双金属磷化物,可以实现较高的比容量,改善了镍钼双金属磷化物的循环稳定性和倍率性能。
Resumen de: CN119877032A
本发明公开了一种方形碱性水电解槽膜垫一体结构及其生产工艺,包括方形橡胶垫片和PPS复合隔膜,所述方形橡胶垫片包覆设置在PPS复合隔膜周边上并硫化成型为一体结构,硫化时,采用胶条配合模具一体硫化,当膜垫一体结构中无不锈钢丝时,模具按照橡胶收缩率要求放大2%,先进行整体制备,最后将膜垫一体结构置于蒸汽通道中对PPS复合隔膜收缩,当膜垫一体结构中有不锈钢丝时,橡胶收缩率减小到0.2%,模具按0.2%的收缩率放大,先对PPS复合隔膜进行预收缩,然后进行整体制备。本发明能够有效保持密封功能,同时便于方形电解槽的安装和拆卸,保证了气体的纯度,提高了方形电解槽的整体性能,制备效率高,品质好。
Resumen de: CN119876979A
本发明公开了一种无膜电解水分步制氢系统,包括电化学反应模块、电解液循环模块,电化学反应模块包括阳极室、绝缘隔膜、阴极室和外接直流电源;电解液循环模块包括氢气分离池、再生循环池和缓冲池;氢气分离池用于接收从阳极室流出反应结束的阳极电极液和阴极室流出的反应结束的阴极电极液,并汇流形成循环电解质溶液,实现氢气产物的分离;再生循环池用于催化氢气分离池中的循环电解质溶液再生并释放氧气;缓冲池用于将再生循环池中的溶液充分混合后再循环进入电化学反应模块。本发明能够实现氢气和氧气在无膜条件下实现时空上的分步制备,并能够在室温下实现过程的高效生产和连续操作。
Resumen de: CN119869560A
本发明属于化工领域,特别涉及一种纳米片花簇状Ni‑Fe‑O‑S/NF催化剂及其制备方法。本发明是一种通过ZIF‑67/NF衍生策略制备的纳米片花簇状Ni‑Fe‑O‑S/NF电极材料,即,本发明的Ni‑Fe‑O‑S/NF是通过刻蚀ZIF‑67同时直接原位生长在导电泡沫镍基底;该高活性双功能电催化剂主要涉及Ni、Fe、S、O过渡金属。本发明的Ni‑Fe‑O‑S/NF催化剂在应用到1.0M KOH电解水时,展示出良好的双功能催化活性。
Resumen de: CN119874082A
本发明公开了一种多功能集装箱式酸性氧化电位水生成器,包含用于制备酸性氧化电位水的电位水制备系统、用于调节温度的温控系统、用于火灾探测与报警的消防报警系统、用于防盗报警的防盗报警系统、用于装载电位水制备系统、温控系统、消防报警系统及防盗报警系统的集装箱、用于现场控制上述系统运行的现场控制中心以及用于远程上述系统运行的远程控制中心,所述电位水制备系统、温控系统、消防报警系统及防盗报警系统均与所述现场控制中心电连接,所述现场控制中心与所述远程控制中心无线连接。本发明的优点是:兼顾自动调节温度、自动探测火灾与自动灭火、防盗等多种功能,使用起来更安全、可靠;运行一次,可制备出足够用量的酸性氧化电位水。
Resumen de: CN119869499A
本发明涉及一种硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂的制备方法和应用,属于光催化材料技术领域。本发明采用溶胶‑凝胶法制备ZnTiO3,采用煅烧法制备g‑C3N4,然后将ZnTiO3和g‑C3N4与富硫前驱体搅拌均匀,水热获得硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂,其可以应用于光催化析氢领域。相较于现有的光催化剂,本发明硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂可控性良好,稳定性强,具有良好的光吸收特性,有利于防止光生电子和空穴复合,进一步提升载流子的分离效率。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN119877027A
本发明涉及电催化剂技术领域,特别是涉及一种镍铁基MOFs异质结构催化剂的合成方法,通过合成稳定的Ni MOFs材料,并在此基础上引入Fe元素来构筑异质结构,从而解决MOFs材料在电催化分解水领域中的稳定性和导电性问题,并进一步提升其催化活性。本发明还提供一种镍铁基MOFs异质结构催化剂、其合成方法及其应用,通过合成稳定的Ni MOFs材料,并在此基础上引入Fe元素来构筑异质结构,从而解决MOFs材料在电催化分解水领域中的稳定性和导电性问题,并进一步提升其催化活性。
Resumen de: CN119876990A
本发明提供了一种用于PEM电解水的梯度有序化膜电极构筑与集成方法,梯度有序化膜电极中,催化层厚度随区域水气比下降而升高,保障膜电极工况条件下电流密度的高度一致,与梯度电极相匹配的流场靠近出水口(低水/气比区域)厚度变薄,流场收缩,局域压力上升,利于低含量的水渗透,强化传质,提高了转化效率和位点可及性,大幅提升了膜电极性能。
Resumen de: CN119877017A
本发明涉及电催化材料技术领域,尤其涉及一种高稳定性NiS/NiMoO4电催化材料的制备方法及其应用,包括:步骤1、分别用75mL蒸馏水溶解0.01M(NH4)6Mo7O24·4H2O和Ni(NO3)2·6H2O,将整个溶液体系磁力搅拌30分钟以形成均匀溶液;随后,将上述均匀溶液转移至50mL聚四氟乙烯衬里的高压釜中,并将处理过的泡沫镍浸入其中;然后将高压釜在150℃下密封6h,用去离子水和乙醇洗涤数次至中性,真空干燥,得NiMoO4/NF;步骤2、将硫粉置于泡沫镍上游,置于管式炉中,在氮气气氛下硫化后,将泡沫镍洗涤,在真空烘箱中干燥过夜,即得到NiS/NiMoO4电催化材料。本发明利用水热法和管式炉硫化法制备了高稳定NiS/NiMoO4电催化材料,具有优异的HER、OER和稳定性,在工业上具有良好的应用前景。
Resumen de: WO2025082916A1
The invention relates to a unit (200) for producing hydrogen that comprises: - a stack (102) of solid oxide cells, - an air circuit (110), and a fuel circuit (120) passing through the stack (102); characterised in that the unit (200) is equipped with a stopping system comprising: - an inlet (202) and an outlet (204) for neutral gas, for circulating a predetermined neutral gas in the stack; - an inlet (206) and an outlet (208) for safety gas, for circulating a safety gas in the stack (102); and - a control module (210) for switching the stack (102) from the production configuration to the stopped configuration. The invention also relates to a method for controlling such a unit.
Resumen de: US2025128205A1
According to various embodiments, a carbon capture system includes: a renewable power source; an electrolysis chamber that generates chlorine (CI), hydrogen (H), and an aqueous sodium hydroxide (NaOH) solution from a sodium chloride (NaCl) solution using electrical energy from the renewable power source; a mixing chamber that generates an aqueous sodium bicarbonate (NaHCO3) solution by mixing CO2-containing air and the aqueous NaOH solution; and a CO2 extraction chamber that generates CO2 by combining the aqueous NaHCO3 solution with hydrogen chloride (HCl).
Resumen de: DE102023136033A1
Eine Federplattenbaugruppe ist vorgesehen. Die Baugruppe umfasst Federplatten, wobei jede der Federplatten einen Umfangsabschnitt aufweist, der sich in einer ersten Ebene erstreckt, mindestens einen Brückenabschnitt, der sich von einem ersten Teil des Umfangsabschnitts zu einem zweiten Teil des Umfangsabschnitts erstreckt, und Federelemente, die sich von dem mindestens einen Brückenabschnitt erstrecken. Ein erstes Paar benachbarter Federplatten ist so konfiguriert, dass es in einen entsprechenden der Umfangsabschnitte eingreift, wenn es in einer ersten Konfiguration gestapelt ist, und das erste Paar benachbarter Federplatten ist so konfiguriert, dass es in ein entsprechendes der Vielzahl von Federelementen eingreift, wenn es in einer zweiten Konfiguration gestapelt ist.
Resumen de: JP2025067514A
【課題】水蒸気を除去するために空気や窒素等を用いたガス置換を行わずに停止することができる水素生成システムを提供する。【解決手段】水素生成システム100は、水素極11、酸素極12及び水素極11と酸素極12との間に配置される電解質層13を有する電解セルを備え、水蒸気を水素極11に供給して水蒸気電解により水素を生成する電解モジュール19と、水素極11が接する水素極空間11aを減圧する水素極側真空ポンプ62と、電解モジュール19による水素の生成を停止する停止制御を行う時に、水素極側真空ポンプ62を動作させて水素極空間11aの圧力を水の飽和蒸気圧よりも低い圧力に制御する制御装置80と、を備えている。【選択図】図1
Resumen de: WO2025083095A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H 2 → 2H + + 2e -, formula 1. The at least one first electrode comprises at least one redox couple My/Mx, insoluble in the electrolytic media, said at least one redox couple being arranged to exhibit at least two oxidation states and being suitable to be reduced from an oxidized state My to a reduced state Mx, and conversely, according to formula 2: M y + pe- → M x, formula 2, wherein x and y are oxidation number. An absolute potential difference | ΔE | between a redox potential of the couple H+/H2, for a predetermined electrolytic media and a predetermined pressure range of gaseous dihydrogen, and a redox potential of the at least one couple My/Mx is lower than or equal to 0.6 V.
Resumen de: DE102023128707A1
Elektrochemievorrichtung (10), insbesondere Elektrolysevorrichtung, mit einem Zellstapel (11) aus mehreren Zellstapelelementen (12), insbesondere aus mehreren Elektrolysezellen, mit einer Endplatten (14, 15) aufweisenden Kraftbeaufschlagungseinheit (13), wobei der Zellstapel (11) aus den Zellstapelelementen (12) zwischen den Endplatten (14, 15) angeordnet und verpresst ist, wobei ein Raum (21) zwischen den Endplatten (14, 15), in welchem der Zellstapel (11) aus mehreren Zellstapelelementen (12) angeordnet ist, nach außen gegenüber der Umgebung der Elektrochemievorrichtung (10) über ein Hüllelement (22) abgedichtet ist.
Resumen de: US2025129493A1
A hydrogen generation system comprising a wind turbine rotor coupled to a generator, wherein the generator is electrically coupled to a DC-link by way of a primary power converter, the DC-link having a power dissipation element. The system also comprises a hydrogen electrolysis system coupled to the DC-link; an auxiliary power converter coupled to the DC-link; and one or more auxiliary loads. A control system controls the voltage on the DC-link to remain with a predetermined range. In one aspect, the system provides power to at least the auxiliary loads, in such a way as to manage the generation of hydrogen by the electrolyser whilst decoupling the performance of the electrolyser from varying wind conditions.
Resumen de: US2025129491A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane, a gas diffusion layer, and a catalyst layer. The gas diffusion layer is positioned on one side with respect to the electrolyte membrane. The gas diffusion layer is a porous layer. The catalyst layer is positioned between the electrolyte membrane and the gas diffusion layer. The catalyst layer is made of a catalyst material. A penetration part formed in the gas diffusion layer by the penetration of the catalyst material having a thickness of 1 μm or less.
Resumen de: US2025129001A1
In a process for producing methanol, a synthesis gas that has been recovered from biomass is fed to a methanol synthesis apparatus. In a main operating mode in which sufficient electrical power is available for electrolytic hydrogen recovery, correspondingly electrolytically recovered hydrogen is fed to the methanol synthesis apparatus. In a secondary operating mode in which insufficient electrical power is available for electrolytic production of hydrogen, a tail gas that arises from a biogas recovered from a biomass on removal of the synthesis gas is fed to a generator in order to provide electrical power for apparatuses involved in the process.
Resumen de: US2025131137A1
An offshore wind power-based water electrolysis system includes an offshore wind turbine generator installed offshore to produce electricity using offshore wind energy, a water electrolysis facility installed offshore to produce hydrogen by electrolysis of water using the electricity, a hydrogen maritime transport apparatus to transport the hydrogen produced through the water electrolysis facility to onshore, a hydrogen above-ground storage facility installed on ground to store the transported hydrogen and dispense the hydrogen to ground transport apparatuses, and a system maintenance and management apparatus to calculate and notify a remaining useful life of blades in the offshore wind turbine generator by performing debonding damage simulation, fatigue crack growth simulation and remaining useful life simulation of the blades in a sequential order, and determine and notify stability through finite element analysis for each hydrogen tank in the hydrogen maritime transport apparatus and the hydrogen above-ground storage facility.
Resumen de: US2025128834A1
A water collecting device includes an ice-wall forming part configured to heat the ground to form an ice wall with ice that includes moisture in the ground, and a water collecting part configured to recover a first gas within a region surrounded by the ice wall and collect water from the recovered first gas.
Resumen de: AU2023260588A1
A separator for alkaline electrolysis (1) comprising a porous support (10), a first porous layer (20b) provided on one side of the porous support and a second porous layer (30b) provided on the other side of the porous support, wherein the first and the second porous layer are partially impregnated into the porous support and each have an overlay thickness d1 and d2 respectively, said overlay thickness being defined as the part of each porous layer which is not impregnated into the porous support, characterized in that a) d1 is smaller than the overlay thickness of the second porous layer (d2), and b) d1 is at least 20 µm.
Resumen de: WO2025079381A1
A purpose of the present invention is to provide an ammonia decomposition catalyst device with which a conversion of ammonia (NH3) can be improved. An ammonia decomposition catalyst device 100 for producing hydrogen (H2) through decomposition of ammonia (NH3) has a gas-flow upstream-side region 100a and a gas-flow downstream-side region 100b, in which a base density of the gas-flow downstream-side region 100b is a higher than that of the gas-flow upstream-side region 100a.
Resumen de: US2025132137A1
A scrubber includes a plasma treatment system, a hydrogen supply system, and a wet treatment system. The plasma treatment system performs a plasma treatment in which a process gas and a hydrogen gas are reacted using plasma. The hydrogen supply system supplies the hydrogen gas to the plasma treatment system. The wet treatment system performs a wet treatment in which a by-product generated by the plasma treatment is wet-treated.
Resumen de: WO2025084937A1
A method of producing a gas via electrolysis of water, the method comprising: performing electrolysis of water within one or more electrolysis cells (52) to produce a mixture comprising a liquid and one of hydrogen and oxygen; and separating, within a separator (53), the mixture into a gas and a liquid, wherein the separator operates at a higher pressure than the pressure at which the one or more electrolysis cells operate.
Resumen de: WO2025084128A1
A hydrogen production method according to the present disclosure involves bringing a catalyst and an ammonia-containing gas into contact with each other to decompose the ammonia, wherein: the catalyst includes ruthenium, at least one element selected from the group consisting of barium and cesium, and a carbon carrier; the catalyst has pores having an average pore size of 3.5-15 nm; and the cylinder linear velocity of the gas when bringing the catalyst and the gas into contact with each other is at least 1.0 cm/s at 0°C in standard atmosphere.
Resumen de: WO2025084129A1
A hydrogen production method according to the present disclosure involves bringing a catalyst and an ammonia-containing gas into contact with each other to decompose the ammonia, wherein the catalyst includes ruthenium, at least one element selected from the group consisting of barium and cesium, a carbon carrier, and sulfur, and the sulfur content is 0.002-0.1 mass%.
Resumen de: WO2025081550A1
The present invention relates to the field of photoelectrochemical water splitting for hydrogen production. Disclosed is a silver bismuth sulfide (AgBiS2)-based composite photocathode used for photoelectrochemical water splitting for hydrogen production and a preparation method therefor. The composite photocathode structurally comprises a molybdenum-plated conductive substrate located at the bottom, an AgBiS2 light absorption layer located above the conductive substrate, a CdS buffer layer located above the light absorption layer, a TiO2 protective layer located above the buffer layer, and a Pt hydrogen evolution cocatalyst layer located above the protective layer. The preparation method therefor comprises the following steps: using a spray pyrolysis method to spray on a molybdenum-plated substrate an AgBiS2 layer; then, using a chemical bath deposition method to deposit on the AgBiS2 layer a CdS layer; then, using an atomic layer deposition method to deposit on the CdS layer a TiO2 layer; and finally, using a photo-assisted electrodeposition method to deposit on the TiO2 layer a layer of Pt nanoparticles. The AgBiS2-based photocathode disclosed in the present invention can implement at certain bias voltages efficient and stable photoelectrochemical water splitting for hydrogen production, and the preparation method therefor is simple and low-cost.
Resumen de: WO2025081215A1
A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: KR20250055035A
본 발명은 황화아연코발트와 이황화몰리브덴이 이종 접합된 수전해 촉매 및 이의 제조방법에 대한 것이다.
Resumen de: KR20250054885A
본 발명은 산소 발생 반응과 수소 발생 반응에 대해 모두 우수한 활성을 가지는 물 분해 촉매에 관한 것으로, 상기 촉매는 기판 상에 형성된 산화아연 입자 및 상기 산화아연 입자의 표면에 형성된 기능성 코팅층을 포함하고, 상기 기능성 코팅층은 산화철을 포함한다.
Resumen de: AU2023352489A1
A water electrolysis apparatus (100) includes: an electrolytic cell (20) for electrolyzing water; a circulation pump (27) that is installed in a water circulation line (23) for supplying water from an oxygen gas-liquid separator (22) to the electrolytic cell (20); an inverter (50) that supplies power to the circulation pump (27); and a control unit (60) that controls the inverter (50) to change the circulating water flow rate of the water circulation line (23).
Resumen de: AU2025202458A1
A device (1) for performing electrolysis of water is disclosed. The device comprising: a semiconductor structure (10) comprising a surface (11) and an electron guiding layer (12) below said surface (11), the electron guiding layer (12) of the semiconductor structure (10) being configured to guide electron movement in a plane parallel to the surface (11), the electron guiding layer (12) of the semiconductor structure (10) comprising an InGaN quantum well (14) or a heterojunction (18), the heterojunction (18) being a junction between AIN material and GaN material or between AIGaN material and GaN material; at least one metal cathode (20) arranged on the surface (11) of the semiconductor structure (10); and at least one photoanode (30) arranged on the surface (11) of the semiconductor structure (10), wherein the at least one photoanode (30) comprises a plurality of quantum dots (32) of InxGa(1-x)N material, wherein 0.4 x 1. Also a system comprising such device is disclosed. Figure for publication: Fig. 1 30 20 30 20 40 )-12, 16 Fig.1 Fig.2
Resumen de: AU2023391802A1
The present invention pertains to an ammonia decomposing catalyst and a method for producing same. More specifically, the present invention pertains to: an ammonia decomposing catalyst containing an MgAl
Resumen de: AU2023342258A1
The problem addressed by the present invention is that of specifying a process for electrochemical production of LiOH from Li
Resumen de: AU2023359368A1
Electrolyser (1) for production of hydrogen gas and comprising a stack of bipolar electrodes (9) sandwiching ion-transporting membranes (2) between each two of the bipolar electrodes (9). Each bipolar electrode comprises two metal plates (9A, 9B) welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates (9A, 9B) are embossed with a major vertical channel (10A, 10B) and minor channels (11A, 11B) in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates (9A, 9B) so as to also provide coolant channels (11B) in a herringbone pattern inside the coolant compartment.
Resumen de: US2025129762A1
A system and method by which energy from ocean waves is converted into hydrogen, and that hydrogen is used to manifest electrical and mechanical energies by an energy consuming device. A portion of the generated electrical power is communicated to water electrolyzers which produce oxygen and hydrogen from water as gases. At least a portion of the generated hydrogen gas is transferred to a transportation ship via a hose-carrying, remotely operated (or otherwise unmanned) vehicle, and subsequently transferred to an energy-consuming module or infrastructur, where a portion of the hydrogen is consumed in order to manifest a generation of electrical energy, a mechanical motion, and/or a chemical reaction.
Resumen de: US2025129300A1
A gas-oil separation plant (GOSP) system includes a crude inlet line extending to a separation vessel where a sour gas stream may be separated from an inlet fluid stream. The GOSP system provides an H2S membrane system where the sour gas stream may be directed for separation of H2S and an electrolyzer where H2 may be separated from the H2S. The GOSP system also includes a combustion gas turbine where an exhaust containing CO2 is produced and a CO2 membrane system where the CO2 may be separated from the exhaust. The H2 and CO2 may be combined and reacted in a Sabatier reactor to produce CH4 and H2O. The CH4 may be used to fuel the combustion gas turbine and the H2O may be directed to a steam head for use in other processes. Additionally, a sweetened gas stream having the H2S removed may be exported by the GOSP system.
Resumen de: US2025129492A1
A spring plate assembly. The assembly includes spring plates with each of the spring plates having a perimeter section extending in a first plane, at least one bridge section extending from a first portion of the perimeter section to a second portion of the perimeter section, and spring elements that extend from the at least one bridge section. A first pair of adjacent spring plates are configured to engage a corresponding one of the perimeter sections when stacked in a first configuration and the first pair of adjacent spring plates are configured to engage a corresponding one of the plurality of spring elements when stacked in a second configuration.
Resumen de: WO2025082675A1
The invention relates to a hydrogen-production plant comprising at least a first production line, comprising at least a first electrolysis device with a plurality of first electrolysis modules and comprising a first compressor device with a plurality of first compressor modules, and comprising a controller, comprising at least a schedule-creating module and a control module, wherein the schedule-creating module is designed for creating an activation schedule at least for the first electrolysis modules and for the first compressor modules on the basis of respective performance characteristics of the respective first electrolysis modules, respective performance characteristics of the respective first compressor modules and at least one predetermined optimization criterion, and wherein the control module is designed for activating the first compressor modules and the first electrolysis modules on the basis of the activation schedule created.
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: KR20250054245A
본 발명에 따른 촉매코팅된 티타늄 전극판이 구비된 해수 이용 수소발생 시스템은, 해수가 유입되는 해수 유입관이 연결된 해수 저장탱크와, 상기 해수 저장탱크에 연결된 제1 해수공급관에 의하여 해수가 충진되는 복수의 HHO 수집 저장조와, 상기 HHO 수집 저장조에 침지되고 음극판, 절연제 및 양극판이 다수가 배치된 HHO 가스 발생부와, 상기 HHO 수집 저장조와 연통되어서 HHO 수집 저장조의 상부에 모여 있는 HHO 가스가 이송되는 HHO 가스 이송관과, 상기 HHO 가스가 이송되어 HHO 가스에서 수소와 산소를 완전하게 분리시키는 수소산소분리부와, 상기 수소산소분리부에서 산소가스와 분리되어 독립된 가스상태로 분리된 수소가스를 이송시키는 수소가스이송관과, 수소가스가 저장되는 수소가스저장기를 포함하여, 넓은 면적에서 전자빔이 물분자를 가격할 수가 있게 되어 HHO 가스가 다량으로 발생되어 HHO 가스의 생산효율이 월등하게 높아지면서도 특히 바닷물의 부식에 의한 장기간의 사용이 가능하도록 사용되는 전극판이 티타늄으로 제조되고 상기 티타늄 전극판의 표면에 촉매로 활용되는 백금, 일리디움, 그래핀, 카본 나노 튜브로된 코팅면이 코팅되어 해수에도 부식의 진행이 더디게 진행되어 장기간의 사용이 가능하다.
Resumen de: EP4541451A1
This dehumidification apparatus is for dehumidifying a hydrogen gas that is produced by a hydrogen production device, the dehumidification apparatus comprising: a dehumidifier that includes an adsorption tower, inside of which there is provided an adsorbent that is capable of adsorbing moisture contained in the hydrogen gas; an inlet line for introducing the hydrogen gas from the hydrogen production device into the dehumidifier; an inlet valve that is provided to the inlet line; an outlet line for discharging the hydrogen gas that is dehumidified by the dehumidifier out from the dehumidifier; an outlet valve that is provided to the outlet line; and a control device that is configured to adjust the opening degree of the inlet valve and the opening degree of the outlet valve on the basis of the pressure within the adsorption tower during activation of the dehumidification apparatus.
Resumen de: WO2024033060A1
The invention relates to an electrolysis system (100), comprising at least two electrolysis installations (1A, 1B), a power supply source (3) having a direct voltage output (7), and a central supply line (5), wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3) such that, at a first direct voltage (31), a direct current can be fed into the central supply line (5). The electrolysis installations (1A, 1B) are connected electrically in parallel to the central supply line (5), wherein, for the direct voltage supply from the public power grid (25) to a network connection point (35), a central voltage source converter (13), in particular a modular multilevel inverter (13), is connected which converts an input-side alternating voltage into the output-side first direct voltage (31) at the direct voltage output (7). Each electrolysis installation (1A, 1B) is in each case connected via a DC/DC converter (11A, 11B), which converts the first direct voltage (31) into a second direct voltage (33, 33A, 33B), parallel to the direct voltage output (7) of the voltage source converter (13) in such a way that the second direct voltage (33, 33A, 33B) across the electrolysis installation (1A, 1B) drops, wherein each of the DC/DC converters (11A, 11B) can be controlled and/or regulated for adapting a level of its second direct voltage (101, 102).
Resumen de: WO2023242385A1
The invention relates to a method for producing hydrogen with adjustment of the power of a compressor according to the rate of production of an electrolyser, said method comprising the following steps: - a) electrolysing using an electrolyser producing hydrogen at a flow rate of between 0.5 and 5 standard m3/h at an outlet pressure of between 1 and 50 bar; - b) compressing the hydrogen using an electrochemical compressor. The method also comprises a step of correcting the power supply current of the electrochemical compressor with respect to a target pressure value.
Resumen de: AU2023293861A1
The invention relates to an electrolysis system (21) comprising: at least one electrolysis cell (01); and a cathode-side water circuit (07) having a hydrogen separator (05); and an anode-side water circuit (06) having an oxygen separator (04); and an equalisation connection (22) which leads, coming from a cathode-side water connection (15), to the anode-side water circuit (06) via a pump (13) and an ion exchanger (12) via a node point (23) and an operating line (24); and an idle line (25) which (25) branches off upstream of the control line (24) and leads to the cathode-side gas connection (17).
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: EP4541943A1
An electrode for electrolysis, including:a conductive substrate; anda catalyst layer disposed on a surface of the conductive substrate,in which at least one of the following conditions (I) and (II) is satisfied:(I) the catalyst layer contains a ruthenium element and an iridium element, and a crystallite size is 50 Å or more and 100 Å or less, the crystallite size being calculated from a peak observed in a 2θ range of 27° or more and 28.5° or less in an XRD spectrum, the XRD spectrum being obtained by subjecting the catalyst layer to X-ray diffraction measurement and(II) the catalyst layer contains (i) a ruthenium element, (ii) an iridium element, and (iii) at least one kind of metal element M selected from the group consisting of W, Zn, Mn, Cu, Co, V, Ga, Ta, Ni, Fe, Mo, Nb and Zr, in the catalyst layer, a molar ratio of the ruthenium element to the iridium element, in terms of ruthenium element/iridium element, is 1.4 or more, and a molar ratio of the metal element M to the ruthenium element, in terms of metal element M/ruthenium element, is 0.06 or more and 3.5 or less.
Resumen de: WO2023245201A2
A process of dissociating ammonia into a dissociated hydrogen/nitrogen stream in catalyst tubes within a radiant tube furnace and an adiabatic or isothermal unit containing catalyst, along with downstream purification process units to purify the dissociated hydrogen/nitrogen stream into high purity hydrogen product.
Resumen de: GB2634787A
A method and associated apparatus 50 for the production of gas via electrolysis of water. The method comprises: performing electrolysis of water within one or more electrolysis cells (figure 1,2), to produce a mixture comprising a liquid and at least one of hydrogen and oxygen. The gas(es) and liquid are separated, where the separator 53 operates at a higher pressure than the pressure at which the one or more electrolysis cells operate. An additional pressurising step 55 can be performed on the gaseous mixture before separation. The gas output from the separator may be supplied to a compressor. A energy harvesting device may be provided as a part of a depressuring system 56.
Resumen de: EP4541945A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H2 ↔ 2H<+> + 2e<->, formula 1. The at least one first electrode comprises at least one redox couple M
Resumen de: EP4541944A1
A proton exchange membrane (10) for water electrolysis comprising a proton exchange substrate (12) coated on one side with a titanium oxide film (14), the titanium oxide film having a thickness (t<sub>14</sub>) equal to or smaller than 100 nm. A method for making a proton exchange membrane for water electrolysis.
Resumen de: GB2634845A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: GB2634846A
A hydrogen production facility 10 is described. The hydrogen production facility includes one or more electrolyser stacks 12 to electrolyze water. A hydrogen-aqueous solution mixture 12a and an oxygen-aqueous solution mixture 12b are generated, where the one or more electrolyser stacks comprise a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator 2 comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device 16. The oxygen separator 4 comprises an oxygen gas-liquid separation device and an oxygen coalescing device 18. The hydrogen separator 2 and the oxygen separator 4 can be coupled using a pressure balancing line 24 to prevent or reduce a pressure differential across the plurality of membranes.
Resumen de: MX2024009525A
The present disclosure provides methods and apparatuses of producing hydrogen. The methods comprise: (a) contacting a plastic with a catalyst and a gas feed; and (b) applying a microwave at a first temperature. The apparatuses comprise: a reactor for mixing plastic with a catalyst to form a mixture; an inlet for introducing a gas feed; a microwave generator; an optional temperature sensor; and an outlet configured to exhaust the product hydrogen formed in the reactor.
Resumen de: EP4545192A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: EP4542815A2
An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub-system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: CN119859810A
本发明涉及一种基于化学链循环的无膜电解水制氢电解槽及运行方法,所述电解槽包括分别与外部电源相连的第一端板、第二端板,两端板间设有至少一个双极板,两个端板和双极板之间、以及相邻两个双极板之间分别形成有电解小室;每个电解小室内设有功能组件,功能组件包括依次贴合的双功能电极、多孔隔板和载氧体电极,双功能电极与载氧体电极搭配使用时能够在不同工况下进行催化析氢、催化析氧,适应可再生能源的功率波动和间歇性,具备离网制氢的应用潜力。所述运行方法包括通过温度场和电场的协同供能,在不同工况下实现氢气与氧气的分步或连续生产。
Resumen de: CN119859817A
本公开涉及一种钛氧化合物纳米线负载铱的催化剂及其制备方法和应用,所述催化剂包括钛氧化合物纳米线载体和负载于所述钛氧化合物纳米线载体上的单质铱。该催化剂以钛氧化合物纳米线作为载体,在其上负载单质铱制备出的催化剂作为阳极催化剂能够获得更高的质量比活性和更低的析氧过电位;使用其制备的膜电极具有贵金属催化剂载量低、电解水分解电压低的特点。
Resumen de: CN119859824A
本公开涉及一种电解制氢系统、电解制氢启动方法、存储介质及电子设备,电解制氢系统包括:控制器、电解槽、电解液存储罐、分离器以及至少一个阀门,其中,电解液存储罐的容积小于分离器的容积,控制器,与阀门连接,用于获取电解槽出口的电解液的目标温度,根据目标温度,确定至少一个阀门的开度,以使电解槽与电解液存储罐形成第一制氢循环回路,通过至少一个阀门的开度,将电解槽与电解液存储罐形成第一制氢循环回路,由于电解液存储罐的容积小于分离器的容积,这样能够使电解槽与电解液通过第一制氢循环回路快速地加热到预设温度,有效地提高了电解制氢系统的制氢效率,并降低了电解制氢系统的冷启动时间。
Resumen de: PL450203A1
Przedmiotem zgłoszenia jest sposób sprężania wodoru do wysokich ciśnień przy zastosowaniu CO2 w stanie nadkrytycznym, charakteryzujący się tym, że strumień gazu bogaty w wodór (3) miesza się w komorze mieszania (II) z strumieniem CO2 w jego punkcie krytycznym w temperaturze 36°C i pod ciśnieniem 72 bar, po czym otrzymany strumień mieszaniny wodoru i CO2 (5) poddaje się sprężaniu do uzyskania wymaganego wysokiego ciśnienia, a następnie sprężoną mieszaninę wodoru i CO2 strumieniem (6) kieruje się do elektrolizera węglanowego (IV), w którym pod wpływem przepuszczonego prądu elektrycznego (2) rozdziela się sprężoną mieszaninę (6) na strumień sprężonego wodoru (7) i strumień CO2 (4).
Resumen de: PL446449A1
Przedmiotem zgłoszenia jest system do wytwarzania wodoru, zwłaszcza na potrzeby gospodarstw domowych, składający się z urządzenia wytwórczego zawierającego szczelny zbiornik z elektrolitem, połączone z nim co najmniej dwa segmenty generatorów (1) do elektrolizy, połączone ze sobą równolegle i zasilane prądem za pomocą źródła prądu połączonego z jednym generatorem (2), gdzie każdy segment generatorów (1) składa się z dwóch zewnętrznych bocznych ścian (3) i co najmniej dwóch generatorów (2) ze wspólną wewnętrzną ścianą (4), zbudowanych z co najmniej pięciu płyt (8), odizolowanych od siebie uszczelkami (9), wyposażonych w przelotowe otwory (5) wykonane w jednej linii z wlotem (6) oraz z wylotem (7), a dwie skrajne płyty (8) każdego generatora (2) stanowią elektrody wyposażone w otwory do podłączenia zasilania prądem oraz z urządzenia zabezpieczającego zawierającego filtr dekompresyjny mokry (23) z bezpiecznikiem (27) połączony z jednej strony z filtrem osuszającym (21), a z długiej strony z mniejszym od niego filtrem dekompresyjnym suchym (25) z bezpiecznikiem (27) wypełnionym wełną tłumieniową, połączonym przez zawór zwrotny ciśnieniowy (34) z filtrem mokrym (35) wypełnionym alkoholem propylowym, połączonym z czujnikiem ciśnieniowym (17) oraz bezpiecznikiem gazowym kierunkowym (36), połączonym z zaworem końcowym (37), zabezpieczonym filtrem tłumiącym (38) z wełną miedzianą.
Resumen de: JP2025065810A
【課題】 燃料極に供給するガスの加熱に要する熱エネルギーを低減することができる水素製造装置を提供すること。【解決手段】 水素製造装置(1)は、Niを含む燃料極(51)と、固体電解質層(53)と、空気極(52)とを備え、燃料極に水素及び水蒸気が供給され、燃料極に供給された水蒸気を電気分解することにより燃料極にて水素を生成するとともに空気極にて酸素を生成し、燃料極から水素を含む燃料極排出ガスを排出し、空気極から酸素を含む空気極排出ガスを排出する電気化学セル(50)と、燃料極排出ガスに含まれる水素の一部を前記燃料極に還流する還流部(60)と、を備える。【選択図】 図1
Resumen de: WO2024047362A2
A membrane electrode assembly (MEA) for producing hydrogen in a water electrolyser is provided. The MEA comprises a polymer electrolyte membrane (REM), a cathode comprising a cathode catalyst on a first side of the REM, an anode comprising an anode catalyst on a second side of the REM, and a platinum-ruthenium (Pt-Ru) catalyst located on the second side of the REM for electrochemically converting hydrogen gas into hydrogen cations in use. The Pt-Ru catalyst is in electrical contact with the anode and ionic contact with the REM.
Resumen de: WO2025079526A1
This method for producing an electrode material that is to be used in an electrode of a water electrolysis device has an alkali treatment step for treating a specific NiAl-based alloy with an alkaline material in order to leach aluminum from the specific NiAl-based alloy, thereby obtaining Raney nickel. The specific NiAl-based alloy is an alloy that is represented by the composition formula Al4Ni(3-(x+y))FeyCox (where x and y are values satisfying 0.3≤x≤1.5 and 0≤y≤0.35).
Resumen de: CN119858897A
一种氨分解制氢方法及系统,方法是使用石墨烯作为微波吸收介质,在微波的辐照下,石墨烯吸收微波在10秒内快速升温至1000℃,为氨分解提供热能;石墨烯中近乎自由移动的π电子在微波场的作用下快速远动,与氨气分子发生碰撞激活氨气分子,产生放电等离子体;在热催化与等离子体催化的协同作用下实现氨分解;系统包括氨气瓶,氨气瓶通过气体质量流量计和石英反应器进口连通,石英反应器内放置有石墨烯,石英反应器放置在微波合成萃取仪中,石英反应器出口和洗气瓶进口连通,洗气瓶出口和气体收集装置进口连通;本发明在极短的时间内产生氢气,显著缩短了整个氨分解系统的启动时间;系统结构简单、操作方便,降低成本且更加节能环保。
Resumen de: CN119859812A
本发明公开了一种制氢装置,包括:电解结构和夹紧机构,夹紧机构包括正极压板、负极压板、正极板、负极板及调节组件,正极压板和负极压板相对,正极板和负极板对应垫设于正极压板和负极压板相对的两侧,电解结构夹设于正极板和负极板之间,调节组件连接于正极压板和负极压板之间,正极压板背对负极压板的一侧开设有进水接口、回水接口以及出氢接口;电解结构包括电解单元和外密封组件,外密封组件包括支撑圈和弹性密封圈,支撑圈套设于电解单元外,弹性密封圈套设于电解单元的外周,弹性密封圈的厚度既大于支撑圈的厚度,也大于电解单元的厚度。本发明可以确保具有较佳的密封性。
Resumen de: CN119859816A
本发明属于电解水制氢领域,具体公开了一种三金属位点协同调控的碱性电解水电极及其制备方法和应用。制备方法包括以下步骤:木质素磺酸盐氧化;氧化后木质素磺酸盐与金属盐混合,金属包括Ru、Ce、Sm,与基底载体一起进行水热反应,得到电极前驱体;煅烧电极前驱体,得到三金属位点协同调控的碱性电解水电极。与现有技术相比,本发明具有以下有益效果:基底与表面高活性组分结合更加紧密,避免了催化剂使用过程中的脱落现象。Sm、Ce掺杂对电极中活性Ru位点具有一定的电子调控和应变调控作用,从而提升电极的催化活性和反应稳定性。
Resumen de: CN119859811A
本发明涉及电解水制氢技术领域,公开了一种碱性制氢系统、控制方法、介质和产品,系统包括:电源模块、电解槽和辅助系统;电源模块分别与电解槽和辅助系统电连接;辅助系统包括控制子系统、气液分离子系统、水碱补充子系统;水碱补充子系统和电解槽管路连接,气液分离子系统与电解槽管路连接,控制子系统分别与气液分离子系统、水碱补充子系统和电解槽信号连接;电解槽中的隔膜采用有机‑无机复合隔膜。本发明通过有机‑无机复合隔膜阻隔氢气横向穿透到阳极侧,决定风光功率能够突破电解槽额定功率20%的限制,不会造成电解槽停机,使电解槽能够满足风光功率任意波动。
Resumen de: CN119864835A
本发明提供一种波动能源制氢系统的配置方法及电子设备,其中,波动能源制氢系统的配置方法包括:获取与波动能源制氢系统中至少一个设备单元相对应的设备工作参数集,并基于设备工作参数集构建各个设备单元所分别对应的容量配置模型;根据各个容量配置模型确定决策变量,根据与波动能源制氢系统制备单位量的氢气所对应的制备成本最低且制备碳排放量最小确定目标函数,根据供电功率条件和供氢速率条件确定约束条件;求解波动能源氢储系统模型中各个决策变量的最优解,以相应地确定各个设备单元的容量配置结果。由此,通过多目标圆圈搜索确定各个设备单元的容量配置的最优解集,实现利用波动能源稳定制氢,同时兼顾系统的经济效益和碳减排。
Resumen de: CN119325656A
An electrical or electrosynthetic cell is disclosed, the architecture of which allows them to be easily stacked into a cell stack. These cells include polymer cell frames, functional materials (e.g., inter-electrode membranes, electrodes, metal bipolar plates, etc.) incorporated therein. For example, an electrical or electrosynthetic cell includes a polymeric cell frame, a first electrode and a second electrode, and an inter-electrode membrane positioned between the first electrode and the second electrode. The squeeze member is positioned adjacent to the first electrode. The squeeze member may be a metal bipolar plate squeeze member and/or a metal porous transport layer squeeze member. In one example, a polymer cell frame is sealed to a metal bipolar plate by a polymer-to-metal bond. In another example, at least one polymeric structural positioning member positions the metal bipolar plate against the polymeric cell frame. A cell stack comprising a plurality of cells is disclosed.
Resumen de: FR3154125A1
L’invention concerne une unité (200) de production d’hydrogène comprenant : un empilement (102) de cellules à oxyde solide, un circuit (110) d’air, et un circuit de fuel (120) traversant ledit empilement (102) ; caractérisé en ce que ladite unité (200) est équipée d’un système d’arrêt comprenant : une entrée (202) et une sortie (204) de gaz neutre pour faire circuler un gaz neutre prédéterminé dans ledit empilement, une entrée (206) et une sortie (208) de gaz de sécurité pour faire circuler un gaz de sécurité dans ledit empilement (102), etun module (210) de contrôle pour faire passer ledit empilement (102) de la configuration de production à la configuration d’arrêt. Elle concerne également un procédé de pilotage d’une telle unité. Voir Figure 2
Resumen de: CN119843310A
本发明涉及一种电解水制氢高性能催化电极材料的制备方法及催化电极材料,制备过程中,首先对导电基底预处理去除杂质,接着配制含镍源、造孔剂、铁源、铈源的电镀液。电沉积时,一步沉积法将预处理镍网作阴极、镍棒作阳极,施加1V‑10V恒定电压,5‑30分钟,20℃‑60℃;两步沉积法先在镍网基底上制镍铁电极基底,再沉积镍铁铈。后处理后在保护气氛下600℃‑1000℃烧结1s‑30s得产品。与现有技术相比,本发明通过Ce氧化还原电对及氧空位提升活性与稳定性,加快电解水制氢反应,具有性能优、制备灵活等优点,为氢能源高效生产提供有力支撑。
Resumen de: CN119838618A
本发明提供了一种Ti2C@MoS2复合材料及其制备方法和应用,属于催化产氢技术领域。本发明将钼源、硫源、有机溶剂和Ti2C混合,在高温条件下进行还原,得到Ti2C@MoS2复合材料。本发明通过高温还原反应将Ti2C和MoS2结合形成异质结构,并利用其优异的压电效应,显著提升二硫化钼的催化活性和稳定性,在压电催化水分解制氢时具有优异的产氢速率。实施例的结果显示,本发明制备的Ti2C@MoS2复合材料的产氢速率可达到870.09μmol·g‑1·h‑1。
Resumen de: CN119838596A
本发明涉及析氢催化剂及异质相结构合金材料技术领域,具体涉及一种双晶相纳米结构合金析氢催化剂及其制备方法和应用。双晶相纳米结构合金析氢催化剂包括衬底以及沉积在所述衬底表面的双晶相纳米结构合金,双晶相纳米结构合金是由以下元素组成:Ru 56%~62%,Mn 5%~30%,Nb 8%~30%和O 5%~6%,合计100%;所述双晶相纳米结构合金包括富Mn相和贫Mn相,且在富Mn相和贫Mn相之间形成富O界面,富O界面具有催化活性位点;所述富Mn相的尺寸为1nm~6nm。本发明解决了现有的Ru基催化剂中Ru和H原子之间强烈的相互作用会阻碍H2的解吸,导致氢气的生产率降低的问题。
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: CN119841279A
本发明提供了一种硫化氢连续反应制氢气及硫磺的装置及方法,该装置包括配气单元、反应单元、尾气吸收单元;其中,所述反应单元包括依次交替连通的至少两个反应管和至少两个硫捕集器,以及用于加热所述反应管的反应加热器;所述配气单元的出口连接第一个反应管的入口,最后一个硫捕集器的出口连接所述尾气吸收单元的入口。本发明将硫化氢热催化分解法、硫冷凝回收和硫化氢氢气分离工艺相结合,将硫化氢催化热分解为单质硫和氢气,利用冷凝提升硫化氢转化率,生产高附加值硫磺,同时回收附加值更高的氢资源。
Resumen de: CN119843313A
本发明公开一种过渡金属元素掺杂的二维氧化钌电解水催化剂及制备方法,其中,催化剂的形貌为片层状结构,掺杂的过渡金属元素为锰、铁、钴、镍、铜、锌中的一种,掺杂量不大于20%。本发明的催化剂中的钌元素与过渡金属元素之间存在相互作用,优化了催化剂内部电子结构,且催化剂形貌为片层状结构,增大了催化剂的电化学活性面积,从而大幅降低了OER的过电位;掺杂后的二维氧化钌纳米片,作为OER的电催化剂,可以在析氧时保持稳定,不被腐蚀,提升了钌基催化剂的稳定性,能够应用于酸性环境中催化析氧反应;制造工艺简单易行,具有规模化生产的潜力。因此本发明具有较高的经济效益和应用价值。
Resumen de: CN119843319A
本发明公开了一种碳碳负载WC/Bi2MoO6复合光电催化光阴极及其制备方法,属于复合光电催化光阴极制备领域,所述方法将碳碳复合材料的表面依次氧化和刻蚀后浸入三氯化铋和钼酸钠的混合溶液中进行水热反应,之后洗涤和干燥,得到碳碳负载的Bi2MoO6复合材料;将WC粉体和聚丙烯酰胺均匀分散在异丙醇中,之后加入碘单质再分散均匀得到WC前驱液,再利用电泳沉积的方式,使用WC前驱液在Bi2MoO6表面沉积WC,将所得复合物在惰性气氛下300~500°C保温1~4 h,得到碳碳负载WC/Bi2MoO6复合光电催化光阴极,在碱性溶液中表现出良好的光电催化析氢性能,是一种高效的PEC催化材料。
Resumen de: CN119843316A
本发明属于催化剂的制备领域,具体公开了一种制备碳包覆磷化钼的方法,包括:利用碳化钼作为框架和模板,通过磷化反应,使碳化钼中的碳原子被置换出来并得到磷化钼。这种原位置换的方式属于非破坏性置换反应,能够保持碳化钼原始的形貌与结构,同时所置换出来的碳,一部分沉积在磷化钼表面,形成原位碳层并紧密包覆在磷化钼表面。本发明提供的原位置换法,可以极大地降低碳包覆磷化钼的制备难度,并实现短周期、简单方便、易工业化的制备。
Resumen de: CN119843323A
本发明公开了一种基于离子液体正渗透海水电解制氢的方法,属于海水电解制氢技术领域。本发明的海水电解制氢系统,包括正渗透装置和电解槽装置;所述正渗透装置包括正渗透膜和离子液体腔;所述离子液体腔用于装填能够汲取海水中的水分的离子液体;所述正渗透膜用于阻隔海水和离子液体腔中的液相组分;所述离子液体腔与所述电解槽装置通过泵送装置相互连通。本发明将海水正渗透与电解制氢结合,解决了海水直接制氢过程中杂质离子浓度高、副反应多的问题。离子液体既可以作为本发明中的正渗透的汲取液,也可以作为电解质材料存在,可用于同时实现海水正渗透与电解制氢,为实现海水电解制氢提供了新的研发方向。
Resumen de: WO2024035454A1
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane is both electronically conducting and ionically conducting; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidant to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment for the cathode; wherein hydrogen is generated from water electrochemically; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: KR20250051876A
본 발명은 니켈-철 촉매 내의 공극에 이오노머가 충진된 수전해 전극 및 이의 제조방법에 관한 것이다. 수전해 전극 제조를 위하여 기판 상에 촉매를 전기 도금하는 과정에서 수소 기체가 제거되어 촉매 내에 공극 구조가 형성된다. 상기 공극 구조 내에 이오노머를 충진시킴으로써, 수전해 장치의 효율을 높이고 내구성을 향상시킬 수 있다.
Resumen de: CN119843303A
本发明提供了一种PEM电解槽,包括多个双极板、以及弹性支撑网;双极板相背的两侧面分别形成阳极面和阴极面;双极板的阴极面形成有凹设的阴极流场;双极板的阳极面形成有凹设的阳极流场。弹性支撑网限位在阳极流场内,且弹性支撑网朝向阴极流场的一侧支撑膜电极。膜电极和阴极流场之间围合形成用于生成氢气的空间。弹性支撑网的弹性作用,能够支撑膜电极,增强膜电极的结构强度,有效的避免膜电极发生变形,从而使得阴极流场内能够容置更大压力的氢气。从而在保证膜电极结构强度的基础上,以使得PEM电解槽能够排出更大压力的氢气。
Resumen de: CN119843317A
本发明公开了海水电解用氢氧化铈/磷化镍异质结构催化剂的制备方法,属于催化剂和电池技术领域。将泡沫镍浸泡在含有硝酸镍、尿素和氟化铵的水溶液中进行水热反应,将水热后的泡沫镍进行洗涤,干燥,得到Ni(OH)2;将磷源和Ni(OH)2在惰性气氛下进行磷化反应,得到Ni2P纳米阵列;所述磷源为次亚磷酸钠;将硝酸铈加入到蒸馏水中,在常温下搅拌溶解得到A溶液;将Ni2P纳米阵列作为工作电极,浸泡到A溶液中进行电沉积反应,使用去离子水对反应产物清洗,干燥,得到海水电解用氢氧化铈/磷化镍纳米阵列异质结构析氧电极材料。本发明通过促进异质界面处电子结构发生重排、优化中间体吸附能从而提升电解水催化效率,制备周期短,可控性好,在海水中表现出良好的稳定性。
Resumen de: CN119843311A
本发明公开了一种自支撑氮掺杂碳纳米管限域多尺度金属析氢反应阴极催化剂制备方法及其应用,本发明制备的催化剂利用自支撑碳纳米管作为载体,成功实现了多种金属的限域结构调控,尤其在氮掺杂碳纳米管的支持下,显著增强了金属的电子金属‑载体相互作用(EMSI),提升了催化剂的活性与稳定性。不同尺寸的金属粒子通过精准的调控,在多尺度范围内被有效限制与分散,从而优化了反应中间体的吸附和转化过程;该催化剂在电催化,尤其是析氢反应(HER)中的表现显著,能在酸性和碱性环境下实现低过电位、高质量活性和优良的稳定性;利用该限域催化剂,可以在低铂用量的情况下实现高效能的电解水制氢,具有广泛的工业应用潜力。
Resumen de: CN119853171A
本发明涉及一种考虑电解槽动态安全约束的光‑氢‑储微电网调度方法,属于微电网调度技术领域。一种考虑电解槽动态安全约束的光‑氢‑储微电网调度方法,包括以下步骤:对微电网中AEL电解槽和PEM电解槽进行动态运行实验,获取氢氧杂质响应特性,得出电解槽的氢氧杂质比例动态模型;根据微电网的运行特性构建调度模型。本发明避免由于电解槽功率下限给定过低导致的氢氧杂质超标引发的安全问题,以及电解槽功率下限给定过高时无法充分利用电解槽响应能力的问题;避免了对AEL电解槽和PEM电解槽的功率下限进行不断调试;可以根据不同等级的安全需求对系统的氢氧杂质比例进行限制,对系统安全性的控制程度更高。
Resumen de: CN119841429A
本发明涉及电解制水机领域,具体涉及一种电解制水机,包括内部净水系统、制氢系统、混氢系统、取水系统;内部净水系统将废水送入废水槽,净水送入纯水箱;在纯水箱上,还连接有舒曼波装置;当纯水箱内的水处于静止状态时,舒曼波装置间歇性向纯水箱发出舒曼波;混氢系统包括混氢泵、超声波雾化混氢装置,其中,混氢泵入口连接制氢系统与纯水箱,分别用于接收氢气与水,混氢泵出口连接超声波雾化混氢装置。本发明的电解制水机,含氢量高,出水稳定,且可以根据用户需求,调用功能性滤芯,制作特定功能的富氢水。
Resumen de: CN119843297A
本发明提供一种独立循环均压碱性电解水制氢系统及方法,涉及碱性电解水制氢技术领域,包括:电解槽;氢分离罐和氧分离罐,分别通过氢侧碱液循环结构和氧侧碱液循环结构与电解槽的第一腔和第二腔连接,氢分离罐的容积为氧分离罐的容积的两倍;均压结构,包括均压调节罐、气体加压泵和气体储罐,均压调节罐通过第一管路和第二管路分别与氢分离罐和氧分离罐的底部连通,气体加压泵的输入端与气体储罐连接,气体加压泵的输出端与第一管路和第二管路连接,第一管路和第二管路上分别设置有第一阀门和第二阀门;解决现有技术中碱性电解水制氢过程中,碱性电解水制氢系统与波动性可再生电源的耦合效果差、安全性能低的问题。
Resumen de: CN119846362A
本发明涉及电极性能测试技术领域,并公开了一种新型析氢用镍电极加速老化寿命测试装置,包括固定安装在支撑架上的电解槽,电解槽顶部安装有密封盖,且电解槽内腔通过隔膜划分为阳极室和阴极室,阴极室内固定安装有电极镍板,电解槽的一侧设置有氢气出口,且氢气出口上安装有排气阀,排气阀内设置有内连通组件。该新型析氢用镍电极加速老化寿命测试装置,随着氮气在进气槽内不断地增加,氮气使得推动件向远离排气阀一侧进行移动,使得环形气囊的外表面与排气阀的内壁紧紧相抵,随后进气槽内的氮气通过输气环内腔,从喷气管端部喷出,使得氮气迅速充斥在排气阀的内侧,多余的空气和氮气流向后侧,使得排气阀打开时氢气不会与空气发生接触反应。
Resumen de: CN119843302A
本发明提供的一种耦合氢气去极化工艺的有机废水电解制氢系统及方法,包括第一电解槽和第二电解槽,其中,所述第二电解槽的阳极侧设置有电解液进口和电解液出口,所述电解液出口与第一电解槽上设置的电解液入口连接,所述第一电解槽上设置有气液混合物出口,该气液混合物出口连接第二电解槽阴极侧设置的气液进口,所述第二电解槽的阴极侧上设置有气液出口,该气液出口连接外接设备;所述第一电解槽包括槽体,所述槽体内交替布置有多个阳极和多个阴极,其中,置于槽体进口处一侧为阳极,置于槽体出口处一侧为阴极;两个相邻的阳极和阴极之间设置有弹性绝缘网;本申请能够解决在处理更低有机物浓度的废水时由副反应造成的氢氧混合问题。
Resumen de: TW202428343A
The invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water with the aid of an LiSICon membrane. It addresses the problem of specifying a process that can be operated economically on an industrial scale too. In particular, the process should have good energy efficiency and achieve a high membrane lifetime even when the employed feed contains impurities that are harmful to LiSICon materials. A particular aspect of the process is that the selective separation of lithium by the membrane and an electrolysis of water take place simultaneously in the cell. A key aspect of the process is that the electrochemical process is carried out in basic media, more precisely at pH 9 to 13. The pH is adjusted by adding a basic compound to the feed.
Resumen de: CN119843320A
本发明涉及催化剂制备技术领域,本发明提供一种NiFe/INF催化剂、制备方法及应用,所述NiFe/INF催化剂的制备方法包括:S1、配置前驱体溶液,所述前驱体溶液包含镍盐和铁盐;S2、将泡沫镍铁浸泡在所述前驱体溶液中;S3、热处理制得NiFe/INF催化剂。本发明所述的NiFe/INF催化剂的制备方法,制备得到的催化剂具有多种活性组分,各组分紧密结合形成了独特孔道结构,暴露了更多的活性位点,提高导电能力以及具有高强度的稳定性;此外,通过不同金属之间的协同作用,能显著降低中间产物的吸附吉布斯自由能,从而提高催化剂的催化活性,使其在工业级电流密度下的碱性电解水中表现出优异的OER活性和稳定性。
Resumen de: CN119843315A
本发明属于电催化材料技术领域,具体涉及一种金属阳离子掺杂多金属硫化物纳米球及其制备方法和应用。该金属阳离子掺杂多金属硫化物纳米球由多金属硫化物纳米片形成纳米球,所述多金属硫化物包括硫化钼和金属阳离子掺杂硫化钴;所述金属阳离子包括镍离子和/或锰离子。该材料具有优异的析氢反应(HER)和析氧反应(OER)的双功能催化性能,表现出优异的电解水性能,能有效提高电解水的催化效率。
Resumen de: CN119843309A
本发明实施例提供了电解水制氢催化电极及其制备方法、电解槽及电解水制氢系统,其中,所提供的电解水制氢催化电极,包括导电基体及沉积于导电基体上的催化材料层,催化材料层包括镍基材料,且催化材料层表面具有山峦状凸起,其中,以镍基材料作为催化材料层,并在其表面形成山峦状凸起,不仅可以保证催化材料层与导电基体具有更好结合力,还能够在催化剂表面获得更多的活性位点,使催化剂材料表现出更好的催化活性,因而能够有效解决现有电解水制氢催化电极无法有效兼顾催化活性与稳定性的技术问题;另外,本发明实施例所提供的电解水制氢催化电极无需使用贵金属,其生产成本较低。
Resumen de: WO2025078381A1
The various embodiments of the present invention disclose a water electrolyser using alkaline medium, comprising: a first end plate and a second end plate and a plurality of cells stacked in-between the first and the second end plate. Each cell comprises an anode cell frame and a cathode cell frame, each cell frame further comprises a central opening, at least one inlet channel transversing through the cell frame, and at least one inlet pathway grooved in the cell frame for connecting the inlet channel to the central opening. The inlet pathway comprises an inlet orifice <b>characterized by</b> a minimum cross-sectional area in the inlet pathway. The cross-sectional area of the inlet channel in the stack is greater than the sum of the cross-sectional area of the plurality of inlet orifices in the stack by at least a predetermined factor, the predetermined factor being larger than 1 and smaller than or equal to 4.
Resumen de: US2025123002A1
In one aspect, an appliance for heating food, in particular a grill, and/or for emitting heat to the surroundings, in particular a heating appliance, includes at least one provision unit for providing hydrogen and at least one reaction unit for generating heat from the hydrogen. In one implementation, the reaction unit is designed as a catalytic unit for the flameless combustion of the hydrogen having at least one catalyst for catalyzing the hydrogen.
Resumen de: DE102023210058A1
Die Erfindung betrifft einen Gas-Flüssigkeit-Separator (1) für eine Elektrolyseanlage, umfassend einen Behälter (2) mit einem Einlass (3) zum Einleiten eines Gas-Flüssigkeit-Gemischs, das sich im Behälter (2) aufgrund des Schwerefelds der Erde in eine Gasphase (4) und eine Flüssigphase (5) trennt, mit einem Gas-Auslass (6) zum Ausleiten von Gas aus der Gasphase (4) sowie einem Flüssigkeits-Auslass (7) zum Ausleiten von Flüssigkeit aus der Flüssigphase (5). Erfindungsgemäß umfasst der Gas-Flüssigkeit-Separator (1) eine steuerbare Heizeinrichtung (8), mittels welcher der Behälter (2) beheizbar ist.Die Erfindung betrifft ferner eine Elektrolyseanlage mit mindestens einem erfindungsgemäßen Gas-Flüssigkeit-Separator (1) sowie ein Verfahren zum Betreiben einer Elektrolyseanlage.
Resumen de: DE102023127801A1
Die vorliegende Erfindung betrifft eine Wasserelektrolyseelektrode mit einem lonomer, das in Poren eines Nickel-Eisen-Katalysators gefüllt ist, und ein Verfahren zur Herstellung davon. Während des Galvanisierungsprozesses des Katalysators auf einem Substrat zur Herstellung der Wasserelektrolyseelektrode wird Wasserstoffgas entfernt, wodurch eine Porenstruktur innerhalb des Katalysators gebildet wird. Durch Füllen dieser Porenstruktur mit dem Ionomer ist es möglich, die Effizienz und Haltbarkeit der Wasserelektrolysevorrichtung zu verbessern.
Resumen de: DE102023128289A1
Die Erfindung betrifft eine Wasserstoffproduktionsanlage, umfassend mindestens eine erste Produktionslinie, umfassend zumindest eine erste Elektrolysevorrichtung mit einer Mehrzahl von ersten Elektrolysemodulen und eine erste Verdichtervorrichtung mit einer Mehrzahl von ersten Verdichtermodulen, eine Steuerung, umfassend zumindest ein Fahrplanerstellungsmodul und ein Steuermodul, wobei das Fahrplanerstellungsmodul eingerichtet ist zum Erstellen eines Ansteuerfahrplans zumindest für die ersten Elektrolysemodule und für die ersten Verdichtermodule, basierend auf jeweiligen Leistungskennlinien der jeweiligen ersten Elektrolysemodule, jeweiligen Leistungskennlinien der jeweiligen ersten Verdichtermodule und mindestens einem vorgegebenen Optimierungskriterium, und wobei das Steuermodul eingerichtet ist zum Ansteuern der ersten Verdichtermodule und der ersten Elektrolysemodule, basierend auf dem erstellten Ansteuerfahrplan.
Resumen de: WO2025076572A1
The invention relates to an electrolytic reaction system (1) for producing process gases in the form of gaseous hydrogen and oxygen, comprising at least three electrode assemblies (2), each of which comprise a plurality of hollow cylindrical electrodes that are arranged coaxially to one another and are positioned one inside the other. At least three electrode assemblies (2) are uniformly distributed about a common central vertical axis (4), and a hollow cylindrical container wall (5) for receiving an electrolyte is provided for each electrode assembly (2). A cover element (7) is supported on the upper end face (6) of each of the container walls (5), and the cover element (7) has through-openings (8) which run in the vertical direction and which are designed to discharge process gases produced within the container walls (5). A collecting hood (9) is provided on the cover element (7) in order to combine process gases exiting the individual through-openings (8). An electromagnetic coil (10) which is designed in the form of a ring and comprises a central air core (11) is received by the cover element (7) or is mounted on the cover element (7) and is aligned such that the central vertical axis (4) of the at least three electrode assemblies (2) passes through the central air core (11).
Resumen de: WO2025078333A1
The present invention relates to an electrode (100) for electrolysis of electrolyte, said electrode comprising: first porous layer (102) permeable to electrolyte and gases produced by the decomposition of electrolyte; a second porous layer (104) permeable to electrolyte and gases produced by the decomposition of electrolyte, said second porous layer (104) being arranged adjacent to the first porous layer (102), wherein the first porous layer (102) comprises Nickel.
Resumen de: AU2023254123A1
Embodiments of the invention relate to producing hydrogen from a subsurface formation by injecting a reactant into the subsurface formation and reacting the reactant with the subsurface formation to form at least one of hydrogen gas or a mineralized product within the subsurface formation. The hydrogen produced is collected or one or more components of the reactant is sequestered to form a mineralized product in the subsurface formation. Other embodiments of the invention relate to producing hydrogen by injecting a thermal fluid into the subsurface rock formation, where the thermal fluid includes a reactant. The reactant is reacted with components in the subsurface formation to form at least one of hydrogen gas mineralized sulfur, or mineralized carbon.
Resumen de: CN119137312A
An electrode for an oxygen evolution reaction suitable for water electrolysis under alkaline conditions, comprising a ceramic material having a stability coefficient (SF) between 1.67 < = SF < = 2.8, calculated by formula (II) wherein ro represents the ion radius of the oxide ion (O2-), rB, av represents the weighted average ion radius of the transition metal, nA, nB, av represents the weighted average ion radius of the transition metal, nA represents the ion radius of the oxide ion (O2-), nA represents the ion radius of the oxide ion (O2-), nA represents the ion radius of the oxide ion (O2-), and nA represents the ion radius of the oxide ion (O2-). Av represents the weighted average oxidation state of the rare earth metal or the alkaline earth metal, and rA and av represent the weighted average ion radius of the rare earth metal or the alkaline earth metal. The invention further relates to an alkaline electrolysis stack comprising at least one such electrode, and to a method for water electrolysis using the alkaline electrolysis stack.
Resumen de: JP2025064132A
【課題】有機化合物としての効率的な光吸収と金属元素による酸化還元能とを併せ持つ、光触媒として有用な新しい化合物を提供すること。【解決手段】下記一般式(1)で表す化合物を用いる。(各Rは独立に置換/非置換のC5~30のアリール等;各R1は独立にC1~30のアルキル等;各Xは独立に一般式(2a)又は(2b);pは1~10、各m、nは独立に0~2。式(2a)中、MはPt、Pd又はNiであり、式(2b)中、MはNi又はCoであり、Lは-OH2、-NH3又はハロゲン原子である。)TIFF2025064132000019.tif53155【選択図】なし
Resumen de: JP2025064156A
【課題】水電解装置の性能を安定化しやすい水素製造設備及び水素製造方法を提供する。【解決手段】水素製造設備は、水を電気分解するための電解槽を含む水電解装置と、海水を淡水化するための海水淡水化装置と、前記海水淡水化装置で生成された純水を補給純水として前記水電解装置に供給するための純水ラインと、前記水電解装置に冷却水としての海水を供給するための冷却水供給ラインと、前記水電解装置を冷却した後の前記冷却水としての前記海水が流れる冷却水戻りラインと、前記冷却水戻りラインを流れる前記海水の少なくとも一部を補給海水として前記海水淡水化装置に供給するための第1供給部と、を備える。【選択図】図1
Resumen de: JP2025064535A
【課題】本発明では、光触媒活性の高い新規な光触媒材料を提供する。【解決手段】本発明の酸化タングステン光触媒は、XRDで測定したときに22.5°~23.45°の範囲の最大ピークの半価幅δが、0.35以下であり、かつL*a*b*色空間におけるa*値、及びb*値が、以下の関係を満足する:a*≦-9.5b*≧2.2a*+54。【選択図】なし
Resumen de: US2025125395A1
A metal fluoride-functionalized proton-exchange solid support includes a proton-exchange solid support comprising a substituent group including an oxygen atom, and a metal fluoride group comprising a multivalent metal atom covalently bonded to the oxygen atom included in the substituent group, wherein the metal atom has a negative formal charge.
Resumen de: US2025125396A1
There is provided a composite electrolyte membrane for an electrochemical device, comprising at least one reinforced polymer electrolyte membrane having a first surface and an opposing second surface. The reinforced polymer electrolyte membrane comprises a microporous polymer structure and an ion exchange material, in which the ion exchange material is at least partially embedded within the microporous polymer structure to render the microporous polymer structure occlusive. The composite electrolyte membrane further comprises a plurality of porous layers comprising a first porous layer and a second porous layer, in which the first porous layer is adjacent to the first surface of the first reinforced polymer electrolyte and the second porous layer is adjacent to the second surface of the reinforced polymer electrolyte. Also disclosed is a membrane electrode assembly comprising such a composite electrolyte membrane and a redox flow battery, fuel cell, and electrolyzer comprising such a membrane electrode assembly.
Resumen de: US2025125390A1
A sustainable water fueled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: AU2023349727A1
A system (1) for producing ammonia comprises an ammonia reactor (44) which is designed to produce ammonia (NH3) from a synthesis gas, the synthesis gas comprising hydrogen (H2) and nitrogen (N2), and the system also comprises an electrolizer (2) which is designed to produce hydrogen and oxygen from water, wherein: a compressor (6) is provided and is fluidically connected to the electrolizer (2) and is designed to compress the hydrogen (H2) coming from the electrolizer (2); and the compressor (6) is designed to compress mobile hydrogen (H2).
Resumen de: US2025125653A1
A mobile hydrogen supply system includes a natural energy power generation device that generates electric power from natural energy, and a hydrogen generation device that generates hydrogen. The hydrogen generation device is operable on electric power generated by the natural energy power generation device, and the natural energy power generation device and the hydrogen generation device are transportable.
Resumen de: FI20236153A1
According to a first aspect of the present disclosure there is provided an arrangement (10) for a proton exchange membrane (PEM) device. The arrangement comprises the anode (13) of said PEM device, a hydrogen feed line (11,12) for feeding hydrogen to the anode (13), a circulation line (14) fitted in parallel with the anode of the PEM device for circulating part of the hydrogen from said feed line (12) past the anode, and at least one slip-stream filter (15) arranged on said circulation line (14) for removing impurities from the hydrogen. The slip-stream filter (15) at its input end is connected to said circulation line (14) via a first valve (16) and at its output end is connected to the fuel return outlet (18) of said anode. The fuel return outlet being in flow connection with a purge line (20) for the anode having a second valve (17). The slip-stream filter (15) during a regeneration process may be flushed with gas from said circulation line (14) through said second valve (17).
Resumen de: WO2025077747A1
A control method and apparatus for a hydrogen production device, a device, and a medium. The method comprises: acquiring electric energy information of an input current of a hydrogen production device (101); on the basis of the electric energy information, determining a predicted flow passing through fluid regulating valves in the hydrogen production device, wherein the fluid regulating valves comprise a high-frequency regulating valve and a low-frequency regulating valve which are arranged in parallel (102); and adjusting the opening degree of the low-frequency regulating valve on the basis of the predicted flow, a first flow selected from a flow range corresponding to a preset opening degree range of the high-frequency regulating valve, and a second flow corresponding to the current opening degree of the low-frequency regulating valve (103). When the input current fluctuates greatly, the opening degree of the low-frequency regulating valve is adjusted to reserve sufficient adjustable opening degree margin for the high-frequency regulating valve.
Resumen de: WO2025080873A1
Disclosed herein are components of an electrolysis system and components and methods of operation thereof to improve electrolysis operations. The electrolysis system includes a pulse width modulation control system that adjusts voltage and current applied to an electrolytic cell by modulating a duty cycle of a high frequency waveform. The voltage and current are adjusted based on data provided by one or more feedback loops that monitor performance characteristics of the electrolyzer.
Resumen de: WO2025080255A1
An apparatus for producing hydrogen from variable electric generators includes a variable output generator operatively coupled to a power supply. A plurality of electrolysis cells is operatively coupled to the power supply. A cooling water system removes heat from the cells, and includes a hot water tank for receiving and storing water heated by the cells and a cold water tank arranged to store cooled water for cooling the cells. An evaporative desalinator has a heat input in communication with the hot water tank and a cooled water output in communication with the cold water tank. The size of the tanks corresponds to variability of the electric generator, the maximum output of the generator and an operating rate of the desalinator. Part of water discharged from a fresh water output of the desalinator is used as feed input to the cells and the remainder is available for use as fresh water.
Resumen de: WO2025079526A1
This method for producing an electrode material that is to be used in an electrode of a water electrolysis device has an alkali treatment step for treating a specific NiAl-based alloy with an alkaline material in order to leach aluminum from the specific NiAl-based alloy, thereby obtaining Raney nickel. The specific NiAl-based alloy is an alloy that is represented by the composition formula Al4Ni(3-(x+y))FeyCox (where x and y are values satisfying 0.3≤x≤1.5 and 0≤y≤0.35).
Resumen de: WO2025079394A1
This lithium salt production method includes an adsorption step, a washing step, and a desorption step. In the adsorption step, a second electrode 2 and a first electrode 1 including an adsorbent (for example, λ-MnO2), are immersed in a raw material water 21 containing LiCl. By applying a first voltage between the first electrode 1 and the second electrode 2, Li+ is adsorbed on the first electrode 1. In the washing step, the first electrode 1 that has been subjected to the adsorption step is washed with a washing liquid 22 containing water. In the desorption step, the first electrode 1 that has been subjected to the washing step and a third electrode 3 are immersed in water 23 containing anions. A second voltage is applied between the first electrode 1 and the third electrode 3. As a result of the foregoing, Li+ is desorbed from the first electrode 1, H2 is formed on the third electrode 3, and a lithium salt is generated from Li+ and anions. The first voltage and/or the second voltage are generated by electric power derived from renewable energy.
Resumen de: WO2025079381A1
A purpose of the present invention is to provide an ammonia decomposition catalyst device with which a conversion of ammonia (NH3) can be improved. An ammonia decomposition catalyst device 100 for producing hydrogen (H2) through decomposition of ammonia (NH3) has a gas-flow upstream-side region 100a and a gas-flow downstream-side region 100b, in which a base density of the gas-flow downstream-side region 100b is a higher than that of the gas-flow upstream-side region 100a.
Resumen de: WO2025079345A1
A water splitting cell that is a water electrolysis cell for use in a water splitting device that splits water and generates hydrogen when irradiated with light, said water splitting cell comprising: a laminate in which an anode, a perovskite battery cell, and a cathode are laminated in the given order; and an electrically insulating protective material which covers the outer periphery of the laminate.
Resumen de: WO2025080121A2
The present invention discloses an electrolyser for water splitting in hydrogen/oxygen production and methods thereof. The electrolyser comprises a first electrode plate (100) coated with a first catalyst comprising a first ion transfer opening (101) formed therethrough along a first lateral axis of the first electrode plate (100); a second electrode plate (200) coated with a second catalyst comprising a second ion transfer opening (201) formed therethrough along a second lateral axis of the second electrode plate (200); and an electrically insulative adhesive layer (300) configured for securing together the first electrode plate (100) and the second electrode plate (200) in a face-to-face manner or a back-to-face manner, forming separate compartments each for a hydrogen gas and an oxygen gas resulting from the water splitting that provide immunity against any mixing of the hydrogen gas and the oxygen gas at any level of an electrical power supply.
Resumen de: US2023420718A1
Embodiments are directed to composite membranes having a microporous polymer structure, and an ion exchange material forming a continuous ionomer phase within the composite membrane. The continuous ionomer phase refers to absence of any internal interfaces in a layer of ionomer or between any number of layers coatings of the ion exchange material provided on top of one another. The composite membrane exhibits a haze change of 0% or less after being subjected to a blister test procedure. No bubbles or blisters are formed on the composite membrane after the blister test procedure. A haze value of the composite membrane is between 5% and 95%, between 10% and 90% or between 20% and 85%. The composite membrane may have a thickness of more than 17 microns at 0% relative humidity.
Resumen de: US2025122075A1
The disclosure relates to a process for producing ammonia. A hydrocarbon mixture and steam are supplied to a primary reformer. The hydrocarbon mixture and the steam are at least partly converted to carbon monoxide and hydrogen in the primary reformer. The gas mixture from the primary reformer is directed into a secondary reformer. The secondary reformer is supplied with process air, at least comprising oxygen and nitrogen, such that unconverted hydrocarbon is converted to carbon monoxide and hydrogen.
Resumen de: US2025122635A1
Disclosed herein are components of an electrolysis system and components and methods of operation thereof to improve electrolysis operations. The electrolysis system includes a pulse width modulation control system that adjusts voltage and current applied to an electrolytic cell by modulating a duty cycle of a high frequency waveform. The voltage and current are adjusted based on data provided by one or more feedback loops that monitor performance characteristics of the electrolyzer.
Resumen de: US2025122633A1
Six-membered high-entropy foam for hydrogen production by water splitting and preparation method are provided. The foam consists of Ni, Fe, Cu, Co, Mo, and Pt, comprising 10 at %-25 at % of Ni, 10 at %-25 at % of Fe, 10 at %-25 at % of Cu, 10 at %-25 at % of Co, 10 at %-25 at % of Mo, and 10 at %-25 at % of Pt. Catalyst loading of the foam can reach a range of 0.8 mg/cm2-3.2 mg/cm2, which is much higher than the effective catalyst loading of most nano-catalysts. When used as catalyst for hydrogen production by water splitting, the hydrogen evolution overpotential of the surface of the six-membered high-entropy foam is within a range of 36 mV-60 mV, and the foam operates stably at industrial-level current density (500 mA/cm2). The preparation method does not require harsh environment such as high temperature or high vacuum, making the method simple and easy to implement, with low-cost raw materials.
Resumen de: US2025122630A1
The invention relates to a method for removing nitrogen compounds which includes electrolysing a urea derivative of general formula I: (R1,R2)N—C(═X)—N(R3,R4), wherein: X means NH, NR5 or S, R1, R2, R3, R4 and R5 can be the same or different, and have the meanings indicated in claim 1, or a polymer of the compound of formula I, in an aqueous medium, in at least one electrolytic cell comprising an anode that comprises a metal, wherein “metal” means one or more metals, one or more compounds of a metal or a mixture of metal compounds or combinations thereof, and comprising a metal cathode. Nitrogen is obtained as a result of the oxidation of the nitrogen compounds at the anode and hydrogen as a result of the reduction of the water at the cathode, with the condition that if the anode is made of platinum, the cathode is not made of platinum.
Resumen de: US2025122627A1
A method of generating hydrogen including applying a potential of greater than 0 to 2.0 V to an electrochemical cell that is partially submerged in an aqueous solution. On applying the potential, water in the aqueous solution is reduced, and thereby forms hydrogen. The electrochemical cell includes an electrocatalyst and a counter electrode. The electrocatalyst includes a substrate, WO3−x nanosheets, and CdS1−y nanospheres, in which, x is from greater than 0 to less than 3 and y is from greater than 0 to less than 1. The CdS1−y nanospheres are dispersed on the WO3−x nanosheets to form a nanocomposite, which is dispersed on a surface of the substrate. The WO3−x nanosheets have an average length of 600-800 nanometers (nm) and an average width of 300-500 nm, and the CdS1−y nanospheres have an average diameter of 10-50 nm.
Resumen de: US2025122629A1
A mission configurable system for fuel generation is provided. The mission configurable system includes a mobility unit configured to support multiple fuel generation components customized to a specific mission. The fuel generation components can include at least one renewable energy generation system such as a hydrogen electrolyzer, a methane reformer, a solar panel, and/or a wind turbine.
Resumen de: US2025121344A1
A process for carrying out an endothermic reaction of a feed gas in a reactor system including a pressure shell housing a structured catalyst arranged for catalyzing the endothermic reaction of a feed gas, the structured catalyst including a macroscopic structure of electrically conductive material, the macroscopic structure supporting a ceramic coating, the ceramic coating supporting a catalytically active material.
Resumen de: US2025121360A1
Present exemplary embodiments provide a method for manufacturing a nano-hybrid catalyst, comprising: preparing a colloidal solution of the two-dimensional platinum (Pt) nanodendrite sheet with the controlled crystal plane; obtaining agglomerates by adding dropwise the colloidal solution of the two-dimensional platinum (Pt) nanodendrite sheet with the controlled crystal plane to a formamide suspension of the NiFe layered double hydroxide sheet while stirring; and separating and washing the obtained agglomerates.
Resumen de: US2025122628A1
Embodiments are disclosed comprising an electromechanical device that generates hydrogen from mechanical energy without requiring an external source of electrical energy. In one embodiment, for example, the only external energy required is rotational energy and the necessary electrical energy for electrolytic dissociation of water is generated internally to the device. Various aspects of embodiments of the invention provide enhanced efficiency for generating hydrogen. Details of various embodiments are further described herein.
Resumen de: WO2025078241A1
The present invention relates to improved water purification in power-to-liquid systems and processes, which are based on reverse water-gas shift reaction in conjunction with the electrolysis of water in order to provide hydrogen, as a result of the controlled use of an additional at least one ion exchanger and/or at least one gase-phase filtering device.
Resumen de: GB2634503A
A method of conditioning an anion exchange membrane (AEM) in an electrolysis cell is described. The anion exchange membrane (AEM) comprises non-hydroxide anions. The method comprises: providing an electrolysis cell comprising an anode, a cathode and an anion exchange membrane situated between the anode and the cathode. The anion exchange membrane is then contacted with a conditioning solution comprising hydroxide ions to replace at least some of the non-hydroxide anions with hydroxide anions. The AEM may comprise quaternary ammonium cations. The conditioning solution may comprise potassium hydroxide. A catalyst may be present between the electrode(s) and the membrane such as an hydrogen evolution reaction catalyst (HER) or oxygen evolution reaction catalyst (OER).
Resumen de: EP4538424A1
The various embodiments of the present invention disclose an electrolyser stack, preferably water electrolyser using alkaline medium, comprising: a first end plate and a second end plate and a plurality of cells stacked in-between the first and the second end plate. Each cell comprises an anode cell frame and a cathode cell frame, each cell frame further comprises a central opening, at least one inlet channel transversing through the cell frame, and at least one inlet pathway grooved in the cell frame for connecting the inlet channel to the central opening. The inlet pathway comprises an inlet orifice characterized by a minimum cross-sectional area in the inlet pathway. The cross-sectional area of the inlet channel in the stack is greater than the sum of the cross-sectional area of the plurality of inlet orifices in the stack.
Resumen de: AU2023285309A1
The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.
Resumen de: EP4538427A1
The invention relates to a method for removing nitrogen compounds, characterised in that it comprises electrolysing a urea derivative of general formula I: (R<sup>1</sup>,R<sup>2</sup>)N-C(=X)-N(R<sup>3</sup>,R<sup>4</sup>), wherein: X means NH, NR<sup>5</sup> or S, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> can be the same or different, and have the meanings indicated in claim 1, or a polymer of the compound of formula I, in an aqueous medium, in at least one electrolytic cell comprising an anode that comprises a metal, wherein "metal" means one or more metals, one or more compounds of a metal or a mixture of metal compounds or combinations thereof, and comprising a metal cathode. The method further comprises obtaining nitrogen as a result of the oxidation of the nitrogen compounds at the anode and hydrogen as a result of the reduction of the water at the cathode, with the condition that if the anode is made of platinum, the cathode is not made of platinum.
Resumen de: EP4539178A1
The present disclosure relates to the technical field of hydrogen energy power generation, and provides an uninterruptible power supply based on hydrogen energy, which includes a hydrogen production unit, a power storage unit, a power generation device, and a control unit. The hydrogen production unit can prepare oxyhydrogen by an electrolytic method. The power storage unit can supply power to the hydrogen production unit and output electric power to the outside. The power generation device can receive the oxyhydrogen output by the hydrogen production unit and generate electricity, and the power generation device can output electric power to the outside or transmit the electric power to the power storage unit. The control unit communicates with the hydrogen production unit, the power storage unit and the power generation device by electrical signals.
Resumen de: WO2025074991A1
Provided is a control device including: a step in which a current command value regarding current to be applied to an electrolytic stack is determined; and a step in which pure-water adjustment amount command values for adjusting the pressure or/and flow rate of water to be supplied to the electrolytic stack are determined on the basis of the current command value. The control device further includes a step A in which, when the current command value is changed from a first current command value (current command value c1) to a second current command value (current command value c2), which is a different value, and the pure-water adjustment amount command value is changed from a first pure-water adjustment amount command value (pure-water adjustment amount command value w1) to a second pure-water adjustment amount command value (pure-water adjustment amount command value w2), which is a different value, measured values of the pressure or/and flow rate are caused to reach the second pure-water adjustment amount command value from the first pure-water adjustment amount command value before a measured value of current applied from a power converter to the electrolytic stack reaches the second current command value from the first current command value.
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: AU2025200458A1
The present disclosure relates to electrode compositions, in particular electrode compositions comprising hybrid electrode particles, which can be used in solid oxide electrochemical cells. The present disclosure also relates to processes for preparing hybrid electrode particles. The present disclosure also relates to electrodes, including sintered electrodes, comprising the electrode CA compositions, and to solid oxide electrochemical cells comprising the electrode compositions.
Resumen de: CN119325526A
Disclosed is an electrical energy or electrosynthesis cell, the electrical energy or electrosynthesis cell comprising: a cathode; an anode; and an electrode separator positioned between the cathode and the anode. The liquid electrolyte inlet supplies a liquid electrolyte to the cell and the liquid electrolyte outlet removes the liquid electrolyte from the cell. The liquid electrolyte outlet includes an overflow weir across or through which excess liquid electrolyte flows out of the cell. In another form, one or more instillators are included as part of a liquid electrolyte inlet and/or a liquid electrolyte outlet, and an instillation chamber is positioned below the instillators. In another form, one or more porous capillary structures are located in a liquid passage in the cell (e.g., in a liquid passage provided by an overflow weir) or positioned adjacent the instillator. In another form, one or more current limiters are utilized that create a pressure drop in the liquid electrolyte passing through the current limiter.
Resumen de: JP2025063577A
【課題】無機粒子の脱落を抑制することができるアルカリ水電解用隔膜を提供する。【解決手段】多孔性支持体と、該多孔性支持体の片側又は両面の主面に設けられ、無機粒子及び有機樹脂を含む多孔膜と、を備えるアルカリ水電解用隔膜であって、更に、該多孔性支持体と該多孔膜とからなる本体層の厚さ方向の片側又は両側に設けられ、酸基を有するポリマーを含む被覆層を備えることを特徴とするアルカリ水電解用隔膜。【選択図】なし
Resumen de: GB2634522A
An electrode (100) for electrolysis, said electrode comprising: a first porous layer (102) permeable to electrolyte and gases produced by the decomposition of electrolyte and a second porous layer (104) permeable to electrolyte and gases produced by the decomposition of electrolyte. The second porous layer is located adjacent to the first porous layer (102), and the first porous layer (102) comprises nickel. Metal swarf may be used as the basis for both porous electrodes through a sintering method. The second porous layer (104) may comprise titanium. The electrode (100) may comprise a flow through electrode for the electrolysis of water.
Resumen de: CN119824466A
本申请提供一种蚕丝衍生自支撑催化电极的制备方法,属于电极技术领域。以蚕丝布为载体,将其浸泡在硝酸钴溶液中,再加入二甲基咪唑溶液完成ZIF‑67的生长负载后,清洗,烘干,将其置于管式炉的下游位置处,同时在管式炉的下游位置处装入磷化剂,惰性氛围下升温至500~800℃进行煅烧磷化,得到三维立体网络结构的蚕丝衍生自支撑催化电极,所述磷化剂为亚磷酸钠、磷酸二氢钾、磷酸二氢钠中的任一种。本案所得电极用于电解水催化,具有很好的催化活性。
Resumen de: CN119824438A
本发明公开的一种压力平衡装置及制氢系统,包括:压力平衡腔;压力引入腔,至少为两个,且设置于压力平衡腔内,各个压力引入腔分别用于与各路待平衡介质路径连通,任何一个压力引入腔的压力通过压力平衡腔内的中间缓冲介质传递至其他压力引入腔。本发明只需要将其各个压力引入腔与需要平衡的各路待平衡介质路径连通,即可在压力引入腔和压力平衡腔的作用下,自动保持各个压力引入腔以及分别与各个压力引入腔连通的各路待平衡介质路径的压力平衡。而且因不需要设置压力传感器检测压力,因此也不存在因多个压力传感器的误差不同,导致的不准确问题;也不存在压力检测和开阀动作存在的滞后性问题,利用纯物理原理,让各系统压力始终自动保持一致。
Resumen de: CN119824447A
本发明公开月壤熔盐电解制氧用管式复合电极、制备方法及应用,属于月球的月壤资源原位利用技术领域;月壤熔盐电解制氧用管式复合电极为多层嵌套管状结构,由内到外依次包括:多孔阳极层、致密电解质层以及多孔阴极层;所述致密电解质层材质为氧化钇稳定氧化锆;所述多孔阳极层材质为金属铱、铂或金属铱与氧化钇稳定氧化锆的混合物;所述多孔阴极层材质为金属钼与氧化钆掺杂的氧化铈的混合物;该复合电极结构通过致密的固体氧化物电解质,使生成的氧气集中与中间的中空结构中,避免了阳极氧气在此将产生的金属氧化,有助于提高电解效率。
Resumen de: CN119822409A
本发明提供了一种微米级薄片状二氧化锰的制备方法及其在碱性电解水析氧的应用。微米级薄片状MnO2的制备方法,包括:将KMnO4在200℃~1000℃的条件下反应制得KxMnO2,并配制成KxMnO2水溶液;所述KxMnO2水溶液的浓度为7.9g/250mL H2O;向所述KxMnO2水溶液中加入盐酸并加热得块状钾型水钠锰矿;其中,所述加热的温度为80℃;所述盐酸的摩尔浓度为2.2~2.6mol/L;将所述块状钾型水钠锰矿加入硝酸溶液中反应,分离其中固体物,得氢化的水钠锰矿;再将所述氢化的水钠锰矿加入四丁基氢氧化铵溶液中剥离,即可。通过控制温度调节尺寸,实现了性能优化。所述微米级薄片状MnO2在碱性溶液中进行电解水析氧,有较高的活性和稳定性。制备方法简单,操作方便,适用于大规模生产。
Resumen de: CN119823380A
本发明公开了一种增强型聚苯并咪唑离子溶剂化复合膜及其制备和应用。增强型聚苯并咪唑离子溶剂化复合膜的制备方法包括:(1)在多聚磷酸中,芳香四胺单体和二羧酸单体进行缩聚反应,反应至得到黏稠的聚苯并咪唑溶液,加入磷酸溶液分散的无机氧化物纳米颗粒,搅拌均匀脱气后,得到铸膜液;(2)将铸膜液直接浇注于玻璃板上,刮膜后将隔网作为支撑材料平铺在膜上,再倒入铸膜液进行刮膜,接着进行水解得到凝胶复合膜;将凝胶复合膜依次在碳酸盐水溶液、水、碱溶液中充分浸泡,得到增强型聚苯并咪唑离子溶剂化复合膜。本发明提供了所述复合膜在碱性电解水中的应用。本发明的复合膜具有膜面电阻低、电化学性能优异等特点。
Resumen de: CN119824479A
本发明公开了一种便于电解槽检修的制氢系统及检修方法,涉及电解槽技术领域。包括多台电解槽、氢气气液分离装置、氢气纯化装置、氢气收集装置、氧气气液分离装置、氧气纯化装置和氧气收集装置;多台电解槽的氢气出口均通过管路与氢气气液分离装置连接;多台电解槽的氧气出口均通过管路与氧气气液分离装置连接;每台电解槽的氢气出口与氢气气液分离装置之间的管路上均设置有第一安全控制阀,每台电解槽的氧气出口与氧气气液分离装置之间的管路上均设置有第二安全控制阀。本发明在电解槽需要检修时可以切断氢气和氧气的流动,提高电解槽检修时的安全性;同时单个电解槽的检修并不影响其他电解槽的正常使用,降低了检修过程对生产效率的影响。
Resumen de: CN119819063A
本发明公开的氢气分离罐和电解水制氢系统,氢气分离罐包括静置空间、气化空间、水洗空间、降温空间和脱水集气空间,静置空间设置有电解液进口、电解液出口和导流板,电解液进口设置于静置空间的切线方向,以使得电解液在静置空间形成旋流,电解液出口设置于静置空间的底部;静置空间和气化空间之间设置有收集盘,收集盘上设置有出气孔;水洗空间通过反洗喷管连通气化空间;降温空间设置有至少一组冷却盘管,冷却盘管的第一端连通水洗空间,冷却盘管的第二端连通脱水集气空间,降温空间设置有冷却介质进口和冷却介质出口;脱水集气空间设置有消沫脱水丝网和气体出口。本发明公开的氢气分离罐,能够提高气液分离效率,加速气液分离。
Resumen de: CN119824468A
本发明属于新能源材料与技术领域,具体涉及一种非贵金属双功能电解水催化剂及其制备方法与应用。本发明非贵金属双功能电解水催化剂以泡沫金属作为基体,基体上均匀负载碳化钼、铁钴层状双氢氧化物或其衍生物,碳化钼与铁钴层状双氢氧化物或其衍生物间接触掺杂,生成形状不规则的FeCoMo纳米颗粒异质结。本发明非贵金属双功能电解水催化剂的制备流程简单,生产成本降低,生产效率提高,催化剂性能提升,为电解水制氢提供一种更为高效、经济、环保的催化剂解决方案。
Resumen de: CN119824453A
本发明属于催化剂制备技术领域,公开了一种Fe掺杂ZIF‑67衍生物催化剂和制备方法及其电催化析氧的应用,制备方法包括氩气下,将Fe2O3@CNHs/ZIF‑67粉末和S粉在500‑550℃下保温20‑30分钟。本发明中引入异质金属掺杂的方法不需要向形成的ZIF‑67中添加额外的化学试剂和无水乙醇反复清洗,避免了溶剂造成环境污染的问题。将Fe2O3@CNHs/ZIF‑67粉末和S粉在高温下保温,在硫化过程中,有机框架ZIF‑67在高温下热解,导致Fe2O3被还原,Fe掺杂进CoS2晶体中,形成Fe掺杂ZIF‑67衍生物催化剂。高温硫化后,CNHs对ZIF‑67坍塌的碳骨架有一定的支撑作用,维持电催化析氧稳定性。
Resumen de: CN119824440A
本发明提供一种绿电制氢电解槽结构,包括两个端压板;两个所述端压板之间设置有多个正负极组件,多个所述正负极组件之间均设置有第一绝缘板;每个所述正负极组件均包括正极板、负极板、多个极板以及进液板;本发明涉及可再生能源水电解制氢设备技术领域,可通过设置双进液口保证电解槽内部的流量分布均匀,提升电解槽寿命;通过设置双负极和双正极结构,既解决了电解槽电阻不同的影响,同时可实现电解槽的独立运行控制,提升系统的灵活性;通过O型圈和平垫片组合密封的方式,系统解决了变负荷工况下的密封难题;采用分段式电解制氢隔膜,有效缓解电解槽内部的氢氧互串问题,提升系统的安全性。
Resumen de: CN119824464A
本发明属于析氢催化剂技术领域,特别涉及一种过渡金属掺杂二硫化钼/石墨烯复合材料及其制备方法和应用。该过渡金属掺杂二硫化钼/石墨烯复合材料包括石墨烯以及过渡金属掺杂的二硫化钼纳米片,且过渡金属掺杂的二硫化钼纳米片覆盖在石墨烯表面。本发明的过渡金属掺杂二硫化钼/石墨烯复合材料在析氢反应中的催化效率高,且本发明的制备方法具有工艺简单、成本低、掺杂均匀、可大规模生产等优点。
Resumen de: CN119824478A
本申请涉及一种离子交换技术领域,特别是涉及一种阴离子交换膜及其制备方法和应用,无需改变聚合物分子结构和制备工艺,通过电晕处理即可对季铵盐型阴离子交换膜进行改性,操作简便易行,成本低,可以有效提高阴离子交换膜的性能。一种阴离子交换膜的制备方法,包括:提供季铵盐型阴离子交换膜;采用气体等离子体对季铵盐型阴离子交换膜进行电晕处理,以对季铵盐型阴离子交换膜进行改性,制备阴离子交换膜。
Resumen de: CN119824444A
本发明公开了一种电解结构及制氢装置,其中,电解结构包括电解单元和外密封组件,电解单元包括膜电极、钛结片、第一引流环以及第二引流环,第一引流环、膜电极以及第二引流环依次层叠一起,第一引流环上开设有出氢通道,第二引流环上开设有进水通道和回水通道,钛结片设有两个,且两个钛结片对应连接于膜电极的两侧,外密封组件包括支撑圈和弹性密封圈,支撑圈套设于弹性密封圈外周,弹性密封圈套设于电解单元的外周,弹性密封圈在轴向上的厚度既大于支撑圈在轴向上的厚度,也大于电解单元在轴向上的厚度。本发明的电解结构在使用时可以具备足够的密封性,防止发生泄漏。
Resumen de: CN119824471A
本发明公开了一种二氧化硅/钴镍自支撑析氢电催化剂及其制备方法,制备方法包括:对泡沫镍进行清洗及干燥预处理,获得预处理后的泡沫镍;利用预处理后的泡沫镍,采用水热法合成CoNi LDH@NF前驱体材料;采用电化学诱导工艺在CoNi LDH@NF前驱体材料上电镀SiO2,得到SiO2/CoNi LDH@NF自支撑催化剂。本发明克服了传统粉末涂附型材料活性低、稳定性差的问题,制备工艺简单,所制备的二氧化硅/钴镍自支撑电催化剂电催化性能好、稳定性好、成本低廉。
Resumen de: CN119824439A
本发明涉及一种电解组件及氢氧机,该电解组件包括第一背板和第二背板,第一背板上连接有进水接头、氢气接头和氧气接头;电解主体夹持于第一背板和第二背板之间,电解主体包括负极片和正极片,负极片和正极片之间设置有第一密封组件和质子交换膜,第一密封组件包括第一密封圈和第二密封圈,且质子交换膜的外边缘夹持于第一密封圈和第二密封圈之间,第一密封圈的内壁和第二密封圈的内壁共同围合成第一电解空间,第一电解空间与进水接头相连通;其中,负极片和第一背板之间连接有第二密封组件,正极片和第二背板之间也连接有第二密封组件。本发明还涉及一种氢氧机。本发明的电解组件具有较好的密封性,可以有效保证电解效率。
Resumen de: CN119834634A
一种并联式电解制氢电源及其控制方法,包括十二脉搏整流变压器;两个第一整流器,交流端分别接十二脉搏整流变压器交流侧的两个三相接头;两个第二整流器,交流端分别接十二脉搏整流变压器交流侧的两个三相接头;所有第一整流器和第二整流器的直流端正极电连接后形成直流电压母线的正极,所有第一整流器和第二整流器的直流端负极电连接后形成直流电压母线的负极;第一整流器为SCR可控硅整流器,第二整流器为IGBT全控型整流器。与现有技术相比,本发明通过将SCR可控硅整流器与IGBT全控型整流器优势相结合,使得直流电压调节范围广,功率响应速度快,电能质量高,耐流能力显著提高。其次,无需另外加装谐波、无功治理装置,综合转换效率也得以大大提高,更能适应后续大规模、大容量制氢设备需求。
Resumen de: CN119819116A
本发明公开了一种循环式氢气纯化系统及方法,属于电解水制氢的氢气纯化技术领域,包括脱氧机构,所述脱氧机构与电解水制氢装置气液分离器氢气出口相连通;吸附干燥机构,所述吸附干燥机构与所述脱氧机构相连通,所述吸附干燥机构内填装有用于吸附水气的吸附剂;运输机构,所述运输机构与所述吸附干燥机构相适配;其中,所述吸附干燥机构包括:吸附单元;再生单元;冷却单元。本发明将原料氢气通过脱氧机构和吸附干燥机构进行纯化,且在吸附干燥机构和运输机构的作用下,使吸附剂完成在线脱附再生并重新投入使用,解决现有技术中存在氢气纯化系统控制复杂的技术问题,实现了吸附剂循环利用的技术效果。
Resumen de: CN119824449A
本发明提供一种用于碱性电解水双功能自支撑电极、其制备方法及应用,用于碱性电解水双功能自支撑电极的制备方法如下:将泡沫镍在硝酸钴金属前驱体溶液中进行恒电位电沉积得到Co(OH)2/NF;将其放在瓷舟中并置于管式炉下游,将盛有次亚磷酸钠的瓷舟置于管式炉上游,加热一段时间得到CoP/NF;将CoP/NF在硝酸铁、硝酸钴和硝酸铝的混合溶液中进行恒电位电沉积,得到的CoFeAl/CoP/NF在碱溶液中进行连续循环伏安法,得到用于碱性电解水双功能自支撑电极。本发明工艺简单、成本低、效益高、生产过程耗能小的优点。该方法制备得到的用于碱性电解水双功能自支撑电极具有良好OER和HER双功能属性,且稳定性强。
Resumen de: CN119826369A
本发明提供一种用于燃气热水器的智能控制装置及智能控制方法,包括智能控制机构及制热控制机构,所述智能控制机构与所述制热控制机构电性连接,且通过连接管路相连通,所述智能控制机构包括主控制器及检测组件,所述检测组件与所述主控制器电性连接,所述检测组件设置于连接管路中,所述检测组件用于检测所述制热控制机构通过的水流量及温度;本发明提供的用于燃气热水器的智能控制装置,可以实时计算燃气热水器燃烧的工况同时,制氢模块产生的氢气可以及时的与水路中的水体进行充分的混合,富氢供给可以做到实时动态修正,使用方便,进一步的提高用户健康指数。
Resumen de: CN119824451A
本发明公开了一种电化学活化MXene改性BiVO4光电极的制备方法和应用,所述电化学活化MXene改性BiVO4光电极的制备方法包括:将BiVO4光电极作为工作电极,含层状MXene的溶液作为电解液,通过电泳方法在BiVO4光电极上沉积MXene,得到MXene/BiVO4复合光电极;将所述MXene/BiVO4复合光电极施加偏压进行活化,即得到所述电化学活化MXene改性BiVO4光电极。本发明提供的一种电化学活化MXene改性BiVO4光电极的制备方法和应用,所述电化学活化MXene改性BiVO4光电极具有优异的光电催化活性,对光电催化分解水有优异的效果。
Resumen de: CN119824677A
本发明公开一种碱性电解水制氢用PPS复合膜的制备方法,所制备的复合膜具有亲水性好、电阻率低和制备简单等优点,具体包括以下步骤:步骤1、选取PPS机织品并使用空气吹扫干净,裁剪备用;步骤2、将双氧水、乙酸、硫酸和水混合,制得混酸溶液,将裁剪后的PPS机织品浸渍于混酸溶液中处理,然后进行清洗、烘干得到改性PPS机织品;步骤3、将改性PPS机织品依次浸渍于铈前驱体溶液和碱溶液中处理,然后烘干;步骤4、重复至少两次步骤3,制得用于碱性电解水制氢的PPS复合膜。
Resumen de: CN119824436A
本申请涉及一种冰粉混合剪融制氢设备和方法,涉及制氢技术领域。冰粉混合制氢设备包括箱架、交换膜、导线、直流电源、压力输送装置、旋转装置和喷粉装置;交换膜设置在箱架的四周,交换膜的两侧表面上分别铺设有导线,直流电源的负极连接到交换膜的外侧表面上的导线上,直流电源的正极连接到交换膜的内侧表面上的导线上;压力输送装置用于将水形成的冰粉与催化剂粉的混合物挤压到旋转装置上,旋转装置用于将混合物剪融并甩至交换膜的内侧表面,并发生阴极电催化反应产出氢气;喷粉装置用于将混合物喷洒到交换膜的外侧表面,并发生阳极电催化反应产出氧气。该设备和方法能够实现对自然界中广泛存在的固态冰直接利用生产氢气。
Resumen de: CN119824463A
本发明的目的在于提供一种基于双限域策略构筑的单分散杂多酸基Pt原子催化剂的制备方法及其应用,属于功能材料技术领域,所谓双限域,即将活性金属Pt原子锚定在keggin型杂多酸的四重中空(4‑H位点),同时用具有合适孔径大小的基底将杂多酸隔离。与现有技术相比,POMs独特的氧位点可通过金属‑O四配位结构有效捕捉Pt单原子,并提高质子传输。同时,POM的多壳层结构可为锚定的金属原子提供了丰富的氢传输位点。PC不仅能够显著提升材料的导电性,还通过限域效应稳定POM的结构。因此,通过将Pt原子限域在POM簇上,并采用亚纳米孔径的PC进行二次限域,可以构建一个高效稳定的氢传输通道,显著促进氢析出反应的进行,为未来高效电催化剂的开发提供了新的方向。
Resumen de: CN119819325A
本发明公开了一种CuInS2/C3N5光催化材料,涉及其水溶液制备方法及应用。其制备方法步骤为:采用水相一锅法制备CuInS2量子点溶液;制备C3N5光催化材料,以较为简单的工艺和较低的温度在水溶液中制备出目标产物。该CuInS2/C3N5光催化材料具有明显的激子吸收和超小尺寸及水溶热分散特征。可应用于光催化、光电催化、电催化、发光二极管、太阳能电池及光电传感等领域。
Resumen de: CN119819079A
本发明公开了一种电解水制氢氢气纯化压力优化系统及控制策略,涉及电解水制氢技术领域,包括:氢气纯化单元包括多个并联设置的吸附塔,用于对氢气中的杂质进行吸附去除;压力优化系统包括压力传感器、压力调节阀和控制器,压力传感器用于实时监测吸附塔内的压力,压力调节阀根据控制器的指令对压力进行调节,控制器用于根据吸附剂的吸附特性和氢气纯化过程的需求,设定压力控制参数实时调节吸附塔内的压力;控制单元用于对压力优化系统进行温度和流量的协调管理,并通过对比纯化后氢气实际纯度与预设纯度标准,形成参数的闭环反馈调节。本发明提高了氢气纯度,通过优化压力控制策略,使吸附剂在最佳压力下工作,有效提高氢气的纯度,降低了能耗。
Resumen de: CN119824448A
本申请公开了一种多孔催化膜、膜电极组件及电解水装置,涉及新能源技术领域。本申请提供的多孔催化膜包括由无规排列的纳米纤维交织形成的多孔高分子膜,以及覆盖于纳米纤维表面的催化剂;多孔高分子膜具有自支撑结构和大比表面积,为催化剂提供了大量负载位点;催化剂可通过物理或化学的制备方法直接锚定于多孔高分子膜的纳米纤维上,实现均匀分散,无需使用离聚物进行包覆,从而避免了离聚物使用所带来的高成本及性能下降问题,并且显著提高了催化活性位点的暴露程度,从而提升了催化剂的利用效率并可减少贵金属催化剂的用量;此外,多孔催化膜与离子交换膜之间具有优异的界面接触特性,有助于二者的一体化结合。
Resumen de: CN119822329A
本发明提供了一种重水的制备装置,包括外部储水单元、电解单元、内部储水单元和控制单元;所述电解单元包括电解槽、电解电源、阴极侧气液分离器、阳极侧气液分离器;所述电解单元和所述内部储水单元串联设置有若干级,相邻单元的内部储水单元连接。本申请还提供了利用所述重水的制备装置制备重水的方法。本申请提供了一种重水的制备装置,其由多级电解单元和内部储水单元串联而成,该种电解单元设置方式可实现逐级电解制取重水,即前一级得到的重水富集后提供给下一级电解,使得重水富集的丰度快速上升;进一步的,本申请的电解单元引入了特定的电解槽,其可有效降低电耗。
Resumen de: CN119824454A
本发明公开了一种复合电催化剂及其制备方法和应用。该复合电催化剂的制备方法包括以下步骤:将硫化物或硒化物与贵金属溶液混合,得到混合物;将所述混合物与氧化剂混合后进行反应,得到所述复合电催化剂。本发明通过添加氧化剂不但加速了贵金属离子与硫化物或硒化物的反应速率,实现室温下快速制备高性能高均匀性贵金属纳米颗粒修饰的硫化物或硒化物复合催化剂,解决了现有贵金属纳米颗粒负载型催化剂制备时间长、难以工程化应用的技术难题;而且制得的复合催化剂具有较小的传质速率和较小的内阻,在大电流密度下的过电位较小,稳定性更长,具有广泛的应用前景。
Resumen de: CN119824456A
本发明提供了一种磷化钴负载贵金属纳米片催化剂的制备方法及应用,属于电解水催化剂技术领域,制备方法包括以下步骤:将二价钴盐和聚乙烯吡咯烷酮溶解于去离子水中,得到金属钴盐溶液;再滴加L‑抗坏血酸水溶液进行还原反应,得到钴钠米片前驱体;将钴钠米片前驱体、第VIII主族贵金属盐超声分散在乙醇中,反应得到负载贵金属的钴钠米片中间体;将负载贵金属的钴钠米片中间体与红磷混合研磨,并进行微波反应,得到磷化钴负载贵金属纳米片催化剂。上述催化剂具有超薄纳米片结构,增大活性位点与电解液接触面积,在全pH范围下的电解水制氢领域表现出优异的催化活性。
Resumen de: CN119824442A
本发明公开了一种高水分传质系数的PEM水蒸汽电解槽膜电极的制备方法,属于PEM水蒸汽电解槽技术领域。将全氟磺酸膜浸入甲醇/水溶液中溶胀,取出后浸入甲醇/硅酸四乙酯溶液中进行原位溶胶‑凝胶反应,得到高保水质子交换膜;将金属阳极催化剂、全氟磺酸离聚物、二氧化硅和溶剂混合分散为均匀浆料,负载在高保水质子交换膜的一侧形成阳极亲水催化层;将金属阴极催化剂、全氟磺酸离聚物和溶剂混合分散为均匀浆料,负载在高保水质子交换膜的另一侧形成阴极催化层;将阴极气体扩散层和阳极气体扩散层分别贴合到阴极和阳极催化层上,得膜电极。本发明制得了高除湿性能的电解水蒸气膜电极,用于PEM水蒸汽电解槽,可以增加除湿深度,满足更高要求的应用。
Resumen de: CN119819334A
一种金磷修饰ZnS/ZnIn2S4光催化材料的制备方法和应用,它涉及一种光催化材料的制备方法和应用。方法:一、制备ZnS/ZnIn2S4;二、制备AuP;三、制备金磷修饰ZnS/ZnIn2S4光催化材料。一种金磷修饰ZnS/ZnIn2S4光催化材料用于光催化CO2还原为CO和CH3OH。本发明首次利用金磷协同硫化物共催化CO2还原加氢,相较于原始的硫化物异质结CO2还原性能显著提高,且高附加值碳氢产物CH3OH的选择性高达98%,其光催化CO2还原为CH3OH的产量优于已报道的90%光催化剂,解决了目前大多数光催化CO2还原为碳氢产物选择性低的问题。
Resumen de: CN119819350A
本发明公开了一种磷腈聚合物/铜、磷共掺杂g‑C3N4异质结光催化材料及其制备方法和应用,属于CO2还原光催化材料技术领域。本发明采用铜、磷两种元素共掺杂改性g‑C3N4后再与磷腈聚合物复合制成磷腈聚合物/铜、磷共掺杂g‑C3N4异质结光催化材料,该材料可以有效调控光生载流子分离,极大地提升了光催化活性,其具有超高的将CO2还原为CH4的能力,CH4产率可达1520.8μmol g‑1 h‑1,具有良好的应用前景。
Resumen de: WO2024027968A1
The invention relates to a process of manufacturing an electrocatalyst for alkaline water electrolysis, the method comprising the steps of: (i) producing an aqueous electrolyte comprising suspended graphene and graphite nanoplatelet structures having a thickness of <100 nm in an electrochemical cell, wherein the cell comprises: (a) a negative electrode which is graphitic, (b) a positive electrode which is graphitic, (c) an aqueous electrolyte which comprises ions in a solvent, said ions comprising cations and anions, wherein said anions comprise sulphate anions; and wherein the method comprises the step of passing a current through the cell to obtain exfoliated graphene and graphite nanoplatelet structures in the aqueous electrolyte in an amount of more than 5 g/l; (ii) composing an electroplating bath (2) comprising suspended graphene and graphite nanoplatelet structures in an amount of more than 2 g/l, the acidic electroplating bath comprising of an aqueous solution of nickel sulphate and the aqueous electrolyte comprising the suspended graphene and graphite nanoplatelet structures having a thickness of <100 nm in an amount of more than 5 g/l of step (i); and (iii) electrodepositing from the electroplating bath a combined layer of Ni or Ni-alloy and graphene and graphite particles on a carrier to form an electrocatalyst.
Resumen de: KR20250050585A
본 발명은 암모니아 보레인 및 규산을 포함하는 수소 발생 화합물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 암모니아 보레인 및 규산을 포함하여 제작이 용이하고, 수소 발생 효율이 높으며, 저온에서 열분해되어 수소를 발생하는 수소 발생 화합물 및 이의 제조방법에 관한 것이다.
Resumen de: CN119819302A
本发明公开了一种温和条件下氨分解制氢催化剂及其制备和应用,采用正八面体氧化镁为载体,在制备过程中加入少量的金属盐、结构助剂、造孔剂和粘合剂,通过混炼、陈腐、挤出、烘干等步骤获得整体式氨分解制氢催化剂。催化剂各组分的质量百分含量为:MgO 55‑99.87 %、Ru 0.1‑5 %和SiO2 0.01‑5 %,含有以下金属组分中的一种或多种,包括Me1 0.1‑25 %(Me1为镧、铈、镨、钕、钐、钆、镱、钼、铁、钴和镍中的一种或多种)和Me2 0.02‑10 %(Me2为锂、钠、钾、铷、铯中的一种或多种)。催化反应条件温和,在400‑600℃工作温度区间内,氨分解制氢反应氨转化率高于99%。
Resumen de: CN119824457A
本发明属于电解水制氢催化剂技术领域,具体涉及一种Ni基纳米团簇负载碳化硅电解水制氢催化剂及制备方法。该制备方法先将NiCl2·6H2O和TOAB)溶解在THF中,再加入PhCH2SH,充分搅拌以确保所有金属原子充分配位,滴加NaBH4溶液,通过湿法化学法制备了一种环状Ni6纳米团簇;将其负载到碳化硅上后,经NaBH4处理,获得Ni簇均匀负载的SiC电催化材料。此材料用于析氢反应(HER)催化剂催化活性高、稳定性好。本发明为制备更多Ni基纳米团簇基电催化制氢催化剂提供了新的策略。与现有的电催化制氢催化剂的合成方法相比,本发明制备方法的条件简单、安全性高、成本较低、稳定性高、产量高、环境友好。
Resumen de: CN119824431A
本发明公开了一种富含缺陷的氧化钛纳米棒载体上负载Ir单原子催化剂的制备方法、由所述方法制备的催化剂及所述催化剂的应用。本发明的制备方法包括:(S1)富含缺陷的氧化钛纳米棒载体的制备,以及(S2)负载型催化剂的制备。在本发明的催化剂中,Ir单原子协同氧空位能够激活惰性的Ti位点活性,从而提升催化剂的本征活性。而且,本发明的催化剂具有制备方法简单、安全易操作及适宜大规模稳定制备的优势。
Resumen de: CN119824481A
本发明涉及直接制氢的技术领域,具体是一种用于直接制氢的补水传质系统及其使用方法,包括补水系统和电解系统,其特征在于,所述补水系统设置于所述电解系统外部,所述补水系统包括补水源系统和传质补水系统,所述补水源系统与所述传质补水系统相连通,所述传质补水系统与所述电解系统相连通,所述补水源系统包括储罐和中间罐,所述储罐输出端通过三通管与所述传质补水系统、所述储罐内腔相连通,所述中间罐输入端与所述传质补水系统相连通,所述中间罐输出端与所述储罐输入端相连通,其使用与电解系统分体但连通的补水系统,将电解后高浓度溶液与补充的低浓度溶液混合再生,能量损耗较低,降低了制氢成本。
Resumen de: US2025066932A1
The present disclosure provides a functional (photovoltaic) PV powered facilitated Water electrolyzer system for solar hydrogen generation having two components: a functional PV panel and a facilitated water electrolyzer. The present invention provides functional PV powered facilitated water electrolyzer (F-PV-WE) systems. The invention provides a process using integrated functional PV with facilitated water electrolysis for multiproduct generation including hydrogen, oxygen and hypochlorite with reduction in energy and environmental footprint.
Resumen de: CN118786169A
The invention relates to a method for preparing a separator (M) containing a sulfonated polyarylene sulfone polymer (sP), to the separator (M) obtained by the method according to the invention, to a fuel cell, to an electrodialysis cell and to an electrolytic cell comprising the separator (M), to the use of the separator (M) in an electrolytic cell, to an electrodialysis cell or to a fuel cell, and to a method for preparing electrical energy and/or hydrogen.
Resumen de: CN119137311A
Disclosed herein are methods and systems related to the use of electrolysis to enhance synthesis gas production. Methods disclosed herein include harvesting a volume of carbon monoxide from a syngas production system operated using a volume of natural gas, feeding the volume of carbon monoxide to a cathode region of an electrolyzer, and generating a volume of the generated chemical using the volume of carbon monoxide and the electrolyzer. The volume of the generated chemical is at least one of a volume of a hydrocarbon, a volume of an olefin, a volume of an organic acid, a volume of an alcohol, and a volume of an N-rich organic compound.
Resumen de: CN119824480A
本发明公开的制氢系统,包括电解槽、氧分离装置、氢分离装置、循环泵和集气分离装置,电解槽的氧气出口与氧分离装置的入口连通,氧分离装置的出口连通第一电解液输送管路,电解槽的氢气出口与氢分离装置的入口连通,氢分离装置的出口连通第二电解液输送管路,第一电解液输送管路与第二电解液输送管路汇合成电解液输送管路,电解液输送管路与电解槽的电解液入口连通,循环泵设置于电解液输送管路上,集气分离装置至少包括一个,且与第一电解液输送管路和第二电解液输送管路中的至少一者连通。本发明公开的制氢系统,集气分离装置的设置能够将电解液中的氢气和氧气收集,减少回流至氢分离装置和氧分离装置,降低氢气和氧气掺混的可能。
Resumen de: CN119824461A
本发明公开了一种电解水制氢用雷尼镍电极及其制备方法。所述制备方法包括电沉积多孔镍基底、在多孔镍基底上电沉积镍锌合金、将镍锌合金进行化学脱锌活化以及对活化后的雷尼镍电极进行电固化等步骤。本发明通过电沉积和活化固化处理相结合的技术路线,在保证高催化活性和高比表面积的基础上,实现了微观结构的可控设计,并显著提高了电极的机械强度和稳定性。本发明制备的雷尼镍电极适用于电解水制氢过程,特别是在大电流、高温和高压等复杂工业条件下表现出优异的耐用性和电催化性能。
Resumen de: CN119824452A
本发明公开了一种石墨烯基电催化材料及其制备方法与应用,属于电催化材料技术领域。该制备方法包括以下步骤:1、制备氮掺杂石墨烯(N‑C),2、制备Cu金属嵌入的石墨烯材料(Cu‑N‑C),3、制备CuNi双金属嵌入的石墨烯材料(CuNi‑N‑C)。有益效果:本发明提供了一种石墨烯负载CuNi双金属催化剂,其在CO2还原过程中对*COCOH和*COCHO的C‑C偶联能垒较低,且C‑C偶联的反应物和产物吸附能之间有很好的线性关系,为优化催化剂设计提供了新的思路。
Resumen de: CN119824443A
本发明公开了一种无密封结构方形模块化碱性电解槽,包括:框架和电解单元;框架上设置有多个安装腔,电解单元安装于安装腔内;电解单元包括:阳极极板、阳极电极、隔膜、阴极电极以及阴极极板;阳极极板和阴极极板的表面均开设有电解腔;阳极电极和阴极电极分别设置于阳极极板和阴极极板的电解腔内;隔膜置于阳极电极和阴极电极之间;阳极极板和阴极极板设有电解腔的一侧相互扣合,并利用热压成型工艺将阳极极板和阴极极板熔合为一体;阳极极板和阴极极板表面均设置有与电解腔相连通的进液口和出液口。本发明中的电解槽密封性好,且组装方便。
Resumen de: CN119824446A
本发明涉及水电解制氢技术领域,具体而言,涉及一种循环水风冷系统和纯水SPE水电解制氢设备。该循环水风冷系统用于纯水SPE水电解制氢设备,循环水风冷系统包括机箱以及风机单元;机箱内置有电解单元以及表冷器,且表冷器与电解单元连通;风机单元用于将外部的气流引入至机箱内,朝向电解单元及表冷器吹送,并将流经电解单元及表冷器的气流引出至机箱外。该循环水风冷系统和纯水SPE水电解制氢设备能够改善循环水的降温效果,而且其结构简单使用方便,结构体积小,能够在现行设备的基础上进行原位替换,进而能够降低其使用以及改造成本。
Resumen de: US2025011946A1
Disclosed are a carbon dioxide capturing method and a carbon dioxide capturing system for co-producing of carbon monoxide and hydrogen. The method includes: capturing, by an alkaline solution, carbon dioxide in a target component, to obtain an aqueous solution containing a carbonate; performing, on the aqueous solution containing the carbonate, a first electrolytic process, to obtain a first aqueous solution containing a bicarbonate and hydrogen; and performing, on the first aqueous solution containing the bicarbonate in the presence of a catalyst, a second electrolytic process, to obtain the carbon monoxide and the hydrogen, where the catalyst is selected as at least one component from a group consisting of an elementary substance of metal, alloy and compound of group VIII, group IB, group IIB, group IVA and lanthanide.
Resumen de: CN118871621A
Disclosed are electrolysis technique and system embodiments comprising: a plurality of reactors, each reactor comprising an electrolysis electrode and configured to perform a sequence of stages of an electrolysis process, the sequence of stages having a stage offset relative to a sequence of stages of an electrolysis process performed by at least another reactor of the plurality of reactors; one or more power sources for driving the electrolysis process performed by the plurality of reactors; and a control system configured to monitor a change in power capacity of at least one of the one or more power sources and perform at least one of (i) activating or deactivating one or more of the electrolysis processes performed by the plurality of reactors based on the change in power capacity, (ii) adjusting the duration of at least one of the stages of the electrolysis process; (iii) adjusting the power supplied from the one or more power sources to at least one of the plurality of reactors; and/or (iv) adjusting, removing or introducing at least one stage of the electrolysis process.
Resumen de: CN119822426A
本发明属于电解水制氢技术领域,具体涉及一种PEM水电解析氧IrOx催化剂及其制备方法与应用。该制备方法包括以下步骤:1)将铱前驱体与络合剂加入去离子水中,搅拌均匀,得到第一混合溶液;2)将所述第一混合溶液的pH值调至碱性,得到第二混合溶液;3)将所述第二混合溶液加热搅拌反应一段时间,得到第三混合溶液;4)将所述第三混合溶液中的水分除去,得到前驱体;将所述前驱体进行高温热冲击处理,然后经洗涤、干燥即得。该IrOx催化剂的粒径为1~10nm,解决了现有铱基氧化物存在的粒径较大的问题;该制备方法极大的提高了制备催化剂的效率,同时制备所得催化剂在PEM水电解中具有良好的析氧催化活性和稳定性。
Resumen de: KR20250049570A
본 발명은 내부로 유입된 전해액을 전기분해하여 수소 가스와 산소 가스를 생성하되, 전해액 및 산소 가스 이동 경로와 수소 가스 이동 경로가 장치 내부에서 상호 이원적으로 형성되어, 전기분해 장치 내부에 흐르는 전해액과 수소 가스가 혼합되어 생성된 수소 가스의 순도가 떨어지는 문제를 줄이는 효과와 양측 하우징 모두에 전해액 출입구와 수소 가스 출구를 복수로 동일하게 형성하여, 전해액을 하우징 일측 또는 양측으로 공급할 수 있도록 함과 동시에 산소 가스와 수소 가스를 하우징 일측 또는 양측으로 배출시킬 수 있어, 다양한 구조와 루트로 전해액을 공급하고 가스를 배출시킬 수 있는 효과를 제공하는 발명으로, 하우징(100), 집전판(200), 전기분해용 맴브레인 수단(300), 바이폴라 플레이트(400)를 포함하여 구성되는 것을 특징으로 한다.
Resumen de: CN119800420A
本发明属于水电解材料领域,具体涉及多孔单晶多元合金催化剂及其制备和在HER催化中的应用,其中,制备步骤为:获得溶解有M1、M2和M3的金属离子的电解液,将载体置于电解液中进行恒流电沉积处理,在载体上沉积形成M1‑M2‑M3多元合金;其中,M1包括锌、镓、铟、锡中的至少一种;M2包括铁、钴、镍、铜、锌、锰、铬中的至少一种;M3包括铂、金、银、钯、铱中的至少一种;M1、M2和M3的金属元素的总种类数在3种以上;将沉积有M1‑M2‑M3多元合金的载体在450~850℃的温度下进行转型处理,随后再在碱液中进行改性处理,即得。本发明所述的材料可以在酸性、大电流下仍表现出优异的长循环稳定性。
Resumen de: KR20250049476A
본 발명은 전해액을 전기분해하여 수소 가스와 산소 가스를 생성하고, 생성된 수소 가스와 산소 가스는 포집을 위해 외부로 배출할 수 있어, 경제성이 우수한 고순도, 고품질의 수소 가스를 생산할 수 있는 효과와 전기분해 중, 내부 과압이 발생하는 경우, 수소 가스를 일부 배출시켜 내부 과압이 발생하지 않도록 할 수 있어, 수소 가스 생산 중, 수소 가스로 인한 폭발 사고를 방지하는 효과를 제공하는 것을 특징으로 한다.
Resumen de: CN119800415A
本发明属于水解制氢技术领域,具体涉及一种光还原制备氧化钨负载铂催化剂的方法及其电化学海水析氢应用。本发明利用原位光还原策略制备的氧化钨负载铂催化剂(Pt/WO3),其中的WO3载体不仅能够促进水的解离,而且能通过富集氢离子来调控Pt纳米颗粒周围的微环境,从而降低析氢反应能垒,提高催化剂性能。此外,由于WO3载体的保护,Pt/WO3催化剂能够有效避免海水中氯离子的腐蚀,从而提高了催化剂的稳定性。因此,将Pt/WO3应用于电解海水析氢时,其在10mA·cm‑2下的过电位仅为298mV,质量活性是商业Pt/C的7倍,并且具有长达140h的长期稳定性,表现出优异的电解海水析氢活性和稳定性。
Resumen de: CN119800427A
一种高活性电解水催化剂的制备方法,本发明涉及电解水制氢催化剂制备领域。本发明为了克服现有技术存在制氢催化剂反应活性低、成本高且制备方法复杂的技术问题。方法:采用电沉积法合成NiCo‑LDH前驱体;采用高温磷化法,以NaH2PO2为磷源,在氩气中进行焙烧,得到NiCoP电解水催化剂。本发明电解水催化剂的制备,工艺简单,表现出良好的形貌和较好的催化活性与稳定性,可高效电催化尿素氧化翻译和氢析出反应。本发明用于制备高活性电解水催化剂。
Resumen de: CN119800390A
本发明属于电解水制氢领域,具体涉及一种具有多孔结构的质子交换膜电解槽膜电极及其制备方法和应用。多孔结构膜电极包括:阴极催化层和多孔阳极催化层分别置于质子交换膜两侧;将阳极催化剂、全氟磺酸树脂溶液、第一溶剂和造孔剂溶液混合,得到阳极催化剂浆料;将阴极催化剂、全氟磺酸树脂溶液和第二溶剂混合,得到阴极催化剂浆料;将所述催化剂浆料分别喷涂至基底上,与质子交换膜共同热压转印成型,去除溶剂及造孔剂,得到具有多孔结构的质子交换膜电解槽膜电极。本发明提供的膜电极制备方法简单快捷,安全高效,不会引入污染物及杂质,并在阳极催化层中引入了丰富的多孔结构,显著优化了大电流密度下的水气传质,进而提高了膜电极的工作性能。
Resumen de: CN119800419A
本发明属于析氢电催化剂制备技术领域,具体涉及一种镍基电催化剂及其制备方法与应用;镍基电催化剂以泡沫镍为基底材料,经直流磁控溅射方法得到镍基合金薄膜,再经液相还原处理钌得到镍基电催化剂;本发明提供了一种廉价易得、高活性的析氢电催化剂的设计思路,采用本发明制备的镍基电催化剂具有较高的电荷转移效率和优异的析氢活性,且在长期碱性大电流条件下表现出良好的耐久性和较低的析氢过电位。本发明制备方法可以合成不同的镍基合金预催化剂,具有广阔的发展前景和较大的应用空间。
Resumen de: CN119797558A
本申请涉及用于富氢水杯控制技术领域,揭示了一种用于交互式富氢水杯自适应控制方法、装置、水杯及介质,其中方法包括:基于交互模块获取水处理指令;根据水处理指令获取当前时间段;根据当前时间段和与水处理指令中的目标用户标识对应的方案库,获取目标水处理控制方案,目标用户标识对应的方案库是基于交互模块确定的;根据目标水处理控制方案,控制富氢水杯进行水处理,获得水处理结束信号。通过基于交互模块,获取水处理指令并确定当前时间段,进而获取与当前时间段及目标用户标识对应的目标水处理控制方案,通过目标水处理控制方案实现了对富氢水杯水处理过程的灵活精准控制,从而使得富氢水杯能够更好地适应不同场景下的饮水需求。
Resumen de: CN119800411A
本发明公开了一种过渡金属离子改性双金属MXene的制备方法,通过静电相互作用制备了不同金属离子(Co2+、Ni2+和Mn2+)和不同浓度插层的Mo2TiC2Tx材料(标记为Mo2TiC2Tx‑M),并对其进行详细的表征和分析,来探究对MXene材料改性的可行性。通过对所制备样品的物相和形貌进行分析,发现过渡金属离子插层令Mo2TiC2Tx的结构变得更加疏松,同时显著提高了其层间距。金属离子的引入,可以形成新的金属键,高效转移电子。通过对材料的电化学性能研究,发现金属离子插层的双金属MXene具有优异的电催化析氢性能以及良好的稳定性。
Resumen de: CN119800408A
本发明涉及电催化析氢技术领域,公开了一种用于中性电催化析氢的方法。将钴铁双金属磷化物纳米片材料作为析氢工作电极,在中性电解质或中性模拟海水中进行中性电催化析氢,所述钴铁双金属磷化物纳米片呈现出纳米片堆叠的结构,分散性良好;所述纳米片纤薄光滑,厚度为50‑200nm,尺寸2‑3um。本发明提供的方法能够用于在中性环境下电解水制氢,且无腐蚀电解装置的问题,并具有在较高电流下持续工作的能力。
Resumen de: CN119800388A
本发明公开了用于电解水耦合可燃气体制氢的固体氧化物电解堆及系统,固体氧化物电解堆包括依次连接的阳极端板、中间板组件和阴极端板,中间板组件包括若干个重复单元,重复单元之间通过连接板连接;重复单元包括电解池,电解池包括阳极、电解质和阴极,阴极通入水蒸气或者水蒸气氢气混合气,发生电解水还原反应,得到氢气,阳极通入可燃气体、水蒸气和/或二氧化碳的混合气,可燃气体与阴极电解水产生并传输到阳极的氧离子发生深度氧化反应,得到二氧化碳。本发明阴极产物气体为高纯氢气或者冷凝后得到高纯氢气,阳极产物气体为水蒸气和二氧化碳的混合气或者以水蒸气和二氧化碳为主的混合气,冷凝后可以获得自富集的高浓度二氧化碳。
Resumen de: CN119793487A
本发明公开了一种硫化镉纳米管阵列催化剂的制备方法和应用,其首先利用水热法,在导电玻璃上制备硫化镉纳米棒阵列;然后利用光刻蚀法,对硫化镉纳米棒阵列刻蚀,制备出硫化镉纳米管阵列催化剂。本发明制得的硫化镉纳米管阵列催化剂,利用硫化镉优异的可见光吸收特性,提高光能利用率,利用具有较大比表面积的管状纳米结构,增加光电催化分解水反应的活性面积,有效促进光生载流子的分离与传输,抑制光生载流子的复合,表现出优异的光电催化分解水制氢性能。本发明工艺简单、合成物质纯度高、尺寸为纳米级别,并且所用原料便宜,适用于光电催化分解水制氢领域。
Resumen de: CN119793342A
一种基于焦耳热效应的高效氨分解制氢系统,属于清洁能源技术领域。该系统由供氨模块、焦耳热驱动的氨分解反应模块和加氢模块组成。其中,供氨模块由液氨储存装置、气化室和氨气储存装置组成;焦耳热驱动的氨分解反应模块由氨气流量控制阀、反应管进气口、反应管出气口、焦耳加热电极头、直流电源、温度传感器、保温层、反应管、催化剂和不锈钢鳄鱼夹组成;加氢模块由氢气净化与干燥装置、氢气压缩机、氢气冷却单元、高压储氢罐、氢气流量控制阀和加氢机组成。整个过程可在1秒内启动并稳定输出,转化率和电热转化效率均超过90%,实现了低能耗、快速响应和安全操作,特别适合未来氢能源网络中的加氢站建设,推动绿色氢能经济的发展。
Resumen de: CN119797276A
本发明公开了一种利用磁控溅射镀膜技术氨分解透氢反应器,包括第一法兰和第二法兰,第一法兰嵌于与第二法兰内,且其由圆周均布的标准M6螺栓及其配套螺母和垫片进行紧固,两个法兰之间形成了腔室,第一法兰上开设的通孔焊接有三通管,其中三通管的一端口为氨气进口,另一端口为氮气出口,第二法兰上开设的通孔焊接有管子,该管子的端口为氢气出口,其中三通管与所述腔室及第二法兰通孔焊接的管子相贯通,腔室内部放置石炭垫圈一和石炭垫圈二,石炭垫圈二与石炭垫圈一之间设有反应膜,本发明反应器将磁控溅射镀膜技术和高透氢选择性材料相结合,极大提高了氢气的提取效率,增强了整个氨分解制氢工艺的经济性与实用性。
Resumen de: CN119793333A
本发明涉及了一种含螺旋通道的氨分解制氢系统,包括氨气罐、反应器、燃烧器、第一换热器和风机,氨气罐与反应器的氨气入口连通;反应器包括间隔套设的多个套管,相邻两个套管之间设置有隔板;每个套管的外壁上开设有氨气管道,每个套管的内壁上开设有烟气管道,氨气管道和烟气管道彼此不相通,隔板同时覆盖其中一个套管外壁上的氨气管道和另外一个套管上的烟气管道;反应器的一端设置有氨气入口和烟气出口,反应器的另一端设置有分解气出口和烟气入口;燃烧器与烟气入口连通,分解气出口与第一换热器连通,第一换热器分别与风机和燃烧器连通。该含螺旋通道的氨分解制氢系统提高气体之间的换热面积,提高整体氨气分解效率和效果,减少能量消耗。
Resumen de: CN119804264A
本申请涉及一种电解水制氢用隔膜气密性检测装置及方法,涉及电解水制氢技术领域。一种电解水制氢用隔膜气密性检测装置包括检测管,所述检测管内固定有待测隔膜,所述待测隔膜下方设置有电加热丝,所述检测管底端周壁设置有用于流通反应碱液的碱液入口和碱液出口,所述检测管内部底壁设置有网状平台,所述网状平台上放置有用于与反应碱液发生反应的反应金属,所述检测管侧壁连通有用于记录读数的U型读数管。本申请具有提高对电解水制氢用隔膜气密性检测的可靠性的效果。
Resumen de: CN119800430A
一种钒掺杂氮化钼‑氮化镍‑镍三相异质结复合材料的制备方法和应用,它涉及一种碱性电解水制氢的催化剂的制备方法。本发明的目的是要解决现有碱性电解水制氢的催化剂成本高和催化活性低的问题。本发明利用氢氧化镍纳米片与多酸之间的氢键以及静电作用,基于分子组装原理,获得多酸‑氢氧化镍纳米片复合体,经过氮化处理后制得钒掺杂氮化钼‑氮化镍‑镍三相异质结复合材料,其具有组分间结合紧密、分布均匀、组分容易调控、结构稳定活性位点丰富等优势,应用其作为电催化析氢反应的催化剂,在碱性条件下电流密度为10mAcm‑2时,所需过电势仅为34mV,为今后设计和制备在碱性条件下使用的电化学析氢催化剂奠定基础。
Resumen de: CN119800429A
本发明涉及能源材料及电催化技术领域,尤其涉及一种含双金属氧化物和过渡金属硫化物的催化剂的制备方法及应用,包括:首先将硫脲、七钼酸铵、硝酸钴依次与离子水混合,超声制备成均一混合溶液;随后将混合溶液与集流体一起放入四氟乙烯内衬中进行水热反应,待反应完全并自然冷却后,洗涤、真空干燥即可得到含双金属氧化物和过渡金属硫化物的碱性电解水析氧反应的催化剂。本发明制备的催化剂在碱性电解液中表现出较好的稳定性和催化性,可在较低的过电位下得到较高的电流密度。同时本发明制备方法操作简单、耗时短、生产成本低、易于实现大规模生产,在电催化领域具有优良的应用前景。
Resumen de: CN119800394A
本发明公开了一种碱性电解水制氢用电解小室,涉及电解水制氢技术领域。本发明包括:室体以及安装在室体内腔的阳极极板、阳极电极、离子交换膜、阴极电极和阴极极板;室体包括相互密封扣合的阳极槽体和阴极槽体,阳极槽体开设有多个阳极进液口和多个阳极出液口;阴极槽体上开设有多个阴极进液口和多个阴极出液口;阳极极板安装在阳极电解槽槽底,且其远离阳极电解槽槽底一侧成型有多个第一支撑结构,阳极电极连接在多个第一支撑结构另一侧;阴极极板安装在阴极电解槽槽底,且其远离阴极电解槽槽底一侧成型有多个第二支撑结构,阴极电极连接在多个第二支撑结构另一侧。本发明提升电解液了在电解小室内分布的均匀性,提升电解了反应的均匀性与效率。
Resumen de: CN119800442A
本发明公开了一种PEM电解槽温度控制系统、加热装置和方法。该PEM电解槽温度控制系统包括:数据采集模块,分别与循环冷却水系统和自动控制模块连接,用于采集预设定值信息和/或循环冷却水系统中特定器件的实时运行信息;自动控制模块,分别与循环冷却水系统和温度展示模块连接,用于依据预设定值信息和/或特定器件的实时运行信息,对循环冷却水系统中的特定器件进行对应控制;温度展示模块,用于显示循环冷却水系统中的特定器件的温度,以及温度变化曲线。本发明能够提高电解槽升温速率、缩短响应时间,且使电解槽温度保持更加平稳,提升系统性能的技术效果。
Resumen de: CN119800441A
本发明实施例提供一种碱性水电解制氢设备液位控制系统、方法、设备及介质,属于电解水制氢领域。该系统包括:中央监控系统、制氢系统控制器、差压变送器、排污导压系统及多个中间继电器;其中,差压变送器的配电通过第一中间继电器与差压变送器连接;制氢系统控制器,用于检测第一、第二和第三中间继电器的工作状态,并根据检测结果判断各设备的工作状态;中央监控系统,用于远程控制差压变送器的送电状态及排污导压系统的工作状态。该系统可自动识别气相导压回路的积液情况,并根据积液情况实现自动排液,实现导压管形式液位测量的无人化管理,大大降低现场工作人员的维护工作量,而且其设计结构简单,性价比更高,具有非常广泛的应用前景。
Resumen de: CN119800404A
本发明涉及一种金属Ni/V2C MXene纤维异质结构复合材料及其制备方法和应用,隶属电催化析氢领域。该复合材料包括金属Ni纳米颗粒和V2C MXene纳米纤维,金属Ni纳米颗粒和V2C MXene纳米纤维之间形成异质结构,制备步骤如下:将还原剂加入到含有镍盐的V2C MXene水溶胶中,使Ni2+被还原为非晶态Ni‑B纳米颗粒,促使V2C MXene卷曲形成一维纳米纤维,制得前驱体;在氢/氩混合气氛中,将前驱体于石英管式炉中热处理,使非晶态Ni‑B纳米颗粒完全转化为金属Ni纳米颗粒,即得;该复合材料能作为电解水催化剂。本发明提出的金属Ni纳米颗粒与一维MXene耦合协同增强催化活性的策略,为发展性能优异、成本低廉、可替代贵金属材料的制氢电催化剂提供了新的途径,具有十分广阔的应用前景。
Resumen de: EP4529991A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: CN119800414A
本发明公开了一种以锰基电催化剂为基底的产氢协同降解甲醛废水的电解池的构建方法,包括以下步骤:S1:将一定量的KMnO4和MnSO4依次溶于一定量的去离子水中,转移至高压釜中,加入集流器于溶液中,烘箱加热一定的时间后,冷却,洗涤干燥,得锰基电催化剂;S2:以S1制备的锰基电催化剂为材料制作电极;S3:以S2制作的电极为阴极、阳极构建二电极体系,再以KOH/HCHO混合溶液为电解液构建甲醛基电解池,施加一定的电压进行电解。此电解池的设计,有效提高了电解水制氢效率并降解了水体中的甲醛有害污染物。
Resumen de: CN119800433A
本发明公开了一种单原子协同配位复合光电催化剂的制备方法,利用非金属缺陷(硫/氧空位)与非晶态基底协同锚定可变价单原子及原位生长策略与溶剂热等方法实现Bi2S3‑SV和Co‑N4‑C的配位复合,通过液相硫化法以硫代乙酰胺作为硫源,原位生成Bi2S3‑SV,并通过调控硫源比例,降低硫代乙酰胺的浓度,在硫化过程中直接引入硫缺陷,之后结合退火工艺促进Co单原子向Bi2S3‑SV界面迁移,形成Co‑Sy配位,同时保留N‑C骨架内的Co‑N4配位,构建了一种独特的硫空位与Co单原子双配位协同作用以实现高效光电催化产氢耦合甲醛氧化等反应的Bi2S3‑SV/Co‑N4‑C复合光电催化剂。
Resumen de: CN119797559A
本发明涉及水处理技术,旨在提供一种面向高海拔地区的双功能吸氧富氢饮水杯。该饮水杯中,杯体包括用于容纳电解用水的第一腔体和用于容纳饮用水的第二腔体,吸氧管和饮水管穿过杯盖后分别伸入两个腔体;杯底与杯体底端共同形成封闭的第三腔体,用于容纳电解模块、输氢模块与供电模块;电解模块用于电解水产生氢气和氧气,输氢模块用于分离、输送氢气和水。本发明可利用电解槽简化氢氧分离过程,避免对氧气的干燥除杂要求,降低生产成本并提高系统的稳定性和可靠性;通过独特的杯体结构设计,将电解溶液和饮用水分隔,有效避免电解溶液中微量有害成分对人体的潜在危害;采用高度模块化设计,各个模块布局合理,便于安装、维护和维修。
Resumen de: CN119800432A
本发明提供了一种氮掺杂碳纳米球@碳化钼@碳纳米管复合材料及其制备方法与电解水析氢应用,所述制备方法是利用磷钼酸与多巴胺相互作用结合,再通过与三聚氰胺研磨使之充分混合,最后通过一步煅烧,实现聚多巴胺和三聚氰胺的碳化以及氮、钼的掺杂,钼催化生成碳纳米管,最终得到氮掺杂碳纳米球@碳化钼@碳纳米管复合材料,并将其应用于电解水析氢反应催化研究。与传统的制备方法相比,本发明的方法简单、快速、反应条件温和,产率高,且制备的复合材料形貌均匀,对电解水析氢反应具有优良的电催化性能。
Resumen de: CN119800421A
本发明公开了一种镍钼修饰钼酸钴复合材料及其制备方法和中性电解水析氢应用。该复合材料包括导电基底和生长在所述导电基底上的镍钼修饰钼酸钴,所述的镍钼修饰钼酸钴为纳米片修饰的钼酸钴纳米棒阵列形貌,其中纳米片厚度在5‑80nm,纳米棒直径在0.1‑1μm。通过将导电基底与尿素、氟化铵、钴盐、钼盐、镍盐和水混合后进行水热反应制备得到。本发明所得复合材料结构稳定,具有丰富的活性位点,导电性好,对水的吸附能力强,用于中性条件下电解水析氢反应中时,过电势低,大电流情况下仍旧由较强稳定性,展示出了优异的催化活性和稳定性,制备简单高效,具有重要的应用前景。
Resumen de: CN119793121A
本发明公开了一种用适用于电解水制氢系统的新型分离器及方法,包括立式罐体和冷却管组件,冷却管组件设置在立式罐体的内部上方,冷却管组件的上方设置有丝网捕滴组件,丝网捕滴组件包括上盖、支撑套、多层丝网和固定隔板,支撑套套在多层丝网上,上盖设置在多层丝网的顶部,且上盖与支撑套之间设置有间隙,支撑套通过固定隔板固定在立式罐体的内壁上,立式罐体的上端设置有排气口,排气口的管道伸至立式罐体中,且排气口的管道下端设置有滤汽器,混合体积经重力沉降实现初步分离,液体下降存于罐体底部,气体上升依次流经冷却管组件降温、丝网捕滴组件除水,最后经过滤汽器后排出,最终实现高温气液组分的气体分离及降温除水。
Resumen de: CN119800431A
本发明涉及一种非贵金属基自支撑电极及其制备方法与其在高效电解水中的应用。自支撑电极包括非贵金属基底层,以及依次设置于所述非贵金属基底层表面的过渡层和催化活性层;所述过渡层包括NiFe晶胞纳米颗粒;所述催化活性层包括CoFeLDH,所述CoFeLDH呈纳米针状阵列组成仙人掌球状结构;含NiFe晶胞纳米颗粒的过渡层与含CoFeLDH的催化活性层之间具有异质结界面。本发明具有低的析氧过电位且工况下具有高电密和优异稳定性,在催化活性层与泡沫镍基底间构建过渡层,可以优化催化活性层与基底的界面接触,有助于实现更均匀的应力分布和更好的界面附着力,增强电荷转移和传质,从而实现电极界面稳定性。
Resumen de: CN119800376A
本发明提供了基于脉冲电催化的水煤浆电解制氢方法,属于氢能制取技术领域。方法,包括步骤:S1、将煤粉和第一酸溶液混合,获得水煤浆;S2、以水煤浆作为阳极电解液,以第二酸溶液作为阴极电解液,组成电解池制氢装置;S3、对电解池制氢装置的阳极进行脉冲供电,在温度为60~80℃的条件下进行电解制氢;其中,脉冲供电方法为阳极电位1.4~1.8V,静息电位为0V,脉冲频率为0.4~0.6Hz,脉冲占空比为40~60%。采用脉冲供电方式,能够有效降低电极极化现象,使电解过程更加顺畅,从而显著提高电解效率。
Resumen de: CN119793454A
一种用于高效氨解制氢的棒状稀土金属氧化物载钌催化剂及其制备方法,属于氨解制氢领域。该催化剂以纳米棒状的稀土金属氧化物为载体,负载少量的贵金属钌作为活性组分,应用于氨分解制氢。本发明公开的催化剂在反应温度450℃时,可以将氨气高效分解,并具有较高H2生成速率(50mol·gRu‑1·h‑1)。
Resumen de: CN119800428A
一种CaCoO3基纳米复合材料的制备方法及其应用,本发明是要解决现有CaCoO3粉体表面修饰方法工艺复杂的问题。制备方法:一、采用溶胶‑凝胶法制备A位缺位的CaxCoO3钙钛矿粉体;二、配置弱氧化或酸性溶液;三、将CaxCoO3钙钛矿粉体分散在弱氧化或酸性溶液中;四、对分散液进行离心分离,固相物分别用去离子水和无水乙醇进行洗涤,干燥后得到复合材料沉淀物;五、对复合材料沉淀物进行微波加热处理。本发明能够在CaCoO3母体表面原位脱溶生长Co3O4纳米颗粒,Co3O4纳米颗粒粒径均匀,且粒径和负载量可控,与CaCoO3结合力强,具有良好的组成和结构稳定性,催化活性高,反应速度快,稳定性好。
Resumen de: CN119793484A
本发明属于光催化材料领域,特别涉及一种偏钒酸银复合硫化镉光催化材料及其制备方法和在光催化产氢方面的应用。制备方法包括如下步骤:取硫源和镉源,加入乙二胺,搅拌混合均匀;转移到水热反应釜中进行反应,反应结束之后,取得到的悬浊液,离心洗涤,干燥便得到硫化镉粉末;在硫化镉中加入水,在搅拌的条件下加入银源和钒源,搅拌,转移到反应釜中进行水热反应,之后进行离心,洗涤干燥得到偏钒酸银复合硫化镉光催化材料。本发明的光催化材料在光催化产氢反应中具有较为明显的催化效果。在氙灯的照射下,以所设定的反应体系为条件,光催化剂的水分解产氢气速率达到了228.8μmol/g/h,明显优于纯的硫化镉催化剂。
Resumen de: CN119793499A
本发明涉及一种用于全解水的超亲水/超疏气的电催化剂Co‑Cu‑P及其制备方法,属于电解水催化剂领域。所述电催化剂Co‑Cu‑P分子式为CoxCu1‑xP,结构为类海胆型纳米花或颗粒状珍珠球。制备方法为:将六水硝酸钴,三水硝酸铜,氟化铵,尿素溶解于去离子水中,室温搅拌30 min,直至形成透明混合溶液;将碳布和混合溶液转移至反应釜中进行水热反应,制备得到前驱体;称取次磷酸钠,将前驱体和次磷酸钠置于磁舟中,分别位于管式炉的上下游,氩气条件下煅烧,煅烧结束后收集产物即得电催化剂Co‑Cu‑P。本发明通过过渡金属元素Cu掺杂的方法,构造具有极高亲水性、极高疏气性和更多暴露的活性位点的双金属磷化物,降低水的解离能垒,优化了对中间体的吸附,提高了催化剂的产氢效率。
Resumen de: CN119797556A
本发明提供了一种富氢机防气泡堆积装置,属于富氢机技术领域,该富氢机防气泡堆积装置具有电解电极、震动组件以及旋转组件;所述震动组件设置在所述电解电极的右下方,所述震动组件与所述电解电极的下壁抵接,所述震动组件用于通过震动将堵在所述电解电极排气孔周围的气泡震散;所述震动组件包括第一转轴、震动片以及卡孔,所述震动片的两侧均设置有所述卡孔,所述震动片为扇形结构,所述震动片的侧边有弧形凹陷,所述震动片有4个,所述震动片为垂直与水平方向设置,4个所述震动片的中心设置有连接块;能够解决氢氧混合气体制备过程中,产生的气泡会堆积在电极周围,影响设备的运行效率的问题。
Resumen de: CN119800696A
本发明提供一种聚苯硫醚织物隔膜的制备方法、聚苯硫醚织物隔膜及应用,具体涉及隔膜材料技术领域。该制备方法包括以下步骤:A、将聚苯硫醚纱线进行磺化处理,然后将磺化后的聚苯硫醚纱线在聚砜类聚合物的有机溶剂中进行第一浸渍,第一诱导相分离,得到含有聚砜类聚合物层的纱线;B、将含有聚砜类聚合物层的纱线织造得到织物,对织物进行第二浸渍、第二诱导相分离、清洗干燥得到聚苯硫醚织物隔膜。本发明通过磺化处理聚苯硫醚纱线,引入亲水官能团,增强纤维亲水性和与涂层的结合力。纱线随后浸渍在聚砜类聚合物溶液中,形成聚砜类聚合物涂层。制成织物后再次诱导相分离,形成网状聚砜类聚合物结构,减小聚苯硫醚织物隔膜的孔径,提高其气密性。
Resumen de: CN119800380A
本发明公开了一种吡唑酮类化合物中间体的电解合成方法,所述方法以亚硝基酸酯类化合物为原料,通过电化学还原得到含肼类化合物的电解液;含肼类化合物的电解液进行环合反应,得到吡唑酮类化合物;本发明以温和高效的电化学还原方式代替风险性高的重氮化反应,合成得到吡唑酮类化合物;电解液可以循环多次使用,避免了合成过程中需大量加入的亚硫酸盐、酸等试剂,减少了大量“三废”的产生。本发明方法具有更好的产物纯度(>95%)和收率(>80%),且方法更为绿色环保,没有三废的产生,适合工业化生产。
Resumen de: CN119800434A
本发明公开了一种表面负载IrO2纳米颗粒的纳米棒状K2Ti8O17催化剂及其制备方法与应用,包括如下步骤:将K2Ti8O17纳米线进行破碎处理得到纳米棒状K2Ti8O17,与IrCl3·3H2O和溶剂混合得到分散悬液,加入还原剂反应后得到表面负载Ir的纳米棒状K2Ti8O17中间材料,置于250‑550℃的有氧环境中反应后得到表面负载IrO2纳米颗粒的纳米棒状K2Ti8O17催化剂。本发明IrO2纳米颗粒在纳米棒状K2Ti8O17载体上负载的均匀度高、颗粒尺寸小、无团聚现象,催化剂形貌规则,具备很好的酸性OER催化性能;制备方法简单、成本低、可控性好、结果重复性高,易于实现工业化生产。
Resumen de: CN119800440A
本发明提供了一种无机颗粒复合聚合物膜、其制备方法及应用。该无机颗粒复合聚合物膜的制备方法包括:步骤S1,将成膜聚合物与无机颗粒加入有机溶剂中,形成铸膜液;步骤S2,将铸膜液涂布在支撑层的至少一侧表面上,形成携带有铸膜液湿膜的第一膜体;步骤S3,对第一膜体进行超声雾化处理,以使雾化水滴以0.5L/h~20L/h的产速与铸膜液湿膜接触,得到第二膜体;步骤S4,对第二膜体进行水浴处理,得到无机颗粒复合聚合物膜。本发明提供一种基于超声雾化辅助非溶剂诱导相转化,制备无机颗粒复合聚合物膜的方法,所得复合膜的孔结构具有孔道连通性强、整体孔径小且孔径分布窄的特征。
Resumen de: CN119800400A
本发明提供一种大容量电制氢系统及其控制方法,涉及电解水制氢安全运行技术领域。一方面,提供一种大容量电制氢系统,增加管压平衡装置,实时监测PEM电解槽电流变化量、排氧管、排氢管实际气体管压强和气液分离装置的实际液位,并通过控制中心调节PEM电解槽的实时电流对管道的气体管压强进行调整并通过管压调节阀辅助调节,使得排氧管和排氢管的气体管压强都满足安全压强关系;另一方面,提供一种大容量电制氢系统的控制方法,通过自检控制、电流控制、液位控制和紧急控制实现电制氢系统的安全运行。本发明不仅提升了系统的安全性,还确保了气体的纯度和效率,使得大容量PEM电解槽在实际应用中更加可靠与高效。
Resumen de: CN119800321A
本发明公开低温制备二硒化钼纳米薄膜的工艺与应用。该方法通过构建精准的硒钼源浓度调控体系,结合钼源前驱体的结构优化设计,实现了层数可控、结晶质量高的少层二硒化钼纳米薄膜的制备。具体步骤而言,首先在管式炉中将钼箔升至一定温度,再引入去离子水在水蒸气微环境下合成氧化钼箔,然后以所得氧化钼箔和硒粉为前驱体,通过调控硒粉升华温度与基底温度的梯度场以及硒钼源浓度,得到大面积少层二硒化钼纳米薄膜。实验结果表明,该方法具有生长温度低、合成效率高和层数可控等优势,在电化学析氢测试中,少层二硒化钼展现出显著优于单层结构的性能。本发明为二维过渡金属硫族化合物的规模化制备提供了新策略,适合工业化生产。
Resumen de: CN119793485A
本发明涉及一种复合材料光催化剂及其制备方法和应用,复合材料光催化剂包括铟基三元金属硫化物(MnInxSy)和β‑酮胺共价有机框架(R‑TH‑COF),两者在共价键合作用下形成复合材料;复合材料化学式为:R‑TH‑COF@MnInxSy;其中R‑TH‑COF与MnInxSy的质量比为1:(1~6)。本发明利用铟基三元金属硫化物和β‑酮胺共价有机框架材料之间独特的共价键合方式,提高材料稳定性,并且使光生载流子快速运输和分离,更多自由电子参与到光催化反应中,实现高效光催化产过氧化氢性能;为光催化合成领域提供了新的催化剂合成及设计思路,具有重要的研究价值及实际意义。
Resumen de: CN119800406A
本申请涉及析氢材料制备技术领域,主要公开了一种多元合金多孔电极及其制备方法、应用。其中,多元合金多孔电极的制备方法包括以下步骤:制备多元合金前驱体;将多元合金前驱体进行活化处理,得到多元合金多孔电极;多元合金前驱体掺杂有稀土金属和Al。所提供的制备方法操作简单,易于扩大制备,而且所制备得到的电极材料具有三维连续的孔道结构,可以极大地提高电解水制氢活性,同时其中掺杂的稀土元素能够抑制活性金属溶出,具有很大的工业应用前景。
Resumen de: CN119801455A
一种电解辅助排水采气装置及方法,涉及油气开发工程技术领域,包括氢电极、氧电极、发泡器、排氧管,其中,发泡器可拆卸地设置在油管内部,包括设置有多组节流孔的节流盖,氢电极可拆卸地设置在油管内部发泡器下方的位置,其与油管保持绝缘,且氢电极能够与积液层接触,排氧管竖直伸入井下且与积液层接触,氧电极设置在排氧管中且通过排氧管的底部开口与积液层接触,且氢电极与氧电极能够连接在外部电源上形成电解回路,其中,氢电极为阴极,氧电极为阳极;本发明通过电解井下积液产生氢气对采出气进行补能,同时设置了泡沫生成设备用于产生泡沫,以此显著提高了针对井底地层水积液的排除效果,有效保持了井内通畅,提高了产气效率。
Resumen de: CN119800439A
本发明提出一种基于金属有机框架的双金属析氧预催化剂材料及制备方法及应用,通过在泡沫镍上生长均匀且形貌清晰的MOFNA,且在不破坏纳米片内部结构的同时在其表面引入铁原子并进行湿化学反应从而形成双金属析氧预催化剂材料,从而提高电催化析氧反应活性,且本发明方法简单易行、成本低,可以批量生产。与最接近现有技术对比,本发明材料制备更加简单,原料选择更加广泛,性能更加优异,在高温和长时间测试下也体现了优异的稳定性,适合工业上的大规模应用。
Resumen de: CN119798892A
本发明属于能源材料技术领域,具体为一种基于改性Nafion离聚物的PEM电解水膜电极及其制备方法。本发明提供的改性Nafion离聚物,是对Nafion离聚物或固体膜进行掺杂改性得到,记为FOHn‑Nafion离聚物,掺杂剂为CF3(CF2)nCH2OH;本发明通过加热搅拌的方式改性Nafion溶液,通过浸渍法改性Nafion膜;使用该改性离聚物与阳极催化剂配成浆料,喷涂制备膜电极,相比原来的Nafion具有更好的稳定性;本发明有效提高非贵金属催化剂膜电极的稳定性和使用价值,有望取代贵金属催化剂,从而降低PEM的应用成本。PEM测试中,1A cm‑2电流密度下电压为1.84V,并且保持良好的稳定性,稳定运行40h,是原来的10倍。本发明改性方法简易,适于大批量生产。
Resumen de: CN119793507A
本发明涉及催化剂技术领域,具体涉及一种OER析氧反应电催化剂的制备方法。本发明采用氨基苯磺酸钠作为交联剂,通过Friedel‑Crafts烷基化反应制备了交联木质素磺酸钠,再通过浸渍水热负载铁和镍元素,然后采用硼酸修饰,高温煅烧,得到OER析氧反应电催化剂。本发明制备的OER析氧反应电催化剂。
Resumen de: CN119793498A
本发明公开了一种磷化镍/硫化镉异质结纳米棒阵列复合材料及其制备方法,其是先在FTO导电玻璃上水热生长硫化镉纳米棒阵列,然后通过溶剂热法在硫化镉纳米棒外延生长磷化镍纳米颗粒,从而形成磷化镍/硫化镉异质结纳米棒阵列复合材料。本发明方法操作简便、高效环保,并可通过调控次磷酸钠的掺量来调控磷化镍的负载量,以实现对磷化镍/硫化镉异质结纳米棒阵列复合材料光电化学性能的调控。所得磷化镍/硫化镉异质结纳米棒阵列复合材料具有较高的光电化学性能,可用于光电催化领域。
Resumen de: CN119793176A
本发明公开了一种硫化氢分解制氢设备及方法,涉及硫化氢处理技术领域,包括气液混合器、氧化吸收塔、固液分离器和电解槽,所述气液混合器的进料端分别连接与氧化液循环线和含硫化氢的混合气体输送线的输出端连通,所述氧化吸收塔上设置有第一气液混合进气口、第二气液混合进气口和第三气液混合进气口,所述第一气液混合进气口、第二气液混合进气口和第三气液混合进气口的出料端轴线与氧化吸收塔的中轴线之间的角度分别为13-15℃、15-17℃、45-47℃。本发明还提供一种硫化氢分解制氢的方法,本发明对吸收反应器没吸收的硫化氢进一步转换,减少固体相的附着,依靠流体相互作用进行混合,增大气液两相的接触面积,提高了传质效率。
Resumen de: CN119800410A
本发明为一种可量产的Ir基负载型电解水催化剂的制备方法和应用。该方法引入压力辅助调控,将有机Ir盐前驱体、载体混合后,通过压力环境限制高温退火过程中纳米颗粒的团聚、长大,并使小尺寸纳米颗粒均匀负载在载体表面,强化了纳米颗粒与载体间的相互作用,调节了Ir的电子结构,用于电解槽中作为阳极催化剂具有优异的性能。本发明避免了有机溶剂使用所导致的副产物的形成,无序额外的纯化步骤,并且在克规模级也可以轻松合成。
Resumen de: CN119800395A
本发明是面向建筑场景的小型化移动式光伏离网制氢装置及方法,涉及建筑行业清洁能源开发技术领域,包括壳体、电压变换模块、水电解模块、水循环模块、氢气分离模块、氢气净化模块。本发明将太阳能离网间接耦合制氢技术集成于便携式一体机,打造建筑表面有分布式光伏即可制氢的小型化移动式制氢终端,实现新能源电力消纳同时能够作为可移动电源或应急电源为不同类型的建筑场景提供稳定的绿色电力。本发明利用太阳能光‑电转化特性,将转化的电能用于电解水制取氢气,继而实现太阳能向电能转化以及电能向氢能转化等多能融合的清洁能源体系的综合开发利用。本发明结构紧凑,能源效率良好,可操作性强,易携带使用。
Resumen de: CN119793501A
本发明公开了一种Pd‑Cu‑M/α‑Si3N4负载型金属催化剂及其制备和应用。所述制备方法包括如下步骤:步骤1):将乙酰丙酮钯、乙酰丙酮铜和金属M的乙酰丙酮盐溶解于溶剂中配成前驱体溶液,加入α‑Si3N4载体,充分搅拌,得到悬浮液;所述的金属M为稀土金属元素;步骤2):将步骤1)所得悬浮液转移到聚四氟乙烯内衬的钢制高压釜中,密封置于感应加热电炉中加热,冷却至室温;步骤3):将步骤2)冷却后的悬浮液进行离心收集固体,对其进行洗涤干燥,干燥结束后得到Pd‑Cu‑M/α‑Si3N4负载型金属催化剂。本发明提供了所述的催化剂在低温氢催化氧化反应中的应用,具有较高的氢气转化率和优异的稳定性。
Resumen de: CN119797508A
本发明公开了一种辐流式电解槽反应器及应用,所述反应器包括反应仓、进水管,进水管下部外周等间距环绕设有向外辐射式的若干个第一辐流电极板,进水管上部外周等间距环绕设有向外辐射式的若干个第二辐流电极板,进水管底部对应第一辐流电极板所在位置处设有若干个出水孔,各个第二辐流电极板同步绕所述进水管转动。本发明能够使污水出水时形成由内向外的辐流式流动模式,可以有效利用电极面积,提高处理效果,同时可转动的第一辐流电极板通过不断转动扰动反应仓内部水体,配合波浪形状的第二辐流电极板,可在两种辐流电极板之间改变水流流动方向,形成局部“涡流”提升污染物向辐流电极板的对流传质,强化处理效果。
Resumen de: CN119797430A
本发明提供一种氢气还原的钨酸亚锡纳米材料及其制备方法和应用。所述制备方法包括:在含有氢气的气氛中,将钨酸亚锡纳米材料在500‑600℃的温度条件下进行热处理,得到氢气还原的钨酸亚锡纳米材料。本发明提供的制备方法利用氢气调控钨酸亚锡晶体内氧空位的形成,促进晶体重结晶,减少内部缺陷,且由于氢气诱导的氧空位浅能级缺陷下移,能够降低材料的导带缘,减少其带隙宽度,进而导致其对可见光的吸收响应增强。含有该氢气还原的钨酸亚锡的光电阳极器件在光电催化分解水制氢中展现良好的光催化活性。
Resumen de: CN119800403A
本发明提供了一种AEM水电解阴极的制备方法和应用,一种AEM水电解阴极的制备方法,包括以下步骤:步骤1:将阴极催化剂粉末、阴离子交换树脂溶液和分散剂混合后均匀分散,形成阴极催化剂浆料,本发明的有益效果是:通过额外涂敷一层阴离子交换树脂涂层,并与有机溶剂之间互融形成相互连接的交联通道,可以有效提高OH‑离子的传输效率,最大限度地减少电极材料在活化和电解水析氢高电密条件下的脱落问题。
Resumen de: CN119797291A
本发明公开了一种石墨烯负载过渡族磷化物纳米粒子的高通量激光制备方法,属于纳米材料技术领域。该高通量激光制备方法,如下:使用激光划刻聚酰亚胺薄膜,得到石墨烯基底,随后滴加不同成分的金属前驱体盐和次磷酸钠的混合溶液至石墨烯基底,真空干燥后再利用激光进行二次划刻得到不同种类的过渡族金属磷化物,获得石墨烯负载过渡族磷化物纳米粒子。上述制备方法合成过渡金属磷化物催化剂的速度快且普适性较高。
Resumen de: CN119793483A
本发明涉及一种R‑STO光催化剂及其制备方法和应用,属于光催化材料技术领域。本发明采用高温熔融盐介质合成了立方相SrTiO3纳米颗粒,用抗坏血酸还原氧化石墨烯还原附载在SrTiO3表面的还原氧化石墨烯,得到RGO/SrTiO3纳米颗粒,然后利用光沉积法得到最终产物命名为R‑STO光催化剂,其可以应用于光催化全解水领域。相较于现有的光催化剂,本发明R‑STO光催化剂可控性良好,稳定性强,且具有特殊形貌的立方相SrTiO3纳米颗粒能够有效抑制光生电子和空穴复合,进一步提升载流子的分离效率,能够实现同步分解水析氢产氧。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN119800422A
本发明公开了一种Pt‑Ni(OH)2复合析氢催化剂及其制备方法和应用,该Pt‑Ni(OH)2复合析氢催化剂的制备方法,包括以下步骤:先将铂源、金属镍盐、尿素溶解于溶剂中,分散,得混合溶液;然后对混合溶液移至反应釜中,进行水热反应,冷却后将反应产物进行固液分离,得固体产物;最后对固体产物进行洗涤、冷冻干燥,制得。本发明采用一步溶剂热法制备得到的Pt‑Ni(OH)2复合析氢催化剂,其中α‑Ni(OH)2组分可显著提高碱性电解液中的析氢催化活性;且α‑Ni(OH)2的层间距进一步扩大,能暴露更多的活性位点,加快传质过程,改善电子转移路径,提高质子传导率,促进反应物和生成物快速转移,提升催化活性。
Resumen de: CN118843716A
The production of fuels from low carbon electricity and carbon dioxide by using solid oxide electrolysis cells (SOEC) and Fischer-Tropsch synthesis is presented. Fischer-Tropsch synthesis is an exothermic reaction which can be used for generating steam. Steam generated from a liquid fuel production (LFP) reactor system in which a Fischer-Tropsch reaction occurs is used as a feed to the SOEC. And the efficiency of the whole electrolysis system is improved by the steam with higher temperature. The integration of LFP steam improves the efficiency of electrolysis because the heat of vaporization of liquid water does not need to be supplied by the electrolyzer.
Resumen de: CN119212789A
The invention relates to a method for converting NH3-containing gases in the presence of a cold plasma, preferably a plasma generated by dielectric barrier discharge (DBD), and a catalyst comprising a support comprising alumina, nickel and at least one iron-containing accelerator. The invention also relates to said catalyst and to the use thereof for the production of high value added molecules such as hydrogen (H2).
Resumen de: CN119800399A
本发明的实施例公开了一种空气捕水捕碳耦合高温电解制氢系统,包括:高温电解制氢装置、发热装置、空气捕水装置、空气捕碳装置以及热交换装置;高温电解制氢装置的入口分别与空气捕水装置和空气捕碳装置的出口连通,高温电解制氢的出口与发热装置的入口连通;空气捕水装置和空气捕碳装置的入口分别与外界空气源连通;发热装置的工质出口分别与高温电解制氢装置、空气捕水装置、空气捕碳装置和热交换装置的换热工质入口连通,高温电解制氢装置、空气捕水装置和空气捕碳装置的换热工质出口与热交换装置的换热工质入口连通。利用高温电解,将二氧化碳和水直接转换为合适比例的合成气,在实现电力储存的同时,解决了反应原料获取和氢气储运的痛点。
Resumen de: WO2025075506A1
The present invention relates to a coated porous media comprising a porous media grafted with at least one compound according to Formula 1 or Formula 2: (1), (2) wherein the asterisk * designates a covalent bond with the porous media, wherein at least one of R1, R2, R3, R4, and R5 groups are different from a hydrogen atom, wherein R1, R2, R3, R4 and R5 groups are independently selected from nitro, bromo, chloro, iodo, thiocyanato, sulphate, sulphonate, sulphonium salts, phosphate, phosphonate, phosphonium salts, amine, ammonium, alcohol, aldehyde, ketone, carboxylic acid, ester, amide, nitrile, anhydride, acid halide, alkyl, alkenyl, alkynyl, aryl, naphthyl, anthryl, pyrryl, polyaromatic groups of higher degree, and wherein the alkyl, alkenyl, alkynyl, aryl, naphthyl, anthryl, pyrryl and polyaromatic groups of higher degree comprise at least one group selected from: nitro, bromo, chloro, iodo, thiocyanato, sulphate, sulphonate, sulphonium salts, phosphate, phosphonate, phosphonium salts, amine, ammonium, alcohol, aldehyde, ketone, carboxylic acid, ester, amide, nitrile, anhydride, and acid halide, wherein R6 group is selected from vinylic terminated organo-silicon compounds, compounds with alkyl chains with at least 6 carbon atoms, preferably at least 10 carbon atoms, or vinylic terminated polar molecules, and wherein R7 group is either a hydrogen atom or a methyl group. The present invention further relates to a coated porous media, comprising a porous media grafted with at
Resumen de: AU2023363867A1
The invention relates to a method for the synthesis of ammonia (18), in which a gas mixture (make-up gas) (1) comprising hydrogen and nitrogen is provided in a first operating mode with a flow rate that is above a threshold value and in a second operating mode with a flow rate that is below this threshold value in order to form an ammonia synthesis gas (5), which is reacted in an ammonia reactor (R) in at least one first catalyst bed (K1) and in a second catalyst bed (K2), connected to the first catalyst bed, to form a synthesis product (16) containing ammonia, wherein in a cooling device (E3) arranged between the first (K1) and the second catalyst bed (K2), non-reacted ammonia synthesis gas (8) is used as a cooling agent in order to reduce the temperature of an ammonia synthesis gas (12) partially reacted in the first catalyst bed (K1) before it is forwarded to the second catalyst bed (K2), wherein in the second operating mode, the higher the flow rate of the provided make-up gas (1), the greater the reduction in temperature of the partially reacted ammonia synthesis gas (12). What is characteristic is that the ammonia synthesis gas (12) partially reacted in the first catalyst bed (K1) is cooled by indirectly exchanging heat with provided ammonia synthesis gas (8).
Resumen de: WO2025073798A1
The invention relates to a method for synthesizing ammonia, having the steps of: - providing hydrogen; - supplying the hydrogen to an ammonia synthesis circulator (10) comprising an ammonia converter (3) in which ammonia is catalytically synthesized; a circulator (1) which supplies a reactant gas mixture, containing the hydrogen and nitrogen, to the ammonia converter (3); and a cooling section (5) in which ammonia is condensed out of a product gas mixture of the ammonia converter (3), wherein the ammonia synthesis circuit (10) is first operated in a full-load operation, in which the ammonia synthesis circuit (10) provides a nominal flow rate of hydrogen, and the ammonia synthesis circuit (10) is converted from the full-load operation to a partial-load operation, in which the ammonia synthesis circuit (10) provides a flow rate of hydrogen which is lower than the nominal flow rate. In the partial-load operation, a first gas flow is branched off from the reactant gas flow and is conducted to the inlet of the circulator (1), and a second gas flow is branched off from the product gas mixture and is conducted to the inlet of the circulator (1).
Resumen de: WO2025073665A1
The present invention relates to a closed carbon loop process comprising: a first step, wherein hydrogen is produced via water electrolysis, a second step, wherein oxygen and/or steam is reacted in a carbon gasification step with solid carbon produced in the fifth step and hydrogen produced in the first step to yield carbon oxides and/or hydrocarbons, wherein the hydrocarbons optionally comprise hetero atoms, a third step, wherein the carbon oxides and/or hydrocarbons produced in step two are converted in a chemical reaction step into carbon-containing products, a fourth step, wherein the carbon-containing products produced in step three are used until they become waste, a fifth step, wherein the waste based on the carbon-containing product produced in step three is converted into solid carbon and a hydrogen-containing product.
Resumen de: WO2025073649A1
The invention relates to a method for producing hydrogen that comprises the following steps: - high-temperature electrolysis of steam in an electrolysis unit (102) taking as input a first flow (F1) comprising steam and a second flow (F2) comprising air, the electrolysis providing a third flow (F3) comprising hydrogen and nitrogen; and - separating the hydrogen and the nitrogen in the third flow (F3), in a purification unit (110), provided to receive the third flow (F3) and provide a fourth flow (F4) essentially comprising hydrogen, and a fifth flow (F5) comprising hydrogen and nitrogen; characterised in that the method further comprises recovering the hydrogen contained in the fifth flow (F5) for the electrolysis. The invention also relates to a system (300) implementing such a method.
Resumen de: WO2025073609A1
The invention relates to a method for synthesizing NH3 with a variable throughput on a system comprising multiple synthesis units connected in parallel. A reactant gas stream comprises H2 which is provided by electrolyzing water with an electric current from a renewable energy. The currently available quantity of H2 varies on the basis of the currently available quantity of renewable energy. On the basis of the currently available quantity of H2 as such, the reactant gas stream is introduced into an individual synthesis unit of the synthesis units or into a plurality of synthesis units or all of the synthesis units in a divided manner in independent sub-streams, NH3 then being synthesized from H2 and N2 in said synthesis unit(s). The invention additionally relates to a system which is configured for carrying out the method.
Resumen de: BE1031991A1
L’invention propose un système et un procédé de régulation du fonctionnement des séparateurs gaz-liquide (GLSan, GLSca) d’un électrolyseur comprenant une pile (10), des séparateurs gaz-liquide anodique et cathodique séparant l’électrolyte et le gaz le long d’un niveau de lessive (lan,lca), le gaz de dioxygène et de dihydrogène s’écoulant de leur chambre respective à travers une vanne de commande de gaz (Van, Vca), caractérisée en ce que la régulation utilise des données de commande représentatives de la pression de gaz anodique (pan) ; la pression de gaz cathodique (pan) ; le niveau de lessive anodique (Ian) ; le niveau de lessive cathodique (Ica) ; pour commander chacune des deux vannes de commande de gaz (Van, Vca) et chacun desdits capteurs permettant d’envoyer des signaux de fonctionnement aux deux vannes de commande de gaz (Van, Vca) pour réguler les pressions de gaz (pan,pca) et les niveaux de lessive (lan,lca) dans le séparateur gaz-liquide anodique (GLSan) et le séparateur gaz-liquide cathodique, (GLSca).
Resumen de: US2025116007A1
An ammonia generation system includes an electrochemical cell including a cathode configured to receive a cathode inlet stream comprising nitrogen gas, an anode configured to receive an anode inlet stream and form hydrogen ions, and an electrolyte configured to transport the hydrogen ions from the anode to the cathode. The cathode is configured to reduce the hydrogen ions to hydrogen gas, mix the hydrogen gas and the cathode inlet stream, and output a cathode outlet stream comprising a mixture of the hydrogen gas and the nitrogen gas. The ammonia generation system further includes an ammonia synthesis reactor configured to receive a reactor inlet stream comprising at least a first portion of the cathode outlet stream.
Resumen de: WO2025074991A1
Provided is a control device including: a step in which a current command value regarding current to be applied to an electrolytic stack is determined; and a step in which pure-water adjustment amount command values for adjusting the pressure or/and flow rate of water to be supplied to the electrolytic stack are determined on the basis of the current command value. The control device further includes a step A in which, when the current command value is changed from a first current command value (current command value c1) to a second current command value (current command value c2), which is a different value, and the pure-water adjustment amount command value is changed from a first pure-water adjustment amount command value (pure-water adjustment amount command value w1) to a second pure-water adjustment amount command value (pure-water adjustment amount command value w2), which is a different value, measured values of the pressure or/and flow rate are caused to reach the second pure-water adjustment amount command value from the first pure-water adjustment amount command value before a measured value of current applied from a power converter to the electrolytic stack reaches the second current command value from the first current command value.
Resumen de: WO2025074772A1
Provided are a multilayer resin pipe suitable for use in a water electrolysis system operating at high voltage, a water electrolysis system provided with this multilayer resin pipe, and a hydrogen transfer method using this multilayer resin pipe. The multilayer resin pipe has: an electrically insulating main pipe; an electrically insulating pressure resistant layer covering an outer surface of the main pipe; an electrically insulating gas barrier layer covering an inner surface of the main pipe; and an electrically insulating elution suppressing layer covering an inner surface of the gas barrier layer.
Resumen de: US2025116022A1
A method of operating a solid oxide electrolysis cell (SOEC) system at partial load, the SOEC system including a plurality of branches each including at least one SOEC stack, includes determining a thermally neutral target voltage and cycling an ON phase and an OFF phase for each of the branches such that the SOEC system operates at an average operating power equal to a chosen percentage of the operating power at the thermally neutral target voltage. In the ON phase, the SOEC stacks in a given branch operate at the thermally neutral target voltage, and in the OFF phase, the SOEC stacks in the given branch are unloaded to an open circuit voltage and operate at 0% of rated power. The frequency of OFF phases for each branch is determined such that stronger or healthier branches have a lower frequency of OFF cycles than weaker or less healthy branches.
Resumen de: US2025116016A1
A buoyant hydrodynamic pump is disclosed that can float on a surface of a body of water over which waves tend to pass. Embodiments incorporate an open-bottomed tube with a constriction. The tube partially encloses a substantial volume of water with which the tube's constriction interacts, creating and/or amplifying fluid-flow oscillations therein in response to wave action. Wave-driven oscillations result in periodic upward ejections of portions of the water inside the tube that can be collected in a reservoir that is at least partially positioned above the mean water level of the body of water, or pressurized by compressed air or gas, or both. Water within such a reservoir may return to the body of water via a turbine, thereby generating electrical power (making the device a wave engine), or the device's pumping action can be used for other purposes such as water circulation, propulsion, dissolved minerals extraction, or cloud seeding. Methods are disclosed for manufacture of hydrogen at sea and for delivery of said hydrogen using a ship. Methods are disclosed for filling a hydrogen-loaded carrier ship at sea.
Resumen de: US2025116009A1
This disclosure provides systems, methods, and apparatus related to electrochemical reduction of gasses. In one aspect, a method includes flowing a gas through a reduction device. The gas is carbon dioxide (CO2) or nitrogen (N2). The reduction device reduces the gas and generates a product stream including the gas, hydrogen (H2), and a chemical. The product stream is flowed through a hydrogen removal device. The hydrogen removal device removes hydrogen from the product stream. The product stream with the hydrogen removed is flowed through the gas reduction device.
Resumen de: US2025115476A1
According to some embodiments, a process for producing hydrogen may comprise operating an electrolysis cell with a source of electricity to produce an oxygen stream and a hydrogen stream from water, reacting a hydrocarbon feedstock with the oxygen stream to partially oxidize the hydrocarbon feedstock, thereby producing a synthesis gas comprising hydrogen and carbon monoxide; passing the synthesis gas and a water stream to a heat exchanger to produce steam and to cool the synthesis gas; and reacting at least a portion of the synthesis gas from the heat exchanger and at least a portion of the steam from the heat exchanger. The source of electricity to the electrolysis cell for the totality of the operation of the electrolysis cell is not produced from energy provided by the combustion of hydrocarbons;
Resumen de: CN118183629A
The present application relates to an integrated process and catalyst for producing hydrogen iodide from hydrogen and iodine. The invention provides a method for producing hydrogen iodide. The process comprises providing a gas phase reactant stream comprising hydrogen and iodine, and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst contains at least one selected from the group consisting of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is loaded on the carrier.
Resumen de: WO2024178009A2
A hydrogen generating cell comprising an input electrode plate pair, an output electrode plate pair, an additional X plate electrode positioned adjacent the output electrode plate pair, and a plurality of intermediate electrode plates disposed between the input and output electrode plate pairs. A plasma torch is spaced apart from and inductively coupled to the input electrode plate pair. A pulsed DC voltage is applied to the plasma torch and X-plate, while a lower voltage pulsed DC voltage is applied to the input and output electrode plate pair to cause generation of hydrogen gas from an aqueous solution in which the cell is immersed.
Resumen de: WO2025074370A1
An electrocatalytic reactor for conversion of Green House Gas (GHG) emissions into value-added products (VAPs), which includes an electrocatalytic reactor equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V for 3 to 5 hours, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of VAPs such as ethylene, propylene, butadiene, acetic acid, ethyl acetate, ethyl acetate esters, ethoxides, propionaldehyde, ethanol, amides, amines, ammonia, urea, azo-dyes, graphene, MWCNTs, SWCNTs.
Resumen de: WO2025074373A1
An electrocatalytic reactor for conversion of Green House Gas (GHG) emissions that include CO2, CH4 and N2 into p-Xylene and other value-added products (VAPs), wherein the electrocatalytic reactor is equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of p-Xylene as the major product and other VAPs, wherein the other VAPs formed include benzene, toluene and substituted benzene.
Resumen de: WO2025074377A1
The present disclosure provides an electrocatalytic reactor with the arrangement of the reactor assembly line, and process steps in a process plant for electrocatalytic reduction of green-house gas (GHG) emissions into VAPs, wherein the electrocatalytic reactor is equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V for 3 to 5 hours, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of VAPs.
Resumen de: WO2025075575A1
The invention is related to the heat recovery system of the electrolysis unit with heat transfer fluid, which is used to recover the excess heat produced by REM electrolyzers, which separate water into hydrogen and oxygen gases using electrical energy. The invention is particularly related to the heat recovery system of the electrolysis unit with heat transfer fluid, which takes the heat energy generated during the electrolysis process of the REM electrolyzer (20) used to obtain hydrogen, through the cooling plate (22), which allows the electrolyzer (20) to cool down, and sends this waste heat to the heat exchanger (40) with the help of heat transfer pipes (30) to recover the heat, which contains heat transfer fluid containing colemanite, borax, AI2O3, SiO3, CuO, TiO2, SiL, szaybelite, boron carbide, boron solid particles between 10-200 nanometers, which can change phase, do not cluster.
Resumen de: SE2250272A1
:The present invention relates to a system and method for producing hydrogen gas is provided The system comprises at least one gas transport vessel which is arranged to transport at least hydrogen up through water by buoyancy, a heat transfer unit connected to an electrolysis unit and arranged to transfer at least a portion of the waste heat from the electrolysis unit to the hydrogen gas that is to be transported by the gas transport vessel.
Resumen de: MX2024010526A
The present disclosure relates to methods and reactors for generating of gas and specifically for generation of oxygen gas and hydrogen gas.
Resumen de: AU2025202132A1
METHODS TO PROVIDE ELECTRIC POWER FROM RENEWABLE ENERGY EQUIPMENT TO AN ELECTRICAL LOAD An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: WO2025075497A1
The invention provides a separator (1) comprising a first separator side (2), a second separator side (3), a porous membrane (100) and a reinforcement support element (200), wherein (i) the membrane (100) comprises a silicon comprising layer (110) having a first layer side (101) and a second layer side (102), wherein a distance between the first layer side (101) and the second layer side (102) defines a membrane thickness (d mem), (ii) the membrane comprises pores (140), the pores (140) defining open fluid channels from the first layer side (101) to the second layer side (102), (iii) a porosity of the membrane (100) is in the range 1- 10%, (iv) a mean pore cross-sectional dimension (dp) is equal to or less than 10 µm, (v) the membrane thickness (dmem) is equal to or less than 200 µm, and (vi) the membrane comprises a first layer (121) arranged at the first layer side (101) and a second layer (122) arranged at the second layer side (102), wherein the first layer (121) is electrically conductive, and the second layer (122) is electrically conductive, wherein the first layer (121) directly contacts the silicon comprising layer (110), and the second layer (122) directly contacts the silicon comprising layer (110), (vii) the reinforcement support element (200) is configured from the first separator side (2) to the second separator side (3), wherein the reinforcement support element (200) is connected to the silicon comprising layer (110), wherein the reinforcement support elemen
Resumen de: EP4534733A1
A laminate for a water electrolysis device includes a polymer electrolyte membrane and an electrode catalyst layer provided on one surface of the polymer electrolyte membrane. The electrode catalyst layer includes a catalyst, a polymer electrolyte, and a fibrous material. A membrane electrode assembly for a water electrolysis device includes the laminate for a water electrolysis device and a second electrode catalyst layer, and includes an electrode catalyst layer, a polymer electrolyte membrane, and a second electrode catalyst layer in this order.
Resumen de: EP4534725A1
A compression apparatus according to an aspect of the present disclosure includes: a compressor that generates compressed hydrogen at a cathode by an electrolysis of water or by oxidation and reduction of hydrogen generated by applying a voltage between an anode and the cathode having flexural rigidity lower than flexural rigidity of the anode; and a controller that, in startup or in shutdown, determines an abnormality based on a gas flow rate at an exit of the anode or a pressure at the cathode after supplying a testing gas from a testing gas supplier to the cathode.
Resumen de: EP4534518A1
The methane generation system according to the present invention includes a methane generation unit including an electrolysis device that electrolyzes water to obtain hydrogen and a methane reactor that obtains a fuel gas containing methane by a methanation reaction using the hydrogen; a reformer that reforms the fuel gas to obtain a reformed gas; a fuel cell that generates electricity by a reaction of obtaining a product gas from the reformed gas and an oxygen-containing gas; a recovery device that separates a recovery gas containing carbon dioxide from return fluid which is a part of the product gas; and a circulation path through which the recovery gas is guided to the methane generation unit.
Resumen de: TW202409348A
An alkaline electrolyzer system comprising an electrochemical cell in proximity to a spacer frame is provided. The spacer frame contains a polymer composition that includes a polymer matrix that contains at least one polyarylene sulfide.
Resumen de: EP4535215A1
A simulation system and method for hydrogen production by water electrolysis. The simulation system for hydrogen production by water electrolysis comprises: a first simulation unit used for simulating a hydrogen production power system to obtain hydrogen production electrical parameters; a controller unit used for outputting a control instruction to control hydrogen production process parameters in a hydrogen production chemical system; a second simulation unit used for simulating the hydrogen production chemical system according to the hydrogen production electrical parameters and the control instruction so as to obtain a hydrogen production result; and a data interaction unit, the first simulation unit, the controller unit, and the second simulation unit being capable of performing data interaction by means of the data interaction unit. Joint simulation of complete chemical and electrical processes for hydrogen production by water electrolysis can be realized.
Resumen de: AU2023277213A1
The present invention is directed to piezo photocatalytic process for the production of hydrogen from water, wherein the process comprises the steps of: (a) providing non-metal-doped barium titanate which includes at least one defect; (b) contacting the non-metal-doped barium titanate provided in step (a) with water to form a mixture; and (c) subjecting the mixture formed in step (b) to: (i) actinic radiation; and (ii) mechanical force, to produce hydrogen from the water, as well as non-metal-doped barium titanate and methods of production thereof.
Resumen de: EP4534197A1
The present disclosure relates to a catalyst for decomposition of ammonia and a method for decomposition of ammonia.
Resumen de: EP4534734A1
A control device for a hydrogen production apparatus is a control device for controlling operation of a hydrogen production apparatus and includes: an estimated reaching time calculation unit configured to calculate, on the basis of a change rate of a pressure of a storing unit for storing hydrogen produced by the hydrogen production apparatus, an estimated reaching time for the pressure of the storing unit to reach a specified value; a start-up time acquisition unit configured to acquire a start-up time of the hydrogen production apparatus in accordance with a state of the hydrogen production apparatus; and a determination unit configured to determine a start-up timing for starting up the hydrogen production apparatus on the basis of a comparison between the estimated reaching time and the start-up time.
Resumen de: EP4534728A1
The present invention relates to circular carbon process for transporting energy comprising:a first step, wherein hydrogen is produced via water electrolysis,a second step, wherein the hydrogen produced in the first step and granular pyrolytic carbon produced in the fourth step are reacted to hydrocarbons,a third step, wherein the hydrocarbons produced in the second step are fed into a gas grid,a fourth step, wherein the hydrocarbons are taken from the gas grid, and hydrocarbons are decomposed to hydrogen and granular pyrolytic carbon,a fifth step, wherein the granular pyrolytic carbon produced in the fourth step is transported to a production site of the hydrating gasification of step two,wherein the hydrocarbons decomposition of step four is conducted in a moving or fixed bed of solid substrates and wherein the produced granular pyrolytic carbon has a bulk density in the range of 0.5 to 1.5 g/cc and has a particle size of 0.1 mm (d10) to 10 mm (d90).
Resumen de: AU2023315921A1
The invention relates to a method for operating an electrolysis system (2) comprising at least one electrolyser (4) for generating hydrogen (6) and oxygen (8) as products, and at least two downstream compressors (10) for compressing at least one product (6, 8) produced in the electrolyser (4). In order to ensure part-load operation of the electrolyser (2) that is optimised in terms of efficiency and is also cost-effective, during part load operation of the electrolyser (4), a first group (A) of compressors (10
Resumen de: CN119278297A
The invention relates to a gas-permeable electron-conducting plate for use as a porous transport layer for an electrolytic cell and to a method for producing said gas-permeable electron-conducting plate, to a building unit for an electrolytic cell, and to an electrolytic cell.
Resumen de: EP4535518A1
Disclosed is a hybrid system in which a solid oxide electrolyzer cell (SOE), a solid oxide fuel cell (SOFC), and a carbon capture system (CCS) are coupled to each other, and more particularly to an SOE-SOFC-CCS hybrid system configured such that a solid oxide electrolyzer cell, a solid oxide fuel cell including a burner configured to burn off-gas, and a carbon capture system are systematically operated and such that by-products and waste heat generated as the result of operation thereof are recycled, whereby consumption of hydrogen and a fuel necessary for power production is minimized.
Resumen de: CN119301307A
A separator (1) for water electrolysis, said separator (1) comprising, on at least one side thereof:-a surface area Smax,-a surface area SC for contacting an electrode surface, and-a channel (10) for evacuating bubbles, having a cross-section phi C, characterized in that:-the SC/Smax ratio is from 0.025 to 0.50, and-the cross-section phi C is sufficiently large to evacuate bubbles having a diameter of from 5 to 50 mu m.
Resumen de: CN119774546A
本发明公开了一种微波驱动浆态储制氢材料的制氢方法、装置及应用,所述制氢方法包括将浆态储制氢材料与催化剂混合后,加入水并在微波条件下进行制氢反应;其中,所述微波条件由功率300‑3000W微波在温度80‑150℃进行;所述浆态储制氢材料由有机液态氢化物和固体组成,所述固体包括纳米微晶金属、金属氢化物、配位氢化物中的至少一种。本发明通过微波加热快速穿透浆态储制氢材料,加热均匀且效率高,可在短时间内将材料加热至适宜的反应温度,从而显著缩短制氢反应的启动时间;此外微波直接作用于纳米粒子和浆态材料,破坏高粘度有机液体氢化物形成的油膜,能够有效加速化学反应,提升整体制氢效率。
Resumen de: CN119776901A
本发明涉及一种ZIFs材料衍生的RuO2/ZnO/Ru/Zn多孔碳材料及其制备和应用,该多孔碳材料通过以下方法制备得到:(1)取C4H6O4Zn·2H2O甲醇溶液缓慢加入到2‑甲基咪唑甲醇溶液中,室温搅拌至呈乳白色溶液,再置于高压水热反应釜中反应,然后冷却至室温;(2)往冷却后的反应溶液加入RuCl3·xH2O,并搅拌混合得到褐色溶液,浸渍,烘干;(3)将所得烘干产物置于惰性氛围下,升温碳化,冷却,得到Ru/Zn多孔碳;(4)将Ru/Zn多孔碳在空气气氛下氧化,得到RuO2/ZnO/Ru/Zn多孔碳材料,即为目标产物。本发明的RuO2/ZnO/Ru/Zn多孔碳材料催化剂具有超高的比表面积,有效提升了催化反应的活性位点数量,可以应用在电解水析氧反应、析氯反应、气体储存中等。
Resumen de: CN119776905A
本发明属于电化学技术领域,具体涉及一种ZIF‑ZnCoO/NF电极及其制备方法和应用。制备方法包括:将可溶性锌盐、可溶性钴盐、尿素和氟化铵溶于水,得到混合溶液;将泡沫金属基底置于混合溶液中进行水热反应,得到前驱体ZnCo(CO3)OH/NF;将前驱体ZnCo(CO3)OH/NF于二甲基咪唑水溶液中静置,构建具有ZIF结构的薄膜,经退火处理,得到ZIF‑ZnCoO/NF电极。本发明的制备方法克服了传统高温氧化法制备双金属型ZnCoO电极材料时结构致密、比表面积低和催化位点密度不足的问题。
Resumen de: CN119786631A
本发明公开了一种稀土金属掺杂的过渡金属电催化剂及其制备方法与应用,所述催化剂的化学式为Eu‑CoS1.097,为晶态和非晶态的结构,其中Eu元素以单原子形式存在;其制备方法为:(1)将聚乙烯吡咯烷酮和NH2‑H2BDC溶于溶剂中得到混合溶液;(2)将钴盐、铕盐加入上述混合溶液中混合均匀,进行水热反应得到EuCo‑MOF前躯体;(3)将EuCo‑MOF前躯体与硫代乙酰胺加入溶剂中,水热反应,使TAA释放出S2‑刻蚀得到中空球状结构的稀土金属掺杂的过渡金属电催化剂。本发明的催化剂通过在钴硫化物中掺杂原子级Eu,有效提高了过渡金属催化剂的活性;制备方法简单、高效。
Resumen de: CN119770810A
本发明公开了一种便携式氢氧呼吸机及其使用方法,涉及氢氧呼吸机技术领域,包括氢氧机,所述氢氧机的一侧设置有氢气出气口和氧气出气口,所述氢氧机的表面转动连接有提手,所述氢氧机的一侧设置有与氢气出气口和氧气出气口配合使用的混合机构,此便携式氢氧呼吸机,通过设置混合机构,将两个通气管分别与氢气出气口和氧气出气口对齐,将气体通过通气管、固定块、波纹管和倾斜管输送至混合管中,由于倾斜管的设置,气体可以将混合叶吹动,使得混合叶旋转,通过混合叶达到将氢气和氧气快速混合的效果,与现有技术相比,减少对管道进行插拔的操作,使用更加便捷,通过设置提手,可以增加氢氧机的便携性,方便对氢氧机进行拿取。
Resumen de: CN119776877A
本发明提供了一种双位点MOF基催化剂电催化全解海水的方法,包括以下步骤:将泡沫镍进行预处理,将2‑甲基咪唑水溶液快速加入到六水硝酸钴水溶液中混合均匀,得到ZIF‑L(Co)溶液,将预处理后的泡沫镍放入ZIF‑L(Co)溶液中,搅拌反应,得到生长有ZIF‑L(Co)前驱体的泡沫镍;将步骤S1得到的ZIF‑L(Co)前驱体泡沫镍浸入钨酸钠溶液中,蚀刻后取出,用水冲洗并干燥,得到附着有WO42‑/Co(OH)2中间体的泡沫镍;将步骤S2得到的WO42‑/Co(OH)2中间体泡沫镍和磷源放入管式炉中,在保护性气氛中进行高温磷化,得到双位点MOF基催化剂;组装流动型电解池,以步骤S3得到的双位点MOF基催化剂同时作为流动型电解池的阳极与阴极,以碱性海水溶液为电解液,进行电催化反应。
Resumen de: CN119776895A
本发明公开了一种基于镍网的阳极钼锰电解水催化剂及其制备方法,包括预处理、高锰酸钾浸渍、钼酸盐浸渍等多个步骤。通过上述方式,本发明一种基于镍网的阳极钼锰电解水催化剂及其制备方法,通过高锰酸钾提高催化剂的比表面积,增加催化剂的活点,并进入镍网载体中形成异质掺杂结构,有效提高了催化剂的活性,同时,利用钼酸盐在浸渍过程中形成钼酸根络合物来负载在电极催化剂表面,进一步增加催化剂表面的活性位点数量,提高催化剂电子传导能力和催化活性,降低反应过电位,提高反应速率,降低生产成本。
Resumen de: CN119776864A
本发明提供了一种阳极分段式可视化质子交换膜电解槽,包括依次叠装的阳极端板、密封盖板、流场分隔板、阳极分段流场板、五合一膜电极层、阴极双极板、不锈钢板、绝缘垫片和阴极端板。密封盖板和流场分隔板均为透明的聚碳酸酯板,阳极分段流场板由八个独立的且带有阳极极耳的钛流场板组成,五合一膜电极层由八个独立的膜电极和一张聚对苯二甲酸乙二醇酯薄膜构成,阴极双极板表面设有8个独立的流道,两个侧面各留有4组用于插入热电偶探针和加热棒的孔和4个阴极极耳。本发明能监测测量电流、电压、温度等局部参数,并能精确控制反应水温度;此外,密封盖板和流场分隔板均采用透明材质,为观察阳极两相流流型并分析其对电解槽性能影响提供了条件。
Resumen de: CN119776873A
本发明公开了一种水电解槽用射流孔双极板,包括主极板,所述主极板的两端分别设为电解液进出部,在电解液进出部的内侧设有分流区,电解液进出部通过分流区与位于主极板中间位置的流道区连通;阴极板和阳极板,其分别设置在主极板的前后侧,且与对应的流道区构成过流腔,在阴极板和阳极板上开设有若干射流孔,射流孔与过流腔连通;电解液通过电解液进出部导入后,经由分流区流入过流腔内,在过流腔内的流动过程中,通过射流孔均匀流出。本发明通过对流道区进行优化,并在双极板上设置阵列式的射流孔,使得进入电化学反应区域的电解液分配得更加均匀,避免了电极表面因流体不足而导致的反应不完全或低效问题,从而提高了电极利用率和电解效率。
Resumen de: CN119776872A
本发明涉及电解水制氢技术,旨在提供一种具有二级阵列结构的超亲水镍基电极及其制备方法。该镍基电极是以微米级纯镍纤维制成的三维网状镍毡作为基材,在镍毡的一级表面上周期性排布微米级的二级阵列结构;该二级阵列结构是利用飞秒激光蚀刻工艺在镍毡表面形成的垄形阵列或方柱阵列中的任意一种或两种。本发明的电极制备方法备步骤简易,具备超亲水、超疏气特性,电化学性能优异,成本低廉,十分适合工业化生产和应用;飞秒激光一步法进行加工,无需后续处理,方法简单、易于操作,适合放大到工业生产规模;电极表面润湿性能大幅度增强,亲水、疏气性能优异,有利于电解过程中水的传输和气泡的脱附。
Resumen de: CN119779595A
本申请公开了一种电解槽密封性的确定方法及装置、存储介质及电子装置,该方法包括:在电解槽处于运行状态的情况下,定期通过第一检测单元获取电解槽的气体流量信息,以及通过第二检测单元获取电解槽的电解参数信息;根据气体流量信息确定电解槽对应的氧气气体流量变化;根据电解参数信息确定电解槽对应的实时阻值变化;基于氧气气体流量变化和实时阻值变化确定电解槽是否存在密封性降低的泄露状况。解决了在运行中实时监测电解槽对应密封性能的过程太过复杂问题。进而,通过监测气体流量和电解参数信息,实时检测电解槽的密封性,确保设备运行正常。
Resumen de: CN119776879A
本发明涉及电催化材料技术领域,具体涉及一种多金属氧酸蚀刻优化钼酸镍析氧电催化材料的制备方法及应用,该制备方法包括如下步骤:将一步水热合成法在泡沫镍上原位合成的花簇状钼酸镍纳米棒放入乙醇、水、多金属氧酸混合溶液中蚀刻,洗涤,烘干,得到多金属氧酸蚀刻优化钼酸镍析氧电催化材料。该制备方法使得二元镍基材料钼酸镍的析氧反应性能大幅度提升,在实现高效电催化析氧反应的同时,又能保证催化材料的稳定性。制备的多金属氧酸蚀刻优化钼酸镍析氧电催化材料,可以直接作为自支撑电极用于电催化析氧反应,方法工艺过程简单,绿色环保,成本低廉,生产成本低。
Resumen de: CN119787499A
本发明属于风光电储能技术领域,提供了一种考虑启停状态的ALK‑PEM联合运行方法及系统。其中,考虑启停状态的ALK‑PEM联合运行方法包括对设定区域的风电与光伏功率数据进行聚类,得到若干个风光聚类场景;基于小波分解将各个风光聚类场景中的原始风光功率分解为低频分量与高频分量;将小波分解得到的低频分量和高频分量分别输入到ALK和PEM电解槽,根据ALK和PEM电解槽的启停特性,考虑ALK和PEM电解槽的启停状态、最小启停时间、强迫启停和过载运行,决策出ALK和PEM电解槽的功率最优分配方案。
Resumen de: CN119775194A
本申请公开了一种基于阳离子‑π作用构筑二维电催化析氢材料及制备方法和应用,具体涉及催化剂的领域,包括多个二维电催化析氢单体,多个二维电催化析氢单体之间首尾相连,单体的制备方法包括:将4,4'‑二羟基偶氮苯、溴代芳香烃、四丁基碘化铵及碳酸铯进行偶联反应,得到产物;将产物、1,2‑二溴乙烷、碳酸铯进行醚化反应,得到R2‑溴代偶氮苯基化合物;将R2‑溴代偶氮苯基化合物、芳香阳离子进行亲核取代反应,并向其中加入六氟磷酸铵溶液进行阴离子交换反应,得到R1‑乙氧基‑苯基‑偶氮基‑苯氧基‑乙基‑R2‑六氟磷酸盐。能显著增加氢吸附活性位点的暴露,从而显著提高电催化析氢性能。
Resumen de: CN119771447A
本发明涉及一种制氢催化剂,特别涉及一种双金属硫化物基光催化剂、制备方法及其在制氢耦合塑料降解方面的应用。本发明以FeCo‑LDH为助催化剂,通过浸渍法构筑了FeCo‑LDH/Cd1‑xZnxS复合催化剂,进行光催化制氢耦合PET塑料降解性能研究。结果表明,5%LDH/Cd0.5Zn0.5S展现出优异的析氢速率,3.67 mmol·g‑1·h‑1,这是由于5%LDH/Cd0.5Zn0.5S在电荷分离和光吸收方面有着优异的协同作用。与同类催化剂相比,本发明所述催化剂可以使乙二醇完全转化,进一步证明了催化的高活性;降解产物单一,利于后期产物的收集与纯化,增加了实际应用价值。
Resumen de: CN119769553A
本发明公开了一种氢气保鲜工艺系统及方法;本发明涉及食品工程技术领域;包括一个保鲜柜1,该保鲜柜1内部设计有用于制备氢气的制氢系统5。制氢系统5基于电解原理工作,其核心组件包括纯水箱501、水电解槽505、分离洗涤器502、气体冷却器503以及汽水分离器504。具体实施时,纯水箱501通过管道与水电解槽505的入水口连通,为水电解槽提供纯净的电解用水。水电解槽505在通电后,将水分解成氢气和氧气。后续的气体冷却、杂质去除和汽水分离步骤进一步提纯氢气,确保输出氢气的纯度,满足食品保鲜的高要求。使用纯净水作为电解原料,过程清洁无污染。氢气作为保鲜气体,无毒无害,对环境友好。
Resumen de: CN119776880A
本发明公开了一种可控调节MoO2结晶度的电催化剂及其制备方法与应用,该电催化剂包括载体和钌原子,钌原子负载于所述载体的表面,并与其形成异质结构;载体为低结晶度或非晶态的MoO2空心纳米球。其中:MoO2空心纳米球有利于提高催化剂颗粒钌原子在其表面的分散性,使活性位点充分暴露和利用;低结晶度或非晶态的MoO2结构,相对于高结晶度的MoO2晶体,会引起巨大的结构畸变、不饱和配位原子,从而改善材料的电子结构,进一步增强了材料的电催化析氢性能。本发吸利用NaBH4可在室温下可控调节MoO2载体的结晶度,通过调节载体非晶化程度,在多个维度上增强材料的固有活性。
Resumen de: CN119771456A
本发明公开了一种硫镉锌铜基复合光催化剂的制备方法,将二水乙酸锌、二水乙酸镉、三水硝酸铜加入到去离子水中,混合均匀后,加入九水硫化钠并搅拌溶解,再加入碳化钛,混合均匀,得到混合溶液,将混合溶液转入到具有聚四氟乙烯内衬的不锈钢反应釜中,再放入烘箱中进行反应,反应结束后,将反应产物进行离心洗涤,收集固体产物并干燥,即得。本发明通过将一维的四元金属硫化物CuZnCdS与二维的Ti3C2MXene复合,可有效抑制光生载流子的复合,加速了光生载流子的分离、传输,与现有方法相比,该方法操作简单、成本低,制备的光催化剂材料具有优异的光催化活性,特别适用于光催化分解水制备氢气。
Resumen de: CN119776878A
本发明公开了一种析氧析氢双功能催化剂载体的制备方法,属于电催化水裂解制氢催化剂载体技术领域,包括以下步骤:将硝酸钴,硝酸镧,硝酸M加入甲醇中使完全溶解形成A液;将2‑甲基咪唑加入甲醇中使完全溶解,形成B液;将A液倒入B液,得到沉淀;将沉淀球磨,烧结,得到析氧析氢双功能催化剂载体;将该载体后续负载贵金属/非贵金属,可有效地对贵金属/非贵金属进行锚定和分散,增强催化剂整体的活性和稳定性,同时,该双功能催化剂载体可以和后续所负载的贵金属协同催化,进一步提升催化剂整体的活性。
Resumen de: CN119776875A
本发明提供了一种阳极电极,由阳极电极基体、形成于所述阳极电极基体表面的催化剂层和形成在所述催化剂层表面的离聚物层组成,所述催化剂层的原料包括非贵金属催化剂、溶剂和离聚物。本申请还提供了阳极电极的制备方法及其应用。本申请提供了一种阳极电极,其通过引入离聚物实现了阳极电极的稳定性,使得到的膜电极在电解水过程中,可稳定运行至少40h。
Resumen de: CN119787848A
一种串联式电解制氢电源及其控制方法,包括十二脉搏整流变压器;两个第一整流器,交流端分别接十二脉搏整流变压器交流侧的两个三相接头;两个第二整流器,交流端分别接十二脉搏整流变压器交流侧的两个三相接头;两个第一整流器串联形成直流电压母线,两个第二整流器串联后跨接在直流电压母线的正负极之间;第一整流器为SCR可控硅整流器,第二整流器为IGBT全控型整流器。与现有技术相比,本发明的直流电压调节范围广,功率响应速度快,电能质量高,耐流能力显著提高。其次,无需另外加装谐波、无功治理装置,综合转换效率也得以大大提高,更能适应后续大规模、大容量制氢设备需求。
Resumen de: CN119775291A
本发明属于纳米材料与配位化学交叉领域,具体涉及一种Ag27纳米簇光敏剂及其制备方法和应用。该Ag27纳米簇光敏剂的化学式为C170H167Ag27Cl2N18O6P7,简写为Ag27(DPCA)6(DPP)3(DPPB)2(Ac)3Cl2,属于单斜晶系;空间群为C2,#imgabs0#α=90°,β=112.278(7)°,γ=90°,#imgabs1#Ag27纳米簇光敏剂与TiO2形成的复合光催化材料Ag27@TiO2不仅具有优异的产氢活性,而且还可以将甲醇牺牲剂氧化成高附加值产品甲醛。在365nm波长的LED光照条件下,1%Ag27@TiO2的光催化产氢速率和溶液中甲醛的含量分别是TiO2的12.13倍和10.70倍,具有良好的应用前景。
Resumen de: CN119776871A
本发明公开了一种复合电镀镍钴阴极析氢催化剂及其制备方法,将经过碱液除油的双面喷砂镍网进行酸洗、水洗,随后浸没于不同浓度的电解液中,在三电极体系下电镀一段时间,电镀完成后经去离子水清洗三次、高温煅烧后得到多活性位点的析氢电极催化剂。通过上述方式,本发明一种复合电镀镍钴阴极析氢催化剂及其制备方法,采用复合电镀镍钴合金方法制备得到多活性位点的电催化剂材料,不仅可以有效降低生产成本,而且可以利用镍钴电解液起到造孔作用,以提高催化剂材料的比表面积,从而增加催化剂的活点,提高催化剂的催化活性。
Resumen de: CN119786271A
本发明公开一种钒酸铋/二氧化钛异质结光阳极及其制备方法。本发明通过氢氟酸刻蚀和超声分离制备纳米片状的碳化钛,后配制一定浓度的碳化钛水溶液,将制备的碳化钛水溶液转移至聚四氟乙烯内胆水热釜中,后将钒酸铋光阳极置于其中,水热反应完成后,得到钒酸铋/二氧化钛异质结光阳极。所制备的钒酸铋/二氧化钛异质结光阳极具有较好的电荷分离效率和光电化学性能,可用于光电化学水分解、光电化学传感器、光电化学降解有机污染物等领域。
Resumen de: CN119771402A
本发明涉及催化剂技术领域,具体涉及一种高热稳定性的钌基催化剂、其制备方法及应用。(1)将钌盐、多元醇与表面保护剂混合反应得到钌纳米颗粒胶体,所述的多元醇包括乙二醇、丙三醇、异丙醇中的一种,所述表面保护剂包括:三甲基硅氧烷、氨基硅烷、二甲基聚硅氧烷中的一种;(2)将步骤(1)所述钌纳米颗粒胶体与稀土氧化物混合,通过胶体沉淀法将钌纳米颗粒负载到稀土氧化物上,得到催化剂前驱体;(3)将催化剂前驱体焙烧处理,得到所述钌基催化剂。本发明制备的钌基催化剂应用到氨分解反应中,在500℃、20000h‑1空速条件下,催化剂反应转化率可达到99.5%,在500℃下保持20000h,催化剂反应活性基本维持不变。
Resumen de: CN119776884A
本申请公开了一种电解析氢电解析氢催化剂、其制备方法及应用。所述电解析氢电解析氢催化剂包括:氮掺杂多孔碳材料;第一催化活性颗粒,其分布在所述氮掺杂多孔碳材料的表面,包括第一过渡金属纳米颗粒和包覆在第一过渡金属纳米颗粒表面的过渡金属氧化物层;以及,第二催化活性颗粒,其分布在所述氮掺杂多孔碳材料所含的孔洞内,并包括第二过渡金属纳米颗粒。所述电解析氢催化剂具有催化活性高、稳定性好、成本低等优点,且制备工艺简单,适于规模化生产。
Resumen de: CN119771318A
本发明涉及窑炉制氢技术领域,且公开了一种水蒸气金属矿物热反应制氢参烧的窑炉,包括炉体;炉盖;出气管,用于引流产生的氢气;处理组件,利用金属矿物与水蒸气的接触反应制备氢气;所述处理组件包括有动力扰流装置、除膜装置和排杂装置。该水蒸气金属矿物热反应制氢参烧的窑炉,通过设置的镁棒与水蒸气进行螺旋式的气流冲击接触,从而实现金属镁与水溶液的化学反应,从而实现制氢的过程,利用清理装置的上下往复式循环动作,能够对镁棒的表面实现自动清理,进而去除表面的氧化物或者反应杂质,保证镁棒的表面一直存在金属镁与水蒸气或者水直接反应实现制氢,从而提高了整体的制氢效率,无需操作人员的手动操作,简单便捷。
Resumen de: CN119776892A
本发明涉及电解水制氢催化剂技术领域,具体涉及一种碳包覆二氧化铱电解水制氢催化剂及其制备方法和应用,该碳包覆二氧化铱电解水制氢催化剂的制备方法采用铱化合物、羧基碳化合物和氧化剂制得碳包覆二氧化铱前驱体粉末后,进行煅烧氧化反应,待煅烧结束后,立刻进行快速冷却处理制得初始催化剂,经洗涤、过滤和加热干燥后即制得碳包覆二氧化铱电解水制氢催化剂。所制得的催化剂具有优异的电催化活性和稳定性,且该催化剂晶体具有微孔结构,比表面积高,高比表面积的纳米结构有利于催化活性的进一步提升,并在保证催化活性的同时使其对Ir的负载量下降,从而显著降低成本。该催化剂在电解水析氢和析氧反应中具有很好的应用前景。
Resumen de: CN119776903A
本发明公开了一种复合材料及其制备方法和应用,属于新能源技术领域。本发明提供的复合材料,包括钌单质和氧化钇的异相结构,其中钌单质纳米颗粒负载在氧化钇表面上。本发明实施例提供的复合材料在用于催化剂时具有结合力强、化学界面稳定、催化活性和稳定性更高等优点。
Resumen de: CN119776889A
本发明公开了一种CoS2/Co(OH)F异质结构自支撑电解水析氧催化剂及其应用,该催化剂通过以下方法制得:将预处理后的泡沫钴、硫源水溶液和氟源水溶液转移到高压反应容器中,将高压反应容器密封后进行水热反应,反应结束后,待高压反应釜自然冷却,取出反应物,将反应物洗涤、干燥,得到CoS2/Co(OH)F异质结构自支撑电解水析氧催化剂,该催化剂可在碱性电解水析氧中的应用以及在碱性膜电极电解水体系实现工业化大电流密度析氧中的应用。其只需一步水热法即可制成,试验步骤简洁,可以用于碱性电解水析氧以及大电流密度下,并具有长时间稳定性,还可以应用在碱性膜电解槽器件中全水分解。
Resumen de: CN119787480A
本发明针涉及到一种用于无储能海上风电制氢系统的功率平滑控制方法。该方法通过在风机P‑ω曲线后连接一个特殊设计的二阶滤波器,可根据电解槽特性来设计对应滤波器参数。通过引入该滤波器,风机能够在低频段保持良好的最大功率跟踪性能,同时可以抑制高频段功率波动。该方法通过利用风机转子中存储的大量转子动能平衡电解槽与风机二者之间的功率,抑制了直流母线电压波动,确保风机稳定运行。
Resumen de: CN119776886A
本发明涉及一种MXene表面负载晶态/非晶态合金异质结复合材料及其制备方法和应用,属于电催化析氢领域。该复合材料包括MXene以及负载在所述MXene表面的NiMo基晶态/非晶态合金异质结,NiMo基晶态/非晶态合金异质结包括非晶态NiMoB和晶态Ni,二者之间形成异质结构,制备方法:采用还原法将非晶态NiMoB合金均匀锚定在含负电荷基团的MXene表面,作为前驱体;将前驱体于氢氩混合气中高温处理,其非晶态合金部分析出晶态Ni,即得;该复合材料能作为电解水催化剂。本发明提出的NiMo基晶态/非晶态合金异质结与二维MXene耦合协同增强催化活性的策略,为发展性能优异、成本低廉、原料丰富的氢能电催化剂提供了新的思路,具有非常广阔的应用前景。
Resumen de: CN119787487A
一种孤网绿电‑绿氢‑绿氨三柔耦合集成系统及运行方法,系统包括风光储柔性发电系统、可再生能源柔性电解水制氢系统、柔性低温低压合成氨系统;风光储柔性发电系统用于通过风力发电设备和光伏发电设备进行绿色能源发电,并依据电储能设备耦合风电和光伏出力曲线对输出的发电量进行柔性调节;可再生能源柔性电解水制氢系统用于通过启停电解制氢装置中制氢电解槽的数量以及氢储能设备对氢气输出量进行柔性调节;柔性低温低压合成氨系统用于根据可再生能源柔性电解水制氢系统氢气输出量和空分设备氮气输出量自动降低或增加氨反应器负荷并生成绿氨。本发明突破了传统制氢氨需要稳定电源和传统合成氨受负荷适应范围窄制约而无法实现柔性生产的难题。
Resumen de: AU2023326035A1
The invention relates to an electrolysis device (1) for producing hydrogen through electrochemical reaction from an aqueous alkali solution, wherein the electrolysis device (1) comprises an anodic half cell (2) and a cathodic half cell (3). The anodic half cell (2) and the cathodic half cell (3) are separated by means of a membrane (4) and the alkali solution can flow through the cathodic half cell (3). The anodic half cell (2) comprises an anodic electrode (5) and the cathodic half cell (3) comprises a cathodic electrode (6), wherein the anodic electrode (5), the cathodic electrode (6) and the membrane (4) form a membrane-electrode unit (7). Furthermore, in normal operation of the electrolysis device, an initial fill quantity of alkali solution in the cathodic half cell (3) can be changed only by diffusion processes through the membrane-electrode unit (7) and/or by electrochemical reaction of the alkali solution in the membrane-electrode unit (7).
Resumen de: CN119776870A
本发明公开了一种连续规模化风光发电电解水制氢联产重水系统及方法。本发明系统,包括:风力发电和/或光伏发电模块、电力汇集接入模块、变压器和整流器AC‑DC模块、水预处理与纯化装置模块、初级水电解制氢模块、二级水电解制氢模块、三级水电解制氢模块、氢气储存模块、浓重水产品储存模块;其中,风力发电和/或光伏发电模块,通过电缆接入电力汇集接入模块,电力汇集接入模块的输出端与变压器和整流器AC‑DC模块连接;变压器和整流器AC‑DC模块的输出端依次与初级水制氢模块、二级水电解制氢模块和三级水电解制氢模块连接。本发明针对大规模风光制氢特点,针对并网及离网电解水制氢,改进系统配置和优化水电解流程,实现水电解制氢同时联产回收重水原料。
Resumen de: CN119776869A
本发明提供了一种电解水制氢用于提高农产品质量的方法。该方法包括:将KOH电解液进行电解反应,得到氢气和氧气;将氢气通过气体溶解器注入水中,使氢气在水中达到饱和或超饱和状态,得到富氢水,将富氢水送入农业灌溉区;将氧气送入农业灌溉区,作为夜间氧源;在农业灌溉区设置溶液氢气浓度传感器,以根据农业灌溉区的溶液氢气浓度控制电解质罐的KOH进样量。本发明通过电解KOH电解液制氢并制备富氢水,进而将富氢水应用于农业灌溉,氧气用于夜间供氧,以提高农产品质量;还可以根据农业灌溉区的溶液氢气浓度灵活控制电解产氢进程,可以兼顾制备效率和安全性,尤其适用于风光资源好、农业发达的地区。
Resumen de: CN119787657A
本发明提供了一种基于太阳能和核能的制氢方法和装置,属于新能源和节能的技术领域。基于太阳能和核能的制氢方法包括以下步骤:接收自然太阳光,并将所述自然太阳光进行分流成至少两组筛分光束;利用至少一组所述筛分光束进行光伏发电,利用其它所述筛分光束进行辅助发电;及利用所述光伏发电和所述辅助发电产生的电能电解水制氢。本发明提供的基于太阳能和核能的制氢方法和装置,将太阳光中能量较高的波段与能量较低的波段分离开,利用能量较高的光束进行光伏发电,利用能量较低的光束进行辅助发电,采用光伏发电和辅助发电相配合的方式获取稳定的电能。
Resumen de: CN119776885A
本发明公开了一种中空纳米方块Mn1Fe3PBA@NiFe LDH复合催化剂的制备方法,所述复合催化剂采用基底材料,通过溶液沉淀法制备Mn1Fe3PBA纳米立方体,通过水热法制备NiFe LDH绣球花,并将Mn1Fe3PBA纳米立方体和NiFe LDH绣球花结合形成三维中空纳米方块结构的Mn1Fe3PBA@NiFe LDH复合催化剂。以及上述制备方法制得的中空纳米方块Mn1Fe3PBA@NiFe LDH复合催化剂在碱性阳极析氧反应中的应用。本发明中NiFe LDH提供了良好的导电性和骨架通道,Mn1Fe3PBA提供了额外的位点,两者结合提高催化剂的电子导电性,加快催化反应动力学;增强结构稳定性,提高催化剂的使用寿命;降低反应过程中所需的过电位,提高整体的催化效率。
Resumen de: CN119771130A
用于电解水制氢的气体干燥器,涉及混合气体分离技术领域,包括水平设置的安装底座,安装底座上分别设有涡旋冷却组件、再生吸附组件和冷凝回流组件。本发明解决了传统技术中的氢气干燥方法在应用过程中,存在的能耗高、无法长期使用、运行条件复杂以及多种形态的水分干燥不便等问题。
Resumen de: CN119774702A
本实施例提供了一种便携式水质净化过滤器和SPE水电解制氢系统,涉及制氢技术领域,过滤器包括壳体、第一接头、第二接头、第一滤板、第二滤板和定位机构。壳体上设置有在其轴向上间隔排布的第一进出料口和第二进出料口;第一接头和第二接头均安装于壳体上且分布于壳体的两端,第一接头、第二接头和壳体配合限定出流动空腔;第一滤板和第二滤板均安装于流动空腔内,第一滤板和第二滤板之间形成用于填充树脂的容纳腔,第一进出料口和第二进出料口均连通容纳腔;定位机构安装于壳体,定位机构用于与支架可拆卸地连接,以定位壳体。该过滤器运行成本低。
Resumen de: CN119776866A
本发明涉及一种降低PEM水电解槽氧中氢含量的膜电极及其制备方法,通过简单的在阴极催化剂浆料制备过程添加有机硅树脂溶液,改变测试过程中氢气生成后在催化层到多孔传输层的传质和转移,降低氢气由阴极向阳极渗透的氢通量,进而降低氧中氢含量。本发明具有制备成本低、工艺简单易操作且同时兼顾优异性能的优点。
Resumen de: CN119776881A
本发明公开了一种用于PEM电解水体系的金属合金催化剂及其制备方法,包括,采用溶胶凝胶法,将含有Ir和Ru元素的化合物、一水合柠檬酸、正丁醇、浓硝酸以及聚氧丙烯聚氧乙烯共聚物溶液搅拌均匀形成溶胶,通过加热烘干形成凝胶。该制备方法简单易行、贵金属Ir用量低、反应过程时间短,且在常压、较低的温度下就可实现铱和钌元素均一分散,容易实现大批量生产,最终制备得到的金属合金催化剂具有成本低、催化活性高、稳定性好等优势。
Resumen de: CN119776899A
本发明公开了掺杂钼的铱基多元合金核壳结构PEM电解水催化剂及其制备方法,涉及电催化剂技术领域,形成了以贵金属铱为外壳,过渡金属钴和铱为内核,并在核壳中掺杂过渡金属钼的电催化剂材料。由于过渡金属钼具有良好的抗腐蚀性能,该结构可以提高催化剂的稳定性,且过渡金属价格低廉,可降低催化剂的成本,增加多元金属催化剂间的活性;同时,通过去除催化剂表面和内部多余的金属,可进一步提升催化剂的性能。本发明方法所制备的催化剂,OER活性高,稳定性好,同时成本低、易于产业化,解决了现有PEM电解水制氢存在的不足,在电化学应用领域和实际工程中具有重要价值。
Resumen de: CN119774715A
本发明公开了一种利用Fe@C纳米材料去除水中卤代乙酸的方法。方法包括以下步骤:S1、获取金属Fe有机骨架材料;S2、将所述的金属Fe有机骨架材料于管式炉800℃高温碳化得到Fe@C纳米材料;S3、将Fe@C纳米材料投加到电解池装置的待处理水中进行卤代乙酸的电解脱卤。所述电解池装置采用以钢电极作为阴极,石墨电极作为阳极或者以Fe@C/磁性电极作为阴极,以石墨电极作为阳极。所述Fe@C纳米材料和Fe@C/修饰磁性电极均可用于电化学水处理卤代有机物酸脱氯,具有靶向脱卤、脱卤效率高、成本低、制备方法简单和安全稳定特点,其中Fe@C/修饰磁性电极摈弃了纳米材料修饰电极方法中的黏附剂。
Resumen de: JP2025052834A
【課題】高い反応活性を有し、効率よく水素を製造できる反応媒体を提供すること、および、効率よく水素を製造できる水素の製造方法を提供すること。【解決手段】本発明の反応媒体は、水を熱分解して水素を製造する方法において用いられる反応媒体であって、FeとMgとNiとの複合金属酸化物を含むことを特徴とする。前記複合金属酸化物は、Fe0.33Mg0.33Ni0.33Oxで表されることが好ましい。本発明の水素の製造方法は、請求項1に記載の反応媒体を熱還元する第1の工程と、熱還元された前記反応媒体を水と接触させ、前記反応媒体を酸化するとともに水素を発生させる第2の工程とを有する。【選択図】なし
Resumen de: AU2022470695A1
A water electrolysis system including a container; a plurality of microcells located inside the container; the microcells are centered around a central axis of the container; a first bracket located on a first side of the microcells; a second bracket located on a second side of the microcells; a plurality of magnets mounted on the first and the second brackets, the magnets are placed in parallel to the microcells; a liquid inside the container. The first and the second brackets are adapted to be connected to a motor. The first and the second brackets rotate during the electrolysis process. The magnets on the first bracket produce a first magnetic field and the magnets on the second bracket produce a second magnetic field; and the first and the second magnetic fields have opposite polarity.
Resumen de: CN119753709A
本发明涉及一种由含盐废水制取氢气的装置及方法。装置包括电解单元、气液分离单元、交替进行氢化反应与脱氢反应的第一固态储氢单元和第二固态储氢单元。电解单元用于含盐废水的电解,生成含有氢气、废气和电解废液的气液混合物;气液分离单元对气液混合物进行分离,得到混合气体和电解废液;第一固态储氢单元和第二固态储氢单元交替进行氢化反应和脱氢反应,在第一制氢状态下,第一固态储氢单元吸收氢气、释放热量,排出废气并预热含盐废水,第二固态储氢单元则吸收热量、脱除氢气并排出电解废液;在第二制氢状态下,两单元功能互换。本发明可连续高效制氢,显著节省能量消耗。
Resumen de: CN119751951A
本发明提供了一种复合聚合物膜、其制备方法及应用。制备方法包括:将聚乙烯醇配制为聚乙烯醇溶液;采用超声喷涂的方式,将聚乙烯醇溶液喷涂于聚合物基膜的一侧表面上,经干燥后得到负载有聚乙烯醇膜的聚合物基膜;将交联剂配制为交联剂溶液;将交联剂溶液与负载有聚乙烯醇膜的聚合物基膜置于密闭环境中,以使交联剂扩散并与聚乙烯醇膜接触;经交联反应,交联剂与聚乙烯醇膜形成改性层,进而得到复合聚合物隔膜。本发明通过超声喷涂技术在聚合物基膜上形成聚乙烯醇膜,随后在密闭环境下进行扩散与原位交联反应,在聚合物基膜的一侧表面形成了超薄的选择性表层,从而有效地优化了所得复合聚合物隔膜整体的孔径特征,提升其阻气性。
Resumen de: CN119753557A
本发明公开了一种电解水用镍网电极及其制备方法。制备方法包括以下步骤:步骤S1:将镍网进行喷砂处理,得到喷砂后的镍网;步骤S2:将步骤S1中喷砂后的镍网清洗后,进行红外预热处理,得到预热后的镍网;步骤S3:采用等离子体喷涂法将混合金属粉或合金粉喷涂至步骤S2中预热后的镍网上,得到含金属涂层的镍网;步骤S4:将步骤S3中含金属涂层的镍网放置在碱液中,并向碱液中通入氮气,进行活化,活化完毕后,清洗晾干,得到镍网电极。本发明的电解水用镍网电极的制备方法中,对镍网进行红外预热处理,可以减少混合金属粉或合金粉与镍网间的温差,减小镍网的应力,同时去除潮气,从而提高涂层与镍网之间的结合强度和涂层抗疲劳能力。
Resumen de: JP2025049881A
【課題】従来の水素製造方法では水素の発生比率は低く、大きな電力を使用する必要がある。【解決手段】負電極108の周囲には酸性の水溶液227が充填され、正電極107の周囲には血液またはヘモグロビンが充填される。正電極107と負電極108間には電極電圧制御回路114で電圧が印加される。負電極108では水素が発生し、水素は気体収集器109で収集される。正電極107では、電子を放出して、オキシヘモグロビンがメトヘモグロビンになり色が変化する。色の変化は色測定器234で測定する。色の変化が所定値以上に変化すると、メトヘモグロビンの比率が大きくなった判定し、ヘモグロビンを入れ替える。【選択図】図1
Resumen de: CN119753734A
本申请属于电催化析氢技术领域,具体涉及一种NiMo基晶态/非晶态异质结构复合材料及其制备方法和应用。该方法为:先将一对镍丝浸入NaOH溶液中,在交流电的电压下进行电化学剥离,离心洗涤,超声,得到含Ni元素纳米片分散液,然后滴加入含MoCl5的乙醇溶液中,搅拌,然后滴加硼氢化钠溶液,搅拌反应,离心,洗涤,干燥,得到复合材料的前驱体粉末;最后置于管式炉中保持流动氢/氩混合气氛,进行高温退火处理后得到。本发明提出了NiMo基晶态/非晶态异质结构的电子调制策略,使晶态Ni促进非晶态NiMoB结构高效的电子转移,从而提升活性位点数和增强位点活性;能够降低HER过程势垒,加速HER动力学,表现出优异的HER性能。
Resumen de: JP2024035952A
To provide a hydrogen gas suction tool which is compact and can be carried, the hydrogen gas suction tool capable of stably and easily generating hydrogen gas, and sucking a relatively large amount of the hydrogen gas in a short time.SOLUTION: A hydrogen gas suction tool comprises: a container having an opening; a lid body which is fitted to the opening and on which a hydrogen gas suction hole is formed; and a hydrogen gas generation body which is stored in the container and in which hydrogen gas is generated by spraying of water thereto. The hydrogen gas generation body is formed of a nonwoven fabric package including a hydrogen gas generation mixture formed of: magnesium granules; citric acid granules; and powdered cellulose. The nonwoven fabric package is a flat package and is configured so that: a cross section of a part of the nonwoven fabric package excluding a closing margin is configured so that, a maximum thickness of the cross section in a vertical direction is 3 mm or more and 8 mm or smaller, and a lateral length of the cross section is 5 times or more of the maximum thickness of the cross section in the vertical direction.SELECTED DRAWING: Figure 1
Resumen de: CN119753718A
本发明提供了一种电解水制氢系统,包括:电解槽,具有气液出口;气液分离器,气液分离器通过气液管路与气液出口连通,气液分离器具有碱液出口;第一冷却器,碱液出口通过第一管路与电解槽连通,第一冷却器设置在第一管路上;碱液保温箱,碱液出口通过第二管路与电解槽连通,碱液保温箱设置在第二管路上;其中,碱液出口可选择地通过第一管路或者第二管路与电解槽连通。本申请的技术方案有效地解决了相关技术中的电解槽内的碱液的升温处理需要加热,增加了能耗的使用的问题。
Resumen de: CN119753724A
本发明公开了一种碳基金属单原子催化剂的制备方法及其应用,其制备方法包括以下步骤:S1:将金属无机盐和螯合剂按照一定比例秤取并搅拌溶解于去离子水中,然后放入烘箱中干燥去除溶剂后形成干凝胶;S2:将所述干凝胶倒入陶瓷坩埚并放入充满惰性气体的石英管式炉中加热使其充分碳化,冷却后得到黑色泡沫状材料;S3:将冷却后的黑色泡沫状材料取出并研磨,得到目标碳基金属单原子催化剂材料;本发明的碳基金属单原子催化剂中金属原子分散好,同时具有简单方便、制造成本低、结构蓬松、电导率高、电催化活性好和易于大规模制备的优点。
Resumen de: CN119753712A
本公开涉及一种制氢电解组件、制氢电解槽以及制氢设备。其中,制氢电解组件包括多个双极板、隔膜、第一进液口及第一出气口,每个双极板均呈筒状结构并同轴套设;隔膜位于相邻两个双极板之间;第一进液口位于多个双极板和隔膜的第一轴向端部,第一出气口位于多个双极板及隔膜的与所述第一轴向端部相反的第二轴向端部。本公开的制氢电解组件在通过第一轴向端部安装至电解槽中后,通过筒状结构的双极板和隔膜可以保证通过第一进液口进入到各个制氢电解组件中的电解液可以保持在同一液面高度上,而不会出现各个制氢电解组件中电解液不均匀的情况。
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.
Resumen de: CN119753740A
本发明公开了一种高密度钌单原子及钴钌合金纳米粒子电催化材料及其制备方法和在电解水产氢产氧中的应用。该制备方法包括:步骤一、将碳布浸没到含2‑甲基咪唑和硝酸钴(II)的混合液中,使碳布上生长ZIF‑Co纳米片,然后取出碳布清洗、干燥,得到ZIF‑Co/CC;步骤二、将ZIF‑Co/CC于惰性气氛保护下进行热解,得到钴氮掺杂碳;步骤三、对钴氮掺杂碳进行介质阻挡放电等离子体处理,然后与钌(III)源进行离子交换;步骤四、将步骤三离子交换产物于惰性气氛保护下进行热解,得到高密度钌单原子及钴钌合金纳米粒子电催化材料。
Resumen de: CN119753735A
本发明提供了一种电解水催化剂、其制备方法及应用。电解水催化剂包括石墨烯、MxSy和铂族金属单原子,制备方法包括以下步骤:首先将石墨烯、MxSy的原料进行水热反应,得到第一中间催化剂;然后将包括第一中间催化剂的第二溶液涂覆在基板表面,并进行等离子体照射,接着采用磁控溅射法和/或化学气相沉积法,进行处理,得到电解水催化剂。本发明通过在石墨烯基底上构建MxSy复合结构,辅之以等离子体表面改性,创造富含活性缺陷位的环境;再经磁控溅射法和/或化学气相沉积法,可以实现铂族金属单原子的精准锚定,不仅显著降低了铂族金属的载量从而降低了成本,还提升了电解水催化剂的本征活性和稳定性。
Resumen de: CN119753739A
本发明涉及一种MoS2/CoS2/NiS‑CC电催化材料,采用钴‑镍MOF与钼源经水热法和低温硫化法制备,制备周期短、方法简单,采用的原料价格低廉。本发明还涉及一种上述MoS2/CoS2/NiS‑CC电催化材料在催化分解水制氢中的应用,本发明的MoS2/CoS2/NiS‑CC电催化材料具有优秀的析氢性能,具有很好的商业应用价值。
Resumen de: CN119746594A
本发明公开一种电解水制氢联产化学品氢气脱水系统及工艺,1#气水分离器的顶部气体出口与脱氧塔的顶部气体进口相连,脱氧塔侧部气体出口与1#冷却器的管程进口相连,1#冷却器的管程出口与2#气水分离器的进口相连,2#气水分离器的出口经氢气压缩机与2#冷却器的管程进口相连,2#冷却器的管程出口依次经产品加热器的管程和过冷器的管程与3#气水分离器的进口相连,3#气水分离器的出口经程控阀系统与脱水塔系统相连。利用压缩机将氢气提压、冷却,利用压缩机的势能去除氢气中大量的水,达到了节能减排、减少脱水剂装填降低生产成本的目的;本发明工艺简单、操作成本低,能够充分使用系统势能和设备,节能降耗。
Resumen de: CN119754027A
本发明提供了一种复合隔膜的制备方法、复合隔膜极其应用,属于复合膜制备技术领域。本发明通过采用静电纺丝技术,在复合隔膜基底上进行极性PVA纳米纤维修饰,之后采用交联剂进行化学交联,通过改善隔膜的亲水性,从而可以有效抑制气泡在隔膜表面的析出,进而减小三相界面的接触电阻,提高能量效率。制备的复合隔膜形成3D分层结构,与复合隔膜基底之间形成漏斗效应,加速了电解液的传输,减小浓差极化,同时降低了系统能耗。
Resumen de: CN119750725A
本发明公开了一种用于果树抗盐的微纳米氢气泡水生成装置及方法,涉及加氢滴灌技术领域,主要目的是提高滴灌水中微纳米气泡的含量。本发明的主要技术方案为:用于果树抗盐的纳米气泡水生成装置,该装置包括:混合部包括依次连接的储水箱、输水管和气泡水箱,输水管的中部设置有锥形管阵列,每一个锥形管的进水端朝向储水箱,锥形管的出水端朝向气泡水箱;产气部包括氢气罐、氧气罐和增压泵,氧气罐的出口端和氢气罐的出口端分别连接于增压泵的进口端,增压泵的出口端分别连接于第一输气管的进口和第二输气管的进口,第一输气管的出口连接于锥形管进水端的输水管管壁,第二输气管的出口连接于锥形管出水端的输水管管壁。
Resumen de: CN119746726A
本发明公开了一种投料式氨硼烷水解制氢装置。将催化剂单元填充于第一容器腔底部,该催化剂单元包括载体及负载的催化剂,载体为磷化泡沫镍,其高的比表面积和孔隙率,促使水解反应更为迅速和充分。使用时将环境水经过进水口加入第一容器腔底部浸没催化剂单元,第一容器腔上层空间部分用于留存水解反应生成的氢气。第二容器腔为氨硼烷固体粉料存储容器,通过螺杆进料的方式将氨硼烷固体粉料带入第一容器腔,氨硼烷与水形成溶液的同时在催化剂单元的作用下反应放出氢气。采用氨硼烷固体料包的方式,通过向第二容器腔投料实现氨硼烷的持续供给以及简便携带,采用过滤环境水的形式解决水解反应水源的问题,实现水解制氢装置的灵活使用和高效集成。
Resumen de: CN119750579A
本发明属纳米限域技术领域,提供一种精准双限域路径制备多晶界碳化钼纳米颗粒的方法及其应用。Ni‑卟啉交联剂为镍源,磷钼酸为钼源,在碳载体上原位涂覆聚合物水凝胶,通过精确控制磷钼酸与交联剂的比例,并通过自限域的含Ni交联剂Ni卟啉交联剂交联,制备Ni和PMo12邻位双限域的碳包覆前驱体;精确限制Mo源和交联剂的比例,基于双限域热解制备了被Ni原子调控的多晶界碳化钼催化剂。本发明精确地在碳基底上制备了含多个晶界的碳化钼催化剂,并对其OER催化性能进行了研究。实现了对碳化钼纳米片缺陷态的精准调控,从而提高了碳化钼的本征催化活性。所制备的催化剂在电催化析氧中表现出优异的电化学性能,实现了高效的电解水析氧。
Resumen de: CN119753727A
本发明涉及催化剂技术领域,公开了一种用于电解水制氢的催化剂及其制备方法和应用。该催化剂中含有活性金属元素Pt和载体WO3纳米棒;活性金属元素Pt以纳米颗粒的形式分散于载体WO3纳米棒上;以催化剂的总质量为基准,Pt的含量为1‑10wt%;催化剂中Pt纳米颗粒的平均直径为1‑5nm,催化剂的氧空位含量为12‑20%。本发明提供的催化剂能够提供连续的质子传递和电子传递通道,极大程度地降低了膜电极阴极催化层中铂载量,在较低的铂载量下,显著提升质子交换膜电解水阴极反应的活性,提高质子交换膜水电解槽的综合效率,提升电解水器件效率;且本发明提供的制备催化剂的方法操作简单、环境友好、易于控制及规模化。
Resumen de: CN119753844A
本发明涉及一种异质外延的单晶金属硫族化合物薄膜,该薄膜的化学式为MX2,其中:M为金属铂、钯、钼、钨中的任意一种;X为硫族元素中的硫、硒、碲中的任意一种。同时,本发明还公开了该薄膜的制备方法和应用。本发明有效提高了原子利用率和负载量,与单原子催化剂仅分散少量活性位点相比,能够在单原子层尺度上最大限度地提供活性位点,并且在水裂解产氢中表现出优异的催化活性。
Resumen de: CN119753750A
本发明涉及一种消氢析氧电极的制备方法及其应用,属于电解水技术领域。本发明通过在钛网表面镀金和铂构建消氢功能,Ti网表面先镀金层有利于提高Ti网的耐高电位氧化性,同时镀金可以进一步提高电极的导电性,降低界面阻抗;Au层表面弥散分布的铂颗粒,主要作用是消氢;再将氧化铱沉积在金和铂表面,有助于增强IrOx的导电性,提高催化剂的氧析出活性。
Resumen de: CN119750716A
本发明公开了一种水处理装置和正渗透水处理耦合电解制氢系统,涉及水处理技术领域,其中,该水处理装置包括支撑组件、至少两个水处理组件和两个端板,支撑组件内形成有装配间隙;至少两个水处理组件可拆卸地设置于装配间隙内,且至少两个水处理组件沿装配间隙的延伸方向层叠设置,并用于将装配间隙分隔为多个水处理空间;两个端板夹设于支撑组件沿其延伸方向的两端,且两个端板能相互靠近或远离。本发明通过在支撑组件内设置装配间隙,利用可拆卸的层叠式水处理组件填充装配间隙,再结合端板的可调节机制,有效解决了现有正渗透水处理系统存在的单位体积水处理通量低、设备体积大、渗透膜破损或泄露导致系统停工的问题,提高了水处理效率。
Resumen de: CN119753719A
本申请涉及一种卷式制氢电极及电解槽装置,涉及电解制氢技术领域。卷式制氢电极包括依次设置的阳极板、第一隔网、氢氧化镍电极、第二隔网和阴极板,所述阳极板、第一隔网、氢氧化镍电极、第二隔网和阴极板绕中心绕卷。本申请具有降低电解槽占用空间,提高电解效率和空间利用率的效果。
Resumen de: CN119753706A
本发明电解水制氢技术领域,具体公开了一种高效光伏电解水制氢系统,包括光伏阵列系统、水循环系统、电解水系统和控制系统,所述光伏阵列系统分别与水循环系统、电解水系统和控制系统对接。本发明提供一种高效光伏电解水制氢系统,利用换热回路将光伏阵列板未转化的、多余的太阳能对制氢用纯水进行预加热,在保持光伏太阳能电池板高效运行的温度条件下,高效地实现了利用太阳能电解水制氢。
Resumen de: CN119753710A
本发明公开了一种用于海水制氢的可控低耗能碱液产生装置及控制方法,该装置包括:圆柱形金属内胆,其内部设有碱液,底部设有第二接口,通过碱液循环管道与碱液电解槽连通;内胆侧壁一半区域贴附有选择透过性隔膜,利用碱液与外部海水之间的渗透压差将纯水吸入内胆,实现海水淡化;内胆顶部安装有液位传感器,通过检测液位高度计算碱液浓度;旋转式外壳套设于内胆外,通过自身旋转调节选择透过性隔膜与海水的接触面积,从而调整海水淡化速率;其中旋转式外壳的旋转由动力与传动机构控制。本发明允许使用者根据电解制氢设备对水的消耗速率,动态调节海水淡化的速率,将电解制氢设备中的碱液维持在导电率最优的浓度,实现海水制氢设备效率的提高。
Resumen de: CN119753738A
本发明公开了一种BiVO4/TiC复合光电催化剂及其制备方法和应用,制备方法包括:采用固相烧结法将二氧化钛及炭黑粉末研磨至充分混合后转移至白色瓷舟,在氩气Ar气氛下1400~1600℃煅烧2~6h,完成后研磨得到黑粉TiC粉末;采用低温水浴法五水合硝酸铋溶解在HNO3溶液中,同时将NH4VO3溶解在NaOH溶液中,搅拌均匀得到前驱液;将前驱体60~100℃水浴保温6~10h后加入TiC粉末;升温至80~120℃后,持续加热2~4h后,分离产物,洗涤、干燥、研磨,得到所需的BiVO4/TiC复合光电催化剂;本发明的BiVO4/TiC复合光电催化剂能够增强光生电荷的高效分离和传输,提高对太阳光的利用率,从而实现提高析氧效率。
Resumen de: CN119765490A
本申请公开了一种光伏捕水制氢系统的控制方法,所述光伏捕水制氢系统至少包括光伏阵列、空气捕水单元以及电解制氢单元;其中,上述方法包括:获取所述光伏阵列的实时输出功率;确定所述空气捕水单元的第一需求功率,以及确定所述电解制氢单元的第二需求功率,并基于所述第一需求功率和所述第二需求功率确定总需求功率;在所述总需求功率大于所述实时输出功率的情况下,确定所述空气捕水单元以及电解制氢单元的优先级信息;基于所述优先级信息,对光伏阵列的电能进行分配,获得分配结果,并按照分配结果对所述空气捕水单元以及电解制氢单元进行电力供应。解决了相关技术中光伏捕水制氢系统的灵活性较差,难以实现光伏捕水制氢系统合理利用的问题。
Resumen de: CN119753705A
本发明公开了一种高原制氧装置及其使用方法,包括底座、室内制氧机及制氧水壶;底座上设有功能槽Ⅰ及功能槽Ⅱ;室内制氧机包括储水室Ⅰ、制氧室Ⅰ、控制室Ⅰ、集氧室及储氧室;制氧室Ⅰ内设有电解箱及催化箱;储水室Ⅰ与电解箱之间连有进水管道Ⅰ;催化箱连接电解箱;电解箱内设有阳极电解部Ⅰ及阴极电解部Ⅰ;控制室内设有控制部Ⅰ;集氧室内设有洗气装置及氧气压缩装置;阳极电解部Ⅰ连接洗气装置;阴极电解部Ⅰ通出室外;氧室内设有储氧钢瓶;氧气压缩装置连接储氧钢瓶;制氧水壶的原理与室内制氧机相同。本发明能够在室内及车内持续释放氧气,提高周围环境的含氧量,同时也便于在室外生成氧气,随时吸氧,无需携带多个氧气瓶,省时省力。
Resumen de: CN119746903A
本发明公开了一种红碳复合石墨相氮化碳光催化材料的制备方法和应用,包括如下步骤:S1、制备红碳半导体:将丙二酸溶解于酸酐,在一定温度下经冷凝回流反应得到产物溶液,将该溶液滴加到二乙醚中获得固体沉淀物,经二乙醚洗涤后得到红碳半导体;S2、制备石墨相氮化碳:将碳氮化合物于高温下焙烧得到石墨相氮化碳g‑C3N4;S3、制备红碳/g‑C3N4光催化剂:将S1中得到的红碳半导体通过超声辅助的方法与S2中得到的石墨相氮化碳g‑C3N4进行复合,得到红碳/g‑C3N4光催化剂。本方案得到的红碳复合g‑C3N4光催化剂集成了异质结构提高电荷分离效率和窄带隙红碳增强可见光响应的优势,有利于促进光解水制氢,结构。
Resumen de: CN119753720A
本发明公开了一种高抗腐蚀、强析气性能的镍基电极及其制备方法,本发明具有较高的安全性,不涉及高温、高压工艺,且不使用有机溶剂,降低了环境和操作风险,确保了生产过程的安全可靠。其次,该方法支持宏量制备,酸处理可在室温下进行,而等离子体处理可在低温下完成,工艺条件温和,适合大规模生产和实际应用。此外,本方法工艺流程简单高效,使用的原材料易得,设备要求低,显著降低了生产成本。这一特点使其具备良好的经济性和可推广性,能够满足工业化制备的需求。通过该工艺制备的氮掺杂铝镍合金涂层镍网,不仅具有优异的电化学性能,还展现出良好的抗腐蚀性和析气性能。
Resumen de: WO2024041728A1
A control unit (40) for a Power-to-Hydrogen (PtH) plant (100) is provided. The control unit (40) includes at least one model (41) and is configure to: calculate maximum efficiency point tracking of the PtH plant (100) by solving an objective function having a predetermined hydrogen production rate of the PtH plant or a predetermined amount of energy input to the PtH plant using the at least one model, wherein the control unit receives measured parameters indicative of status of components of the PtH plant as an input to the at least one model; determine one or more set points for a coordinated operation of the components of the PtH plant based on a solution obtained by solving the objective function; and provide the one or more set points to one or more of the components of the PtH plant to operate the PtH at the maximum efficiency point.
Resumen de: CN119753733A
本发明公开了一种NiMoO4/Ni(OH)2@NiPx分层结构催化剂及其制备方法和应用。所述催化剂的制备方法包括以下步骤:步骤1、对镍基底进行清洁处理;步骤2、通过水热法在镍基底上合成钼酸镍(NiMoO4)前驱体;步骤3、通过电沉积方法在NiMoO4表面生长氢氧化镍@磷化镍复合物(Ni(OH)2@NiPx)。该催化剂具有三维分层结构,一维NiMoO4微米/纳米棒作为支撑,二维Ni(OH)2纳米片生长在NiMoO4表面,零维NiPx纳米颗粒镶嵌在Ni(OH)2纳米片上。该催化剂在析氢反应中表现出卓越的性能,具备高活性和良好的稳定性,适用于清洁氢气生产。
Resumen de: CN119753731A
本发明属电催化和能源转换技术领域,提供一种碳骨架负载铂单原子‑钴纳米颗粒催化剂及其制备方法和在电催化析氢中的应用,用外延生长方式制备ZIF‑67@ZIF‑8前驱体,对其热解构筑含有钴纳米颗粒的碳基体;在ZIF‑67@ZIF‑8制备过程中,调控单宁酸处理时长,精准控制钴纳米颗粒尺寸;同时高温热解过程中产生的均匀N空穴,利于Pt−N键的精准限域,最终构筑碳骨架负载铂单原子‑钴纳米颗粒催化剂。钴使铂位点周围的局部质子浓度富集,从而显著促进铂单原子上质子的吸附和氢气的生成。这种双功能催化效应的展现,有效提升了碱性析氢反应的整体催化效率。在碱性析氢反应中表现出优异的催化性能,有望在电解水制氢技术中得到广泛应用。
Resumen de: CN119173474A
Provided is a molybdenum carbide having a Mo2C crystal structure and having a carbon content of 6% or more with respect to the total mass (100 mass%) of the molybdenum carbide.
Resumen de: CN119753746A
本申请提供一种Fe/NiMo@I F催化剂及其制备方法与应用,该制备方法包括如下步骤:SO1、将镍盐、钼盐和沉淀剂加入混合溶剂中,搅拌至溶解,得到混合溶液;所述镍盐、所述钼盐与所述沉淀剂的物质的量的比为(1.9~14.0):(1.3~2.3):100;SO2、将泡沫铁基底垂直浸入步骤SO1中的混合溶液中,然后于80℃~180℃反应3h~18h,反应完成后自然冷却至室温,得到生长有催化剂的基底,清洗所述基底的表面,干燥,得到Fe/NiMo@I F催化剂。本申请还提供该催化剂在电化学水分解中的应用。本发明的制备方法简单,可控性好,耗时短,易于批量化生产;制得的催化剂形貌分布均匀,导电性良好,具有较好的热稳定性。
Resumen de: CN119746914A
本发明涉及一种g‑C3N4与铝掺杂SrWO4的异质结光催化剂的制备方法和应用,属于光催化材料技术领域。本发明采用高温熔盐法制备Al‑SrWO4纳米颗粒,然后通过煅烧法在Al‑SrWO4纳米颗粒表面原位生长g‑C3N4,最终获得目标产物g‑C3N4/Al‑SrWO4异质结光催化剂,其可以应用于光催化析氢领域。相较于当前的光催化剂,本发明的g‑C3N4/Al‑SrWO4异质结光催化剂展现出了较好的可调谐性,能有效抑制光生电子与空穴的复合过程,显著提升载流子的分离效率。该发明制备流程简便易行,采用的原材料成本经济,在整个生产过程中对环境友好、无污染。
Resumen de: CN119753708A
本发明公开了一种面向海岛应用的微型制氢系统,利用风能采用电解水制氢技术模拟制氢,该系统包括风力发电模块、主控制系统模块、LCD显示器模块和信号处理模块;所述风力发电模块包括风力发电机和充电电池,所述风力发电机转动供电给电解槽,并将富余的电力储存到充电电池中,在所述电解槽中加入自来水作为电解液,在所述电解槽中加入电解质,以提高电解液的导电能力;所述主控制系统模块作为系统的核心控制器,用于处理各种指令;所述LCD显示器模块用于显示氢气浓度、电解液温度和风力发电发出的电量;信号处理模块包括氢气传感器和温度传感器,以分别测量氢气的浓度和电解液的温度。本发明面向海岛,采用风力发电电解水制氢,减少化石能源的消耗。
Resumen de: CN119753745A
本发明公开一种焦耳热处理月壤的方法及应用,属于月球资源开发利用技术领域;一种焦耳热处理月壤的方法包括:将月壤基材料充分研磨,再放置于载体内;将装有月壤基材料的载体放于焦耳热处理装置中,对反应腔体进行抽真空,然后通入惰性气体;重复抽真空并通入惰性气体数次后,再将反应腔体抽至真空;在真空氛围下,接通焦耳热处理装置中电极的电源,对月壤基材料进行焦耳热冲击处理,维持温度,之后冷却至室温;重复数次焦耳热冲击处理,得到焦耳热处理的月壤基材料。将焦耳热处理的月壤基材料作为电解水产氢的阴极催化剂,可用于月球水冰资源的转化,进一步降低对地球补给的依赖,提升月球资源原位利用的程度。
Resumen de: CN119753754A
本发明公开了一种碱性电解水复合隔膜及其制备方法和应用,属于电池隔膜技术领域。该隔膜包括交替分布的支撑层和传输层,支撑层与传输层之间设有静电纺丝法制备的补强层,其中补强层为氨基硅烷纳米纤维层,制得的碱性电解水复合隔膜的结构更稳定,并实现高湿润性、较快的响应性及高离子电导率。本发明还提供了采用本发明隔膜的碱性电解水电解槽以及碱性电解水制氢系统,本发明的复合隔膜在碱性电解水电解槽中表现出优异的性能。
Resumen de: CN119746724A
本发明实施例提供一种氨裂解制氢装置。所述氨裂解制氢装置包括流道组件,流道组件包括流道板和催化剂片,流道板设有板入口、板出口和至少两个催化流道,至少两个催化流道并联在板入口和板出口之间,催化剂片设于流道板,并与至少两个催化流道并排设置。本发明实施例的氨裂解制氢装置通过至少两个催化流道同时对氨气进行裂解,从而具有较高的氢气制备效率,同时,由于催化剂片和流道板的结构简单并便于安装和更换催化剂片,因此本发明实施例的氨裂解制氢装置结构简单且制造成本低。
Resumen de: CN119753715A
本发明提供了一种气泡分离装置,并将其与电解水制氢的工作电极相连接,应用于工作电极表面产生的气泡的分离以及定向调控。本发明中利用相邻通槽之间的三角形区域形成气泡分离通道,该气泡分离通道能够产生非对称拉普拉斯压力梯度,从而推动气泡沿特定方向移动。同时,超疏水‑润滑复合涂层具备出色的亲气性和润滑性能,不仅提供了良好的气泡吸附条件,还通过表面润滑效应降低了气泡在表面运动时的摩擦阻力,确保气泡能够快速实现定向调控转移。工作电极表面生成的氢气泡趋向于超疏水‑润滑复合涂层表面移动转移到气泡分离通道,利用气泡分离通道的非对称性,通过自驱动的“移动‑兼并‑再动”循环过程定向移动被高效收集至目标位置。
Resumen de: CN119753749A
本发明公开了一种铱修饰镍钼氧化物电极、其制备方法及应用,属于电极材料技术领域。其技术方案包括将NiSO4·6H2O、(NH4)6Mo7O24·4H2O和柠檬酸溶解在蒸馏水中,随后放入冰水浴中,调节溶液至碱性,烘干,得到干凝胶,将干凝胶研磨后,焙烧,得到NiMoO4粉末;所述NiSO4·6H2O、(NH4)6Mo7O24·4H2O和柠檬酸的摩尔比为7:1:50;焙烧温度为600‑700℃中的任一值。本发明应用于电极材料方面,解决现有用于电解制氢的电极制备成本高、催化效率低的问题,具有制备成本低、催化活性高的特点。
Resumen de: CN119753743A
本发明公开了一种碳载钯钌析氢催化剂的制备方法。包括以下步骤:按照质量比(15~8):1的比例称取二氧化钌水合物和氧化钯,随后再加入0.4 g石墨,研磨后压制成片,在马弗炉内于500℃~800℃的空气氛围中煅烧1~3 h,得到前驱体。制备涂覆有前驱体的玻碳电极,之后,利用三电极体系,在一定电压范围和扫描速度范围下进行循环伏安处理,即得到一种碳载的钯钌析氢催化剂。本发明提供了一种新型析氢催化剂,同时,为废旧二氧化钌的循环利用开辟了新思路,具有潜在商业应用前景。
Resumen de: CN119753711A
本发明公开了一种带有电解槽密封结构的水电解制氢装置及方法,本发明涉及水电解制氢技术领域。通过在阴极区域和阳极区域分别设置一号冷却组件和二号冷却组件,能够利用一号冷却组件和二号冷却组件流动的冷却液和电解液进行热量交换,从而能够带走电解槽体内因电解产生的部分热量,降低电解槽体内电解液的温度,从而避免了电解液温度过高而加快阴极板和阳极板的腐蚀速度,同时也能够避免高温影响电解槽体密封性的情况,延长电解槽体的使用寿命;通过设置换热面积调控单元和手动调控组件,保证电解槽体内温度不会因电解速率和电解时间的增加而导致温度出现较大差异的情况,保证电解液温度处于相对稳定状态,从而促进电解进行的稳定进行。
Resumen de: CN119753714A
本发明涉及氢气纯化设备技术领域,具体是指一种用于电解水制氢的氢气纯化装置,它包括底座,所述底座一端上可拆卸安装有氢气纯化器,所述底座另一端上设有圆槽,所述圆槽内设有间歇旋转托盘,所述间歇旋转托盘下方设有嵌入圆槽内的间歇旋转托架,所述间歇旋转托架内设有与间歇旋转托盘底部固定连接的间歇旋转机构,所述间歇旋转托盘上设有四个均匀分布的可拆卸安装的氢气收集罐,所述底座上一端设有与圆槽相配合的连接架,四个所述氢气收集罐内设有与连接架相配合的通气开关。本发明的一种用于电解水制氢的氢气纯化装置,有自动闭合的氢气存贮装置,避免了复杂的拆卸过程,能够大幅提高氢气存贮气罐的更换速度,提高生产效率。
Resumen de: CN119753721A
本发明公开了一种实现气液就地分离的高效碱液电解水双极板,是在双极板的上部区域独立设置氢液分离腔和氧液分离腔,使得由双极板组装成的压滤型多室串联的碱液电解槽在上部区域形成扩容式气液分离区,并形成相互独立的出液通道和出气通道,实现气液就地分离和分离气体的顺畅流通;双极板是包括有主极板和两侧呈凹形的电解腔室的双极板,其一侧为氢侧,另一侧为氧侧,氢液分离腔与氢侧出口相连通;氧液分离腔与氧侧出口相连通。本发明能快速导出电解腔室内的气液混合物并实现其就地快速分离,从而有效减轻气泡在电解腔室内的淤积,避免气体的跨膜混杂,提高气体纯度,尤其适用于功率波动的可再生能源直接电解制氢。
Resumen de: CN119753677A
本发明提供了一种钨酸铜光阳极薄膜的制备方法、钨酸铜光阳极薄膜和应用。本发明钨酸铜光阳极薄膜的制备方法,制备的钨酸铜光阳极薄膜内部的钼为梯度掺杂,钼含量从薄膜远离所述衬底一侧的表面向靠近所述衬底一侧的表面逐渐增加,掺杂后薄膜性能相较于未掺杂和均匀浓度掺杂的钨酸铜光阳极材料有大幅度提高。本发明还提供了钨酸铜光阳极薄膜和钨酸铜光阳极薄膜在光电催化分解水中的应用。
Resumen de: CN119763702A
本发明公开了一种用于析氢反应的弯曲过渡族金属硫族化合物单层电催化剂的设计方法,构建具有均匀曲率的弯曲过渡族金属硫族化合物TMDs MX2单层,利用第一性原理分子动力学模拟判断弯曲原子模型的结构稳定性;利用显式溶剂化模型,构建弯曲过渡族金属硫族化合物单层的析氢反应吸附模型,计算氢吸附的吉布斯自由能,并逐渐增大弯曲曲率,筛选电催化活性好的弯曲过渡族金属硫族化合物单层;筛选出的WTe2和MoTe2单层在弯曲曲率超过#imgabs0#时其氢吸附吉布斯自由能降到了0.21eV以内,表现出良好的析氢反应催化活性,特别是WTe2单层在弯曲曲率达到#imgabs1#时,其氢吸附吉布斯自由能降低至0.004eV。
Resumen de: WO2025071481A1
The present disclosure relates to a photoanode for photoelectrochemical water-splitting. The photoanode comprises a conductive substrate, an array of zirconium trisulfide (ZrS3) nanobelts deposited on at least one surface of the conductive substrate, and a layer of zirconium oxysulfide (ZrOS) deposited on the array of zirconium trisulfide (ZrS3), forming a zirconium trisulfide (ZrS3)/zirconium oxysulfide (ZrOS) nanobelts array on the conductive substrate. Various embodiments relate to a method of forming the photoanode.
Resumen de: WO2025071230A1
The present invention relates to a polymer electrolyte membrane which is used in an energy device, such as a fuel cell or a water electrolysis system, in which a specification standard for lowering hydrogen gas permeability and increasing hydrogen ion conductivity and accordingly, maximizing selectivity, is quantified through small angle X-ray scattering (SAXS) analysis.
Resumen de: WO2025071890A1
An illustrative example embodiment of an apparatus and method includes providing a weave body downstream of an electrolyzer, purifying hydrogen by demisting a hydrogen stream exiting the electrolyzer via flow through the weave body; and de-oxidizing the hydrogen stream during flow through the weave body.
Resumen de: WO2025071051A1
The present invention relates to a self-power generation system designed to rapidly produce electricity by directly supplying the hydrogen generated through the electrolysis of ethanol or green ammonia, as it is, to a stack and to enable the produced electricity to be supplied and utilized by power-demanding facilities such as households, factories, or electric vehicle charging stations. The self-power generation system is configured to include: a reformer for generating hydrogen by electrolyzing ethanol or green ammonia; a stack composed of one or more fuel cells that induce an electrochemical reaction between the hydrogen supplied through a transfer pipe connected to the reformer and oxygen from air supplied externally thus to produce electricity and heat; an air supply unit for delivering air to the stack, and a power control unit for supplying the electricity produced in the stack to external sources and storing excess electricity.
Resumen de: WO2025070388A1
Provided are a membrane electrode assembly, a hydrogen production method, and a hydrogen production system. The membrane electrode assembly has a structure in which a cathode catalyst layer, a hydroxy ion conducting membrane, and an anode catalyst layer are laminated in this order, wherein the tensile strength (a) and the elongation at break (b) of a water-swellable body of a polymer contained in the cathode catalyst layer and/or the anode catalyst layer and the tensile strength (c) and the elongation at break (d) of a water-swellable body of a hydroxy ion conducting polymer constituting the hydroxy ion conducting membrane satisfy the following relationships (Ri) and (Rii). (Ri): Tensile strength (a)>tensile strength (c), (Rii): Elongation at break (b)>elongation at break (d)
Resumen de: WO2025070387A1
Provided are: a hydroxy ion conductive membrane containing a porous base material and a hydroxy ion conductive polymer disposed at least in pores of the porous base material, wherein the hydroxy ion conductive film has a thickness of 5 μm or more and less than 50 μm, and the polymer contains a constituent component (I) derived from a polyfunctional polymerizable monomer having two or more atoms of at least one kind of atom among oxygen atom, sulfur atom and nitrogen atom in total in a structural moiety other than a polymerizable group by 50 mol% or more of the constituent components of the polymer; a method for producing the hydroxy ion conductive membrane; a membrane electrode assembly, and a hydrogen production method and a hydrogen production system comprising the membrane electrode assembly.
Resumen de: AU2023359996A1
The invention relates to an electrolysis system (1) for generating hydrogen and oxygen as product gases, comprising an electrolysis module (3) and a process unit (5), wherein the process unit (5) has a reactant line (7) for supplying process water and a product line (9), each of which is connected to the electrolysis module (3), and the process unit (5) is equipped with a thermally insulating insulation device (11), comprising a thermal insulating material (17), such that a slow cooling of the process water is produced during a standstill operation.
Resumen de: WO2025071010A1
A method for manufacturing a catalyst structure according to the present invention comprises the steps of: preparing a rhenium (Re) precursor, a first doping metal precursor, a second doping metal precursor, and a solvent; manufacturing a base source by providing the rhenium precursor, the first doping metal precursor, and the second doping metal precursor to the solvent and mixing same; manufacturing a preliminary catalyst structure by synthesizing the base source by a solvothermal synthesis process; and heat-treating the preliminary catalyst structure in a reducing atmosphere to manufacture a catalyst structure comprising rhenium, a first doping metal, a second doping metal, and carbon.
Resumen de: WO2025071002A1
The present invention relates to a biogas-based electrochemical hydrogen extraction and separation system comprising a solid oxide fuel cell and a solid oxide water electrolysis cell, and a method for operating same. Specifically, the biogas-based electrochemical hydrogen extraction and separation system comprising a solid oxide fuel cell and a solid oxide water electrolysis cell is characterized by comprising: a fuel supply part for supplying biogas as fuel; a first reaction part for reforming the biogas supplied through the fuel supply part so as to generate a first reformed gas; a second reaction part for secondarily reforming the first reformed gas so as to generate a second reformed gas; a third reaction part for receiving the second reformed gas generated in the second reaction part and generating electricity; a fourth reaction part for receiving unreacted gas generated in the third reaction part and using the unreacted gas as fuel, and receiving steam generated in the third reaction part and generating hydrogen; and a power converter which receives the electricity generated in the third reaction part and supplies the electricity to the first reaction part and the fourth reaction part.
Resumen de: WO2025065871A1
An off-grid hybrid electrolytic hydrogen production system provided in the present application comprises a new energy power generation unit and an energy storage unit. A power conversion unit converts electric energy output by the new energy power generation unit and the energy storage unit into electric energy suitable for hydrogen production. An electrolysis unit comprises a proton exchange membrane hydrogen production module and a solid oxide electrolysis module, used to produce hydrogen after the introduction of electric energy. A controller uses control of charge and discharge of the energy storage unit to track an electric energy fluctuation value output by the new energy power generation unit, so that a value of total electric energy power fluctuation output by the new energy power generation unit and the energy storage unit is within a set range. The described solution provided by the present application can improve the hydrogen production efficiency of the entire hydrogen production system, and ensure that the hydrogen production system can achieve off-grid operation. Moreover, the present application eliminates the influence of power generation fluctuation of a new energy power generation unit on a hydrogen production result, by means of causing the total power fluctuation output by the new energy power generation unit and the energy storage unit to be within a set range.
Resumen de: WO2025067765A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) with a platform (3) and with an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a heat supply device (7) which is coupled to the electrolysis plant (5) and is designed in such a way that heat can be transferred to the electrolysis plant by means of the heat supply device (7) during a standstill mode so as to maintain the temperature above a minimum temperature. The invention also relates to a method for operating a corresponding offshore electrolysis system. During a standstill mode, heat is transferred to the electrolysis plant (5) by means of the heat supply device (7) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025067764A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) with a platform (3) and with an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a heat supply device (7) which is coupled to the electrolysis plant (5) and has a combustion device (13), wherein a fuel reservoir (15) is connected to the heat supply device (7) such that, during a standstill mode, heat generated by means of the combustion device (13) can be transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature. The invention also relates to a method for operating a corresponding offshore electrolysis system (100), wherein, during a standstill mode, heat is generated by means of the heat supply device (7) and transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025067773A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) having a platform (3) and an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a water supply device (7) which is connected to the electrolysis plant (5) and has a water collector (13) which is designed such that it is possible, without relying on seawater, to obtain water with little or no salt content which can be used as feed water for operating the electrolysis plant (5). The invention also relates to a method for operating a corresponding offshore electrolysis system (100), wherein, without relying on seawater, water is obtained in a water collector (13), the obtained water being of a quality with little or no salt content.
Resumen de: WO2025067772A1
The invention relates to an electrolysis system (100) comprising: a wind turbine (1); an electrolysis plant (5) which is connected to the wind turbine (1) in order to supply electrolysis current, wherein an island network is implemented without connection to a power supply network; and a heat supply device (7) which is coupled to the electrolysis plant (5) and can be operated with a working medium (23), and which has an evaporator (13) and a condenser (11), and which is designed in such a way that, during a standstill mode, condensation heat of the working medium (23) can be transferred to the electrolysis plant (5) by means of the condenser (11) so as to maintain the temperature above a minimum temperature. During a standstill mode, the heat supply device (7) evaporates a working medium and condenses the evaporated working medium (23), condensation heat being generated and transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025067694A1
The invention relates to a modular electrolysis system comprising multiple modules, wherein each of the multiple modules comprises a support frame and at least one interface accessible from outside the support frame and configured to connect the module with at least one of the remaining modules, the multiple modules comprising a water-gas coarse separation module downstream an anode outlet of the electrolysis cell module, and a water-gas fine separation module downstream a liquid outlet of the water-gas coarse separation module.
Resumen de: WO2025067620A1
According to the invention it is provided a method for controlling a grid connected power converter having a DC side with a DC link and an AC grid side, and being configured to control power supply to a hydrogen electrolyzer stack. The power supply to the hydrogen electrolyzer stack is controlled by controlling the DC link to thereby control hydrogen production. The method comprises: determining a grid voltage reference; providing a grid forming control for controlling at least the phase angle of the voltage of the power converter using a grid forming controller, operating according to a grid forming algorithm, the grid forming controller being configured to emulate inertia through control of the voltage of the power converter towards the grid voltage reference; the grid forming controller emulating inertia by charging and discharging an inherent capacitance of the electrolyzer stack; monitoring at least one operating parameter of the hydrogen electrolyzer stack; and limiting a change in charging level of the inherent capacitance based on the monitored operating parameter of the electrolyzer stack.
Resumen de: WO2025072770A1
Provided herein are systems and methods for electrochemical COx reduction and hydrogen oxidation reactions to promote the reduction of carbon oxides (COx). Embodiments of the systems and methods may be used to produce carbon monoxide (CO) and water. In various embodiments, a reaction between carbon dioxide (CO2) and hydrogen gas (H2) occurs at the anode of a CO2 reduction electrolyzer, promoting the production of reduction products (e.g., CO). In some embodiments, the methods may utilize a feed stream of H2 gas from various sources. In some embodiments, a water electrolyzer upstream of the COx reduction electrolyzer is a source of H2 gas. In some embodiments, the systems and methods include downstream integration processes and related apparatus. In some embodiments, the downstream integration processes include Fischer-Tropsch processes.
Resumen de: WO2025068933A1
The present invention relates to an integrated system for demineralization and/or purification of water and for the simultaneous production of hydrogen comprising a heat-dissipating element thermally connected to a system for demineralization and/or purification of water which is hydraulically connected to an electrochemical cell producing hydrogen, wherein the system for demineralization and/or purification of water is a system operating through the principle of thermal distillation via membrane and comprises at least two units, each comprising a first chamber, inside which waste water to be demineralized and/or purified flows under pressure and a second chamber, inside which demineralized and/or purified water flows under pressure in the opposite direction with respect to the direction of flow of the waste water, the two chambers being separated by a preferably microporous hydrophobic membrane, wherein the at least two units are placed thermally in series and hydraulically in parallel with continuous flow, wherein each unit is hydraulically connected to a source of waste water and a source of demineralized and/or purified water, in particular wherein each first chamber comprises an inlet portion, hydraulically connected to the source of waste water, for introduction into the first chamber of waste water, while each second chamber comprises an inlet portion, hydraulically connected to the source of demineralized and/or purified water, for introduction into the second chamber
Resumen de: US2025109345A1
The fuel production system includes a CH4 recoverer, an electrolyzer, a liquid fuel producer, a steam reformer that performs steam reforming of the methane and produces hydrogen, and a controller. The controller includes: a heat amount determiner that determines whether or not an amount of heat required to increase a temperature in the gasification furnace to a temperature required to gasify the biomass feedstock is less than a predetermined threshold; a H2 production rate determiner that determines whether or not a production rate of hydrogen produced by the electrolyzer is equal to or greater than a predetermined threshold; and a steam reforming controller that controls the steam reformer to perform the steam reforming, and introduces the hydrogen produced, into the gasification furnace, in a case where the heat amount determiner determines that the required amount of heat for the gasification furnace is less than the predetermined threshold, and the H2 production rate determiner determines that the production rate of hydrogen is less than the predetermined threshold.
Resumen de: US2025109516A1
Methods and systems for producing iron from an iron-containing ore and removing impurities found in the iron-containing ore are disclosed. For example, a method for producing iron comprises providing a feedstock having an iron-containing ore and one or more impurities to a dissolution subsystem comprising a first electrochemical cell; producing an iron-rich solution, in the dissolution subsystem; treating the iron-rich solution to remove at least a portion of one or more impurities by raising a pH of the iron-rich solution from an initial pH to an adjusted pH thereby precipitating at least a portion of the one or more impurities in the treated iron-rich solution; delivering the treated iron-rich solution to an iron-plating subsystem having a second electrochemical cell; second electrochemically reducing at least a first portion of the transferred formed Fe2+ ions to Fe metal; and removing the Fe metal from the second electrochemical cell thereby producing iron.
Resumen de: US2025109506A1
A system for generating hydrogen includes a chamber configured to receive a fluid, and a first end plate and a second end plate configured to be positioned within the chamber and defining a longitudinal axis between first end plates. The system further includes a plurality of plates positioned between the first end plate and the second end plate, configured to be submerged in the fluid, and including: a cathode plate, an anode plate, and a semi-permeable membrane plate positioned between the cathode plate and the anode plate and configured to allow the passage of some elements therethrough and to block the passage of other elements therethrough. The system further includes at least one plasma source configured to be positioned within the fluid on an axial end of the plurality of plates and configured to generate a directed flow of plasma through the chamber along the axis.
Resumen de: US2025109513A1
Provided herein are systems and methods for electrochemical COx reduction and hydrogen oxidation reactions to promote the reduction of carbon oxides (COx). Embodiments of the systems and methods may be used to produce carbon monoxide (CO) and water. In various embodiments, a reaction between carbon dioxide (CO2) and hydrogen gas (H2) occurs at the anode of a CO2 reduction electrolyzer, promoting the production of reduction products (e.g., CO). In some embodiments, the methods may utilize a feed stream of H2 gas from various sources. In some embodiments, a water electrolyzer upstream of the COx reduction electrolyzer is a source of H2 gas. In some embodiments, the systems and methods include downstream integration processes and related apparatus. In some embodiments, the downstream integration processes include Fischer-Tropsch processes.
Resumen de: KR20250045741A
본 발명은 물의 전기분해작동으로 미세한 기포상태로 생성되는 가연성 가스인 수소와 산소를 발생하여 소·중형 자동차의 엔진, 선박용 엔진, 산업용 중장비의 엔진, 산업용 보일러 및 가정용 보일러의 연소실 등에 공급하기 위한 수산소발생기에 관한 것이다. 본 발명에 따른 수산소발생기는 상면이 개방되도록 수용부가 구비되고, 일면에 투시창이 형성되며, 상기 수용부를 개폐 가능하도록 캡이 착탈 가능하게 설치된 케이스; 투명재질로 이루어진 통체와, 상기 통체의 하단을 밀폐하도록 설치되는 하부 덮개와, 상기 통체의 상단을 밀폐하도록 설치되는 상부덮개와, 상기 상부덮개 일측에 형성되는 물 주입구와, 상기 물 주입구 일측에 설치되는 수산소배출구로 이루어지며 물이 담기는 수조; 상기 수조의 통체 내부에 위치하며 외부로부터 공급되는 전원에 의해 물을 전기분해하여 수소(H2)와 산소(O2)를 발생하는 복 수의 음·양극판이 간격을 두고 조립된 수산소발생셀; 상기 하부덮개 일측에 수직으로 설치되는 막대형 기판과, 상기 기판 상단에 형성되고, 전류의 흐름을 측정하여 수위를 측정하는 센싱부와, 상기 수조에 담긴 물의 수위가 낮아져 전류 흐름이 차단될 때 발광하는 경고등으로 구성된 수위센서; 상기 하부덮개 �
Resumen de: EP4529991A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: EP4530376A1
The invention relates to a modular electrolysis system comprising mulitple modules, wherein each of the mulitple modules comprises a support frame and at least one interface accessible from outside the support frame and configured to connect the module with at least one of the remaining modules, the mulitple modules comprising a water-gas coarse separation module downstream an anode outlet of the electrolysis cell module, and a water-gas fine separation module downstream a liquid outlet of the water-gas coarse separation module.
Resumen de: WO2023227568A2
The invention relates to a module (1) in the form of a float for producing hydrogen and a system (34) having a plurality of modules (1) of this type. The module (1) has a buoyant support structure (2), which, in the floating state, provides a buoyancy force and to which at least an electrolyzer (3), a solar cell (4), a water supply system (5), at least one system element (6) for storing, forwarding and/or processing hydrogen, and at least one interface element (7) are fastened, each at least indirectly. A module (1) of this type can be connected, by means of the at least one interface element (6), to a plurality of modules (1) to form a large system for producing, storing, processing and/or transferring hydrogen.
Resumen de: WO2025062828A1
Problem To provide: a catalyst having excellent hydrogen generation efficiency and a method for producing the same; a hydrogen generator comprising the catalyst; and a fuel cell system comprising the hydrogen generator. Solution According to an aspect of the present invention, provided is a catalyst for use in generating hydrogen from a borohydride salt. The catalyst comprises: a core that has interlayer anions and interlayer water molecules and that includes, as the main component, a layered double hydroxide containing iron; and a tripod ligand that is coordinated on the surface of the core in a state of having three hydrophilic groups located on the core side.
Resumen de: KR20250045616A
본 발명은 막걸리를 활용하여 바이오수소를 생산하는 장치에 관한 것이다. 본 발명의 일 측면인 장치는, 버려지는 폐막걸리로부터 고부가가치 자원인 수소를 생산할 수 있어 경제적이다. 또한, 본 발명의 장치는 막걸리의 화학적 성분을 고려하여, 수소를 효율적으로 생산할 수 있다. 또한, 본 발명의 장치는 중간 산물로부터 유래한 에너지를 수소 생산에 활용함으로써, 진정한 탄소중립을 실현할 수 있다.
Resumen de: EP4530378A1
Disclosed in the present invention are a hydrogen production system, and a thermal management method and apparatus therefor. The hydrogen production system comprises: at least two electrolytic cells; and a post-treatment device, the at least two electrolytic cells sharing the post-treatment device, and the post-treatment device comprising first electrolyte inflow branch pipes and second electrolyte inflow branch pipes, wherein the first electrolyte inflow branch pipes share one set of cooling apparatus and are used for guiding a cold electrolyte into a corresponding electrolytic cell, and the second electrolyte inflow branch pipes are bypass branch pipes of the cooling apparatus and are used for guiding a hot electrolyte into a corresponding electrolytic cell. Compared with the prior art, embodiments of the present invention implement accurate control on the temperature of each electrolytic cell and improve system efficiency.
Resumen de: CN119736641A
本发明涉及一种提高碱性电解水反应效率的方法,在碱性电解水反应体系中加入缓冲剂以维持电极表面局部pH稳定,从而降低过电势,所述缓冲剂构成缓冲体系,所述缓冲体系由K3PO4、K2HPO4、Na2SiO3、有机胺类缓冲剂中的一种或多种化学物质组成。与现有技术相比,本发明通过在碱性电解水反应体系中加入缓冲剂,以维持电极表面局部pH稳定,从而降低过电势、提高电解效率的方法。本发明的缓冲体系由多种化学物质构成,可单独使用或按比例组合使用,以适应不同的碱性电解条件和电解工艺需求。
Resumen de: CN119736575A
本发明公开了一种薄板钛合金耐磨渗氢层的制备方法,包括:步骤1,阴极和阳极表面处理,将钛合金和另一种比钛合金电势低的金属的表面磨光,然后进行抛光;步骤2,将NaCl溶液放入制氢容器中,制氢容器所用材料避免和氢原子发生化学反应;步骤3,自发渗氢制备渗氢层,将比钛合金电势低的金属作为阳极,钛合金作为阴极,用导线将阴极和阳极连接,并将阴极和阳极置于NaCl溶液中,电流大小控制在5‑100mA,渗氢温度25‑100℃,渗氢时间为10h‑60h,在钛合金表面制备得到渗氢层;该渗氢层可提高钛合金硬度,并改善钛合金耐磨性能。
Resumen de: CN119736652A
本申请属于电催化材料技术领域,具体涉及一种杂原子掺杂镍基合金/碳化木杂化电极及其制备方法与应用,所述杂化电极包括碳化木基底以及所述碳化木基底上负载的纳米片阵列,所述碳化木基底具有三维分层多孔结构,所述纳米片阵列负载于所述碳化木基底的孔道上,所述纳米片阵列为镍钌双金属氢氧化物,所述三维分层多孔结构包括小孔道和大孔道,所述的小孔道的直径为5‑20µm,所述大孔道的直径为50‑100µm;具有优异的析氢性能、较低的过电势和析氢活性,还能够具有较好的催化5‑HMF氧化的活性。
Resumen de: CN119733315A
本发明公开了一种电解制氢装置气液分离系统的气液分离方法,所述气液分离系统包括气液分离罐、气体冷却器、气水分离器、氧水分离器和氢水分离器;所述气液分离方法如下:气液混合物在气液分离罐中经过初步除水后进入气体冷却器,从下至上先经过冷却,然后流入小型气水分离器进行分离,分离后的液体从气体冷却器下面的冷凝液出口流出,而气体则从气体冷却器上面的气体出口流出;并根据分离气体的类型进入相应的氧水分离器或氢水分离器进行进一步处理。本发明实现了气液分离系统设备的紧凑化设置,降低了设备成本,并提高了气液分离系统的工作可靠性。
Resumen de: CN119735236A
本发明公开了一种缺位杂多酸及其制备方法与在电解耦合制氢中的应用,属于催化剂技术领域。其制备方法为:以磷钼酸为原料,通过调节pH为2‑6或加入高浓度酸酸化、加热的方式制备缺位杂多酸;所述高浓度酸为0.1‑6 M磷酸、或0.1‑3 M磷酸与0.1‑6 M硫酸或0.1‑1 M高氯酸的混合酸。本发明制备的缺位磷钼杂多酸氧化生物质和有机废水的速率是完整Keggin型磷钼酸的10‑20倍。本发明还提供了一种有机废水降解及电解制氢耦合工艺,能够将缺位杂多酸再生循环利用,且能耦合制氢。
Resumen de: CN119737611A
本发明公开了水蒸气高温催化光解氢氧大比例替能系统及方法,包括蒸汽发生系统、换热系统、喷射系统和光解室,所述光解室尾部产生的热量代替蒸汽发生系统的能源,所述蒸汽发生系统、换热系统、喷射系统和光解室之间通过管道连接。本发明应用氢氧洁净燃烧替代了50%的石化等燃料,大大减少了有害物质的排放,大范围应用将为“双碳目标”实现做出重大贡献,克服了现有燃烧技术排放、环保超标问题;用氢氧燃烧产生的热能替代了原有的化石能源50%左右,直接减少二氧化碳排放50%以上,减少氮氧化物60%以上,大大降低了燃烧对环境污染的压力。
Resumen de: CN119736664A
本发明属于材料技术领域,涉及一种析氢反应用中高熵金属碳化物材料及其制备方法,该中高熵金属碳化物材料包括碳载体和负载在碳载体上的中高熵金属碳化物,中高熵金属碳化物中的金属包括贵金属A和过渡金属B;按所述中高熵金属碳化物材料的总重计,金属的质量百分含量为0.1%~70%。该中高熵金属碳化物材料的制备过程包括:将金属前驱体和含碳前驱体混合均匀后经高温焙烧过程,然后冷却至室温得到中高熵金属碳化物材料。与现有技术相比,本发明通过中高熵金属碳化物中多种金属成分有效地调节微观结构和电子分布,以优化氢中间体和活性位点之间的吸附能,从而提升析氢反应催化活性,改善过渡金属碳化物存在的易氧化问题。
Resumen de: US2020248323A1
A method of producing an electrocatalyst, comprising the steps of: a) electrodeposition or electrochemical plating of an alloy comprising nickel and a second metal on a copper, nickel or other metal substrate; and b) electrochemical or chemical dissolution of deposited second metal to obtain a nanoporous structure on the copper, nickel or other metal substrate.
Resumen de: CN119736653A
本发明公开了一种碱性纯水电解析氧反应电极材料及其合成方法和应用,首先将镍基底进行预处理,处理后的镍基底置于真空干燥箱中;将含有Sn4+的金属盐溶于去离子水中,搅拌至完全溶解得到前驱体溶液;将镍基底完全浸没在配制的前驱体溶液中静置,静置后取出镍电极经干燥后即可得到碱性纯水电解析氧反应的电极材料,该材电极料具有均匀且致密的二维纳米片状阵列结构,利用本发明方法合成的电极材料对对碱性模拟海水电解析氧反应具有良好的催化效果,在1M KOH介质中,10 mA cm‑2电流密度下过电势仅需300~330 mV,在1M KOH介质中,500 mA cm‑2电流密度下的稳定性可长达24h,没有出现失活。
Resumen de: CN119742991A
本发明涉及制氢能源技术领域,具体公开了一种基于IGBT技术的电解水制氢电源装置,包括用于交流功率输入变换为直流功率输出的并机电源机构与电源箱体,所述并机电源机构均匀排列安装在电源箱体的内部,所述并机电源机构包括整流模块、降压模块、控制模块、保护模块和滤波模块,所述电源箱体包括顶箱、侧板、门体、底箱和背板。本发明通过设置的阻隔机构、散热机构和降尘机构相互配合,能在对电源箱体内部散热降温的过程中,降尘组件可对经过的气流进行间歇性吸尘,且配合散热降温时带动降尘组件持续震颤,从而将吸附的灰尘进行导向排出,这不仅提升了系统的清洁度,还优化了散热效果,从而提高了制氢电源装置的整体运行效率。
Resumen de: CN119736647A
本发明提供了一种电解器以及电化学介导胺再生碳捕集装置,该电解器包括:第一电极板和第二电极板均具有贯穿设置的多孔区;第一端板设置在第一电极板的背离阴离子交换膜的一侧,第一端板设置有第一电解槽,第一电解槽与多孔区相对应,第一端板具有第一接电部;第二端板设置在第二电极板的背离阴离子交换膜的一侧并与第一端板连接,第二端板设置有第二电解槽,第二电解槽与多孔区相对应,第二端板具有第二接电部;第一出口与气液分离罐的分离进口相连通,气液分离罐的液体出口与第二进口相连通。通过本申请提供的技术方案,能够解决相关技术中的利用电化学介导胺再生的方法进行二氧化碳解吸的效率低和能耗高的问题。
Resumen de: CN119736654A
本发明涉及一种用于阴离子交换膜水电解制氢的气体扩散阴极及其制备方法。该气体扩散阴极由憎水化的导电基底如碳纸或碳布等以及催化层构成,催化层以镍镍基非贵金属粉末及合金或它们的衍生物中的至少一种等作为催化活性组分,以碳粉、碳纳米管、碳纳米纤维、石墨烯、纳米石墨粉等中的一种或多种为导电剂、以聚四氟乙烯、聚偏氟乙烯或全氟磺酸树脂作为粘结剂,从而构成气体扩散阴极。提出的用于阴离子交换膜水电解制氢的气体扩散阴极,以多孔复合结构导电基底沉积镍基非贵金属活性组分,制备工艺简单且可以得到催化剂均匀的电极,与同类技术相比具有催化剂利用率高,电流密度高的明显优势,应用于各类水电解电化学还原反应器或电解池中作为阴极。
Resumen de: CN119736667A
本发明涉及光阳极技术领域,具体涉及一种BVO/CoPc+BN复合光阳极的制备方法和在光电化学分解水中的应用。BVO/CoPc+BN复合光阳极,制备方法如下:将氮化硼BN和酞菁钴CoPc混合后加入乙腈,超声,搅拌,离心,倒掉上清液,将离心所得产物放入坩埚中,进行煅烧,研磨后得到CoPc+BN复合材料;在CoPc+BN复合材料中加入N,N‑二甲基甲酰胺,超声,加入去离子水,继续超声至没有产生沉淀物,再加入BVO,进行水热反应,反应结束后洗涤,干燥,得到BVO/CoPc+BN复合光阳极。BVO/CoPc+BN复合光阳极展现出优异的光电流密度,达到了5.04mA·cm‑2。
Resumen de: CN119737269A
一种海上浮式风电制氢加注站,属于海洋新能源技术领域。加注站由浮式风电制氢平台、回注管道、海底抗压储氢罐、外输管道组成;风电制氢平台由浮式基础、风电模块、海水淡化与电解水模块、氢气加压回注模块等组成,浮式基础上的风电模块对海水淡化与电解水模块和氢气加压回注模块进行供电:海水淡化与电解水模块电解水的氢气输送至氢气加压回注模块进行加压,再输送至回注管道中到达海底抗压储氢罐,作业时通过海底抗压储氢罐顶部外输管道与运输船连通。该装置应用于水深范围在0‑200m的海洋区域,抗压罐体可经受2mpa水压,采用张紧型系泊系统进行定位。本发明具备独立的海洋风能获取和氢气加注功能,有利于隔绝氧气安全作业,且无需设置氢气液化装置。
Resumen de: CN119738315A
本发明公开了一种电解槽的气体传输性能测试方法、系统、装置和介质,涉及电解水制氢技术领域。控制电解槽在高电流条件下进行电解水反应,并从电解槽的排气管路采集目标气体的第一流动数据;当电解槽在高电流条件下稳定运行预设时长后,控制电解槽在低电流条件下进行电解水反应,并从电解槽的排气管路采集目标气体的第二流动数据;在电解槽的内部结构中,不同电流条件进行电解水反应时排出目标气体的流动数据不同;根据第一流动数据和第二流动数据之间的差异,确定电解槽的气体传输性能。该方法能够准确测试电解槽的气体传输性能。
Resumen de: CN119733503A
本发明属于光催化技术领域,具体涉及一种纳米介孔Ir/TiO2晶体、制备方法及其应用。本发明首先通过热溶剂法制备前驱体Ir/K2Ti8O17,然后利用甲酸刻蚀前驱体形成纳米介孔Ir/TiO2晶体,其中Ir纳米颗粒均匀分布,尺寸为1‑3nm,且晶体表面具有丰富的(101)高活性晶面和氧空位缺陷。该晶体通过局域等离子体共振效应显著增强光吸收范围至近红外区域,同时介孔结构提供了较大的比表面积和优异的反应物扩散能力。相较于传统TiO2催化剂,本发明的纳米介孔Ir/TiO2晶体在光催化海水制氢中展现出优异的抗腐蚀性能和高效的光催化活性。该方法简便高效,Ir金属利用率高,解决了贵金属分散性差、易团聚等问题,可广泛应用于光催化制氢领域,对推动绿色能源技术发展具有重要意义。
Resumen de: CN119733569A
本发明属于催化剂技术领域,具体涉及碳纳米管负载的镍铁植酸盐OER催化剂及其制备方法,将可溶性镍盐和可溶性铁盐溶于水中,获得混合盐溶液,在搅拌的条件下将所述混合盐溶液与碳纳米管的水分散液混合均匀,获得混合液;将植酸钠盐溶于水中,加入到所述混合液中,室温下搅拌络合,络合过程中生成的镍铁植酸盐纳米颗粒负载于碳纳米管上,得到碳纳米管负载的镍铁植酸盐纳米材料。本发明制备方法采用简便的室温一步共沉淀法,无须特殊的设备,成本低,可规模化扩展,可重复性高,具有广阔的工业应用化前景。
Resumen de: CN119736656A
本申请提供一种碱性电解水制氢电极及其制备方法和应用,涉及新能源技术领域。本申请的碱性电解水制氢电极包括依次层叠设置的支撑层、扩散层和催化剂层,扩散层具有从靠近支撑层的一面到靠近催化剂层的一面贯通的通孔,通孔为微孔,扩散层经亲水疏气处理。通过扩散层的气液分离设计,显著减少气泡滞留和浓差极化现象;通过通孔设计,优化气泡排出路径,减少隔膜附近气体的渗漏,降低氢中氧和氧中氢指标;支撑层和扩散层共同保护催化剂层,避免机械振动和长期运行造成的损坏,电极寿命延长至50000小时以上;模块化设计适用于现有电解槽设备,无需额外改造即可替换,具有良好的工业应用价值。
Resumen de: CN119736648A
本发明属于氢气制造的技术领域,涉及一种用于氢气制造的发生器,包括有制造箱体、摆动板、电解罐、连通管、隔膜、氧气排出管和氢气排出管,所述制造箱体上转动连接有摆动板,所述制造箱体两侧均连接有电解罐,两个电解罐内下侧之间连通有连通管,所述连通管内安装有两层隔膜,其中一个电解罐顶部连通有氧气排出管,所述氧气排出管穿出制造箱体,另一个电解罐顶部两侧均连通有氢气排出管。本发明在对溶液进行电解的过程中,电解罐内的溶液逐渐减少,当溶液减少至一定数量后,则能够通过漂浮块与启动按钮接触,从而使得水泵启动将溶液注入电解罐内,以实现自动补充电解液的作用,操作时更加方便。
Resumen de: CN119733354A
本发明公开了一种水电解制氢纯化缸、工艺系统及方法,干燥塔设备的第一加热棒外围管由干燥塔壳体的顶端同轴穿入其内部并伸入其内底部,第一加热棒外围管下端为敞口,上端伸出干燥塔壳体端设有加热器安装法兰,第一加热器由加热器安装法兰向下插入安装在第一加热棒外围管内;第一加热棒外围管伸出干燥塔壳体外处设有第一氢气进口,干燥塔壳体的顶部侧壁设有氢气出口,第一加热棒外围管与干燥塔壳体之间形成填充干燥剂的环形腔。将脱氧和干燥两个步骤集成在一个纯化缸内,结构紧凑、占地面积小。现有技术中干燥塔内易形成温度梯度,造成上下温差大;本装置中通过内置的加热器结构可以使干燥塔内部上下温差更加均匀,并且温度控制更加精确、快速。
Resumen de: CN119737464A
本发明公开了一种电解槽检修安全控制阀及系统,属于电解槽技术领域,其包括多个隔板间隔固定于阀体的内部,并将阀体的内部分隔为多个相对独立的腔室,隔板上均开设有通孔;阀杆上设置有多个阀芯,多个阀芯与多个通孔一一对应设置,通过阀芯与通孔的靠近和远离,以实现控制阀门的关闭与开启;驱动机构设置于阀体的上部,用于驱动阀杆的上升和下降。本发明电解槽检修安全控制阀多个电解槽中的其中一个电解槽需要检修时,外部气源向其相应的进气管稳定供气,使膜片产生推力,使传动片向下移动,带动阀杆向下移动,使回力弹簧压缩,第一阀芯与第一通孔闭合,第二阀芯与第二通孔闭合,将流体截断,实现快速关闭,通过两层密封,提高阀门的密封性。
Resumen de: CN119733462A
本发明公开了一种用于光催化产氢的装置,具体涉及光催化氢气技术领域,包括底座,底座上设置有催化组件,催化组件包括通过螺栓安装在底座上的存液桶,存液桶的顶部螺纹连接有用于聚气的聚气罩,存液桶的中部设置有用于透光的透明罩。本发明通过氢气向上飘散经聚气罩和支撑弧托罩聚拢后通过导流阀门排出存储,通过滤水芯布底部的电极板,通电可以提供电场力,促使离子在溶液中定向移动,电场力可以帮助分离氢离子和氧离子,防止它们重新结合,通过电场作用促进电子和空穴的分离和迁移,提高光催化产氢的效率,易于水滴在第一加强光照催化灯和第二加强光照催化灯光照条件下可以被光催化并发生分解反应,提高装置的催化产氢效率和效果。
Resumen de: CN119735167A
本发明的一种立方相镧系金属三氢化物的高温高压合成方法属于镧系金属氢化物制备的技术领域。以镧系金属二氢化物粉末和氨硼烷固体氢源作为起始原料,在5GPa压力及1200~1300℃温度条件下保温保压60分钟,从而成功制得面心立方相镧系金属三氢化物。本发明利用了高温高压合成方法,实现了面心立方相镧系金属三氢化物块体材料的制备,提供了该类高压相镧系金属三氢化物截获至常压的关键技术条件。该方法对于进一步开发金属氢化物高压相的常压制备具有重要的科学意义和应用前景。
Resumen de: CN119735233A
本发明提供了一种硫缺陷CdS量子点及其制备方法与应用,所述硫缺陷CdS量子点的制备方法包括混合硫源与Cd前体溶液,得到混合溶液;在惰性气氛下,加热所述混合溶液至100℃‑180℃,并恒温反应0.5h‑3h,以2.5℃/min‑5.5℃/min的冷却速率降温至20℃‑30℃,过滤,得到所述硫缺陷CdS量子点;所述Cd前体溶液的pH≥10。本发明提供的制备方法工艺简单,且无需贵金属催化,即可得到具有高催化活性的硫缺陷CdS量子点,对塑料具有优异的光重整性能和析氢活性。
Resumen de: CN119736665A
本发明提供了一种多金属基氧化物电催化剂及其制备方法和应用,涉及电催化技术领域。该方法为:将金属盐、溶剂混合均匀,向混合溶液中加入含有特定官能团的有机配体,并搅拌均匀,依次进行离心、冻干,将冻干样品置于保护气氛下进行煅烧,然后将煅烧之后的样品进行球磨,得到多金属基氧化物电催化剂。本发明所制得的催化剂具有良好的导电性、多样的催化活性位点、丰富的多级结构以及孔径分布,此外采用温度调节催化剂的晶体结构分布,使其形成了具有最优OER催化活性的异质结构,进而表现出相较于商业催化剂IrO2更为优异的析氧活性以及稳定性,作为高活性、强稳定性的电解水析氧电极,具有广阔的工业应用前景。
Resumen de: CN119733536A
本发明提供了一种镍钴磷化物基异质结构的制备及应用,属于制氢技术领域。该催化剂的制备方法包括如下步骤:将泡沫镍置于钴沉积液中进行恒电位沉积,冲洗干净,得到自支撑CoOOH/NF纳米片前驱体;然后,将所述自支撑CoOOH/NF纳米片前驱体与次磷酸钠置于同一容器中,以1~10℃/min的升温速率加热管式炉至200~400℃,进行磷化处理,待冷却至室温后,得到自支撑NixP‑CoxP/NF异质结构纳米片催化剂。本发明的制备方法不但反应条件温和,而且设备简单,操作方便,易于大规模生产。所制备的催化剂成本低廉,在工业级电流密度下具有出色的活性、耐久性和动力学性能,适用于尿素/肼辅助电解水制氢反应。
Resumen de: CN119733542A
本发明属于光催化材料领域,特别涉及一种BN/CdS光催化剂及其制备方法和在光催化产氢气方面的应用。BN/CdS光催化剂的制备方法如下:将镉源,硫源以及氮化硼加入到烧杯中,向其中加入乙二胺,剧烈搅拌充分混合得到悬浊液;将悬浊液转移到反应釜中进行水热反应,之后冷却至室温,而后将得到的悬浊液离心,洗涤,干燥,最后得到的粉末即为复合光催化剂料。本发明制备的BN/CdS光催化剂在光催化产氢反应中具有提升的催化性能。在所给定的反应体系中,氙灯的照射下,连续光照,氢气生成速率达到了264μmol/g/h,比纯的CdS催化剂提升了3.3倍。
Resumen de: CN119733531A
本发明属于光催化纳米复合材料技术领域,特别涉及一种硫化铟锌基复合催化剂及其制备方法和在光催化产氢气中的应用。制备方法包括如下步骤,将锌源,铟源以及硫源这三者的混合物加入到烧杯中,在向其中加入水,搅拌使混合均匀;将混合物进行水热反应,洗涤,干燥得到基底催化剂;在基底催化剂中加入金源,升温到指定温度,加入柠檬酸钠溶液保温,冷却降温,将得到的悬浊液离心,洗涤,最后干燥得到硫化铟锌基复合催化剂。本发明的制备方法操作简单、无危险性;得到的复合催化剂在光催化产氢气的反应中表现出了优异的催化效果。在氙灯的照射下,在反应介质水溶液中,该复合催化剂的氢气生成速率达到了4233.5μmol/g/h。
Resumen de: WO2025071010A1
A method for manufacturing a catalyst structure according to the present invention comprises the steps of: preparing a rhenium (Re) precursor, a first doping metal precursor, a second doping metal precursor, and a solvent; manufacturing a base source by providing the rhenium precursor, the first doping metal precursor, and the second doping metal precursor to the solvent and mixing same; manufacturing a preliminary catalyst structure by synthesizing the base source by a solvothermal synthesis process; and heat-treating the preliminary catalyst structure in a reducing atmosphere to manufacture a catalyst structure comprising rhenium, a first doping metal, a second doping metal, and carbon.
Resumen de: CN119733508A
本发明涉及催化剂技术领域,具体涉及一种钌/纳米二氧化铈基异质结催化剂、其制备方法及应用,其特征在于,包括下列步骤:(1)通过共沉淀法将铈盐沉淀在金属氧化物基底上,老化、焙烧处理得到纳米二氧化铈异质结载体;(2)将所述纳米二氧化铈异质结载体与钌源混合,经紫外灯光还原处理后,得到所述钌/纳米二氧化铈基异质结催化剂。本发明制备的钌/纳米二氧化铈基异质结催化剂能在500℃下催化氨气分解制备氢气,并且氨气转化率可达到99.7%。
Resumen de: CN119736645A
本申请涉及质子交换膜电解水制氢技术领域,具体公开了一种质子交换膜电解水催化剂涂覆质子膜及其制备方法和膜电极,所述质子交换膜电解水催化剂涂覆质子膜包括质子交换膜、位于质子交换膜两侧的阳、阴极催化层;所述阳极催化层包括离子聚合物树脂、阳极催化剂和消氢添加剂;所述消氢添加剂的添加量为阳极催化剂质量的1%~10%。本申请在阳极催化层中添加一定量的消氢添加剂,优化了阳极催化层的结构,可以显著降低氢渗;并且,采用上述添加量的消氢添加剂制备质子交换膜电解水催化剂涂覆质子膜,相比广泛使用的铂基消氢催化剂,具有更低的成本,在提高电解槽运行安全性的同时,降低了质子交换膜电解水催化剂涂覆质子膜的制备成本。
Resumen de: CN119735768A
本发明属于电解水用阴离子交换膜技术领域,具体涉及一种交联型聚(联苯‑哌啶)阴离子交换膜及其制备方法与应用。所述交联型聚(联苯‑哌啶)阴离子交换膜的结构式如式(I)所示;其中,x:y=1~18:99~82,x:z=1~18:99~82;交联型聚(联苯‑哌啶)阴离子交换膜的交联度为1%~18%。本发明通过在功能化聚(联苯‑哌啶)阴离子交换膜内部引入交联结构,在能够保证其电解水性能的同时,有效降低吸水率和溶胀度,从而显著提升阴离子交换膜的机械强度,延长其在设备中的使用寿命。#imgabs0#
Resumen de: KR20250043804A
본 발명은 금속 발포체; 및 금속 발포체 상에 형성된 복합 전이금속 칼코게나이드 헤테로구조를 포함하는 수전해용 촉매 전극을 개시한다. 본 수전해용 촉매 전극은 물 전기분해 반응에서 수소 진화 반응(HER)과 산소 진화 반응(OER) 모두에서 향상된 전기화학적 촉매 활성을 나타낼 수 있고, 기존의 귀금속 전극보다 낮은 에너지 공급으로 효율적으로 수소를 생산할 수 있으며, 음이온 교환막 수전해기와 태양전지-물 전기분해 시스템 모두에서 사용할 수 있다.
Resumen de: KR20250043971A
수소생산 및 폐열회수시스템 및 이를 포함하는 부유식 구조물이 개시된다. 본 발명에 따른 수소생산 및 폐열회수시스템 및 이를 포함하는 부유식 구조물에 의하면, 수소 생산 시스템에서 버려지는 폐열을 활용하여 담수를 생산에 투입되는 에너지 비용을 절감할 수 있고, 점차적으로 증가하는 수소 생산 용량에 맞추어 에너지 효율을 높이고 수소 생산 비용을 낮출 수 있으며, 조수기 등 담수화 장치에 적용되는 장비들의 사이즈를 줄임으로써 장치의 소형화를 달성할 수 있다. 또한, 높은 순도의 담수를 활용하여 수소를 생산함으로써 시스템의 안정성을 확보하고 생산공정의 효율성을 높일 수 있다.
Resumen de: CN119710756A
本发明公开一种电催化分解体液原位生成氢气和氧气的微反应器,包括外壳和电催化反应模块,电催化反应模块封装在外壳内,电催化反应模块包括电源、控制电路和电解池,电解池中部设有离子交换膜或盐桥,离子交换膜或盐桥将电解池分为阴极反应池和阳极反应池,阴极反应池和阳极反应池内分别设有电极,电极电性连接控制电路;电解池一侧设有液体收集装置,液体收集装置贯穿外壳并向外延伸;电解池外周设有气体扩散通道,气体扩散通道贯穿外壳,气体扩散通道收集并释放电极生成的气体。本发明通过电催化分解体液产生氢气和氧气,直接作用在目标部位原位,实现快速、便捷、可控、低成本的局部生成治疗性氢气和氧气。
Resumen de: CN119710795A
本发明公开了一种含有稀土金属元素的碱性电解水制氢催化剂的制备方法,包括对电极基底的打磨预处理、合金粉末的配置、合金粉末沉积在电极基底表面等步骤。通过上述方式,本发明含有稀土金属元素的碱性电解水制氢催化剂的制备方法,通过添加稀土金属元素La,可以增强催化剂的反应活性和稳定性,并通过等离子喷涂技术制备具有高比表面积的多元催化剂结构,不仅可以提高催化剂的电解水制氢性能,而且提高了催化剂制备的效率,绿色环保、成本低。
Resumen de: CN119710820A
本发明提供了一种碱水析氢镍基电极的制备方法,包括:第一步:将含Pt、Ru、Sn、Ni的混合金属氧化物加入到有机醇溶液中,其中Pt:Ru:Sn:Ni的原子比为(0.5~1):(0.1~0.3):(0.1~0.3):(0.02~0.1),且上述混合金属氧化物中铂元素的质量相对于铂元素和钌元素的质量之和的占比在40%以上、90%以下;第二步:将第一产生的混合溶液在30℃‑70℃下加热,并搅拌保持1‑8h,进而获得黑色的质量浓度为3%~10%的铂钌锡镍溶液;第三步:将第二步产生的铂钌锡镍溶液涂敷在含镍的基材上,在含氧的氛围中,加热至400~600℃进行热处理0.2~1小时;通过在铂钌中掺杂镍及锡可以降低电解槽电压和能耗,使电极的使用寿命显著增加。
Resumen de: CN119701784A
本发明涉及一种小型氢气发生装置及其电池系统,属于氢气发生装置领域,所述装置包括;反应室、氢化锂安置盘及氢化锂压块;所述反应室用于容纳水和氢化锂,并设有用于氢化锂压块投入的通孔,反应室设置有进出水堵头和出气宝塔接头,所述反应室通过密封圈和螺丝与上盖密封连接;所述氢化锂安置盘由上安置盘、下安置盘及夹在两者之间的PVC泡罩壳组成,所述氢化锂安置盘通过步进电机驱动旋转,使氢化锂压块移动到下压块位置。采用封闭反应室和铝箔密封的氢化锂压块,有效防止氢气泄漏,提高安全性;步进电机驱动自动化控制,实现按需制氢,操作简便高效。
Resumen de: CN119707042A
本发明提供了一种低频水素机及其智能控制方法,包括:检测低频水素机水箱电解水温度及加热器水温度,检测低频水素机电解环境温度及低频水素机电解电极温度;检测水箱储水杂质含量及水电解电阻率,并跟踪分析水电解过程电阻率变化趋势,检测电解富氢水氢元素含量;根据电解环境温度,控制水箱电解水温度适应低频电解过程,并使加热器水温度快速达到出水设定水温;通过感应触控双击解锁操作,进行童锁感应智能控制;调节加热器功率及水箱电解水温度;调节电解富氢水氢元素含量,降低电解耗电量;进行电解过程加速电解电极调节,控制电解功率及低频制备频率。
Resumen de: CN119706942A
本发明公开一种可设计维度的二硫化钼/二氧化钼异质结的制备方法及应用。本发明采用一步法两阶段的化学气相沉积策略,实现了二硫化钼/二氧化钼异质结的高度、可控合成。与传统的两步化学气相沉积或者机械剥离法相比,本发明无需引入额外步骤,即可实现晶圆级、高质量二硫化钼/二氧化钼异质结的制备。通过调控金属源前驱体的浓度,可精确调控出不同形貌的二硫化钼/二氧化钼异质结,从而实现具有不同维度的二硫化钼/二氧化钼异质结的制备,满足多元化应用场景对异质结功能化的需求。此外,实验结果表明,所制备的异质结在电催化领域展现出优异的电催化性能,为高性能电催化剂的设计提供了重要的实验依据和理论基础。
Resumen de: CN119710786A
一种基于碳氮化钨基底的共格异质结构催化剂材料及其制备方法,属于催化剂领域。制备含铂和掺杂金属盐的溶液即A溶液;制备含表面活性剂的还原剂溶液即B溶液。将WCN基底片置于B溶液中,将B溶液加热至220~250℃,然后逐步将A溶液滴加至B溶液之中,恒温反应至滴完为止,搅拌冷却至室温,即可在WCN纳米结构上原位生成具有共格异质结构Pt基纳米催化剂颗粒;本发明催化剂与基底材料形成共格界面结构,促进界面电荷分配与转移,进而提升纳米催化剂的活性和稳定性。
Resumen de: CN119710760A
本发明公开了一种钌镍基双功能自支撑电极及其制备方法和应用,包括,以六水合氯化镍、氯化钌、对苯二甲酸及三乙胺盐酸盐为溶质,N‑二甲基甲酰胺为溶剂,配制沉积电解液;将预处理后的泡沫镍浸入电解液中作为工作电极,对电极选用铂网,参比电极采用Ag/AgCl电极,施加‑10mA~‑20mA电流沉积;电沉积后将负载泡沫镍用DMF、超纯水和乙醇洗涤,经真空干燥,制得钌镍基双功能自支撑电极。本发明提供的钌镍基自支撑双功能电催化剂可用作水分解反应,兼具良好HER活性和OER活性,可以在较低过电势下达到很大的析氢、析氧电流密度。
Resumen de: CN119720540A
一种海上风电制氢系统的设计方法,需先确定电解槽数量,电解槽数量由标况电解槽数量、缓存电解槽数量、预留电解槽数量组成,计算得到标况电解槽数量N1、缓存电解槽数量N2、预留电解槽数量N3后,总计需要制氢电解槽数量为N=N1 + N2 + N3。本发明可以在兼顾投资成本和系统功能性的同时保证海上风电制氢系统设计的合理性。
Resumen de: CN119710745A
本发明涉及电解槽技术领域,具体的说是一种优化密封的高压电解槽,包括电解槽缸体,所述电解槽缸体的两端均安装有安装端板,两个所述安装端板的外边缘环形穿插安装有多个紧固螺栓,多个所述紧固螺栓的两端均设置有电机套件,两个所述安装端板相远离一侧均设置有进液管,其中一个所述安装端板的一侧设置有两个气体出口,所述电解槽缸体的内侧设置有多组双极板,有利于优化密封的高压电解槽使用时,能够在高压电解槽在使用中对电解液量的把控,并能够对电解液的浓度调节,防止浓度不均,并能够对电解膜保护,防止电解槽出现气泡堵塞,保障电解效果,提高优化密封的高压电解槽整体的电解效率与使用质量。
Resumen de: MA66601A1
The utility model discloses an automatic nitrogen filling and replacing device for hydrogen production by water electrolysis, which relates to the technical field of hydrogen production by water electrolysis and comprises a nitrogen inlet and a pipeline, wherein the nitrogen inlet is communicated with a check valve through the pipeline, the check valve is communicated with two flowmeters through the pipeline, the pipeline communicated with the check valve and the flowmeters is branched into two paths, the flowmeters are communicated with an electromagnetic valve through the pipeline, the electromagnetic valve is communicated with a pressure reducer through the pipeline, the pressure reducer on the left side is communicated with an oxygen separator through the pipeline, the pressure reducer on the right side is communicated with a hydrogen separator through the pipeline, and alkaline liquid is filled in the lower parts of the insides of the hydrogen separator and the oxygen separator. The device can ensure the replacement speed without deliberately slowing down the nitrogen entering speed by arranging the two pressure reducers, the two electromagnetic valves and the two flowmeters, can remotely and automatically control, does not need field operation, can automatically complete nitrogen filling replacement operation by one key, and improves the automation degree of equipment.
Resumen de: MA65140A1
The invention relates to a method for configuring a plant for the production of green ammonia using renewable energies for the production of hydrogen.
Resumen de: CN119715349A
本发明属于腐蚀电化学测试技术领域,具体涉及一种高强钢氢扩散系数测试装置和方法,装置的主体结构包括电解池及其底部设置的循环水接口、上部设置的铂电极和参比电极、顶部设置的内层盖板和外层盖板、以及内层盖板与外层盖板之间设置的试样,方法的步骤包括安装、充氢和测量,无需预先在高强钢试样表面进行电镀,避免了重金属污染现象,同时电化学充氢结束后,与扫描开尔文探针技术结合,同步开展原位的SKP电位测量,基于测量结果,经过计算分析能够得到原位高强钢的氢扩散系数,为深入研究高强钢在海洋环境中的氢渗透行为和海工领域高强钢材质的选择、使用和维护提供了科学依据,为确保高强钢服役期间的可靠性和安全性提供了数据支撑。
Resumen de: CN119710755A
本发明涉及电解水制氢技术领域,特别是一种便携式电解水制氢测试装置,包括主体组件,电解槽和气液分离器,所述气液分离器与所述电解槽连通,所述气液分离器内部设置有封堵部件和排水部件;本发明通过封堵部件对安装头进行密封,在产气、排水等各阶段有效隔绝氢气,精准控制内部气压,维持良好密封,面对装置晃动等情况也能可靠防泄漏,保障测试数据准确及使用安全,同时排水部件和浮块的设计,当气液分离器内的积水达到一定程度时实现自动排水,排水后部件自动复位,利于装置持续稳定运行,提升了测试装置的性能与安全性,准确的气液分离与良好密封保障后续氢气测量更精准,有助于评估制氢设备性能。
Resumen de: CN119710825A
本申请提供一种设备控制方法、计算机设备、存储介质以及计算机程序产品。该设备控制方法包括:当检测到电解水储存设备中的电解水的当前水位到达预设的保护液位时,获取需要补水至电解水储存设备的补水参数,并获取补水设备的第一出水口的第一水流参数;根据补水参数和第一水流参数,确定需要补水至电解水储存设备的第一补水时长,以根据第一补水时长控制补水设备的第一电磁阀的开通时长。
Resumen de: CN119706991A
本发明公开了一种离心式雾化弥漫生产富氢水的装置,包括外壳,以及设置在所述外壳内部的雾化盘,所述外壳内设置有若干料液壳,所述料液壳上活动连接有若干料液分配管。本发明在使用的过程中,利用了环形设置的各个料液分配管进行供水工作,这样雾化盘在雾化水体的过程中,各个区域的水体是同步雾化,可以避免出现局部水体雾化浓度过高的情况,并且,受压设置的受压壳在承受水压时才会上升,料液分配管的上端部分才会运动至料液壳的外部,料液出口才会进行喷水工作,这样进一步保证各个料液分配管上的料液出口是同步出水,整个环形喷出的水体是同步雾化,保证各个区域水体雾化的浓度,在后期与氢气混合时,也保证了混合浓度的精准性。
Resumen de: CN119710794A
本发明公开了一种镍合金型电解催化剂的超声浸渍制备方法,包括:基底预处理、前驱体制备、催化剂膜制备。通过上述方式,本发明镍合金型电解催化剂的超声浸渍制备方法,可以替换成本高昂的Pt基催化剂,通过两种或多种金属元素的相互作用产生协同效应,提高了合金催化剂在高浓度碱性大电流下的催化性能、稳定性以及耐腐蚀性,有利于HER反应,而且有助于降低对单一贵金属的依赖,能够显著降低催化剂的生产成本,提高资源利用效率、能源效率和环境友好性。
Resumen de: CN119710818A
本发明公开了一种基于金属有机框架的析氧催化剂及其合成方法和应用。本发明公开的析氧催化剂包括金属有机框架和插入到金属有机框架中的孔结构修饰单元,金属有机框架由含二元羧酸的有机配体A与金属源试剂M1组合配位连接形成,孔结构修饰单元由三氮唑有机配体B与金属源试剂M2组合配位连接形成;其中,含二元羧酸的有机配体A为式(Ⅰ)所示化合物中的一种或多种,三氮唑有机配体B为式(Ⅱ)所示化合物中的一种或多种:#imgabs0#
Resumen de: CN119710783A
本发明涉及催化剂技术领域,具体涉及一种硫缺陷异质结二硫化钼及其光照诱导制备方法和应用。本发明提供了一种光照诱导制备硫缺陷异质结二硫化钼的方法,包括:钼源、硫源、去离子水搅拌均匀后,转入内置有碳布的高压反应釜中,水热反应制得均匀生长有MoS2前驱体的碳布;氢气和惰性气体的混合气氛下,对均匀生长有MoS2前驱体的碳布进行氙灯光照处理,得到含硫缺陷的异质结二硫化钼。本发明提出了用氙灯光照替换高温煅烧的方式来制备带S空位的二硫化钼,同时本方法制得的二硫化钼是两种晶型共混的异质结形式,可为后续晶相异质结的研究以及相关硫化物造缺陷的方法提供新的思路。
Resumen de: CN119710823A
本申请公开了一种水电解制氢装备的停机保压控制方法、产品、介质及设备,涉及水电解制氢技术领域,该方法包括:在水电解制氢装备进入停机保压控制后,关闭氢侧气动薄膜阀、氧侧气动薄膜阀以及氧侧出口总阀,打开氢侧出口总阀;控制氢侧气动薄膜阀使水电解制氢装备的氢氧液位差保持平衡;当水电解制氢装备存在漏气情况时,打开氧侧出口总阀;控制氧侧气动薄膜阀调控水电解制氢装备的压力直至小于第一预设保压压力;对水电解制氢装备进行充氮置换直至水电解制氢装备的压力大于第二预设保压压力;关闭氢侧出口总阀和氧侧出口总阀,停止充氮置换。本申请可有效保持水电解制氢装备在停机保压过程中的气体纯度,避免产生资源浪费和安全隐患。
Resumen de: CN119710805A
本申请提供一种多层合金电极及其制备方法和析氢装置,涉及析氢电极领域。该多层合金电极,包括金属基体和依次层叠设置于金属基体表面的第一涂层和第二涂层;第一涂层为多孔涂层;第一涂层包括镍钼合金、镍铁合金、镍钼铁合金中的一种或多种;第二涂层包括镍铂合金、镍钌合金、镍铂钌合金中的一种或多种。由于第二涂层具备合适的氢吸附和脱附能力,优异的本征催化活性,设置在第一涂层上,能够进一步提升电解水析氢性能,降低析氢过电位,同时第二涂层是致密涂层,从而显著抑制第一涂层非镍过渡金属溶出,因此大幅提升电极稳定性。
Resumen de: CN119708048A
本发明提供钐配合物、其制备方法及其应用,所述钐配合物以钐为配位中心离子、二苯基膦酸为配体。本发明的钐配合物,其合成方法简单、反应条件温和、原料易得,并且所述钐配合物的光催化裂解水制氢的催化效果优异。
Resumen de: CN119710744A
本发明公开了一种导电触点可调节的透明电解槽,其为第一端压板(1)、垫片(2)、阴极输电板(3)、阴极电极(4)、垫片(2)、隔膜(5)、阳极电极(6)、阳极输电板(7)、垫片(2)和第二端压板(8)顺序组装成为电解槽体;隔膜(5)和第一端压板(1)所围合成的内部空腔为阴极室,隔膜(5)和第二端压板(8)所围合成的内部空腔为阳极室;在所述第一端压板(1)和第二端压板(8)的中部区域均匀设置多个向内的乳凸(12);第一端压板1和第二端压板8由透明材料制成。本发明的导电触点可调节的透明电解槽可以通过透明端压板观察电解槽内流场情况,并调节单个乳凸(12)输电通路的闭合与开启,实现乳凸(12)与电极触点数量和位置的调节。
Resumen de: CN119710792A
本发明公开了一种镍钴析氢电极、电镀液配制方法、电沉积方法及应用,所述镍钴析氢电极,包括导电基体和电镀在导电基体表面的Ni‑Co镀层,所述导电基体为泡沫镍基体、镍网基体或铁网基体中的任意一种,所述Ni‑Co镀层中,各元素的质量百分含量为:30‑40%Ni、60‑70%Co。本发明制备的Ni‑Co电极具有较大的活性表面积,催化析氢活性高。Co高氢吸附性,能够有效增大合金的吸氢能力,从而降低与氢离子的结合能,同时Ni具有较低的氢过电位,二者的协同作用也进一步提高了Ni‑Co合金电极的析氢性能。同时电极表面形成纳米片层结构,提供了更多活性位点。
Resumen de: CN119710791A
本发明公开了一种质子交换膜制氢电解用催化剂及其制备方法,其制备方法包括以下步骤:S1、将铱前驱体盐和钌前驱体盐溶于水中,得到溶液A;S2、将三嵌段共聚物P123溶于乙醇中,得到溶液B;S3、将碘化钾溶解在水里,得到溶液C;S4、将所述溶液A、溶液B与溶液C混合均匀后转移至反应釜中,加热进行反应;S5、收集所述步骤S4得到的产物,经离心、洗涤得到铱钌合金催化剂。本发明采用溶剂热还原法,以三嵌段共聚物P123为还原剂和保护剂,乙醇为溶剂,并加入碘化钾来提高催化剂尺度和结晶程度,从而得到了高催化活性和高稳定性的铱钌合金催化剂。
Resumen de: CN119710743A
本申请公开了一种电解水制氢与氢气压缩功能联用电解槽,涉及氢能技术领域。解决了氢气压缩中机械压缩存在噪声、振动、经济性差、易损坏、难维修等问题,实现了氢气制取和压缩功能的同时进行,降低了设备复杂性,提高了氢气制取与压缩的效率。该电解槽包括沿轴向依次串联的PEM电解水部分、气体整流板和电化学氢压缩部分;PEM电解水部分包括沿轴向依次串联的第一端板、第一阳极板、电解水膜电极和第一阴极板;电化学氢压缩部分包括沿轴向依次串联的第二阳极板、电化学压缩膜电极、第二阴极板和第二端板。本申请用于提升制氢系统的性能。
Resumen de: CN119710773A
本申请提供一种制氢电极及其制备方法和制氢装置,涉及制氢技术领域。该制氢电极包括金属基体和设置于金属基体表面的多孔涂层;多孔涂层包括第一金属材料和第二金属材料;第一金属材料包括镍基金属、钴基金属、铁基金属中的一种或多种;第二金属材料包括镧系镍基合金化合物。通过多孔包覆层中的第二金属材料在催化涂层中的独特作用,抑制制氢电极中阴极因逆向电流引起的氧化,同时提升催化活性和涂层稳定性。
Resumen de: CN119710796A
本发明提供了一种钼氧化物修饰的镍铁层状氢氧化物与多孔镍的复合催化剂、制备及应用,所述复合催化剂以不锈钢网或镍网或泡沫镍为基底,基底表面生长有多孔镍,多孔镍上生长有钼氧化物修饰的镍铁层状氢氧化物,由钼氧化物修饰的镍铁层状氢氧化物纳米片垂直于多孔镍表面交错生长形成,并提供了上述钼氧化物修饰的镍铁层状氢氧化物与多孔镍的复合催化剂的制备方法。该复合催化剂的氢吸附能接近零,具有优异的电解水析氢性能,且制备方法简单。
Resumen de: CN119715745A
本发明公开了一种压力可调控的多通道水电解测试装置,包括:多个并联设置的采用相同结构和设计的电解槽,其中每个电解槽的输出管路上连接有常压支路开关阀和背压支路开关阀,其中常压支路开关阀的输出端与常压氢气出口相连接;其中背压支路开关阀的输出端与气液分离器相连接,所述气液分离器的一个输出端口通过压力调节阀与高压氢气出口相连接、另一个输出端口通过液位调节阀与气液分离罐液体出口相连接。当选择常压模式时,氢气通过常压支路经放空管路直接排放至大气;当选择背压模式时,氢气通过背压支路进入气液分离器,分离后的液体在分离器内聚集,当前压力传感器检测到体系压力到达设定值时,发送指令调节压力调节阀开度,实现体系压力值恒定,保证电解槽在稳定的设定压力工况下运行。
Resumen de: CN119710750A
本申请提供一种电解制氢系统,电解制氢系统包括电解槽、气液分离装置、冷却装置、残余气体分离装置、检测构件和控制装置。气液分离装置与电解槽之间设置有碱液回流管路;冷却装置设置于碱液回流管路中。残余气体分离装置连接至碱液回流管路,残余气体分离装置与碱液回流管路连通的两端分别位于冷却装置的上游和下游。检测构件用于检测电解制氢系统氧气产物中的氢气含量;控制装置与检测构件电连接,控制装置至少用于根据检测构件的检测值控制冷却装置和残余气体分离装置不同时处于开启状态。根据本申请的电解制氢系统,其能够持续监测电解制氢系统氧气产物中的氢气含量,并相应调整运行参数,使得电解制氢系统始终在安全范围内运行。
Resumen de: CN119710812A
本发明属于制氢催化技术领域,具体涉及一种纳米多孔磷化镍‑铂电解水制氢复合催化剂、制备方法与应用。本发明先利用三电极体系,在室温、搅拌条件下,采用恒电流或恒电位法,在氢气泡动态模板作用下进行电沉积制备纳米多孔NixP催化剂;将制备的纳米多孔NixP催化剂置于H2PtCl6溶液中浸泡,冲洗并自然干燥得到微量Pt负载的纳米多孔Pt@NixP催化剂,即所述的纳米多孔磷化镍‑铂电解水制氢复合催化剂。本发明解决了贵金属阴极电解水析氢催化剂制备方法复杂、价格昂贵、资源稀缺的问题,通过简易的电化学沉积和动态模板技术,结合化学置换反应方法,将微量的铂负载于具有较高催化析氢活性、高比表面的NixP表面,使NixP的催化析氢活性和稳定性显著提高,催化剂的制备方法简单,具有显著的实用价值。
Resumen de: CN119710803A
本发明公开了一种镍钴氧化物修饰钼掺杂钒酸铋复合光阳极的制备方法及其应用,属于光电化学反应工程分解水制氢应用领域;本发明通过电沉积和煅烧联合方法得到Mo‑BiVO4光阳极,再利用六水合硝酸钴、六水合硝酸镍和硼酸配制含有双金属镍和钴的前驱体溶液,并将Mo‑BiVO4光阳极浸入前驱体溶液中,利用光辅助电沉积方法将镍钴氧化物(NiCoOx)助催化剂生长在Mo‑BiVO4的表面,得到NiCoOx助催化剂修饰Mo‑BiVO4复合光阳极,本发明所得最佳NiCoOx助催化剂修饰Mo‑BiVO4复合光阳极的光电流密度是纯钒酸铋的5.2倍。本发明具有操作方法简便、原料易得、经济成本低、稳定性良好的优势。
Resumen de: CN119710815A
本发明涉及电催化剂技术领域,具体为一种硼掺杂二氧化钌中空纤维的催化剂及制备方法和应用。以海藻酸钠为原料,经过湿法纺丝工艺到海藻酸钙纤维,海藻酸钙纤维与硼酸溶液混合,冲洗干燥后得到硼酸交联海藻酸钙纤维,硼酸交联海藻酸钙纤维与三氯化钌溶液充分混合、干燥后得到硼酸交联海藻酸钌纤维前驱体,后经热解处理,钌离子转化为二氧化钌纳米颗粒,硼酸交联海藻纤维转变为中空纤维,硼原子掺入二氧化钌晶格中形成硼掺杂二氧化钌析氧反应电催化剂。硼掺杂二氧化钌中空纤维,可用作性能优异的质子交换膜电解槽和电解水催化剂,具有较高催化活性和良好的稳定性。原料来源广泛、不需要昂贵设备,可大量进行制备。
Resumen de: CN119710749A
一种电解堆的堆芯,所述堆芯包括沿竖直方向依次叠置的阴极流场板、阴极传输层、膜电极、阳极传输层、和阳极流场板,膜电极包括反应部分和围绕反应部分的四周部分,阴极传输层、膜电极的反应部分以及阳极传输层构成反应区,阴极流场板与反应区在竖直方向上的投影重合。本发明还涉及包括该堆芯的电解堆,用于电解堆的夹具,以及利用该夹具的分区加载方法。通过本发明,实现了对反应区和非反应区分区加载,定量测量施加在反应区的载荷,从而在压装时给予精确控制,掌握反应区封装力与性能的对应关系。
Resumen de: CN119710729A
本发明一种无膜电解水制备高纯氢和四氧化三锰的方法,属于电解水制氢领域及冶金电化工领域。本发明以金属锰作阳极,以析氢材料作阴极,在弱酸性、中性及弱碱性电解液中,通过控制施加电压分解水制四氧化三锰和高纯氢。当施加电压达到金属锰氧化电位时,金属锰阳极逐渐发生电氧化生成四氧化三锰粉末,同时阴极发生析氢反应。随施加电压增加,锰阳极电氧化速率加快,且无氧气产生,从而在阴极获得高纯氢。本发明电解水制氢装置(1)以及金属锰阳极(2)、析氢阴极(3)、测温系统(4)、搅拌装置(5),所用金属锰电极材料储量丰富,电解水装置简单,无需使用昂贵的隔膜材料,而且生产成本低,能耗低,可广泛应用于电解水制氢领域和冶金电化工领域。
Resumen de: CN119701783A
本发明提供了一种低温热化学循环分解水制氢装置及制氢方法。本发明的低温热化学循环分解水制氢装置,通过设置烟气进口,用于引入生物质热解产生的高温烟气,并使其正对换热管,以实现高效热量传递;同时,装置底部设置反应气进口管,直接与换热管相连,高温烟气与水蒸汽换热,有效将反应温度控制在800℃以内,从而克服了传统化学循环制氢装置能耗高、运行不稳定、维护成本高等弊端;本发明的低温热化学循环分解水制氢方法,采用廉价易得的高温烟气作为热源,节省了不必要的能源开支;通过第一/第二折流板改变高温烟气的气路,以实现热源的最大程度利用;配合氧载体的使用,降低了热化学循环分解水制氢过程中的温度。
Resumen de: CN119716320A
本申请公开一种电解槽伏安特性模拟装置、系统及方法,涉及电解制氢技术领域,用于实现制氢电源的陪试模拟,针对使用电解槽原型设备所存在的成本及安全问题,以及使用纯电阻方案所存在的模拟效果不好等问题,提供一种电解槽伏安特性模拟装置,通过DC/DC变流器和可变负载模块的组合,实现模拟各种场景下制氢电解槽的不同伏安特性。使得本装置可以代替真实的制氢电解槽设备参与制氢供电系统试验测试,也省去了真实的制氢电解槽实际运行过程所需要的相关水处理设备和气体处理设备,降低了试验系统的建造投资和试验过程中的成本及安全风险,且可基于模块化装置组合模拟出不同功率等级的电解槽设备的电气特性满足制氢电源的负载性能考核试验。
Resumen de: CN119710758A
本申请提供一种电解制氢系统及一种电解制氢方法,涉及电解制氢技术领域,可以提高电解制氢系统中的换热效率,降低电解制氢系统的能耗。该系统包括:电堆模组包括阴极侧和阳极侧,用于电解水蒸气得到氢气和氧气;阴极侧引射器位于电堆模组阴极侧,阴极侧引射器的高速气流接口用于获取水蒸气,阴极侧引射器的低速气流接口用于获取氢气,阴极侧引射器的输出端用于将气体通入电堆模组阴极侧,其中,阴极侧引射器通入的氢气包括至少部分电堆模组阴极侧形成的氢气;和/或,浓度分析仪位于电堆模组的阳极侧,用于分析电堆模组阳极侧产生的氧气的浓度;变频风机,位于电堆模组阳极侧,用于根据阳极侧产生的氧气的浓度,向电堆模组的阳极侧通入吹扫气体。
Resumen de: CN119710762A
本发明涉及电解水技术领域,具体的,涉及一种碱性电解水制氢自支撑阳极及其制备方法、应用。本发明的碱性电解水制氢自支撑阳极的制备方法,包括如下步骤:1)将多孔镍材料采用导电胶粘结在永磁体的S极表面,将粘结有多孔镍材料的S极和另一永磁体的N极均插入电磁镀液中作为电极,并在两个电极上通电进行电磁镀,以在多孔镍材料表面形成沉积层;所述电磁镀液中含有Fe3+离子和Ta5+离子;2)将表面形成有沉积层的多孔镍材料利用微波加热处理,即得。本发明制得的碱性电解水制氢自支撑阳极在大电流下运行稳定性强。
Resumen de: CN119702027A
本发明公开了一种负载型钴基四元催化剂及其制备方法及应用,属于硼氢化钠水解制氢技术领域。所述负载型钴基四元催化剂由载体材料和共同负载在所述载体材料上的Co、W、B和P构成,通过简单的化学镀方法即可制得。本发明提供的负载型钴基四元催化剂的结构为粗糙且不规则的聚集体,比表面积大、催化性能高,对硼氢化钠水解反应有较高的催化活性。本发明提供的负载型钴基四元催化剂的制备方法简单、成本低、原料来源广泛。
Resumen de: CN119710764A
本发明公开了一种电解水膜电极制备方法及设备,包括设置一调整机构,通过调整机构对PEM膜的位置进行调整限位;设置一喷墨机构,采用喷墨机构对PEM膜表面进行喷墨;设置一烘干机构,通过烘干机构对喷墨后的PEM膜进行烘干;设置压辊,对烘干后的PEM膜进行辊压。本申请通过将定制化喷墨打印与CCM涂层制备工艺相结合,通过设置调整机构,使得PEM膜不易扭曲变形,采用喷墨的方式,可以适应不同形状大小的PEM膜,还能节省物料消耗,同时,能定制产品,生产灵活,不仅能实现卷对卷的大规模生产,也可以实现片料快捷性生产,且工艺简单。
Resumen de: CN119708588A
本发明涉及复合膜技术领域。本发明提供了碱性电解水用隔膜及其制备方法,碱性电解水用隔膜包括基膜和设于所述基膜至少一侧的涂层,所述涂层的制备包括以下原料组分:无机颗粒、第一类粘结剂、第二类粘结剂、造孔剂、有机溶剂和交联剂,所述第二类粘结剂包括卤甲基化的聚砜、卤甲基化的聚醚砜、卤甲基化的聚苯砜中的一种或多种。本发明提出的碱性电解水用隔膜,同时具有优异的韧性和较低的内阻。
Resumen de: CN119710761A
本发明涉及电催化技术领域,具体涉及一种用于SOR和HER反应的CoSeO3/NF电极材料及其制备方法。同时具备SOR和HER电催化活性的双功能催化剂,过电势偏高,催化活性不佳。针对上述技术问题,本发明提供一种用于SOR和HER反应的CoSeO3/NF电极材料,通过简单的一步水热法在三维多孔泡沫镍基底上原位合成一种CoSeO3微米片层成海胆状结构的催化剂,该催化剂特殊的结构,大幅增加了催化剂表面活性位点的数量,提供了更加丰富的电子传输路径,从而有效提升了传质效率,该催化剂对SOR和HER反应表现出较高的催化活性,在硫磺回收及高效的氢气再生方面具有较好的应用前景。
Resumen de: CN119710816A
本申请涉及一种氧化物负载贵金属催化剂及其制备方法和应用,属于电催化材料技术领域。本申请的氧化物负载贵金属催化剂的制备方法,包括以下步骤:S1、将贵金属源和氧化物载体溶于有机溶剂中,搅拌超声均匀后得到混合溶液;S2、将一定量硝酸盐加入混合溶液中,进行搅拌后得到前驱体混合物;S3、将前驱体混合物进行煅烧,得到固体产物并进行抽滤和洗涤,干燥后得到氧化物负载贵金属催化剂。本申请中的氧化物负载贵金属催化剂在电解水中表现出较为优异的电化学性能;本申请催化剂在电催化、光催化、有机催化、生物诊疗等领域具有良好的应用前景,尤其在对于促进以氧化物为载体的催化剂在电解水中的工业化进程具有重要的研究意义。
Resumen de: CN119713234A
本发明公开了一种适用于掺氨燃煤锅炉深度调峰的自热式氨分解装置及控制方法,筒体内的第一管板将筒体内腔分隔为氨分解反应腔和供热腔,内气体分布筒设置于外气体分布筒中部,若干换热管束位于内气体分布筒和外气体分布筒之间,外气体分布筒与筒体之间形成环形腔,筒体上设有氨气进口及烟气进口;各换热管束上端伸出筒体,下端与供热腔连通,供热腔内设有集流管和若干个燃料管束,燃料管束的上端安装有燃烧器;集流管上端与内气体分布筒下端连通,集流管下端延伸出供热腔,各燃料管束下端分别通过支管路与集流管的输出管路连接,各支管路上设有流量控制阀。本发明克服氨分解无法高效经济地满足燃煤锅炉深度调峰情况下掺氨燃烧稳定性的缺陷。
Resumen de: CN119710804A
本发明属于电催化技术领域,具体涉及到一种三元复合的镍基双功能电催化剂及其制备方法和应用。所述电催化剂的制备方法包括:泡沫镍的预处理、Ni3Se2/NF的水热合成、Co(OH)2/Ni3Se2/NF的水热合成、电化学处理。本发明利用两步水热加电化学硫化调控,对多元组分的原位生长进行了精细调控,实现了多相异质组分的有效复合,增强界面电子重排,有效提升催化剂电催化活性;制备的电催化剂具备多层结构,外层硫化物组分有效裹挟内层活性物质,实现不同活性位点的有效相容,保护内层活性物质在电催化过程中不被摧毁,使材料结构稳定,使催化剂具备多元的异质界面、精细调制的活性中心、优异的电催化活性。
Resumen de: CN119710746A
本发明涉及电解水制氢技术领域,特别是一种氢电耦合电解水制氢设备,包括:水电解槽,氢分离器和氧分离器,碱液循环泵;电极总成,电极板,隔膜;调节总成,包括扇板,循环槽,循环槽内填充有控温液;监控总成,包括滑动设置的平衡板,通过对称设置的两对扇板的移动使得内部碱液能够进行流动,保证水电解槽内部温度分布均匀,并增大扇板接触面积,提高换热效率,同时小幅高频振动使得电极板上附着的气泡脱离,将出液管的控温液与其他位置或标准温度的控温液对比,在出现热量差值后自动调节扇板上下移动频率,改变换热频率,使得电解液均匀分布并与催化剂充分接触,提高电解氢效率下降。
Resumen de: CN119710798A
本发明涉及电化学催化技术领域,具体涉及一种空位限域锡单原子掺杂铋纳米片的制备方法及其电催化合成乙醇应用。目前,来自各国的学者们设计出了性能优良的催化剂,大多数催化剂能高效将CO2转化成CO、HCOOH等。然而,将CO2催化成C2H4、C2H5OH等高价值的多碳产物仍然十分具有挑战性。如今,应用于电催化二氧化碳的催化剂仍然面临着成本高、反应效率低下、稳定性低、合成过程复杂、反应过电位过高、选择性不理想、稳定性不佳等影响其投入工业发展及商业应用的问题。本发明开发合成了一种空位限域锡单原子掺杂铋纳米片电催化剂,该材料能在大气环境下将CO2还原成C2H5OH。在0.5M KHCO3溶液中进行,反应电压为‑0.2~‑1.0V(vs.RHE),主要产物有C2H5OH、CH3OH、HCOOH、CH4。
Resumen de: CN119702026A
本发明涉及光催化析氢技术领域,尤其涉及一种过渡金属锚定的单层CuInP2S6纳米片及其制备方法和应用。本发明将单层CuInP2S6纳米片分散液与过渡金属的盐溶液混合后,进行水热反应,得到中间产物;在保护气氛下,将中间产物进行焙烧,得到过渡金属锚定的单层CuInP2S6纳米片。本发明通过过渡金属锚定的方法来影响纳米片表面原子对氢离子的吸附能力,从而提高了单层CuInP2S6纳米片产氢催化剂的活性。同时,过渡金属锚定的制备过程较为简单,容易实现,并且地球上过渡金属的含量也较为丰富,便于工业化生产和应用。
Resumen de: CN119708842A
本发明属于新材料与工程技术领域,具体涉及一种用于碱水电解隔膜及其制备方法。所述用于碱水电解隔膜由树脂、增韧剂、抗氧剂、氧化锆和偶联剂制得,无有机溶剂的添加,避免了后续的回收工序,对环境更友好。所述用于碱水电解隔膜具有良好的亲水性、机械性能及较高的稳定性。用于碱水电解隔膜的制备方法简单,无需后处理工序,简化了制备工序,成本较低,适用于大规模工业化生产。
Resumen de: CN119710797A
本发明提供了一种泡沫镍负载磷修饰钴‑铜双金属催化电极及其制备方法和在电催化硝酸盐还原中的应用。本发明制备得到的泡沫镍负载磷修饰钴‑铜双金属催化电极,通过电沉积法将磷修饰钴‑铜双金属催化剂(P@Cu‑Co)负载在泡沫镍上,用于电催化硝酸盐还原制氨的电化学反应,P@Cu‑Co催化剂可以使两步串联反应(NO3‑到NO2‑,再到NH3)更加协调,避免过量NO2‑累积,通过优化两步串连反应实现了优异的氨合成性能,在外加电压为‑0.4V vs RHE时,法拉第效率超过95%,氨产率超过40mg h‑1cm‑2。
Resumen de: CN119701974A
本申请公开了一种Ni基三元水滑石催化剂及其制备方法和应用。所述Ni基三元水滑石催化剂由组分X、组分Y、组分Z组成;组分X为Ni单质,质量含量为30~45%;组分Y为Fe的氧化物、Co的氧化物、Mn的氧化物中的一种,质量含量为30~45%;组分Z为Ce的氧化物、Mg的氧化物、Ti的氧化物中的一种,质量含量为20~35%。具有高的镍分散性,且具有高的稳定性。能够实现在较低温度下氨的高效分解,氨空速高,氨转化率高,成本低。
Resumen de: CN119714402A
本发明涉及储运监测技术领域,具体涉及一种绿氢制储运一体化实时运行监测方法和系统,包括以下步骤:S1,在绿氢制储运的制氢环节、储氢环节和运氢环节中分别设置智能传感器网络,实时采集各环节的运行状态数据;S2,基于各环节的运行状态数据,进行多状态协同监测,对制氢、储氢和运氢过程中的多个状态变量进行联动监控;S3,构建一个多变量模型,描述制氢、储氢及运氢环节中多个状态变量之间的非线性耦合关系;S4,设计多状态协同控制算法,基于多变量模型中描述的非线性耦合关系。本发明,有效避免了因简单线性假设而导致的控制失效,尤其在面对非线性耦合的状态变量时能保持较高的预测精度。
Resumen de: CN119706982A
一种具有树枝状孔结构的氧化铱催化剂、制备方法及其在质子交换膜电解水技术中的应用,属于电解水技术领域。是将铱源溶于水中,然后加入混合模版剂,溶解后再加入扩孔剂,混合均匀后得到均匀乳液;加入引发剂进行反应,反应结束后用体积比为1:1的水与无水乙醇的混合溶液离心清洗3~5次,洗去模版剂干燥后得到所述的具有树枝状孔结构的氧化铱催化剂。本发明制备的具有树枝状孔结构的氧化铱催化剂相比于商用氧化铱催化剂纳米颗粒提供更多的活性位点,同时丰富的孔道结构显著提高了催化剂的质量传输能力,克服了无孔材料中存在的扩散限制,因此在低铱载量下PEM电解水析氧反应中表现出较高活性和稳定性,实现了高效析氧催化反应。
Resumen de: CN119710752A
本发明公开了一种气体发生装置的环装结构及使用方法,解决了大型或超大型极框极易变形、不宜对中的问题,在实现止推效果的同时解决了漏液、喷液的问题;技术方案包括左端压板、右端压板、空心圆环极框、圆形主极板和夹紧紧固件组件;所述左端压板和右端压板之间设置有若干个极板极框,所述左端压板、右端压板和每个空心圆环极框均设置有相同数量的连接孔,所述夹紧紧固件组件安装在连接孔中,所述夹紧紧固件组件依次穿过左端压板、极板极框和右端压板上的连接孔进行紧固连接;所述空心圆环极框的空心位置安装所述圆形主极板;若干个所述空心圆换极框与左端压板和右端压板形成电解槽,相邻的圆形极板之间形成电解室。
Resumen de: CN119702009A
本发明涉及一种二硫化钼包覆钛酸钡纳米材料的制备及其在压电光协同催化领域的应用。通过水热法合成的二硫化钼包覆钛酸钡纳米材料,与纯相MoS2、BaTiO3相比,表现出显著增强的压电光效应。在超声和光的协同作用下,二硫化钼包覆钛酸钡纳米材料可实现罗丹明B的高效降解和产氢效率的显著提升,降解速率常数分别是纯相MoS2、BaTiO3的2.3和14.4倍,产氢效率分别是纯相MoS2、BaTiO3的2.3和1.9倍。压电催化剂BaTiO3和光催化剂MoS2,能够很好的结合形成异质结,从而提升了电子‑空穴的分离效率。本发明阐述了一种通过构建异质结提高材料降解罗丹明B和分解水产生氢气的方法,工艺流程简单、可操作性强,具有广阔的应用前景。
Resumen de: CN119710819A
一种自支撑Ru/Ni‑MOF电催化剂的制备方法及其应用,属于电解水制氢领域所用的电催化剂制备技术。本发明首先采用溶剂热反应在导电基底上均匀生长Ni‑MOF纳米片,随后采用离子交换策略将原子级分散Ru引入到Ni‑MOF结构中,获得自支撑Ru/Ni‑MOF电极材料。原子级分散Ru能够高效发挥催化性能,提升贵金属利用效率,降低成本。同时,Ni与Ru金属位点的协同效应使得该自支撑电极展现出优异的析氢反应活性,对设计贵金属与MOF高性能复合催化材料具有指导意义。
Resumen de: CN119710801A
本发明属于纳米材料技术和电化学能源转化技术领域,具体涉及一种无定形硫化镍/镍纳米片电催化剂及制备方法与应用。所述电催化剂的基底材料为泡沫镍,在泡沫镍表面负载有团聚为球状的无定形的硫化镍/镍纳米片,形成薄膜电催化剂。制备方法包括如下步骤:(1)将泡沫镍进行超声清洗;(2)将清洗后的泡沫镍置于含硫脲的镀镍液中进行电沉积,生成团聚为球状的无定形的硫化镍/镍纳米片并负载在泡沫镍表面,在泡沫镍表面形成薄膜电催化剂。与现有技术相比,本发明制备的无定形硫化镍/镍纳米片薄膜电催化剂,在高电流密度下对碱性电解水阴极反应具有高催化活性和较好稳定性,且制备方法简单、易于操作。
Resumen de: CN119710800A
本发明公开了一种内置电场的超亲水双功能电催化剂的制备和应用,涉及节能制氢电催化剂制备技术领域,包括:导电集流体基底的预处理、NiMoO4前驱体的水热合成、NiTe2/MoTe2的水热合成以及SOR助力电解水的节能制氢应用。本发明利用内置电场策略,通过在导电集流体基底上原位自生长活性物质有效增强催化剂的电子转移路径,促进活性位点与电解液的充分浸润,提高电催化反应位点的有效利用,实现了碲化物在硫离子氧化反应助力电解水节能制氢技术的应用,比之传统全水分解制氢技术节约能耗,不仅能够推动绿色化学技术的发展,还为能源转型与清洁能源生产提供重要支持,彰显了其在满足时代政策和推动可持续发展目标方面的巨大潜力。
Resumen de: CN119710754A
本发明涉及电解槽的技术领域,公开了一种内置储氢罐的旋转电解槽,本发明包括旋转电解槽本体,用于对放置在电解槽中的电解液进行电解,并产生相应的气体;采集设备,与旋转电解槽通过第一连接管进行连通,用于对电解槽产生的气体进行收集;注液设备,设置在所述旋转电解槽本体顶部;分流单元,分别与储气罐、第二连接管和第一连接管连通,改变气体的流向,使气体进入储气罐中或者进入第二连接管内;转接单元,预设有设定的预应力,气体通过转接单元并被暂存罐收集;本发明通过分流气缸的工作,使气体从第一进气端运动至第二出气端并进入储气罐内,反之超过预设气压的气体能够使密封块向着活动座方向运动,气体顺着转接套运动至暂存罐内。
Resumen de: CN119710808A
一种高催化活性的Fe掺杂的硫化钴/硫化镍析氧催化剂的制备方法,属于电催化水裂解领域。本发明要解决现有NiCo双金属硫化物受电荷转移能力的限制,其本征催化性能难以充分展现的问题。方法:一、前驱液制备;二、水热反应。本发明用于高催化活性的Fe掺杂的硫化钴/硫化镍析氧催化剂的制备。
Resumen de: CN119710790A
本发明涉及表面技术领域,具体涉及一种高效电解水制氢催化剂材料及涂层、制备方法及其应用,该催化剂材料体系的有效催化组元为NiCuMoCr,辅以聚苯酯及氮化硼作为造孔组元,本发明还提供了上述Ni·Cu·Mo·Cr·聚苯酯·氮化硼复合粉末的制备方法,以及将复合粉末制备成高效催化剂涂层的方法。通过本发明制备的高效催化剂涂层相对于传统的雷尼镍大幅提高了电流密度,且具有不含贵金属、成本可控、耐久性较好等特点。
Resumen de: CN119710748A
本发明提供一种新型可调分区式碱性电解槽工艺及配套电解小室结构,属于碱性电解水制氢技术领域,该工艺将碱性电解水装置流道改为四进四出,分为四个区,各区独立调节流量;出气侧设氢气分子检测仪,依检测结果控制进液口调节阀开度,实现动态调节,保证流量平衡;电解小室含极框、极板、隔膜和电极网,极框四分区设计,加竖向隔板增强刚度;极板三相分区且乳突结构优化;隔膜分片式设计;电极网依极板优化。本发明优化工艺与结构,提高电解效率,增强结构安全性,降低能耗,在碱性电解水制氢领域具有良好应用前景。
Resumen de: CN119710809A
本申请公开了一种掺杂型纳米氧化物材料及其制备方法和应用,掺杂型纳米氧化物材料的结构为在泡沫镍的孔道及表面上生长有第一金属掺杂的第二金属氧化物颗粒,第一金属选自铈、镧、钆、铒中的一种或多种,第二金属选自钴、镍、铁中的一种或多种。上述材料结构为在泡沫镍的孔道及表面上生长有纳米氧化物颗粒,此纳米氧化物颗粒为掺杂第一金属的第二金属氧化物颗粒。上述掺杂型纳米氧化物材料利用过渡金属氧化物代替常用的贵金属氧化物,降低了材料成本;并且,该材料具有更低的过电位,对电催化产氧呈现出更好的催化性能,催化过程稳定高效。
Resumen de: CN119710771A
本申请提供一种碱性制氢电极及其制备方法和电解水制氢装置,涉及电解水制氢领域。碱性制氢电极的制备方法包括:采用电镀在基体上形成析氢活性层;对具有析氢活性层的基体进行刻蚀,使析氢活性层的表面形成微通道结构,得到碱性制氢电极;其中,电镀使用的电镀液包括主活性成分和次活性成分,主活性成分包括镍盐,次活性成分包括铁盐、钴盐、铜盐、锰盐、钼盐中的至少一种。本申请通过刻蚀可以在电极表面同时实现大量活性位点的生成和丰富微通道结构的形成,提高了电极的催化活性,减弱了浓差极化的影响。并且,基体与析氢活性层的过渡区域在刻蚀过程中不会受到影响,基体与析氢活性层的过渡区域具有较高的结合力强度,使电极能够长期稳定运行。
Resumen de: CN119710772A
本发明提出了一种界面强结合的一体化电极、制备方法及电解水制氢应用,该电极由金属基底、过渡层和催化层组成,所述金属基底至少由过渡金属及其合金构成,所述催化层由过渡金属硫化物组成,所述催化层原位生长于金属基底之上,所述催化层和所述金属基底之间存在所述过渡层,所述过渡层由金属和金属硫化物的混合物组成。过渡层的存在使催化层和基底紧密结合,有利于增强催化层与基底之间的界面结合,同时一体化电极原位生长的工艺有利于使催化剂暴露更多的活性位点,抑制活性位点的聚集,降低接触电阻,提高导电性,进而提升催化活性和稳定性。
Resumen de: CN119701824A
本发明公开了一种等离子体催化协同实现氨快速高效分解制氢的系统和方法。氨气进入常压电弧温等离子体反应器形成旋转气流,在高压电驱动下电离成高活性等离子体,受旋转气流和反应器渐缩口推动形成大面积三维等离子体射流,射流气体向上流入同轴上层催化区,因壁面限制再向下流入同轴外层催化区,与催化剂作用产生氢气,反应后的气体从下部导气孔流出。氨气首先在电弧温等离子体区活化预分解,再在同轴催化区二次分解,温等离子体区的热量直接作用于催化区,无需外部加热。整体结构为温等离子体区和催化区同轴集成配置,提高了余热利用率和反应能效。本发明系统结构简单紧凑、可分布式灵活供氢、能量密度高,可利用风光绿电直接驱动。
Resumen de: CN119708729A
本申请提供一种用于水电解制氢电解槽的密封层材料及其制备方法,包括聚四氟乙烯、改性碳纤维、掺杂有氟和氮的耐高温化合物以及掺杂有氟和氮的金属盐,耐高温化合物包括二硫化钼、三氧化钼、三氧化钨、二硫化钨、二氧化锰、二氧化钛、二氧化锆和五氧化二铌中的至少一种,金属盐包括硫酸钡、硫酸铅和硫酸钙中的至少一种,以提高密封层的密封性能以及使用寿命。
Resumen de: CN119721622A
本申请属于可再生能源制氢技术领域,具体公开了一种耦合风光互补优化混联制氢系统的容量配置方法,包括:以单位制氢成本为优化变量,以周期制氢量最大化为第一目标函数、初始投资成本最小化为第二目标函数、弃电率最小化为第三目标函数,构建耦合风光互补优化混联制氢系统的容量配置模型;通过顺序目标优化确定容量配置模型的初始帕累托最优解解集;选定主目标函数,基于初始帕累托最优解解集中不同目标函数帕累托最优解的最值,将除主目标函数之外的其它目标函数转换为增广约束条件,采用增广ε‑约束法更新容量配置模型的帕累托最优解解集;基于更新后的帕累托最优解解集优化系统的容量配置。本申请实现了混联制氢系统容量配置的合理规划。
Resumen de: CN119710753A
本发明公开了一种质子交换膜电解水制氢装置及方法,属于制氢装置技术领域,其技术要点是:包括底板,底板上设置有电解箱,通过设置的存气换瓶机构能够自动化的实现氢气的换瓶收集作业,无需人工干预换瓶和集气处理,大幅减少了人工操作的需求,通过设置的极柱清洁机构能够在切换集气瓶集气的同时相应的完成极柱表面污垢和沉积物的清洁作业,保持电极的高效催化活性,从而增加氢气的产量和纯度,通过设置的补水机构在集气瓶完成集气进行下个工位的切换集气时,都会相应的进行适量的补水作业,提升了氢气的连续收集效率,无需人工干预,从而提高了整体的操作效率,具有便于自动更换存储瓶、便于自动补水和便于自动清洁电极柱的优点。
Resumen de: CN119711194A
本发明公开了一种碱性水制氢隔膜及制备方法和应用,属于制氢隔膜技术领域。本发明先将聚苯硫醚短纤添加到聚苯硫醚超细纤维的浆粕中,混合均匀后分散在聚氧化乙烯的水溶液中以防止纤维沉降,从而制得分散均匀的聚苯硫醚短纤/聚苯硫醚超细纤维混合浆液;再以混合浆液作为涂层涂覆在基布的两侧,干燥后对带有涂层的基布进行热压处理,制得碱性水制氢隔膜。通过将聚苯硫醚短纤在聚苯硫醚超细纤维的浆粕中均匀混合,由于聚苯硫醚短纤的添加提高了隔膜的强度,而聚苯硫醚超细纤维作为粘结剂也提高了涂层与基布间的粘结效果,使得最终制备的隔膜不仅强度高,使用寿命也长。并且在相同隔膜厚度条件下,本发明制备的隔膜克重较现有复合隔膜明显降低。
Resumen de: CN119721525A
本发明涉及一种考虑氧电极降解的高温固体氧化物(SOEC)电解制氢系统的调控优化方法,包括优化模块和神经网络预测控制(NNPC)模块。优化模块计算并生成高温电解制氢系统在预设操作范围内的最优操作曲线,即最低氧分压且最高产氢效率曲线;NNPC控制模块根据最优操作曲线获取当前输入变量的值,得到系统输出变量的预测值,并通过滚动优化缩小与预期值的误差,来确定控制序列;描述氧分压特征的高温电解制氢系统模块接收控制序列作为系统操作条件,并将系统中的关键参数反馈给NNPC控制模块,不断更新模型和控制器的参数。本发明以最优操作曲线作为前馈控制,以系统中SOEC电解电压、进出口温差和系统出口流股变量作为反馈控制,因此系统在应对外部扰动时可实现快速且安全的热电响应,并始终保持在氧电极降解风险最低、系统效率最高的工况下。
Resumen de: CN119710793A
本发明属于电催化剂领域,具体公开了一种具有析氢和析氧双催化性能的高熵合金涂层及其制备方法和应用,制备了FeCoCrNiAlCu HEA涂层,并在酸性条件下用于电解水技术;实验结果表明FeCoCrNiAlCu HEA涂层拥有优异的双功能催化能力,在0.5M H2SO4电解液中表现出良好的析氢(HER)和析氧(OER)催化性能。涂层中孔洞的存在是暴露活性点位的关键因素,金属氧化物进一步促进反应的进行;并且HEA中多元素的协同作用使涂层拥有良好的催化性能,表现出较小的过点位及Tafel斜率和良好的反应稳定性;本发明不仅为非贵金属HEA催化剂制备提供了新的策略,而且为高效HEA电催化剂的实际应用提供了一条有效的方法。
Resumen de: CN119710740A
本发明公开了高压电解槽组件,应用在高压制氢技术领域,本发明通过设置平衡机构,稳压组件可以与定位组件、连接组件、入流组件和排流组件配合,稳压组件可以对液压油进行暂时性储存,从而可以对稳定机构多余的压力进行暂时性承载,从而可以实现稳定机构内外压力平衡的效果,定位组件可以与连接组件将稳压组件内形成密闭空间,连接组件可以在外接电源后,为稳定机构提供电力支持,入流组件可以外接水输送设备和液压油输送设备,从而可以为稳定机构提供电解所需的水,并为稳压组件提供压力平衡所需的液压油,排流组件可以将稳定机构电解后产生的水和氢气排出,并且可以将稳压组件平衡压力后多余的气体排出,提高了稳定机构在电解时的稳定性。
Resumen de: CN119710824A
本申请一些实施例提供一种电解制氢系统及其控制方法,根据当前供电信息对未来的一个或多个延时时刻,系统的气液分离器中的氧中氢含量或氢中氧含量等滞后响应信息进行预测,并根据预测值确定充气控制信息,从而可以在氧中氢含量或氢中氧含量超标前,就提前根据充气控制信息向相应的气液分离器充入预设安全气体,而不是在通过测量仪器监测到相应含量超标时才开始充气,实现对相关气体含量的预测及有效控制,保证电解制氢系统的安全性。
Resumen de: CN119710789A
本发明公开了负载镍钴合金的竹节状碳纳米纤维及其制备方法和应用。该方法首先利用水热法将镍盐和钴盐合成球状镍钴金属有机框架(NiCo‑MOFs),后将NiCo‑MOFs与硝酸镍共同加入聚丙烯腈溶液中混匀,利用静电纺丝法制得金属有机物的纤维膜,经煅烧和碳化反应,最终制备出负载镍钴合金的竹节状碳纳米纤维。镍钴合金的催化协同作用,碳纳米纤维优异的导电性、大比表面积和结构稳定性,以及其独特的竹节状结构,使所述负载镍钴合金的竹节状碳纳米纤维内部形成高效的催化网络。本发明制备过程易于控制,原料廉价易得,适合规模化生产。通过该方法制备的负载镍钴合金的竹节状碳纳米纤维表现出优异的电解水析氧性能,展现出低过电位,高催化活性和耐久性。
Resumen de: CN119706742A
本申请公开了一种集成带隙互补捕光材料的太阳能光催化分解水制氢技术系统,属于太阳能光催化生产太阳燃料技术领域。整个系统为叠层式,自上而下依次为宽带隙半导体吸光单元(光催化体系II)、电荷和质子传输载体、窄带隙半导体吸光单元(光催化体系I)。光催化体系II主要吸收太阳光谱中紫外光和可见光,将水氧化产生氧气和质子及电子,质子通过传输载体传递到光催化体系I;光催化体系I吸收长波可见光和近红外光,将质子还原产生氢气,氢气被集中收集;光催化体系I和光催化体系II之间通过电荷和质子传输载体连接,实现整个系统的循环。该技术系统产氢与产氧反应空间分离,可以从根本上解决光催化分解水体系中氢气和氧气分离难的问题。
Resumen de: AU2023365839A1
The present disclosure relates to a hydrogen production control system and method, and a storage medium. The hydrogen production control system comprises: a safety controller; a first valve and a second valve, which are respectively connected to the safety controller; a hydrogen production controller; a third valve and a fourth valve, which are respectively connected to the hydrogen production controller; an oxygen-side gas-liquid separation apparatus, which is respectively connected to the first valve and the third valve; and a hydrogen-side gas-liquid separation apparatus, which is respectively connected to the second valve and the fourth valve, wherein the hydrogen production controller is used for controlling the pressure of the oxygen-side gas-liquid separation apparatus by means of the third valve and controlling the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the fourth valve; and the safety controller is used for adjusting the pressure of the oxygen-side gas-liquid separation apparatus by means of the first valve and/or adjusting the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the second valve when a hydrogen production parameter is greater than or equal to a preset parameter alarm threshold value. In this way, the system safety is effectively ensured, and the production efficiency is improved.
Resumen de: AU2023340993A1
The disclosure pertains to a plant for the production of ammonia. The ammonia is produced from hydrogen obtained by electrolysis of water. The electrolysis is powered by a renewable source of energy, complemented with power obtained from the plant during periods of low or no availability of the renewable energy. To this end, the plant is configured such that it can be operated in a charge configuration (obtaining and storing power) and a discharge configuration (employing said power).
Resumen de: WO2025061540A1
The invention relates to an electrochemical hydrogen compressor (1) comprising at least one compressor unit (4), wherein an electrode arrangement (4c, 4d, 4e) which is disposed between two gas flow regions (4a, 4b) in the at least one compressor unit (4) comprises a gas-tight proton-permeable layer (4d) which is contacted by a gas-permeable cathode layer (4e) on one side of the layer, and which is contacted by a gas-permeable anode layer (4c) on the other side of the layer, wherein the at least one compressor unit (4) forms a compressor arrangement (3) which is arranged in a housing (2) around the interior of a hollow, preferably tubular, gas-permeable core element (5), wherein the interior of the core element (5) is fluidically connected to the radially innermost gas flow region (4b) of the compressor arrangement (3), and the interior of the housing (2) is fluidically connected to the radially outermost gas flow region (4b) of the compressor arrangement (3).
Resumen de: WO2025062828A1
Problem To provide: a catalyst having excellent hydrogen generation efficiency and a method for producing the same; a hydrogen generator comprising the catalyst; and a fuel cell system comprising the hydrogen generator. Solution According to an aspect of the present invention, provided is a catalyst for use in generating hydrogen from a borohydride salt. The catalyst comprises: a core that has interlayer anions and interlayer water molecules and that includes, as the main component, a layered double hydroxide containing iron; and a tripod ligand that is coordinated on the surface of the core in a state of having three hydrophilic groups located on the core side.
Resumen de: WO2025063428A1
The present invention relates to a composite electrolysis device for producing hydrogen and hypochlorous acid water, having a novel configuration for generating hydrogen and hypochlorous acid water by electrolyzing dilute hydrochloric acid, the device comprising: an electrolytic cell (100) which has + and - electrodes (110, 120) disposed therein so as to electrolyze dilute hydrochloric acid inputted from the outside, and has formed in the upper end thereof a chlorine gas discharge hole (130) and a hydrogen discharge hole (140) for discharging chlorine gas and hydrogen generated from the electrolysis of the dilute hydrochloric acid; a dilution tank (200) which is provided on the upper side of the electrolytic cell (100) so as to communicate with the chlorine gas discharge hole (130), has dilution water flowing thereinto from the outside, and has hypochlorous acid water generated therein by means of the chlorine gas, entering through the chlorine gas discharge hole (130), being dissolved in the dilution water; an auxiliary electrolytic cell (300) which is provided on one side of the electrolytic cell (100) so that the end portions on one side of the + and - electrodes (110, 120) are inserted therein, has hydrochloric acid, contained in the hypochlorous acid water, electrolyzed therein by having a portion of the hypochlorous acid water generated in the dilution tank (200) flowing thereinto through a hypochlorous acid water inflow line (310) of which one end is connected to the d
Resumen de: US2025105323A1
An integrated hydrogen-electric engine includes a hydrogen fuel-cell; a hydrogen fuel source; an electric motor assembly disposed in electrical communication with the fuel-cell; an air compressor system configured to be driven by the motor assembly, and a cooling system having a heat exchanger radiator in a duct of the cooling system, and configured to direct an air stream including an air stream from the air compressor through the radiator, wherein an exhaust stream from a cathode side of the fuel-cell is fed via a flow control nozzle into the air stream in the cooling duct downstream of the radiator.
Resumen de: WO2025059699A1
The invention relates to a device and a method for the continuous and/or semi-continuous, photocatalytic and/or photoelectrochemical production of hydrogen from waste water as reaction medium (1), with a flow element (2) forming the reaction space (2). In order to permit a better degree of effectiveness in both photocatalytic and photoelectrochemical hydrogen production from waste water despite simple design conditions, it is proposed that a multiport fitting (3) is provided upstream of the flow element (2) on the inlet side, via which multiport fitting both an oscillation pump (4) and a metering unit (5) for the reaction medium (1) are connected to the flow element (2), and that the oscillation pump (4) forms a conveying device for the reaction medium (1) by at least partially forming a plug flow in the flow element (2).
Resumen de: US2025100892A1
Ammonia synthesis process and plant comprising an ammonia synthesis converter and a downstream ammonia cooling system, wherein the ammonia synthesis converter is arranged to receive an ammonia synthesis gas comprising hydrogen and nitrogen and to produce an ammonia product gas stream and an off-gas ammonia stream; said ammonia cooling system comprising:—an ammonia evaporator for evaporating an ammonia liquid stream and generating an ammonia vapor stream;—an off-gas cleaning unit for cleaning said off-gas ammonia stream under the addition of water as a scrubbing agent, generating a water stream and an ammonia depleted off-gas stream;—an absorption cooling unit comprising water for cooling said ammonia vapor stream and collecting a condensed ammonia-water stream;—a regeneration unit for generating from said condensed ammonia-water stream: a purified water stream, said ammonia liquid stream, and an overhead ammonia gas stream.
Resumen de: US2025101365A1
Nitrogen in a form suitable for feeding a population of microbes in a bioreactor is produced by reacting nitrogen gas and hydrogen gas to form ammonia plus an unreacted gas stream under conditions favorable to having little unreacted nitrogen gas in the unreacted gas stream. The ammonia, or a compound derived from the ammonia is fed to the microbes and the unreacted gas stream is optionally fed back into the reaction, or fed into the bioreactor. Oxygen can be produced, such as by electrolysis, and also provided to the microbes. Hydrogen from the electrolysis can be added to the hydrogen being reacted with nitrogen gas, and/or can be added to the bioreactor. Where nitrogen gas is produced from air separation, the residual gases can be another source of oxygen.
Resumen de: US2025100877A1
A process and system for generating hydrogen gas are described, in which water is electrolyzed to generate hydrogen and oxygen, and a feedstock including oxygenate(s) and/or hydrocarbon(s), is non-autothermally catalytically oxidatively reformed with oxygen to generate hydrogen. The hydrogen generation system in a specific implementation includes an electrolyzer arranged to receive water and to generate hydrogen and oxygen therefrom, and a non-autothermal segmented adiabatic reactor containing non-autothermal oxidative reforming catalyst, arranged to receive the feedstock, water, and electrolyzer-generated oxygen, for non-autothermal catalytic oxidative reforming reaction to produce hydrogen. The hydrogen generation process and system are particularly advantageous for using bioethanol to produce green hydrogen.
Resumen de: US2025101940A1
A system in a water body uses buoyant force of gaseous Hydrogen and Oxygen to generate electrical power with one or more turbines that includes power resulting from the buoyant force while transporting the Hydrogen or Oxygen to a higher elevation, without loss of electrons, for conversion to electricity at the higher elevation. Conversion of Hydrogen and Oxygen to water through a Hydrogen Fuel Cell or by burning at the higher elevation may generate additional steam power, hydropower, or purified water. Portable submersible modules may transport the system below or above the water to and from the base of a plumbing portion of the system. The amount of gaseous fuel energy available at the higher elevation is not detrimentally impacted by the generation of electricity by the turbine.
Resumen de: US2025101947A1
A wind turbine is provided that se s a nacelle configured to be arranged on a wind turbine tower, a nacelle housing of the nacelle, wherein the nacelle housing is configured to house at least part of an electrical power generation system of the wind turbine, and a hydrogen production system. The hydrogen production system includes an electrolyzer configured to receive electrical power from the electrical power generation system, wherein the electrolyzer is arranged inside the nacelle housing of the nacelle in which at least the part of the electrical power generation system is arranged. One or more other components of the hydrogen production system are arranged at a base of the wind turbine tower and/or within the wind turbine tower.
Resumen de: US2025101614A1
The present disclosure provides approaches for increasing the adhesion of a catalyst ink on a substrate, use of binders within an electrode ink to enhance coating uniformity, incorporating pore-forming agents within an electrode ink, approaches for growing an electrode on a reinforcement layer, increasing the electrochemically active surface area, and incorporation of certain materials in an electrode ink. The present disclosure also relates to electrodes for electrochemical cells, including area-scalable electrodes designed for high-speed manufacturing. The materials, devices and methods described herein may apply to either one or both of an anode or a cathode electrode for an electrochemical cell.
Resumen de: US2025101609A1
The invention relates to a method, an electrolyte membrane, and a corresponding electrolysis cell or an electrolysis stack for producing hydrogen and oxygen from water vapor using electric energy and/or a corresponding fuel cell or a fuel cell stack in order to produce electric energy using hydrogen and oxygen by means of a redox reaction of lithiated iron oxide iron which is dissolved in a liquid alkali carbonate salt. The membrane for splitting water vapor into hydrogen and oxygen consists, in the embodiment according to the invention, of a novel lithiated iron oxide electrolyte which is dissolved in a liquid alkali carbonate salt mixture, generally also referred to as a carbonate melt, which includes lithium carbonate among others. The electrolyte and the liquid carbonate salt are bonded in a heat-resistant non-conductive matrix, for example consisting of lithium aluminate LiAlO2 and/or another heat-resistant material with a capillary effect.
Resumen de: US2025101608A1
An illustrative example embodiment of an apparatus and method includes providing a weave body downstream of an electrolyzer, purifying hydrogen by demisting a hydrogen stream exiting the electrolyzer via flow through the weave body; and de-oxidizing the hydrogen stream during flow through the weave body.
Resumen de: US2025101620A1
A solar-powered ammonia and oxygen production system is disclosed. The system includes an electrolyzer, a PV cell unit, an absorption cooling unit (ACU), a solar parabolic trough collector (PTC), a cryogenic air separation unit (CSU), a cooler, an air compressor, a hydrogen compressor and a nitrogen compressor, an air turbine, and a catalytic converter. The system utilizes these components to co-produce ammonia and oxygen while generating surplus power. The PTC is thermally coupled with the ACU to cool the air coming from the air compressor. The cold air is supplied to the CSU. The nitrogen output from the CSU feeds into the nitrogen compressor, and from there, to the catalytic converter. The hydrogen from the electrolyzer is compressed by the hydrogen compressor, and supplied to the catalytic converter. The catalytic converter further produces ammonia based on the hydrogen and nitrogen received therein.
Resumen de: US2025101602A1
Methods and apparatuses for converting metal carbonate salts to metal hydroxides are disclosed. The methods involve electrochemical production of hydrogen ions (H+) for decarbonating the metal carbonate salt to generate metal ions in a chemical compartment of the electrochemical cell. The metal ions are transported to a cathode compartment where they combine with hydroxide (OH−) to form metal hydroxides. The methods and apparatus may be applied to produce calcium hydroxide which may be used as a precursor for cement clinker. In some embodiments electrochemically produced hydrogen and oxygen are burned to produce heat for production of cement clinker.
Resumen de: DE102023209363A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte Wärmeversorgungseinrichtung (7), die eine Verbrennungseinrichtung aufweist (13), wobei ein Brennstoffreservoir (15) an die Wärmeversorgungseinrichtung (7) angeschlossen ist, so dass in einem Stillstandsbetrieb mittels der Verbrennungseinrichtung (13) erzeugte Wärme auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Stillstandsbetrieb Wärme mittels der Wärmeversorgungseinrichtung (7) erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: DE102023209361A1
Die Erfindung betrifft ein Elektrolysesystem (100) umfassend eine Windkraftanlage (1) und eine Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, wobei ein Inselnetz ohne Anschluss an ein Versorgungsnetz realisiert ist, weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte und mit einem Arbeitsmedium (23) betreibbare Wärmeversorgungseinrichtung (7), die einen Verdampfer (13) und einen Kondensator (11) aufweist, und die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels des Kondensators (11) Kondensationswärme des Arbeitsmediums (23) auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) ein Arbeitsmedium (23) verdampft und verdampftes Arbeitsmedium (23) kondensiert, wobei Kondensationswärme erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: DE102023209364A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angekoppelte Wärmeversorgungseinrichtung (7), die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage Wärme übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage (5) Wärme übertragen, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: WO2025064007A1
A method for producing a hydrogen product having a carbon intensity less than about 0.45 kg C02e / kg H2 is provided. The method includes the steps of converting water to oxygen and the hydrogen product through an electrolysis process, providing at least some, and substantially all, of the required energy for the electrolysis process from a biomass power plant, and processing one or more flue gas streams from the biomass power plant in a carbon capture unit to reduce CO2emissions. The energy produced from the biomass power plant may comprise one or more of electricity, steam used as process steam in the electrolysis process, steam used as thermal energy in the electrolysis process, and steam used to power a mechanical drive for one or more compressors, pumps, or other motors generating shaft torque in the electrolysis process.
Resumen de: US2025101618A1
A method for performing electrolysis with an electrolysis installation, including recording a respective measurement value of the electrolysis for multiple points of time and from the points of time, selecting multiple reference points of time, which define a reference period. Fitting a mathematical function to the measurement values recorded for the reference points of time. Performing at least one of the following sub-steps: from the mathematical function, determining an ageing coefficient that is a measure of the ageing of the electrolysis installation, and/or recording a respective measurement value of the electrolysis for at least one point of time that lies after the reference period, comparing this measurement value with a corresponding value calculated with the mathematical function and issuing an indication in case a result of this comparison violates a tolerance criterion.
Resumen de: US2025101617A1
An object is to provide a cathode that maintains high energy conversion efficiency over a long period of time without increase in overvoltage even when hydrogen generation is repeatedly started and stopped. In order to achieve the above-mentioned object, the present disclosure is a cathode for generating hydrogen including a conductive substrate and a catalyst layer including, on a surface of the conductive substrate: at least one of Pt, a Pt oxide, and a Pt hydroxide; and at least one of a metal, an oxide, and a hydroxide of a lanthanoid element that becomes electrochemically stable as trivalent ions within the potential window of water of pH 7 or higher and pH 16 or lower. The molar ratio of the Pt element to the lanthanoid element (Pt:lanthanoid) in the catalyst layer is 95:5 to 65:35.
Resumen de: US2025101619A1
It is described a high-pressure alkaline electrolyzer for splitting water into hydrogen and oxygen, said electrolyzer comprising a stack of electrolysis cells (1), with channels supplying lye to the cathodes and anodes and channels conducting hydrogen from the cathodes and oxygen from the anodes. The electrolyzer includes first and second lye inlet channels (4a, 4b), a multitude of first intermediate lye channels (5a) conducting lye from the first lye inlet channel (4a) to each cathode (3a) in the stack, a multitude of second intermediate lye channels (5b) conducting lye from the second lye inlet channel (4b) to each anode (3b) in the stack, wherein the hydrogen conducting channels include a common hydrogen outlet channel (7a) and a multitude of intermediate hydrogen channels (8a) conducting hydrogen from each cathode (3a) to the common hydrogen outlet channel (7a), and the oxygen conducting channels include a common oxygen outlet channel (7b) and a multitude of intermediate oxygen channels (8b) conducting oxygen from each anode (3b) to the common oxygen outlet channel (7b).
Resumen de: US2025101601A1
Microorganisms and bioprocesses are provided that convert gaseous C1 containing substrates, such as syngas, producer gas, and renewable H2 combined with CO2, into nutritional and other useful bioproducts.
Resumen de: DE102023209359A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angeschlossene Wasserversorgungseinrichtung (7), die einen Wassersammler (13) aufweist, der derart ausgestaltet ist, dass meerwasserunabhängig Wasser mit keinen oder nur sehr geringen Mengen von Salzen gewinnbar ist, das als Edukt-Wasser zum Betrieb der Elektrolyseanlage (5) verwendbar ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Wassersammler (13) meerwasserunabhängig Wasser in einer Qualität gewonnen wird, bei der das gewonnene Wasser keine oder nur sehr geringe Mengen von Salzen aufweist.
Resumen de: US2025101615A1
A ruthenium-based nano-catalyst for a hydrogen generation reaction having excellent catalytic activity and efficiency by the catalyst surface structure, a method for preparing the same, a hydrogen generation electrode and a water electrolysis system.
Resumen de: US2025104935A1
An electrode including a substrate, zinc (Zn) doped CrV spinel oxide (ZCVO) nanoparticles, a conductive carbon compound, and a binding compound. A mixture of the ZCVO nanoparticles, the conductive carbon compound, and the binding compound at least partially coats a surface of the substrate. A supercapacitor including the electrode. A method of generating hydrogen with the electrode.
Resumen de: US2025101613A1
An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro-porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.
Resumen de: US2025105308A1
A sulfur-containing platinum-carbon catalyst, a preparation method thereof, and an application thereof are provided. The sulfur-containing platinum-carbon catalyst contains sulfur-containing conductive carbon black and a platinum metal loaded thereon. The total sulfur content in the sulfur-containing conductive carbon black is greater than or equal to the surface sulfur content, and the weight fraction of platinum is 20-70% by weight based on the total weight of the catalyst. The sulfur-containing platinum-carbon catalyst of the invention has a lower overpotential and a higher weight specific activity.
Resumen de: WO2025061716A1
The invention relates to a method for operating an electrolysis plant (1), comprising a stack (2) having an anode (3) and a cathode (4), wherein in normal operation of the electrolysis plant (1), water is supplied to the anode (3) via a water circuit (5) with an integrated pump (6), said water being split in the stack (2) by electrolysis into hydrogen and oxygen, and wherein the hydrogen produced by electrolysis is supplied to a gas-liquid separator (8) via a cathode outlet (10) of the stack (2) and a media line (7) connected thereto. According to the invention, a) when the electrolysis plant (1) is switched off, a shut-off valve (11) in an inert gas line (12) is opened, said line connecting an inert gas container (13) to the cathode (4), and the cathode (4) is rinsed with the inert gas, while the water supply to the anode (3) is stopped, and b) when the electrolysis plant (1) is started up again, the following steps are carried out: (i) closing the shut-off valve (11) integrated in the inert gas line (12), (ii) supplying the anode (3) with fresh water via a fresh water supply (14) connected to the water circuit (5) while the power is still turned off, (iii) supplying the stack (2) with the power needed for electrolysis and (iv) producing an amount of hydrogen which corresponds at least to the amount of inert gas present in the cathode (4), preferably corresponds to 1.5 to 10 times the amount of inert gas present in the cathode (4). The invention further relates to an electro
Resumen de: WO2025061610A1
The invention relates to a water recirculation loop (30) for a hydrogen producing electrolysis plant (30) that comprises an electrolysis stack (10). The water recirculation loop (30) comprises: at least one, preferably one, circulation pump (6); a water inlet section (9) connectable to the electrolysis stack (10), wherein the water inlet section (9) can be supplied with water by the pump (6); a water feed section (91) leading to the water inlet section (9);a water outlet section (11) connectable to the electrolysis stack (10), wherein the water at the outlet section (11) being pressurized within the electrolysis stack (10) and/or in the water feed section (91) leading to the water inlet section (9); at least one energy recovery device (8) for transferring water pressure and/or flow energy from the water outlet section (11) to said water feed section (91); and a recirculating section (31) connecting an output of the energy recovery device (8, 28) with an input port of the pump (6).
Resumen de: WO2025061044A1
Method for preparing a doped metal phosphorus trichalcogenide (dMPT) comprising: (a) contacting a first metal salt, an optional base and a fluorine salt under hydrothermal conditions thereby growing a first metal precursor on a conductive substrate; (b) contacting the first metal precursor with an aqueous solution of a second metal salt thereby forming a doped metal precursor; and (c) contacting the doped metal precursor, phosphorus, and sulfur thereby forming a mixture; and heating the mixture;a dMPT, and a method for producing hydrogen gas using the same.
Resumen de: WO2025060428A1
The present application discloses a multi-opening unipolar plate and an electrolytic cell for electrolytic hydrogen production. The multi-opening unipolar plate comprises a plate body and cushion blocks. The plate body comprises a flow field area and opening areas. The opening areas are distributed on two sides of the flow field area in the length direction of the multi-opening unipolar plate. First through holes are formed in the cushion blocks. The cushion blocks are arranged on two sides of the opening areas in the thickness direction of the multi-opening unipolar plate; the cushion blocks cover the opening areas; and the first through holes correspond to openings of the opening areas. At least some of the cushion blocks are provided with flow channels enabling the openings and the flow field area to be communicated. The cushion blocks can cover the opening areas in the thickness direction of the multi-opening unipolar plate and surround the openings of the opening areas in the circumferential direction, thereby sealing the openings of the opening areas, reducing the risk of fluid leakage from the openings to the outside of the multi-opening unipolar plate and the risk of fluid leakage from one opening to other openings, improving the sealing performance of the opening areas, and thus improving the safety of the multi-opening unipolar plate in the working process.
Resumen de: WO2025061814A1
The invention relates to a system and method for controlling the operation of the gas-liquid separators (GLSan, GLSca) of an electrolyser comprising a stack (10), and anode and cathode gas-liquid separators that separate the electrolyte and the gas along an alkaline solution level (lan, lca), wherein the dioxygen and dihydrogen gases flow from their respective chambers through a gas control valve (V <sb /> an <sb />, V <sb /> ca <sb />), such that the control system uses control data representative of the anode gas pressure (p <sb /> an <sb />), the cathode gas pressure (p <sb /> an <sb />), the anode alkaline solution level (lan) and the cathode alkaline solution level (lca) to control each of the two gas control valves (V <sb /> an <sb /> , V <sb /> ca <sb /> ), and wherein each of the sensors transmits operating signals to the two gas control valves (Van, Vca) in order to control the gas pressures (p <sb /> an <sb />, p <sb /> ca <sb />) and the alkaline solution levels (lan, lca) in the anode gas-liquid separator (GLSan) and the cathode gas-liquid separator (GLSca).
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.
Resumen de: KR20250042417A
본 발명의 일 측면에 따른 전기 촉매를 위한 마이크로 구체 제조방법은, (a)Ni 전구체, B 전구체 및 P 전구체를 포함한 촉매전극 재료를 준비하는 단계; (b)상기 촉매전극 재료를 교반용기에 넣어 교반하여 촉매전극 혼합 용액을 형성하는 단계; 및 (c)상기 교반된 촉매전극 혼합 용액을 밀폐된 열수반응 용기(hydrothermal container)에서 일정 온도 및 일정 지속 시간 동안 열수반응 공정이 수행되는 단계; 를 포함하는 것을 특징으로 한다
Resumen de: JP2025042333A
【課題】水溶性有機化合物を含有する飲料にマイナスの電荷を印可することで発生させた水素を飲料の中に多量に溶存させることができ、これによって、時間経過によっても水素が抜け難く、製造時のエネルギー効率が良い水素飲料生成装置の提供を課題とする。【解決手段】容器に入れられた水溶性有機化合物を含有する飲料にマイナス電荷を印可するための陰極で構成される電極部11と、電極部11に電圧を供給する電源部Dとを少なくとも備え、電極部11は、容器20の金属製導電体で形成される底面と接触する導電性材料で形成される接触型電極部で構成される水素飲料生成装置である。【選択図】 図1
Resumen de: EP4527989A1
A control system for a hydrogen production facility is a control system for controlling operation of a hydrogen production facility including at least one water electrolyzer. The control system includes: a required hydrogen flow rate acquisition part configured to acquire a required hydrogen flow rate that is a hydrogen generation amount required for the water electrolyzer; a conversion part configured to convert the required hydrogen flow rate into a current required to generate hydrogen at the required hydrogen flow rate at the water electrolyzer and acquire a provisional required current; and a first correction part configured to acquire a current set value to be provided to the water electrolyzer by correcting the provisional required current using a first correction factor based on a difference between the required hydrogen flow rate and an actual hydrogen flow rate that is a hydrogen generation amount generated actually at the water electrolyzer.
Resumen de: EP4527988A1
Method for performing an electrolysis with an electrolysis installation (1), comprisinga) recording a respective measurement value (5) of the electrolysis for multiple points of time (6),b) from the points of time (6) used in step a), selecting multiple reference points of time (7), which define a reference period (8),c) fitting a mathematical function (10) to the measurement values (5) recorded in step a) for the reference points of time (7) selected in step b),d) performing at least one of the following sub-steps:d1) from the mathematical function (10) obtained in step c), determining an ageing coefficient that is a measure of the ageing of the electrolysis installation (1),d2) recording a respective measurement value (15) of the electrolysis for at least one point of time (16) that lies after the reference period (8), comparing this measurement value (15) with a corresponding value calculated with the mathematical function (10) obtained in step c) and issuing an indication in case a result of this comparison violates a tolerance criterion.
Resumen de: EP4527983A1
The invention describes a water electrolysis arrangement comprising a water electrolyser (2) with a feed water inlet (21), a hydrogen outlet (22) and an oxygen outlet (23); and a water purifier assembly (1) adapted for connection between a raw water source and the feed water inlet (21) of the water electrolyser (2), and comprising an aeration stage (1<sub>aer</sub>) for aerating raw water (W<sub>raw</sub>); characterized in that the aeration stage (1<sub>aer</sub>) comprises an aeration vessel (10) with a raw water inlet (101) arranged to convey raw water (W<sub>raw</sub>) from the raw water source into the aeration vessel (10); an aeration inlet (102) connected to the oxygen outlet (23) of the water electrolyser (2); and an aerated water outlet (103) arranged to convey aerated water (W<sub>aer</sub>) to a subsequent stage of the water purifier assembly (1). The invention further describes a method of performing water electrolysis using such a water electrolysis arrangement (1).
Resumen de: AU2023272285A1
The invention relates to a water electrolyzer system (1) for producing hydrogen. The water electrolyzer system (1) comprises an electrolysis stack (8) for converting water into hydrogen, power electronics (12) for transforming the alternating current into a direct-current in order to supply the electrolysis stack (8), components (56, 64, 72, 80) for preparing the process media supplied to and discharged from the electrolysis stack (8), and a control unit (18) for controlling the electrolysis stack (8), the power electronics (12), and the components (56, 64, 72, 80) for preparing the media. At least the electrolysis stack (8), the power electronics (12), and the control unit (18) are formed together as an electrolyzer module (36), and the components (56, 64, 72, 80) for preparing the media and for conveying the media are formed together as a process module (52). The modules (36, 52) are equipped with connection possibilities (32, 40, 48, 84), via which the individual modules (36, 52) can be fluidically and electrically connected together.
Resumen de: AU2023270735A1
The invention relates to hydrogen producing devices comprising: -An inner tube (2) with macroscopic holes, the tube having at one end an entrance opening, and at the other end an exit opening, the openings allowing entrance of moist a gas and allowing exit of a gas comprising oxygen being produced in the device respectively, -An electrode assembly (8) covering the outer surface of said tube, the assembly comprising an oxygen producing electrode (5) at the inner side of the assembly, and a hydrogen producing electrode (4) at the outer side of the assembly, the electrodes being separated from each other by a separator (3), -A liquid or solid material with hygroscopic properties.
Resumen de: CN119213172A
The invention relates to a solid oxide electrolysis unit for industrial hydrogen, carbon monoxide or synthesis gas production, comprising at least two solid oxide electrolysis cores, an electrical supply for managing electrical power to the solid oxide electrolysis cores, and a conduit connected to the solid oxide electrolysis cores, and each solid oxide electrolysis core comprises a plurality of solid oxide electrolysis stacks of solid oxide electrolysis cells. According to the invention, the solid oxide electrolysis unit comprises a power supply module comprising a transformer and at least one power supply unit, and a pipe module comprising pipe headers and fluid connections to and from the solid oxide electrolysis core, wherein the power supply module and the pipe module are arranged adjacent to each other, and the solid oxide electrolysis core is arranged above the power supply module and/or the pipe module.
Resumen de: US2025087718A1
A bipolar plate for a fuel cell having a two-phase cooling system and a fuel cell system includes a coolant inlet, a coolant outlet, and coolant channels with the coolant inlet being in fluid connection with the coolant outlet via the coolant channels. At least one inner surface of coolant inlet, coolant outlet and at least one of the coolant channels has a surface treatment to influence a flow regime of a cooling fluid along at least one inner surface and/or a phase transition of the cooling fluid.
Resumen de: KR20250041814A
본 발명은 수전해 및 연료전지 스택 내부로 유입되는 연료 가스에 와류가 발생하도록 연료 가스가 통과하는 공간 상에 와류 발생 수단을 구비하여 가스의 층류 흐름에 따른 고립 및 집중현상 발생이 방지되게 하는 고체산화물 수전해 및 연료전지 스택을 제공하는 것으로, 와류 생성수단을 갖춘 고체산화물 수전해 및 연료전지 스택은 연료극, 공기극, 고체산화물로 이루어진 전해질층으로 구성되어 전력 또는 수소를 생성하는 단위전지 다수를 적층하여 구성되는 연료전지 스택; 상기 스택 내부로 공급되는 가스가 통과하는 매니폴드; 상기 단위전지 양측 단부에 구비되는 관통공과, 상기 매니폴드와 상기 관통공이 연통되어 상기 가스가 유입 또는 유출되는 유로를 형성하는 가스통로부; 상기 가스의 흐름이 법선방향으로 흐르도록 상기 가스통로부 내측을 가로질러 설치되는 베이스 부재; 상기 가스가 상기 베이스 부재를 통과하면서 와류를 형성하도록 상기 베이스 부재 상에 다수로 구비되는 와류생성부를 포함한다. 본 발명은 고체산화물 수전해 및 연료전지 스택에 가스를 주입하는 매니폴드 및 유로 상에 와류를 발생시키는 와류생성부를 구비함으로써, 가스 흐름이 고립 및 집중되는 부분이 생성되어도 다시 소멸되게 하�
Resumen de: WO2025063428A1
The present invention relates to a composite electrolysis device for producing hydrogen and hypochlorous acid water, having a novel configuration for generating hydrogen and hypochlorous acid water by electrolyzing dilute hydrochloric acid, the device comprising: an electrolytic cell (100) which has + and - electrodes (110, 120) disposed therein so as to electrolyze dilute hydrochloric acid inputted from the outside, and has formed in the upper end thereof a chlorine gas discharge hole (130) and a hydrogen discharge hole (140) for discharging chlorine gas and hydrogen generated from the electrolysis of the dilute hydrochloric acid; a dilution tank (200) which is provided on the upper side of the electrolytic cell (100) so as to communicate with the chlorine gas discharge hole (130), has dilution water flowing thereinto from the outside, and has hypochlorous acid water generated therein by means of the chlorine gas, entering through the chlorine gas discharge hole (130), being dissolved in the dilution water; an auxiliary electrolytic cell (300) which is provided on one side of the electrolytic cell (100) so that the end portions on one side of the + and - electrodes (110, 120) are inserted therein, has hydrochloric acid, contained in the hypochlorous acid water, electrolyzed therein by having a portion of the hypochlorous acid water generated in the dilution tank (200) flowing thereinto through a hypochlorous acid water inflow line (310) of which one end is connected to the d
Resumen de: GB2633496A
A passive dual modulating regulator that responds to a pressure differential between a hydrogen-side and an oxygen-side of one or more proton-exchange membrane (PEM) cells is provided. The passive dual modulating regulator includes a flexible diaphragm that is clamped along its periphery between hemispherical chambers. A bi-directional valve assembly extends through the flexible diaphragm and includes opposing valve plugs for selectively closing the output ports of the respective hemispherical chambers. Large or sustained pressure imbalances between the hydrogen-side and the oxygen-side of a hydrogen generation system are avoided without active control inputs of any kind, and consequently a rupture of the PEM is entirely avoided.
Resumen de: EP4528862A1
A pore-filling membrane having excellent chemical durability and mechanical strength, a fuel cell including the pore-filling membrane and having excellent durability, and an electrolysis device are provided. The pore-filling membrane has a porous base material and a polyarylene polymer, in which the polyarylene polymer is filled into pores of the porous base material.
Resumen de: WO2023161339A1
Combustion process, comprising: a) a production step of a binary fuel gas consisting of hydrogen and at least of between 5 and 50 vol% of nitrogen, preferably between 15 and 35 vol% nitrogen, and b) a combustion step using as only fuel gas the binary fuel gas at a combustion chamber able to receive as fuel gas the binary fuel gas, wherein the combustion chamber is selected from the group of furnaces and fired process heaters.
Resumen de: CN119365633A
The invention relates to an electrolysis system comprising at least one electrolysis module (3A, 3B), the electrolysis module (3A, 3B) having a plurality of electrolysis cells (5) connected in series. According to the invention, a DC-conducting switching device (6) is provided which is electrically connected in parallel and which has an accessible power resistor (7) in such a way that, in the closed state, a current path through the power resistor (7) can be activated in order to cause a bridging of the electrolytic cell (5) and excess power can be dissipated via the power resistor (7). The invention further relates to a method for operating such an electrolysis plant (1) for decomposing water into hydrogen and oxygen, and to a composite plant (100) comprising an electrolysis plant (1) which is directly connected to a wind turbine (31).
Resumen de: AU2023313378A1
The present invention relates to a method and device for producing hydrogen by dissociating water molecules through thermochemical reactions, using a small amount of active material. The thermochemical reactions are induced by solar power with a moderate concentration of up to 50 suns, which can be achieved through linear or parabolic concentrators.
Resumen de: WO2025058457A1
The present application relates to a hybrid electrode comprising plasmonic nanoparticles and an electrolytic system comprising same. The hybrid electrode and the electrolytic system comprising same according to embodiments of the present application may reactivate a catalyst surface by utilizing a plasmonic phenomenon during an electrochemical reaction using a plasmonic-active electrode (antenna-reactor) composite electrode.
Resumen de: CN119680643A
本发明涉及一种铜多通道连接的自还原TiO2/CuIn双金属卟啉MOFs光催化剂及其制备方法与应用。本发明将CuCl2、具有还原活性的TiO2前驱体以及具有多个金属结合位点和反应活性中心的CuIn双金属卟啉MOFs进行溶剂热反应,利用TiO2前驱体自身的还原性将Cu2+部分还原成光催化活性更高的Cu+,在TiO2与CuIn双金属卟啉MOFs之间建立多通道连接,从而获得一系列具有高效光催化制氢活性的光催化剂。与现有技术相比,本发明制备的自还原TiO2/CuIn双金属卟啉MOFs光催化剂,利用组分自身氧化还原活性完成价态转变而无需另外加还原剂,因而更简单,更绿色且成本也相对更低,而且多价态的铜在TiO2与CuIn双金属卟啉MOFs之间建立的多通道连接,界面电阻明显降低,电荷分离效率和光催化制活性更高。
Resumen de: CN119685862A
本发明涉及电解水制氢催化剂的制备技术领域,具体涉及一种碱性海水析氢催化剂及其制备与应用,制备获得碱性海水析氢催化剂CN@NiMoN,本发明通过简单的水热以及焙烧过程,制备的均匀氮掺杂碳包覆的高活性的氮化物具有高的催化活性及长时间的稳定性,为电解海水大规模制氢提供了前景。
Resumen de: CN119685858A
本发明公开了一种光电极及改善光电极在光电化学环境中稳定性的方法,其中,该光电极包括:在衬底表面外延生长的氮化物半导体,和沉积在氮化物半导体表面的透光性过渡金属化合物层,过渡金属化合物具有低氧化态且能够被氮化物半导体中的光生空穴氧化,低氧化态为二价以上且小于过渡金属的最高氧化价态。本发明还提供了一种改善光电极在光电化学环境中稳定性的方法,包括:将光电极作为光电阳极;光电阳极中的氮化物半导体在光照条件下产生空穴,空穴将光电阳极中的低氧化态的过渡金属化合物氧化,生成的高氧化态的过渡金属氧化物和/或羟基氧化物用作催化剂,催化光生空穴与光电化学环境中的水发生反应。
Resumen de: CN119680483A
本发明提供一种压水堆环境下热化学硫碘循环水分解制氢装置,包括压水堆供热回路系统、水循环回路系统和制氢系统,所述压水堆供热回路系统包括反应堆、稳压器和蒸汽发生器,所述水循环回路系统,包括汽水分离器、汽轮机、冷凝器,所述汽水分离器的蒸汽输出端连接所述汽轮机,所述汽轮机低压输出口连接所述制氢系统,所述制氢系统连接所述汽轮机和冷凝器。本发明将核能技术、海上风电技术与制氢技术三者结合在一起,有利于热化学硫碘循环水分解制氢的大规模生产,提高能源利用效率,降低生产成本。
Resumen de: TW202428338A
A process for producing hydrogen comprises the following steps: (a) providing a starting mixture containing bromine, water and a sulfur containing compound, (b) reacting the starting mixture provided in step (a) so as to produce a reaction mixture effluent comprising sulfuric acid and hydrogen bromide, (c) separating the reaction mixture effluent obtained in step (b) into one or more hydrogen bromide enriched compositions and into one or more sulfuric acid enriched compositions, wherein at least one hydrogen bromide enriched composition contains at most 1,000 ppm of sulfuric acid, wherein step (c) comprises at least two distillation steps, (d) subjecting at least a portion of the at least one hydrogen bromide enriched composition containing at most 1,000 ppm of sulfuric acid obtained in step (c) to an electrolysis so as to obtain hydrogen and a bromine containing composition, wherein the electrolysis cell is operated at an operational temperature of at least 70 DEG C, and (e) recycling at least a portion of the bromine containing composition obtained in step (d) back to step (a).
Resumen de: CN119680588A
本发明涉及一种用于H2O2生产Te/ZnIn2S4复合光催化剂及其制备方法,所述制备方法以下步骤:将碲纳米线加到离子水和甘油中,超声混匀;再加入氯化锌、氯化铟及硫代乙酰胺,充分混匀;混合溶液通过油浴加热,经离心、干燥后得到Te/ZnIn2S4复合光催化剂。制备的Te/ZnIn2S4复合光催化剂性能优异且循环稳定性良好。制备所使用的药品均易得且价格低廉,且制备简单所用时间短。制备的Te/ZnIn2S4复合光催化剂能成功应用于光催化H2O2生产等领域。
Resumen de: CN119684551A
本发明公开了一种二维共价有机框架固溶体的制备方法及其应用,制备方法包括:将2,6‑二甲基苯并1,2‑b:5,4‑b’二恶唑,均苯三甲醛,1,3,5‑三(4‑甲酰基苯基)苯和苯甲酸酐混合,真空条件下加热反应,得到一系列乙烯基连接的共价有机框架固溶体。通过本发明的方法制备的共价有机框架固溶体材料具有全共轭结构和高的结晶度,经球磨处理后具有良好的光催化水分解制氢活性。
Resumen de: CN119680602A
本发明属于催化剂技术领域,提供了一种具有光催化析氢性能的嵌入式CoS/g‑C3N4光催化剂的制备方法,包含下列步骤:将盐酸胍、CoCl2·6H2O和水混合进行油浴并持续搅拌,得到混合粉末;将混合粉末在惰性气体气氛下煅烧,得到钴掺杂氮化碳Co‑CN;将Na2S、Co‑CN和水混合进行超声分散,得到分散液;将分散液顺次进行水热反应、真空干燥,即得所述嵌入式CoS/g‑C3N4光催化剂。本发明制得的CoS/g‑C3N4表现出优异的光催化制氢性能,CoS/g‑C3N4光解水制氢速率达到了386.7μmol h‑1g‑1,光解模拟海水的制氢速率达到了208.9μmol h‑1g‑1。
Resumen de: CN119680577A
本发明公开了一种锌基复合压电催化剂的制备方法,采用的微波‑油浴相结合的方法,更加快速、便捷地制备出了氧化锌‑硫化锌复合催化剂。微波法相对于烘箱的水热法来说,由于微波穿透物体的能力极强,所以物体能够快速而均匀的吸收微波,并遍及整个物体,这就使得加热过程变得快速而平稳,因此更加省时、高效;采用油浴的方式对氧化锌进行部分硫化,避免了水热法的高温反应,且成本更低。另外,本发明制备的氧化锌‑硫化锌复合压电催化剂在压电催化制氢中具有优异的循环稳定性,在循环50h后,其压电催化析氢的平均产率仅下降了12.2%,并趋于稳定。
Resumen de: CN119685837A
本发明公开一种己二酸单甲酯电氧化制癸二酸二甲酯耦合产氢的方法。在隔膜电解槽中,在阳极实现己二酸单甲酯到癸二酸二甲酯电化学转化的同时,通过高性能阴极催化剂及电极的设计,实现高纯氢气在阴极的高效生产。该方法采用具有低析氢过电位的活性阴极和高催化活性的形稳性阳极,利用恒电流电解的策略,提高了己二酸单甲酯的选择性电催化氧化性能,实现了己二酸单甲酯到癸二酸二甲酯的高效电催化转化。同时,大幅度降低阴极析氢过电位和槽电压。相比传统电合成工艺,大幅度提高了电流效率,降低了能耗,具有良好的工业化前景。
Resumen de: CN119684371A
本发明属于化学合成技术和氢能科学技术领域,具体为一种含S2N2型配体的镍配合物的制备及其在催化制氢中的应用。该镍配合物为二(异硫氰酸根)·1,2‑双(2‑(3,4‑二甲氧吡啶基)甲硫基)乙烷合镍({edt(CH2Py’)2}Ni(NCS)2),其化学结构为:#imgabs0#本发明所述的镍配合物具有制备方法简单,反应条件温和,制备周期短,产率高等优点,同时可适用于制备其他氮杂环对乙二硫醇修饰的S2N2型配体的镍配合物的制备。本发明的镍配合物表现出高效的电催化制氢活性和光催化制氢活性,在氢能源领域具有潜在的应用价值。
Resumen de: CN119695994A
本申请公开了一种混合电解槽集群控制方法、装置、设备及存储介质,该方法包括:构建混合电解槽集群对应的混合电解槽系统模型;基于混合电解槽集群的历史数据采用深度确定性策略梯度强化学习算法以最大化运营指标为目标对所述混合电解槽系统模型进行离线训练,得到训练好的混合电解槽系统模型;所述历史数据包括历史时刻的风光数据;将混合电解槽集群的当前数据输入至所述训练好的混合电解槽系统模型中,得到所述混合电解槽集群的控制数据;所述当前数据包括当前时刻的风光数据。本申请可提高控制方法的智能化水平和自适应能力,提高混合电解槽集群的控制功率的准确性,进而提高混合电解槽集群的生产效率。
Resumen de: CN119680610A
本发明提供一种高结晶g‑C3N4纳米片光催化材料及其制备方法和应用,属于纳米光催化材料技术领域。本发明中通过在水浴加热下,将形成g‑C3N4的前驱体二氰二胺溶解于水中,然后向其中加入乙二酸钠,将得到的混合液真空冷冻干燥,然后再将得到的粉末在高温下煅烧得到高结晶的g‑C3N4纳米片。该g‑C3N4纳米片不仅具有高结晶的晶格和超薄的纳米片结构,还表现出优异的光催化性能。在可见光下,该高结晶g‑C3N4纳米片光催化材料相比于体相g‑C3N4的制氢能力提高了177.8%。
Resumen de: CN119685847A
本申请公开了一种高性能不锈钢基电解水双功能电极及其应用,所述电极通过如下步骤制备获得:步骤1:对不锈钢表面进行预处理,去除其表面的杂质;步骤2:将步骤1处理后得到的不锈钢与磷源分别置于350~450℃条件下,在氩气氛围中,使不锈钢磷化1~3h,得到磷化不锈钢电极;其中,磷源与不锈钢之间的直线距离保持在5~10cm;步骤3:将步骤2处理得到的磷化不锈钢电极置于RuCl3溶液中,将磷化不锈钢作为阴极进行电沉积,得到所述电极;其中,RuCl3溶液的浓度为2~8mmol/L,电沉积时的电位窗口为‑2V~0V,电沉积的时间为15~25圈。
Resumen de: CN119685864A
本发明提供了一种电极及其制备方法和应用。该电极包括镍基材和包覆在镍基材表面的金属层,金属层的材料包括金属镍和高熵合金,金属层的远离镍基材的表面分布有多个刻蚀凹槽,刻蚀凹槽在金属层表面的覆盖度为50~100%。金属层表面刻蚀凹槽的存在有助于增加电极的比表面积,为电解水反应提供了更多的活性位点。高熵合金由于其独特的晶格结构,拥有丰富的活性位点,而刻蚀凹槽的存在进一步增加了这些活性位点的数量,从而有助于提高电极的催化活性。并且刻蚀凹槽结构有利于氢气和氧气气泡的形成和脱离,减少了气泡在电极表面的滞留时间,优化了气泡的传质过程,从而有助于提高水电解的效率。
Resumen de: CN119680611A
本发明属于光催化制氢技术领域,具体涉及一种高产氢活性的g‑C3N4/Ag@NiBx光催化材料及其制备方法。该方法通过锚定银(Ag),在其表面原位自催化沉积硼化镍(NiBx),获得了具有小尺寸且分散均匀的Ag@NiBx核壳助催化剂,显著提升了光催化制氢活性。
Resumen de: CN119681277A
本发明公开了一种镍纳米晶及其制备方法和应用,该方法包含:通过将镍盐与表面活性剂、还原剂加入溶剂中,控制反应气氛、反应物浓度和反应温度,实现成核过程中种晶类型的控制,进而实现不同形貌镍纳米晶的合成;使反应体系中,镍盐的浓度为1×10‑4mol/L~8×10‑2mol/L;表面活性剂的初始浓度为0.1~10mol/L;所述还原剂的初始浓度为镍盐的浓度的2~100倍。本发明通过调节生长条件实现了多种镍纳米晶的形貌控制合成,丰富了镍纳米材料的种类,为催化、传感、检测等领域提供了廉价材料。
Resumen de: CN119685842A
一种基于湿润性梯度和气泡单向操控的三维电解制氢功能电极的制备方法,它属于新能源电解制氢与流体输运技术领域。本发明基于面投影微立体光刻打印技术打印电极基底和气体操控网格,并通过纳米二氧化硅对电极顶部气体操控网格进行不对称湿润性处理,利用其超亲气的特性对气泡进行单向操控;并利用化学沉积将钴镍磷合金催化剂沉积在底部三维电极表面,从而实现电解水高效制氢与氢气产物分离的功能,这种三维制氢功能电极及其制备方法操作简单,制氢性能优异。本发明制备的基于湿润性梯度和气泡单向操控的三维电解制氢功能电极具备大面积堆叠、拼接的特点,能够增强空间利用率的同时,加快电解效率。
Resumen de: CN119685844A
本发明为RuFe纳米颗粒协同Ni3S2与MXene异质结的电催化剂及其应用,电催化剂可表示为RuFe/Ni3S2MX/NF。通过水热法一步制备具有复合结构的自支撑电催化剂,这种催化剂具有多层结构,NF作为自支撑骨架,其表面则是Ni3S2和MXene组成的异质结结构(二维片状结构Mxene包裹着颗粒状的Ni3S2),在MXene上存在一些RuFe纳米颗粒活性位点提供优异的OER性能。方法操作简单,制备及原料成本低,适合大规模应用。本发明中Ru和Fe的引入并形成合金全方位提高了该催化剂OER性能,几者协同作用促使RuFe合金纳米颗粒在异质结表面形成,增加活性位和比表面积。
Resumen de: CN119685880A
本发明公开了一种用于水电解制氢装置的测距监测系统,包括设置在预设监测点位上的检测信号发射模块或检测信号接收模块,还包括时间计测模块、数据处理模块;检测信号发射模块在发出检测信号以及检测信号接收模块收到检测信号的同时均向时间计测模块产生一个触发信号,数据处理模块根据时间间隔t以及检测信号传播速度v计算出监测部位的间距l;本发明通过超声波、激光、雷达等非接触式方式对两个预设监测点位的距离进行检测,具备在线监测和联锁功能,有利于设备自动控制,当尺寸变化较大反应碟簧补偿能力不足时,可以提前预警电解槽可能出现的泄漏情况,本装置使用的超声测距定点检测系统,无需接触即可测量,高精度,快速反应,抗干扰能力强。
Resumen de: CN119680645A
本发明涉及一种TiO2/Cu‑Yb MOF复合光催化剂及其制备方法与应用,制备方法包括以下步骤:S1、将铜盐和镱盐通过加热反应按先后顺序引入TCPP中,得到Cu‑Yb MOF粉末;S2、将Cu‑Yb MOF粉末配制成Cu‑Yb MOF分散液,将钛酸四丁酯的乙醇溶液热处理后加入Cu‑Yb MOF分散液中,搅拌加热,冷却、洗涤、离心得到中间体;S3、将中间体配置成中间体分散液,溶剂热复合得到TiO2/Cu‑Yb MOF光催化剂,反应完成。与现有技术相比,本发明具有制备得到的TiO2/Cu‑Yb MOF复合光催化剂具有更高的光动力活性和光催化活性,可有效解决电子‑空穴容易复合的问题。
Resumen de: CN119683566A
本发明公开了一种提高纳米零价铁厌氧腐蚀析氢效果的方法,通过使用羧甲基纤维素钠、胞外聚合物和十二烷基硫酸钠中的任意一种来包覆纳米零价铁以提高纳米零价铁的腐蚀析氢性能。本发明通过加入CMC、EPS、SDS等聚合物前躯体,并在厌氧环境中对纳米零价铁进行改性,提高了纳米零价铁的腐蚀析氢效果。在CMC、EPS和SDS添加量分别为400mg/L、10mg/L、12mg/L情况下,聚合物不仅可以在纳米零价铁表面形成保护层,还可以增强纳米零价铁的析氢效果,聚合物改性后的纳米零价铁在14天内的累积产氢量分别为1042mL、1066mL、1210mL,比空白组分别提高了6.11%~10.30%。
Resumen de: CN119689873A
本发明公开了水解铝制氢生产中的智能控制与优化系统,涉及自动控制技术领域,所述系统包括:反应动力学分析单元、流体场优化单元和自适应智能控制单元;所述反应动力学分析单元,用于根据铝粉的铝粉活性度表征参数,得到铝粉反应速率;根据铝粉反应速率,得到氢气预测速率,构建气泡生长方程,得到气泡生长速率;所述流体场优化单元,用于分析反应过程的传质传热耦合效应,分析搅拌对流体运动的影响,得到流场速度分布,预测反应进度;所述自适应智能控制单元,用于依据反应进度、反应压力、氢气预测速率、流场速度分布及铝粉活性度表征参数,动态调整搅拌速率。本发明提高了铝粉的利用率和产氢速率。
Resumen de: CN119685873A
本发明公开了一种阳极析氧催化剂的制备方法及应用,将面积为2 cm×4 cm的未处理泡沫镍分别置于盐酸溶液、去离子水和乙醇中超声处理一定时间;将处理后的泡沫镍斜插入装有镍盐、铁盐和铬盐和沉淀剂的反应釜中,将反应釜置于鼓风烘箱中进行水热反应,待反应完成后,自然冷却至室温,经去离子水洗涤得到泡沫镍支撑的铬掺杂镍铁层状氢氧化物阳极析氧催化剂。本发明所提供的方法制备的阳极催化剂,在大电流密度下具有更好的长期耐久性,在OER过程中,铬的溶出能够促进镍铁催化剂的重构,产生更多的活性位点和孔道,从而增加镍铁基催化剂的电化学活性面积,促进电解质的渗透和离子的扩散。
Resumen de: CN119683743A
本发明提供了一种纳米电解除垢抑菌装置,涉及水处理技术领域,包括混合箱,混合箱的一端贯通连接有分解箱,分解箱上贯通连接有电解池,电解池的出气端贯通连接有集气罩,集气罩上分别贯通连接有真空泵和出气阀,真空泵与电解池的进气端贯通连接,电解池上还设置有出水口,电解池内设置有若干阴极板和若干阳极板,若干阴极板和若干阳极板上电性连接有高压脉冲电源,高压脉冲电源上电性连接有控制器,控制器用于控制若干阴极板和若干阳极板实现倒极,电解池内还设置有震动清除装置。本发明通过设置震动清除装置,相对于现有技术,可以更快速的降低结垢时长,提高电解效率,还可以对极板进行有限清洁,除垢效果好,有效提高电极寿命。
Resumen de: CN119685857A
本发明属于电解水制氢催化剂技术领域,具体涉及一种氮掺杂碳量子点负载钌基析氢电催化剂制备方法,它包括以下步骤:(1)取碱木质素和尿素加入去离子水中混合均匀,再加入三氯化钌混合均匀,水热反应,得到前驱体;(2)待前驱体降至室温后,冷冻干燥,退火,制备得到氮掺杂碳量子点负载钌基析氢电催化剂。本发明方法制备得到的电催化剂具有很高的催化活性和稳定性,特别是能够在全pH范围下(包括酸性、中性和碱性条件,即0‑14pH值内)表现出优异的催化性能。
Resumen de: CN118984891A
The invention relates to a method for producing a graphite-containing metal oxide electrode, comprising the following steps: a) preparing (1) an electrolytic cell (10) containing an electrode (11), another electrode (12) and an aqueous and/or non-aqueous carbon-and cyano-free solution (14), b) introducing (2) a nigra (15) and a proton source into the solution (14) in the electrolytic cell (10), and c) applying (3) a voltage to the electrode (11) and the other electrode (12) such that the noble metal-free metal oxide and graphite provided by the black substance (15) are deposited on the electrode (11), thereby forming a graphite-containing metal oxide coating (17) on the electrode (11) to produce a graphite-containing metal oxide electrode. In addition, the invention also relates to a graphite-containing metal oxide electrode manufactured according to the method. Furthermore, the invention relates to the use of a graphite-containing metal oxide electrode for producing hydrogen and/or oxygen in water electrolysis and/or photoelectrochemical water electrolysis, and to an electrolytic cell (20) for producing hydrogen and/or oxygen in water electrolysis and/or photoelectrochemical water electrolysis, it comprises a graphite-containing metal oxide electrode as a cathode (22) and/or a graphite-containing metal oxide electrode as an anode (21).
Resumen de: CN119680607A
本发明公开一种单原子氨分解催化剂的大规模制备方法及应用,以层状结构的六方氮化硼和乙酰丙酮铈作为复合载体的前驱体,具有相同配体的乙酰丙酮金属盐为活性金属前驱体,采用球磨法进行原子级分散处理,实现大规模氨分解制氢催化剂的制备。层状结构的六方氮化硼在球磨的作用下剥离,暴露出更大的比表面积和缺陷,有利于活性金属的吸附和固定。加入乙酰丙酮铈作为复合载体前驱体,与活性金属前驱体乙酰丙酮金属盐的配体结构相同,根据相似相溶原理,有利于活性金属和载体的相互分散,充分提高活性金属的分散性与均匀性,实现原子级催化剂的制备。制备过程可直接在环境气氛下进行,无需保护气氛,更易操作,有利于实现大规模氨分解制氢的制备。
Resumen de: CN119685856A
本发明涉及一种钨亚氧化物和碳负载铂的催化材料,该催化材料由钨亚氧化物和XC‑72C作为载体负载铂,其中铂、钨亚氧化物和XC‑72C的质量比为1:9~36:14~120,且铂的质量分数为0.5%~4%。同时,本发明还公开了该催化材料的制备方法和应用。本发明制备方便,操作简单,所得Pt‑W18O49/C催化材料铂含量低,本征活性高,稳定性好,可以作为PEM电解水制氢阴极催化剂广泛应用。
Resumen de: CN119684620A
本发明公开了多金属MOF双功能催化剂及其制备方法和应用,将九水合硝酸铁、六水合硝酸钴、六水合硝酸镍和反丁二烯酸溶于DMF溶液,通过一步水热法制得Fex(CoNi)‑MOF材料,制得的Fex(CoNi)‑MOF具有优异的HER和OER催化活性,解决了现有贵金属催化剂因资源稀缺和成本昂贵的问题无法广泛应用的问题。中熵金属成本低,制备而得的Fex(CoNi)‑MOF具有HER和OER双功能催化活性,具有双效果,成本进一步下降,可以替代贵金属催化剂广泛应用。
Resumen de: CN119680600A
本发明公开了一种AuAg合金团簇/g‑C3N4光催化剂的制备方法,属于光催化剂技术领域,在搅拌下将HAuCl4水溶液和AgNO3水溶液加入到MHA水溶液中,再依次加入H2O、NaOH溶液和NaBH4溶液,混合搅拌反应得到Au12Ag13 NCs;将双氰胺和氯化铵溶解到去离子水中,然后干燥、煅烧得到淡黄色固体,研磨并放置于保护气氛的焙烧收集固体粉末CN;将CN粉末均匀分散在去离子水中,分别加入不同体积的Au12Ag13 NCs,搅拌反应后进行干燥,得到所述AuAg合金团簇/g‑C3N4光催化剂。表现出更佳的催化效果。此外,Ag相对Au稳定、来源广泛且廉价,这种复合催化剂既节约了生产成本,由于AuAg合金团簇独特的物理和化学结构使得复合催化剂表现出更加优异的催化性能。本发明成为构建g‑C3N4基复合光催化剂的具有成本效益的重要方法。
Resumen de: CN119685871A
本发明公开一种缺陷层修饰的TiO2纳米线阵列光阳极及其制备方法,属于光电化学技术领域。本申请采用磁控溅射的方式在基底上生长的TiO2 NWAs表面沉积Ti薄膜,再在N2氛围下进行退火处理,退火时Ti能够夺取TiO2晶格中的O原子,在表面形成含氧空位的TiO2缺陷层,帮助获得更低的费米能级,与主体TiO2纳米线形成同质结时,费米能级趋向于平衡,从而产生内建电场,促进光生载流子的迁移,增强光的利用率;本申请还通过进一步调控Ti膜沉积时间和退火温度等条件对表面缺陷态浓度进行调控,使制备的光阳极具有更好的PEC性能;本申请为调控TiO2的光电催化性能提供了有效的手段,也为相关应用提供了理论基础。
Resumen de: CN119685879A
本发明涉及一种Ce‑MOF掺杂的Nafion复合质子交换膜及其制备方法和用途,所述Ce‑MOF掺杂的Nafion复合质子交换膜包括Nafion复合质子交换膜和Ce‑MOF;所述Ce‑MOF中的金属位点为Ce;所述Ce‑MOF中含有氨基基团。本发明通过引入Ce元素,利用Ce作为自由基猝灭剂,有效清除自由基,可逆的氧化还原对Ce3+和Ce4+,抑制聚合物链化学降解,有利于提高质子交换膜的耐久性,提升质子交换膜的抗氧化性能。同时通过MOF骨架锚定Ce离子位置,有效解决长时间工作后Ce的流失问题,同时引入氨基与Nafion链上的磺酸基形成质子传输通道,保证了膜的质子电导率。
Resumen de: CN119680615A
本发明涉及绿色氢能制备技术领域,具体为一种选择性磷化的二维异质结光催化剂的制备,包括以下步骤:步骤1,以三聚氰胺为原料制备超薄石墨相氮化碳粉末;以硒化钨粉末和氢氧化钠纳米片为原料制备硒化钨纳米片;步骤2,混合超薄石墨相氮化碳粉末和硒化钨纳米片,结合次亚磷酸钠经磷化处理制备硒化钨‑氮化碳二维异质结催化剂。本发明硒化钨纳米片通过退火结合到氮化碳半导体上时,由于硒化钨和氮化碳的跨带排列,氮化碳导带上的电子可以迅速转移到硒化钨导带,并将水还原为氢。与此同时,空穴也可以迁移到硒化钨的价带,并被三乙醇胺消耗。由于界面紧密而丰富的接触,加速了异质界面处的电荷转移。
Resumen de: CN119688444A
本发明涉及一种基于高温氨分解复杂环境的材料腐蚀测试系统,包括腐蚀介质配置机构、腐蚀环境控制机构以及腐蚀反应机构;腐蚀介质配置系统包括依次连接的气瓶、气体稳压装置以及进料装置;腐蚀环境控制系统为控制操作箱,控制操作箱与气体稳压装置和进料装置相连接;腐蚀反应机构包括应力拉伸装置、分开设置的高温氨分解应力腐蚀装置和高温氨分解化学腐蚀装置,以及氨尾气处理装置;高温氨分解应力腐蚀装置和高温氨分解化学腐蚀装置同时与进料装置以及氨尾气处理装置连接;该基于高温氨分解复杂环境的材料腐蚀测试系统能够根据需求调节腐蚀介质组分、腐蚀介质温度、腐蚀介质压力、腐蚀介质流速,同时实现多种试样的应力及化学腐蚀测试及评价。
Resumen de: CN119683678A
本发明提供了一种改性二氧化钛纳米管及其制备方法、电解水催化电极及其制备方法和电解水制氢装置。改性二氧化钛纳米管的制备方法包括:步骤S1,将二氧化钛纳米颗粒和第一碱溶液混合,得到二氧化钛纳米颗粒分散液,将二氧化钛纳米颗粒分散液加热进行反应,反应产物经酸、乙醇、水洗涤后,进行高温退火,得到TiO2纳米管;步骤S2,将铝粉和TiO2纳米管分别置于管式炉的气体上下游,进行改性退火处理,得到改性二氧化钛纳米管。本申请的二氧化钛纳米管的催化活性明显提升,在保证材料稳定性的同时显著提升了其导电性能,将其应用于催化电极中,能够使电极具有良好的化学稳定性、耐腐蚀性和导电性,显著提升了催化电极的整体性能。
Resumen de: CN119683862A
本发明涉及纳米材料制备技术领域,尤其涉及一种α‑Fe2O3多层纳米空心球蛋白石阵列制备方法,首先对FTO导电玻璃基底进行预处理;随后采用浸渍真空蒸发自组装法在FTO导电玻璃基底上制得多层蛋白石结构聚苯乙烯微球模板;最后基于多层蛋白石结构聚苯乙烯微球模板,采用浸渍法和高温退火处理,得到α‑Fe2O3多层纳米空心球蛋白石阵列,本发明制得的阵列结构的具有多层周期性排列的纳米空心球结构,具有功能化的纳米壳层以及充足的内部空间,同时,制备方法简单,成本低廉,大大降低了生产成本,具有良好的应用前景,以此方式解决了现有技术中由于薄膜厚度的减小,其对光的吸收能力也会相应减弱,这将对电极的整体效率产生不利影响的技术问题。
Resumen de: CN119685849A
本发明属于电化学领域,具体涉及一种碱水制氢阳极及其制备方法。所述制备方法主要包括浆料的制备、素胚的制备及排胶和烧结。本发明所述的制备方法,通过将三维多孔镍制成浆料,通过浆料/焙烧工艺将三维多孔镍制备成三维镍电极(镍网、镍毡、泡沫镍、或者镀镍金属多孔板/带作为基材)。三维的一体化自支撑电极结构可以增强各组分之间的结合强度,促进电荷在界面上的转移,保障高活性和高稳定性。为了抑制高电流密度工况下气泡的影响,可以增加催化层孔隙率,从而实现有效的气泡管理,减少气泡脱附过程中对催化层的扰动和破坏。而且三维多孔结构可以减少镍的用量,降低成本。
Resumen de: CN119685878A
本发明关于一种超亲水类水滑石改性碱性水电解复合隔膜及其制备方法和应用,其中超亲水类水滑石改性碱性水电解复合隔膜,包括:一基材,基材的表面形成有阵列状的体相类水滑石结构,在类水滑石结构的边缘还生长有纳米花球结构。于本发明采用亲水的无机填料或有机聚合物对隔膜的孔径进行局部填充,以调整隔膜的孔径分布,减少大孔比例,以达到减少气体穿透的作用。采用亲水无机填料在隔膜表面原位生成纵向梯度形貌分布的纳米颗粒,通过表面纳微结构的调控,增加隔膜的表面能,从而使隔膜具有超亲水性。
Resumen de: CN119685843A
本发明公开了一种氮掺杂垂直石墨烯修饰电解氢镍及其制备方法,包括以下步骤:S1、采用酸溶液对镍网进行活化;S2、将活化后的镍网加热至设定温度;S3、以甲烷为碳源,通过化学气相沉积在镍网上生长垂直石墨烯;S4、对垂直石墨烯进行氮掺杂,得到氮掺杂垂直石墨烯修饰电解氢镍网。本发明通过使用成本低廉的镍网作为基底材料,并利用氮掺杂垂直石墨烯的高催化活性,实现了高效、低成本的电解水制氢。本发明通过化学气相沉积方法在镍网上生长垂直石墨烯,改善了石墨烯的电催化性能,从而提高了催化活性。本发明成功解决了现有技术中存在的成本高、催化活性不足和电极稳定性差等问题,为电解水制氢技术的工业化应用提供了有效的解决方案。
Resumen de: CN119685863A
本发明属于纳米材料制备和能源领域,公开了一种基于双金属Mo/Fe‑MOFs衍生的原位异质结Fe2Mo3O8/C电催化析氢催化剂的制备方法。(1)将MoO3、FeCl3·6H2O和咪唑溶解于去离子水中,高温条件冷凝回流数小时,制得催化剂前驱体双金属Mo/Fe‑MOFs。(2)采用去离子水和乙醇清洗,离心收集产物并真空干燥。(3)在氮气环境下,以一定的升温速率在管式马弗炉中高温煅烧数小时,得到一种基于双金属Mo/Fe‑MOFs衍生的原位异质结Fe2Mo3O8/C电催化析氢催化剂。该催化剂通过双金属之间的推拉电子效应调控了活性位点Mo的电子云结构,使其氢吸附自由能更趋近于0eV。此外,该催化剂导电性和稳定性好,且具有一定的光响应能力,在光电耦合条件下,该催化剂可以展现出更加优越的析氢活性,具有良好应用前景。
Resumen de: CN119687324A
本发明涉及用电优化控制终端技术领域,且公开了一种电解制氢生产工艺中的用电优化控制终端,包括用电优化控制终端主体和用电优化数据显示屏,所述用电优化控制终端主体的顶部设置有安装座,所述安装座的内部设置有安装腔。该电解制氢生产工艺中的用电优化控制终端,通过启动第二伺服电机来带动用电优化数据显示屏向上移动,以此来对用电优化数据显示屏的高度进行调节,其次,可通过启动第一伺服电机来带动用电优化数据显示屏左右旋转,以此来对用电优化数据显示屏的朝向进行调节,还可通过启动第三伺服电机来带动用电优化数据显示屏上下旋转,以此来对用电优化数据显示屏的俯仰角度进行调节,从而实现了便于对用电优化数据显示屏进行高度和角度调节的目的,进而使使用者能够根据自身的习惯来对用电优化数据显示屏进行调整。
Resumen de: WO2024033060A1
The invention relates to an electrolysis system (100), comprising at least two electrolysis installations (1A, 1B), a power supply source (3) having a direct voltage output (7), and a central supply line (5), wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3) such that, at a first direct voltage (31), a direct current can be fed into the central supply line (5). The electrolysis installations (1A, 1B) are connected electrically in parallel to the central supply line (5), wherein, for the direct voltage supply from the public power grid (25) to a network connection point (35), a central voltage source converter (13), in particular a modular multilevel inverter (13), is connected which converts an input-side alternating voltage into the output-side first direct voltage (31) at the direct voltage output (7). Each electrolysis installation (1A, 1B) is in each case connected via a DC/DC converter (11A, 11B), which converts the first direct voltage (31) into a second direct voltage (33, 33A, 33B), parallel to the direct voltage output (7) of the voltage source converter (13) in such a way that the second direct voltage (33, 33A, 33B) across the electrolysis installation (1A, 1B) drops, wherein each of the DC/DC converters (11A, 11B) can be controlled and/or regulated for adapting a level of its second direct voltage (101, 102).
Resumen de: CN119685866A
本发明公开了一种镍掺杂的分级纳米阵列电催化材料的制备方法及其应用,涉及纳米材料制备技术领域,所述制备包括以泡沫铜作为基底材料,氢氧化钠和过硫酸铵作为原料配置成溶液,通过化学氧化处理在泡沫铜基底上原位生长合成氢氧化铜纳米带阵列前驱体,然后将前驱体通过水热处理转化为镍掺杂硫化亚铜纳米棒阵列,经电沉积过程在纳米棒上形成均匀的纳米片,即可获得镍掺杂的分级纳米阵列电催化材料;本发明通过优化合成方法与调节掺杂比例,使得所得到的分级纳米阵列在电催化反应中表现出较低的过电位和优异的稳定性,解决了现有催化剂催化效率低下、耐久性差等问题和稳定性不足的问题。
Resumen de: CN119685859A
本申请属于光电催化技术领域,具体公开了一种一体化光阳极及其制备方法、应用和光电极,该一体化光阳极包括:石墨基底,所述石墨基底的成分为高纯石墨,所述石墨基底的表面粗糙度在3.5μm以内;活性层,所述活性层设置在所述石墨基底的一侧表面,且所述活性层的成分为SiC,所述活性层具有疏松多孔结构;所述一体化光阳极的界面电阻为10Ω~50Ω。该一体化光阳极具有普适性和良好的导电性能,且光电化学水分解特性优异。
Resumen de: CN119685881A
本发明公开了基于改进粒子群算法的制氢电解槽动态性能控制方法,包括以下步骤,提取电解槽的指标参数,指标参数包含电解槽运行温度,构建数学模型,数学模型包含运行电压、产氢速率和产氢效率,通过对数学模型的运行电压、产氢速率和产氢效率进行计算,获得多目标寻优的参数用于约束电解槽运行温度,通过自适应权重的多目标粒子群算法对现有的线性二次型规划控制的权重进行优化,构建电解槽温度动态模型,通过电解槽温度动态模型控制电解槽运行温度在约束电解槽运行温度范围之内。本发明通过自适应权重的多目标粒子群算法对线性二次型规划控制的权重进行优化,构建电解槽温度动态模型,从而能够对电解槽运行温度进行稳定、快速的反馈控制。
Resumen de: CN119685852A
本发明公开了一种Ni‑Co‑P碱性电解水制氢催化剂的制备方法,包括:镍网预处理、电沉积形成催化剂、煅烧等步骤。通过上述方式,本发明一种Ni‑Co‑P碱性电解水制氢催化剂的制备方法,采用预镀镍的方法,并在镀液中加入络合剂和表面活性剂,同时对络合剂等成分及用量进行优选,解决了催化剂表面的裂纹和针孔现象,再配合后续的煅烧磷化处理,提高了Ni‑Co‑P碱性电解水制氢催化剂的制氢性能,且机械性能优异、制备工艺简单。
Resumen de: CN119683582A
本发明属于材料科学技术领域,一种合成金属元素掺杂的钼基磷氧复合材料的方法,将金属盐和钼的化合物按摩尔比金属:钼=0.05―40进行均匀混合,得到混合物A;将混合物A和磷单质粉末混合均匀得到混合物B,混合物B中,磷与钼的摩尔比为0.05-40;将混合物B置于等离子体反应器的反应管内部,放电气体以5‑2000毫升/分钟的流量通过等离子体反应器的反应管,等离子体反应器的放电频率为1‑30 kHz,输出电压为2000‑20000 V,反应5‑200分钟后得到金属元素掺杂的钼基磷氧复合材料。发明所述的制备金属元素掺杂的钼基磷氧复合材料的方法操作便捷、反应温度低、耗时短、可望实现批量化生产。
Resumen de: CN119685867A
本发明公开了一种等离子体刻蚀的霍夫曼金属配位聚合物及其制备方法与在析氧反应中的应用,以达到在析氧反应中达到快速和深度重构的制备方法,先通过简单的沉淀法制备出NiFe‑Ni PBA纳米片粉末,然后通过等离子体刻蚀处理,使其产生CN空位和Ni离子空位。有益效果:本发明还公开了上述电催化剂在电解水析氧反应中的应用,在析氧反应过程中达到深度重构,制备出由金属羟基氧化物组成的Re‑P‑NiFe‑Ni PBA催化剂,并且能够在碱性电解液、碱性模拟海水和碱性实际海水中均展现出优异的析氧反应活性和稳定性,具有良好的应用前景。
Resumen de: CN119680630A
本发明公开了一种氨分解制氢催化剂及其制备方法与应用,包括如下步骤:将铝源、硅源、氢氧化钠和水混合配置凝胶,高温晶化后得到SOD分子筛;将SOD分子筛与钌盐混合,经高温热处理、成型得到负载钌的SOD分子筛。钌是催化剂的活性金属,SOD笼富含稳定的钠离子,通过钠离子向金属钌提供电子,增强了金属钌对氨的活化,降低了氨完全分解的温度;本发明催化剂制备方法简单,制备的催化剂具有较低的操作温度,避免了现有技术中钌基催化剂操作温度过高、容易失活的问题。
Resumen de: CN119680644A
本发明涉及一种原位TiO2纳米粒子层覆盖的二维双金属卟啉复合材料及其制备与应用。将二维双金属卟啉MOFs与TiO2材料混合加热回流,将所得固体进行溶剂热反应,得到原位TiO2纳米粒子层覆盖的二维双金属卟啉复合材料,反应完成。与现有技术相比,本发明,通过将TiO2纳米粒子层引入到二维双金属卟啉复合材料表面以提高二维金属卟啉复合材料的光催化效率,具有催化剂合成过程较简单,光催化活性优异等优点。
Resumen de: CN119685874A
本发明提供了一种碳酸根掺杂的高活性全解海水电催化材料及其制备方法与应用。该材料的制备方法,包括步骤:将经过预处理后的泡沫镍(NF)集流体置于钴源水溶液中,进行水热反应;反应完成后,经冷却、洗涤、干燥,得到Co3O4/NF前驱体复合材料;将所得Co3O4/NF前驱体复合材料置于含有钴源、钼源、尿素以及柠檬酸钠的混合溶液中,进行水热反应;反应完成后,经冷却、洗涤、干燥,得到。本发明以三维金属泡沫镍为集流体,通过两步温和的水热反应,制备了兼具高活性和抗氯腐蚀性的稳定全解海水电催化剂,所制备的复合催化剂能够在较低的电位下驱动全解海水进行长时间稳定运行。
Resumen de: CN119685870A
本发明涉及一种锶‑氧化钌复合催化材料,该催化材料由掺杂锶(Sr)的氧化钌(RuO2)构成,且锶(Sr)与钌(Ru)的原子比为2 %~10 %。同时,本发明还公开了该催化材料的制备方法和应用。本发明所得催化材料稳定性好,在酸性介质中可以稳定存在,可以作为PEM电解水制氢阳极催化剂应用于酸性电解水析氧反应中,在提高了其本征反应活性的同时增强了稳定性,可作为质子交换膜水电解槽的催化剂应用。
Resumen de: CN119685865A
本发明提供一种硫掺杂氧化钌催化剂及其制备方法和应用;所述硫掺杂氧化钌催化剂包括氧化钌和掺杂在所述氧化钌中的硫;所述硫掺杂氧化钌催化剂中硫的掺杂率为0.4at.%‑3at.%;本发明通过氧化钌晶体中引入硫元素,使氧化钌晶体中的痕量钌‑氧键被硫取代,使氧化钌催化剂的活性提高;检测显示硫掺杂氧化钌催化剂在OER反应中显示出优异的性能,RDE测试中10mA cm‑2过电位为268‑322mV,最低仅为268mV,可持续稳定运行50小时。而且硫掺杂氧化钌催化剂的制备方法简单,可以硫掺杂氧化钌催化剂中硫含量可以通过温度自主调控,从而得到不同的性能。
Resumen de: CN119685014A
本发明公开了一种钙钛矿分子筛复合荧光材料及其制备与应用,属于发光材料技术领域。本发明利用介孔沸石(Al‑SBA‑15)的孔径限域原位生长钙钛矿材料,得到了一种复合荧光材料,其PLQY高达81.5%,在各种环境(空气、水和高温)中的稳定性显著提高,且整个合成过程中仅用水作为溶剂,不使用有机溶剂和有机配体,合成过程更加绿色且成本更低。通过硅胶封装红色和绿色钙钛矿荧光粉,实现了宽色域(NTSC为145%)的白色钙钛矿LED的制备。另外,该复合荧光材料在电催化析氧中作为催化剂时,也具有良好的催化动力、快速电荷转移动力和电化学催化稳定性。
Resumen de: CN119680614A
本发明属于光催化析氢技术领域,具体涉及一种g‑C3N4/Al‑SrMoO4异质结光催化剂在光催化分解水析氢中的应用。本发明是将利用高温熔盐法和高温煅烧法制备的g‑C3N4/Al‑SrMoO4异质结光催化剂均匀分散在模拟海水、三乙醇胺和氯铂酸的混合溶液中,并向反应器中持续通入氩气得到相对真空的环境,在模拟太阳光照射下进行光催化分解水析氢。本发明g‑C3N4/Al‑SrMoO4异质结光催化剂具有更好的稳定性和光吸收特性,能有效降低光生电子和空穴的复合,提高光催化活性,本发明原料成本实惠,且反应条件温和,对环境友好无污染,符合当前所倡导的绿色环保理念。
Resumen de: KR20250040327A
본 발명은 산소발생반응용 니켈-철 옥시수산화물 전극촉매의 제조방법에 관한 것으로, 본 발명에 따르면, 니켈 지지체를 전해욕의 전구체 물질로써 사용함으로써, 공정의 효율을 높이고, 전구체 물질의 비용을 절감할 수 있다. 또한, 니켈 지지체가 에칭되어 표면적을 넓히는 등의 부가적인 효과가 있다.
Resumen de: CN119032441A
The present invention relates to mixed metal oxide catalysts, in particular Pt and Ru-containing oxide catalysts, oxide-based catalysts, for use in polymer electrolyte membrane (PEM) fuel cells, water electrolysis, regenerative fuel cells (RFC) or oxygen generating electrodes in various electrolytic applications.
Resumen de: WO2024035454A1
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane is both electronically conducting and ionically conducting; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidant to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment for the cathode; wherein hydrogen is generated from water electrochemically; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: CN119095792A
The present invention relates to a process for producing methanol by synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen with electrolysis of a carbon dioxide rich stream for producing a stream comprising CO and CO2 wherein the CO/CO2 molar ratio of the synthesis gas is greater than 2. The invention also relates to a method for producing syngas by subjecting a combined feed gas stream of CO2 and steam to one-way co-electrolysis in an SOEC unit.
Resumen de: WO2024037696A1
The invention relates to a method for operating a renewable power plant (100) comprising at least one wind turbine (101) and an electrolyzer system (110), the renewable power plant is connectable with a grid (190) via a circuit breaker (123) located at a point of common coupling (PCC), wherein the renewable power plant comprises an internal grid (191) connecting the at least one wind turbine and the electrolyzer system with the point of common coupling, wherein the method comprises detecting a low voltage at any of the at least one wind turbine, and electrically disconnecting the electrolyzer system from the internal grid in response to detecting the low voltage.
Resumen de: CN119660800A
本发明涉及一种富缺陷的钴掺杂MoS2/NiSe2异质结纳米阵列电极及其制备方法和应用,属于电催化和新能源材料领域。所述电极由自支撑的MoS2/NiSe2异质结纳米阵列构成,同时引入钴原子掺杂和丰富的结构缺陷,显著提高电极材料在碱性电解质中的析氢反应(HER)、析氧反应(OER)或尿素氧化反应(UOR)活性。本发明所制备的电极材料具有成本低、活性高、稳定性好等优点,在水电解、金属空气电池及生活污水处理等领域具有广阔的应用前景。
Resumen de: CN119663371A
本申请涉及一种绿电制氢系统中电解槽集群的控制方法及装置,应用于能源电力技术领域,方法包括:周期性获取风光出力功率;若Pin(t)小于N(t‑1)Pmin‑hard;根据Pmin‑hard和Pin(t),对前一时刻已开启的电解槽进行控制;若Pin(t)大于等于N(t‑1)Pmin‑hard小于N(t‑1)Pmin‑soft,计算前一时刻每个已开启的电解槽在历史K个周期内在Pmin‑soft以下运行时,Pmin‑soft与电解槽的运行功率的差值的累计值;根据该累计值、Pin(t)和Pmin‑soft对前一时刻已开启的电解槽进行控制;若Pin(t)大于等于N(t‑1)Pmin‑soft小于等于N(t‑1)Pmax‑soft,控制电解槽集群中电解槽的启停状态不变,将Pin(t)平均分配至已开启的电解槽;若Pin(t)大于N(t‑1)Pmax‑soft,计算前一时刻每个已开启的电解槽在历史K个周期内在Pmax‑soft以上运行时,电解槽的运行功率与Pmax‑soft的差值的累计值;根据该累计值、Pin(t)和Pmax‑soft对电解槽集群进行控制。本申请可提高系统运行的稳定性。
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: AU2023220801A1
A method of electric current measurement at an electrolyser cell stack is provided. The method comprises the following steps: to provide at least one sensor (11) having an element which is responsive to the presence of a magnetic flux and/or magnetic flux changes adjacent to an input or exit manifold channel (6, 7) outside of a current injector plate in the electrolyser stack, ensure an electric or a wireless connection between the sensor (11) and a recording and/or display device, supply an electrical potential difference between two current injector plates having the electrolyser cell stack arranged between them, capture a signal value indicative of magnetic flux and/or magnetic flux change at the sensor location by at least one sensor (11), make at least one signal value available for storage and/or transmission to a remote location through the wired and/or wireless connection.
Resumen de: JP2024003164A
To provide means for solving the problem on radioactive contamination by applying hydrogen water to applications that are different from an application of removing a radioactive substance from soil and that appropriately exhibit functions of hydrogen water with unique properties.SOLUTION: In a method for reducing an amount of radioactivity in liquid containing a radioactive substance by dissolving hydrogen in the liquid, hydrogen may be dissolved in the liquid by mixing a substance containing a radioactive substance with hydrogen water containing hydrogen of 1.0 ppm or more.SELECTED DRAWING: None
Resumen de: CN119663330A
本发明提供一种新型的PEM电解水制氢双极板结构,其特征在于,包括双极板本体和保护层,所述保护层形成于所述双极板本体的表面,所述保护层为导电金刚石层。本发明提供一种新型的PEM电解水制氢双极板结构的制备方法,包括如下步骤:S1:提供一种双极板本体;S2:在所述双极板的表现生长导电金刚石,得到具有导电金刚石层的双极板。本发明中,导电金刚石成提供双极板低成本的防氧化腐蚀处理,延长电解槽双极板的使用寿命。且导电金刚石生长层提供双极板耐久的导电性,使双极板具备更高的机械强度和更优的气体密封效果。
Resumen de: CN119663367A
本发明涉及催化剂技术领域,尤其涉及一种蒙脱石负载氧化钌催化剂及其制备方法和应用。本发明的一种蒙脱石负载氧化钌催化剂的制备方法,包括如下步骤:S1、对蒙脱石进行煅烧,得改性蒙脱石;S2、通过水浴法在改性蒙脱石上生长氧化钌前驱体;S3、对蒙脱石负载氧化钌前驱体进行煅烧处理。在本发明中,煅烧后得到的改性蒙脱石具有较多的吸附活性位点,可以很好的锚定贵金属,提升催化活性。改性蒙脱石与RuO2在界面形成化学键合,造成RuO2晶体具有拉应力,缓解了RuO2中氧原子在析氧反应过程中的过度氧化,保持催化剂的高活性;并且RuO2可以在较低的负载量下保持着较高的OER活性,显著降低成本。
Resumen de: CN119663356A
本发明涉及硫掺杂铁铝双金属材料技术领域,具体涉及一种富缺陷的S‑FeAl LDHet催化剂及其制备方法与应用;通过水热法合成了在泡沫镍基底上原位生长的非贵金属电催化剂S‑FeAl LDH,然后将催化剂S‑FeAl LDH在碱性条件下进行CV选择性刻蚀Al位点,对催化剂的形貌、电子结构进行调控,形成了富缺陷的S‑FeAl LDHet催化剂;本发明通过在OER的电化学窗口进行Al刻蚀,能够使催化剂形貌不发生任何变化,并且催化剂的机械强度也得到保留。电化学原位刻蚀Al构建缺陷的方法,能够通过CV曲线直观的得到催化性能。即通过CV刻蚀圈数来确定最佳的刻蚀量,确保活性位点完全的暴漏。同时也能够优化催化剂的导电性。
Resumen de: CN119663297A
本发明公开了一种电化学N‑N氧化偶联的双极制氢和测试方法,属于电解水制氢技术领域。本发明公开的方法,采用含有氨基化合物底物的碱液作为阳极电解液,纯碱液作为阴极电解液,将具有低热力学电位的氨基化合物底物的氨基N‑N氧化脱氢偶联反应替代高能垒OER并与HER耦合构建新型低能耗制氢混合电解水体系,实现阴极低能耗制氢的同时,通过阳极氨基化合物底物中‑NH2脱氢直接结合形成氢气,解决现有的阳极氧化产物难以匹配阴极大规模制氢的需求问题。
Resumen de: CN119663369A
本公开提供一种用于碱性电解水制氢的高效复合隔膜及其制备方法,属于电解水制氢技术领域。制备方法包括:S110、将聚合物原料溶解于溶剂中,搅拌混合,形成纺丝液;S120、将所述纺丝液通过闪蒸法制备得到聚合物无纺布;S130、将聚合物无纺布依次浸泡于强碱溶液、金属氯化盐或金属硝酸盐溶液中,经过焙烧后在聚合物无纺布的表面及孔道内部形成导电性无机颗粒;S140、重复步骤S120和步骤S130多次,清洗膜材料,得到多孔复合隔膜。本公开采用闪蒸法制得聚合物无纺布作为隔膜骨架,在保证隔膜高机械强度的同时大大降低了隔膜厚度,进而降低了隔膜电阻,其次采用原位化学沉积法在聚合物无纺布表面及孔道内部生长导电性的无机颗粒,该制备过程简单、易于工业化放大。
Resumen de: CN119663334A
本公开涉及一种镍铁氢氧化物催化剂及其制备方法与用途,在所述催化剂的XRD图中,仅在2θ为30~40°之间有无定型峰包。本公开的催化剂制作成本低,具有较小的颗粒粒径和较大的BET比表面积,在电解水析氧反应中具有较高的活性和优异的稳定性。
Resumen de: CN119663392A
本发明公开了一种掺杂稀土元素的电极材料及其制备方法和应用。本发明的电极材料的制备方法,包括如下步骤:(1)将过渡金属盐、稀土元素盐、磷源和导电添加剂分散于水中,配制成混合溶液;(2)搭建电镀反应池;(3)在电镀反应池的正极和负极施加电压,电镀液中的离子在电场作用下迁移并在电镀反应池的负极上发生电沉积反应,在导电基底上沉积得到掺杂稀土元素的过渡金属磷化物,即为所述电极材料。本发明的电极材料的制备方法具有普适性,操作简单、组分可控。本发明的电极材料在电解水制氢的反应中展现出了优异的活性和广阔的应用前景。
Resumen de: CN119663364A
本发明公开了一种掺杂Gd金红石型二氧化钌纳米片的制备方法及应用,本发明通过以RuCl3、GdN3O9为原料,采用盐模板法成功地制备了掺杂Gd金红石型二氧化钌纳米片。将其作为析氧催化剂用于电解水制氢时表现出优异的(OER)析氧性能,在10mA cm‑2的电流密度下实现了仅230mV的过电势且同时具有优异的导电性,较宽的电位窗口,以及高度的氧化还原可逆性,因此在电催化领域具有广阔的应用前景。另外本发明制备方法具有工艺步骤简单、安全且易控,原料易得,整个制备过程中使用化学试剂少,对环境污染小,实验条件温和,耗时较短,成本低廉等特点,因此适合工业化推广应用。
Resumen de: CN119663340A
本发明属于电催化材料技术领域,公开了一种水波纹状的多金属氧硫化物自支撑电极及其制备方法和应用。本发明以泡沫镍为自支撑电极的基底,对泡沫镍进行预处理后,将预处理的泡沫镍浸入在含有铁氰化钾、可溶性钒盐和可溶性钴盐的前驱体溶液中,通过室温超声将泡沫镍表面的镍刻蚀成镍离子并释放到前驱体溶液中,得到多金属阳离子前驱体溶液;在超声条件下,向多金属离子的前驱体溶液中加入硫源,以使多金属阳离子前驱体溶液中的三价铁离子、镍离子和钴离子与硫源反应,形成多金属硫化物,同时钒离子结合的氧离子掺杂在多金属硫化物中,生成前驱体自支撑电极;对前驱体自支撑电极进行焦耳加热,得到多金属氧硫化物自支撑电极。
Resumen de: CN119661865A
本发明公开了一种适应于宽功率波动的双金属有机凝胶电极材料及其制备方法和应用,双金属有机凝胶电极材料的制备方法包括以下步骤:将过渡金属镍盐和过渡金属钴盐溶解在乙醇中,得到过渡金属盐混合液,在氮气或惰性气体气氛下,将过渡金属盐混合液滴加至70~90℃的对苯二甲酸混合液中,并继续于70~90℃溶剂热反应,得到胶体悬浮液,离心,得到沉淀物,洗涤,真空干燥,得到双金属有机凝胶电极材料,该双金属有机凝胶电极材料具有优异的电催化析氢和析氧活性,在碱性环境的HER过程中具有较低的过电位,最低的过电势为28mV,且在不同大电流密度下仍保持良好的稳定性,具有良好的电化学活性和宽功率稳定性。
Resumen de: CN119663347A
本发明提供了一种氮掺杂碳纳米片@钴镍铁三过渡金属复合材料制备方法与电解水析氢应用。本发明复合材料的制备方法是通过将三聚氰胺、四水合乙酸钴、六水合硝酸镍前驱体混合,经水热反应形成复合物,再与草酸铁钾进行置换反应,经高温煅烧,同时实现铁钴镍三过渡金属负载,氮掺杂和三聚氰胺碳化为碳纳米片,最终得到氮掺杂碳纳米片@钴镍铁三过渡金属复合材料。与传统的制备方法相比,本发明的方法反应条件温和、简单、快速、一步煅烧实现碳纳米片合成,三过渡金属负载,氮掺杂,且产率高,制备的复合材料对电解水析氢反应具有优越的电催化性能。
Resumen de: CN119657145A
本发明属于催化剂技术领域,公开了一种Co‑B催化剂及其制备方法与应用。采用化学还原法制备硼化钴催化剂,包括以下步骤:将钴化合物溶于水或乙二醇或由水和乙二醇组成混合溶液中,加热至一定温度,得到A液;将NaBH4和NaOH溶于水或乙二醇或由水和乙二醇组成混合溶液中,得到B液;搅拌条件下,将B液滴加入到A液中进行反应,所得产物经离心、洗涤、干燥,钝化,得到Co‑B催化剂。本发明的制备方法简单便捷,通过一步化学还原法来合成催化NaBH4水解制氢的Co‑B催化剂,该催化剂同时具备较大孔径和大的比表面积,表现出良好的催化效率,在45ºC下催化NaBH4水解的释放速率为2659.8mL‧min‑1‧g‑1。
Resumen de: CN119657112A
本发明涉及一种Mo掺杂SrTiO3光催化剂及其制备方法和应用,属于光催化材料技术领域。本发明实验过程中采用熔融盐介质,高温固相法制备Mo掺杂SrTiO3,然后原位分步光沉积法加载助催化剂,其可以应用于光催化全解水领域。相较于现有的光催化剂,本发明Mo掺杂SrTiO3光催化剂稳定性强,可控性良好,产氢量较高,有效抑制载流子复合,进一步提升载流子的分离效率。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN119657232A
本发明涉及催化剂技术领域,尤其涉及一种表面羟基化铂镍双金属海水制氢催化剂的制备方法及应用,包括以下步骤:首先称取科琴黑于混酸环境中进行酸化处理,优化表面性质;随后在其表面实施羟基官能修饰;最后将修饰后的样品均匀分散在乙二醇溶剂中,通过高温还原法使铂、镍金属以二元合金的形式生长在碳基体中,即可得到表面羟基化铂镍双金属海水制氢催化剂。电化学测试表明,本发明所制得的催化剂在海水制氢领域展现出优异的催化性能,其在海水中电流密度可达4200mAcm‑2,同过电位下是商用PtC性能的近3倍(1500mA cm‑2)。同时,本发明所制备的催化剂还具备出色的析氢反应稳定性,成本低廉,经济环保,在电解海水制氢领域中拥有广阔的应用前景。
Resumen de: CN119663353A
本发明公开了一种稀土元素掺杂析氢电催化剂及其制备方法与应用。所述稀土元素掺杂析氢电催化剂包括作为载体的稀土元素掺杂氧化镍,以及锚定在载体上的钌原子。本发明提供的稀土元素掺杂析氢电催化剂通过亲氧稀土元素掺杂NiO增强了对羟基的吸附,稀土元素/NiO载体促进了Ru表面的氢转化,稀土元素/NiO和Ru发生了明确的协同作用,共同促进了水的解离,在碱性HER中体现出了很高的催化活性,为加速碱性HER反应动力学提供了新思路。在碱性HER测试中,本发明的稀土元素掺杂析氢电催化剂仅需38mV的过电位即可达到10mA cm‑2的电流密度;进行50h稳定性测试后,过电位未出现衰减。
Resumen de: CN119663313A
本发明公开了一种连续回收低浓重水的加压质子交换膜电解水制氢系统,涉及重水回收技术领域,包括:水处理和纯化模块、PEM电解水制氢模块、氢气存储模块和低浓重水产品存储模块;PEM电解水制氢模块包括电解槽阳极模块、电解槽阴极模块、质子交换膜、氧气和氢气的高压气液分离器模块和低压气液分离器模块;氧气高压气液分离器模块的水进入到电解槽阳极模块中进行电解,产生的质子透过质子交换膜到电解槽阴极模块形成氢气;电解槽阳极模块电解之后的水进入氧气高压气液分离器模块形成循环;经过多次循环电解之后的水经过低压气液分离器模块分离之后形成低浓度重水。本发明缓解了现有技术在电解水制氢项目中缺乏连续生产回收低浓重水方案的技术问题。
Resumen de: CN119663350A
本发明公开了一种由氮掺杂石墨烯管三维导电骨架和原位生长于其表面的Ni3Fe/NiFe2O4异质结构组成的复合电解水析氧电催化剂Ni3Fe/NiFe2O4@N‑GNTs。异质结构Ni3Fe/NiFe2O4为薄片状,垂直生长在氮掺杂石墨烯管的表面。制备方法包括:通过水热反应得到NiFe氢氧化物@N‑GNTs前驱体,随后在马弗炉中进行空气煅烧,生成NiFe2O4@N‑GNTs中间体;最后在管式炉中,采用Ar‑H2(H210%)气氛,350~370℃进行还原反应2h,获得Ni3Fe/NiFe2O4@N‑GNTs复合析氧电催化剂。得益于异质界面对电子结构的调控以及氮掺杂石墨烯管骨架良好导电性等的协同作用,该电催化剂在碱性介质中表现出优异的电解水析氧性能及优越的稳定性。
Resumen de: CN119663312A
本发明属于电解水制氢气液分离技术领域,公开了一种碱性电解水制氢气液分离系统和分离方法,碱性电解水制氢气液分离系统,包括电解装置、气液沉降分离装置、气液旋流分离装置、电解液供应装置和热源装置,其中,电解液供应装置与电解装置之间连接有加热装置;电解装置的气体出口依次与气液沉降分离装置、气液旋流分离装置连接;所述气液沉降分离装置的内部设置有空腔,空腔中部的横截面上分布设置有倾斜导流板组件,气液混合物进口设置于空腔的底部,气体进口位于空腔的顶部;气液旋流分离装置的进口为切向进口,其内壁设置有耐磨层。具备提高制氢效率和气体纯度、增强系统稳定性和可靠性和降低能源消耗和成本等优点。
Resumen de: CN119663546A
本发明提供了一种核壳型二氧化钛‑聚苯硫醚电解水隔膜的制备方法。首先,通过超声混合二氧化钛前驱体、无水乙醇、醋酸水溶液,同时,将聚乙烯吡咯烷酮溶于N,N‑二甲基甲酰胺中得到助纺剂。将二氧化钛前躯体液和助纺剂溶液混合后得到内层纺丝液。其次,制备外层纺丝液,包括聚乙烯醇和聚苯硫醚乳液。通过同轴静电纺丝技术,将这两种溶液纺丝成膜的前驱体。最后,前驱体经过干燥和煅烧工艺处理,得到核壳型二氧化钛‑聚苯硫醚电解水隔膜。该方法简单,可控性强,适用于电解水反应中的隔膜制备,有利于工业化放大。
Resumen de: CN119660813A
本发明公开了一种深度释放晶格氧能力尖晶石氧载体及其制备方法和应用,属于氢能制备相关技术领域。本发明通过将Cu、Mn、Ni、Ca、Sr等元素等摩尔比的掺杂到尖晶石型结构的金属铁基氧载体AFe2O4中,借助多金属元素对尖晶石型氧载体(AFe2O4)的A位原子表现出了稀释作用,结合促进晶格氧释放的多金属效应。并且,尖晶石型氧载体(AFe2O4)本身优越的吸附能力和循环稳定性,将新型氧载体应用化学链制氢(CLR)中到实现对废塑料的回收利用和高纯氢气的高效制取。由此解决纯Fe2O3氧载体在化学链制氢(CLR)中存在活性不足、表面积碳严重和循环稳定性差等问题。
Resumen de: CN119663357A
本发明属于电解水领域,具体涉及一种金属氟化物@磷化物自支撑电极,包括泡沫基底以及复合在其表面的金属氟化物@磷化物活性层,所述的活性层包括过渡金属的磷化物层及其氟化物层,其中,磷化物层复合在泡沫基底侧,所述的氟化物层设置在表层。本发明还包括所述的电极的制备和应用。本发明创新地预先通过助剂A和助剂B辅助的溶剂热方式在泡沫基底上修饰过渡金属,随后以其为成核靶点依次进行后续的气相磷化和气相氟化处理,如此能够优化材料的层级结构,改善材料的界面稳定性,进而可以显著改善制备的材料的耐碱性,改善其HER/OER性能,改善水全电解的性能。
Resumen de: CN119663354A
本发明公开了一种金属氢氧化物纳米纤维及其制备方法和应用。本发明的金属氢氧化物纳米纤维的组成包括钴‑镍的氢氧化物,由CoxNiy‑MOF纳米纤维进行电化学活化制成,0
Resumen de: CN119660675A
本申请涉及硫碘循环制氢技术领域,具体涉及一种热化学碘硫钡循环制氢的工艺和系统,包括过量的Ba2+与Bunsen反应产物中的硫酸反应为硫酸钡,进而得到含HI、BaSO4、H2O、BaI2及少量未反应I2的第一反应混合液,其先后经旋流分离、脱液、压滤得到硫酸钡滤饼和包括HI、H2O、BaI2的第二混合溶液;硫酸钡滤饼经破碎后高温分解,分解产生的气体回送参与Bunsen反应,分解产生的BaO再溶解为Ba2+;第二混合溶液再沸得到碘化氢蒸汽,碘化氢蒸汽分解的产物降温后经气液分离得氢气,气液分离得到的液体回送参与下一循环的Bunsen反应。本申请引入钡循环,简化了工艺,降低了碘单质用量,成本低。
Resumen de: CN119666959A
本发明提供一种质子交换膜电解池传质临界水计量比的快速测量方法,包括:电解池以初始电压进行电解,每隔一段时间增大一次电压进行电压正向扫描,记录整个过程中的电流。当增加电压后出现电流减小时,以此时的电压运行至电流稳定。再以此电压为基准,每隔一段时间减小一次电压进行负向扫描,记录对应的电流值。当电流不因电压减小而增大,而是保持稳定时,此时的电压与电流为电解池开始受传质限制的临界点,即传质临界点。利用传质临界点的电流值和供水流量计算得到传质临界水计量比。本发明方法将电解水的极化曲线电压正向扫描与负向扫描相结合,能够在对膜电极损害极小的条件下实现传质临界水计量比的快速测量。
Resumen de: CN119657189A
本发明公开了一种具有N缺陷的石墨相氮化碳材料及其制备方法和应用。该石墨相氮化碳材料具有N缺陷,微观形貌为二维多孔结构,N缺陷包括N空位和氰基。该氮化碳材料的比表面积为95.93m2/g,孔体积为0.35cm3/g。在水分解制氢性能测试中,该催化剂的制氢性能与原始g‑C3N4相比显著提高,该催化剂在光催化全解水实验中生成氢气的速率最高可达到2.78mmol·g‑1·h‑1,在添加微量牺牲剂的光催化半解水实验中生成氢气的速率最高可达到50.84mmol·g‑1·h‑1,在光催化水分解制氢工业中有很好的应用前景,其制备方法具有工艺简单,成本低及易控制等优点,利于工业化应用。
Resumen de: CN119663545A
本发明提供了一种核壳型二氧化硅‑聚苯硫醚电解水隔膜的制备方法。首先,通过超声混合二氧化硅前驱体、无水乙醇、盐酸水溶液,同时,将聚乙烯吡咯烷酮溶于N,N‑二甲基甲酰胺中得到助纺剂。将二氧化硅前躯体液和助纺剂溶液混合后得到内层纺丝液。其次,制备外层纺丝液,包括聚乙烯醇和聚苯硫醚乳液。通过同轴静电纺丝技术,将这两种溶液纺丝成膜前驱体。最后,经过干燥和煅烧工艺处理,得到核壳型二氧化硅‑聚苯硫醚电解水隔膜。该方法简单,可控性强,适用于电解水反应中的隔膜制备,有利于工业化放大。
Resumen de: CN119663362A
本发明提供了一种负载型IrOx催化剂及其制备方法和应用。所述负载型IrOx催化剂包括氧化物载体以及负载在所述载体上的活性组分;所述活性组分包括Ir单质以及包覆在Ir单质表面的无定形IrOx;所述IrOx的晶体结构为长程无序、短程有序。本发明提供的上述负载型IrOx催化剂的制备方法便于实现,重现性强,有利于工业化制备生产,在实验室条件下可以实现克级批量制备,为大批量制备低成本高活性高稳定性的质子交换膜电解水制氢阳极催化剂提供可能。
Resumen de: CN119663338A
本申请公开了一种分步去合金化制备分级多孔镍电极的方法及其应用,方法包括:在镍基基底上喷涂镍铝材料,得到第一中间产物;对所述第一中间产物进行热处理,得到第二中间产物;将所述第二中间产物依次置于不同浓度的碱液中进行分步活化,得到分级多孔镍电极;所述分步活化的步骤中碱液的浓度逐渐降低,活化温度逐渐降低。本申请的分级多孔镍电极保证了高效的传质速率和催化效率;涂层与基底之间具有较强的结合强度,层间结构稳定,力学性能,稳定性好,使用寿命长;仅需要分步活化即可实现分级多孔结构的构建,显著简化了制备工艺。
Resumen de: CN119663337A
本申请公开了一种中熵金属碲化物及其制备方法和应用,具体的以金属盐与反丁烯二酸在N,N‑二甲基甲酰胺溶剂环境中,使金属离子与羧基充分接触、配位,构建金属‑有机配合物前驱体溶液;前驱体溶液于特定温度下反应使金属‑有机配合物分子内、分子间经复杂化学重排与键合过程形成有序晶体结构,即Fe2(CoNi)‑MOF;Fe2(CoNi)‑MOF与碲粉在H2/Ar混合气体高温煅烧下,发生系列协同反应,生成中熵金属碲化物。本申请制备的中熵金属碲化物在电解水制氢反应中具有高效催化析氢、析氧潜力,可大幅提升催化效率与反应动力学特性,用于制备电解水制氢催化剂。
Resumen de: CN119663352A
本发明属于电催化剂的制备技术领域,具体涉及一种ZIF‑67和酞菁铜的复合催化剂及其制备方法和应用。其中,所述复合催化剂的制备方法包括如下步骤:步骤1:ZIF‑67/pc的制备:将ZIF‑67材料和酞菁铜加入第一溶剂中混合反应,分离得到ZIF‑67/pc产品;步骤2:ZIF‑67/pc‑T的制备:将步骤1得到的ZIF‑67/pc产品进行热裂解,得到ZIF‑67/pc‑T电催化剂。本发明采用室温水系合成法,制备工艺简单,不含有贵金属,生产成本更低;且制备得到的催化剂具有更低的过点位、更低的塔菲尔斜率、更小的阻抗以及更高的双电容,具有更高的催化活性和稳定性。
Resumen de: CN119663361A
本发明公开了一种链状铂基空心球/氢氧化物复合气凝胶材料及其制备方法和应用,包括如下步骤:将非贵过渡金属盐溶液与硼氢化钠水溶液混合进行还原反应,得到非贵过渡金属纳米颗粒悬浮液;然后向悬浮液中加入铂盐溶液,得到铂壳/非贵过渡金属核水凝胶前驱体;将前驱体转移至含有沉淀剂的反应釜中进行水热反应处理,最后将所得产物进行洗涤,冷冻干燥,即得。本发明在水体系中即可完成且不使用胶体稳定剂和/或封端剂,工艺十分简单,过程容易操作,适于工业化批量生产。该复合材料整合了金属气凝胶的三维连续导电网络结构、氢氧化物高效的水解离能力和多孔空心球的高原子利用率,展现了优异的碱性介质中电解水制氢活性和稳定性。
Resumen de: CN119663372A
本发明公开了一种碱性电解水制氢系统及其控制方法,控制方法包括以下步骤:负荷工况判断:根据电解槽的负荷参数,判断电解槽的负荷工况;其中,若电解槽的负荷参数为预设低负荷范围,则判断电解槽的负荷工况为低负荷工况;流量控制:在低负荷工况下,控制电解液的输出流量大于电解液的回流流量。本发明在电解槽的低负荷工况下,能减少电解液中氢气的浓度,并能解除电解槽与气液分离器之间的压力耦合关系,使得电解槽的压力不必与气液分离器的压力相同,而在不降低气液分离器的压力的情况下实现电解槽的压力降低,有利于加快电解液中氢气的分离,并抑制电解槽内氢气由氢气侧跨膜渗透至氧气侧,进而降低氧中氢浓度,实现电解槽的负荷下限的降低。
Resumen de: CN119663366A
本申请公开了一种高性能MXene改性氧化物电解水电极及应用,通过溶剂热法和退火制备了一种负载在二维MXene材料上的高熵氧化物电极;其中氧化物中含有Fe、Co、Ni、Cu、Mn五种过渡金属,氧化物以纳米颗粒的形式存在MXene材料表面,并通过范德华力连接。电极同时在碱性和碱性盐水介质中展现出良好的电化学活性和稳定性。
Resumen de: CN119657173A
本发明公开了具有锌、钯双金属空位PdvFeCoNiZnv LDH高熵催化材料的制备方法及应用,将氯化钯分散于无水乙醇中得到溶液A;将六水氯化铁、六水合硝酸钴、六水合硝酸镍、六水合硝酸锌、氟化铵和尿素加入到去离子水中,再与溶液A混合均匀得到溶液B;将泡沫镍置于溶液B中水热反应得到负载PdFeCoNiZn LDH的泡沫镍;再置于碱性溶液中并加热反应得到具有丰富锌、钯双金属空位的纳米片自组装成的花状PdvFeCoNiZnv LDH高熵催化材料。本发明制备的高熵催化材料在电催化HER中展现出较快的传质速率和反应动力学,进而表现出优异的电催化活性和稳定性,能够用于电催化水裂解析氢催化剂。
Resumen de: CN119663363A
本发明公开了一种稀土元素钌基复合催化剂及其制备方法和应用。本发明的稀土元素钌基复合催化剂的制备方法包括如下步骤:(1)将稀土金属盐与钌源、导电碳材料和添加剂混合研磨,得到均匀的前体材料;(2)将前体材料置于微波反应器中,进行微波反应,制得所述的稀土元素钌基复合催化剂。本发明制备得到的稀土元素钌基复合催化剂作为电催化分解水析氧电极材料展现出了优异的活性和广阔的应用前景。
Resumen de: CN119663339A
本发明属于电解水制氢技术领域,具体涉及一种金属氧化物@聚四氟乙烯纳米复合材料、制备方法和应用,所述纳米复合材料包括聚四氟乙烯颗粒以及负载于聚四氟乙烯颗粒上的金属氧化物@聚四氟乙烯复合纳米颗粒网络,较高的比表面积、氧缺陷和氧化钌纳米颗粒@聚四氟乙烯薄层包覆结构,其集成了贵金属的高催化剂活性和PTFE的耐酸稳定性。该纳米复合材料采用一步煅烧湿混合原料制得,兼具良好的导电性、氧缺陷、贵金属的高催化剂活性以及PTFE的耐酸稳定性,在电解水和海水过程中能够表现出良好的催化活性、选择性和稳定性,在电催化产氢领域具有很高的应用前景。
Resumen de: CN119656984A
本发明公开了一种罐外装料水解制氢装置,包括盛水罐(1)和制氢反应罐(2),所述盛水罐(1)通过进水管(3)与制氢反应罐(2)连接,在所述制氢反应罐(2)上方设置有与制氢反应罐(2)连接的材料罐(4);在所述制氢反应罐(2)一侧设置有与制氢反应罐(2)通过管路A(5)连通的氢净化罐(6),在所述氢净化罐(6)上方设置有通过竖直管路(7)与氢净化罐(6)连接的缓冲气囊罐(11);所述竖直管路(7)通过带有开关阀(36)的水平管路(8)依次连接有过滤器(9)和干燥器(10)。本发明具有结构设计巧妙、实用可靠的优点,采用它能够快速且连续的进行氢气的生产,即产即用,安全性较高。
Resumen de: CN119660897A
本申请提供了一种膜电极反应装置,属于污水处理设备技术领域,包括:装置本体,所述装置本体设置有电解腔和连通所述电解腔的进水管和出水管;挡水部,所述挡水部正对所述进水管设置;导流部,所述导流部设置于所述电解腔内;BDD电极模组,位于所述挡水部和所述导流部之间。本申请的膜电极反应装置,通过设置挡水部,可以防止进水直接冲击BDD电极模组,避免因强度不足而破损的问题发生,同时设置有导流部,能够将气泡通过导流斜面引导至出水管排出。
Resumen de: CN119663332A
本发明公开了一种N杂原子修饰氧空位缺陷的电催化剂及其制备方法和应用,涉及催化剂的技术领域。本发明的制备方法包括以下步骤:将硝酸盐1、硝酸盐2、尿素以及氟化铵溶解于去离子水中,超声分散均匀后得到混合液A;将混合液A加入基底材料A中进行水热反应,反应后得到LDH自支撑材料;将LDH自支撑材料于真空干燥得到基底材料B;将次亚磷酸钠与尿素混合均匀得到氮源和磷源的混合物;将基底材料B与氮源和磷源的混合物在惰性气体下煅烧,得到N杂原子修饰氧空位缺陷的电催化剂。本发明通过水热耦合煅烧的方法,得到N杂原子氧空位缺陷的二维异质纳米片结构的高效电催化剂,并证实了该电催化剂在电化学水分解反应中具有潜在能力。
Resumen de: CN119657175A
本发明属于光催化纳米半导体材料合成技术领域,公开了一种Fe掺杂ZnIn2S4光催化剂及其制备方法与应用。本发明所述制备方法包括以下步骤:将锌源、铟源、硫源、亚铁源与水混合,进行水热反应,得到Fe掺杂ZnIn2S4光催化剂。Fe属于非贵金属,其掺杂含量属于微量;并且,水热法能够在合成条件相对温和、简单的情况下合成ZnIn2S4。本发明制得的非贵金属掺杂ZnIn2S4作为产氢的光催化剂,为解决能源短缺和环境污染提供了一种新方法,为合成绿色、经济、高效、普适性的光催化剂提供了其他可能。
Resumen de: CN119663351A
本发明属于电催化材料领域,具体涉及一种分级孔碳/晶相非晶双相金属磷化物复合电催化剂及其制备和应用,所述的制备方法步骤为:将包含熔盐、碳源、过渡金属源、磷源和助剂的混合原料预先在温度T1下进行第一段保温,随后升温至温度T2并进行第二段保温,得到前驱材料;将前驱材料进行急冷处理,制得所述的分级孔碳/晶相非晶双相金属磷化物复合电催化剂;所述的助剂为含有两个以上酸性基团的化合物;所述的酸性基团包括羧酸基、磷酸基中的至少一种;温度T1为200~450℃;温度T2为850~1200℃。本发明所述的材料兼顾优异的耐酸碱、HER、OER性能。
Resumen de: CN119663318A
本发明提供了一种气体扩散层、其制备方法及应用。该气体扩散层的制备方法包括:步骤S1,提供多孔镍毡,多孔镍毡的材料为镍纤维;步骤S2,将亲水改性剂、溶剂和氧化石墨烯混合,得到涂布液;步骤S3,将涂布液涂覆在多孔镍毡的一侧表面,经干燥处理后得到气体扩散层。采用多孔镍毡作为气体扩散层的基体材料,相较于传统的泡沫镍或镍网能够在提供孔道结构的同时提高基体的机械强度,从而能够发挥支撑催化层的作用,并且能够便于氢气的排出。亲水改性剂的引入能够提高气体扩散层的亲水性,从而提高阴极电化学反应效率。氧化石墨烯的表面含有大量的含氧官能团,将其引入涂布液并进行涂覆能够提高气体扩散层的导电性。
Resumen de: CN119663319A
本发明提供了一种电解槽极板组件及其制备方法,涉及电解槽技术领域,所述电解槽极板组件包括极板、密封件和扩散层,所述极板、所述密封件和所述扩散层连接为一体式结构,且所述扩散层位于所述密封件所围成的区域内,并覆盖所述极板的反应区域。这样,通过将极板、密封件和扩散层构造为一体式结构,使得密封件和扩散层定位牢固,从而可以有效降低密封件发生密封未对齐和扩散层发生错位装配的风险,同时,也使得电解槽极板组件整体为一体化部件,从而可以减少交换膜电解槽的零件数量,从而简化装配工艺。
Resumen de: CN119661589A
本申请提供一种化合物、其制备方法、质子交换膜及电解水制氢装置,该化合物中的阴离子为:通式a所示的结构与单缺位多金属氧簇的阴离子接枝后的结构,接枝为:通式a中的P与单缺位多金属氧簇的阴离子中空隙处氧原子接枝;通式a为#imgabs0#该种化合物的水溶性较差,所以在将该种化合物应用至质子交换膜中时,该种化合物可以比较稳定地保留在质子交换膜中,使得质子交换膜具有比较稳定的质子传导率。并且,由于该种化合物是由含有两个有机膦酸的原料a与单缺位多金属氧簇接枝得到的,所以该种化合物具有较高的酸性,使得质子交换膜具有较高的质子传导率。
Resumen de: CN119657183A
本发明提供一种C‑Re‑Ru/BP复合材料催化剂制备方法,将碳黑分散在溶剂中得到碳溶液,然后加入过铼酸铵溶液和氯化钌溶液分别加入碳溶液中,加热条件下搅拌形成前驱体混合溶液,将前驱体混合溶液经热反应,煅烧后得到C‑Re‑Ru催化剂;将C‑Re‑Ru催化剂溶解于溶剂中,分散均匀后,加入黑磷溶液,在常温下超声分散均匀后,将得到的沉淀产物在80‑100℃烘箱干燥5‑12 h。制备出的C‑Re‑Ru/BP催化剂比商业10 wt%Pt/C和5 wt%Ru/C催化剂具有更优异的析氢活性和稳定性,其中,最佳性能的C‑Re‑Ru/BP催化剂在电解液为1 M KOH中,仅需要23.6 mV的析氢过电势便可达到10 mA cm‑2电流密度。
Resumen de: WO2025058397A1
A multistage electrochemical hydrogen compressor according to an embodiment of the present invention may include: a stack for compressing hydrogen; and a current supply unit for applying a current to the stack, wherein the stack includes: a low-pressure end plate having an inlet through which low-pressure hydrogen is introduced; a high-pressure end plate having an outlet for discharging high-pressure hydrogen acquired by compressing the low-pressure hydrogen; a plurality of cells disposed between the low-pressure end plate and the high-pressure end plate; and a membrane-electrode assembly each disposed between the plurality of cells, and the current supply unit is connected to each of the plurality of cells to selectively control current application to the plurality of cells.
Resumen de: KR20250039098A
본 발명은, 제조 방법이 간단하고, 바인더를 사용하지 않아 성능 저하의 우려가 없고, 금속 원소 비율을 용이하게 조절할 수 있는 층상이중수산화물, 그 제조 방법, 이를 포함하는 전극을 제공한다. 본 발명의 일실시예에 따른 층상이중수산화물의 제조방법은, 결정질 프러시안 블루 유사체를 형성하는 단계; 상기 결정질 프러시안 블루 유사체를 열처리하여, 비정질 프러시안 블루 유사체를 형성하는 단계; 및 상기 비정질 프러시안 블루 유사체를 전기화학적 산화환원처리하여, 층상이중수산화물을 형성하는 단계를 포함한다.
Resumen de: WO2025055403A1
A hydrogen drying system for hydrogen production using renewable energy. Two adsorbers (1, 2) are arranged in parallel, the two adsorbers (1, 2) alternately perform an adsorption process and a desorption process, the adsorption flow of each of the adsorbers (1, 2) changes along with the fluctuations of input renewable energy, and an operating state of each of the adsorbers (1, 2) is switched by means of accumulating the hydrogen flow treated by each of the adsorbers (1, 2) during a single adsorption process; a pre-adsorber (3) is connected in series to one of the adsorbers (1, 2) and is used for assisting in the desorption process; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of a hydrogen self-circulation apparatus (4), and the desorption process is independent of the adsorption process. Since the adsorption process and the desorption process are independent of each other, after a raw gas enters the adsorbers (1, 2) and absorption is completed, all the raw gas is output; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of the hydrogen self-circulation apparatus (4) to realize hydrogen regeneration, so that the problem of desorption being incomplete due to desorption interruption caused by the flow fluctuations of the raw hydrogen is solved, intermittent and fluctuating renewable energy can be matched to perform hydrogen production, and an op
Resumen de: US2025092543A1
An oxygen evolution reduction electrocatalyst includes a pyrochlore compound with the chemical formula Sm2Ru2xM2-2xO7, where M is selected from the group consisting of Ir, Sc, Fe, Cu, Pd, Cr, and Rh, and x is less than 1.0 and greater than or equal to 0.5. Also, a water electrolysis cell includes an anode, a cathode, an electrolyte, and the oxygen evolution reduction electrocatalyst.
Resumen de: US2025092545A1
A plasmonic substrate includes a base, a metallic film on the base, and a semiconducting photocatalyst on the metallic film. A method for producing a plasmonic substrate includes depositing a first metal layer having a thickness ranging from 10 to 200 nm and having a first metal through a physical vapor deposition technique onto a base, depositing a second metal layer having a second metal through a physical vapor deposition technique onto the first metal layer forming a multilayered metal template, immersing the multilayered metal template into a solution having a salt or complex of the second metal for a period of time forming a metallic film, and depositing a semiconducting photocatalyst on the metallic film. A method of catalyzing hydrogen production includes immersing a plasmonic substrate in a photocatalytic solution, exposing the plasmonic substrate to light, and generating hydrogen at a surface of the semiconducting photocatalyst.
Resumen de: US2025092546A1
A preparation method for a one-dimensional Ni12P5/Ni2P polycrystalline heterostructure catalyst used for high-efficiency water oxidation is provided. In particular, nickel foam is used as a conductive carrier and a nickel source, sodium phosphite is used as a phosphorus source, and the one-dimensional polycrystalline heterostructure catalyst is synthesized therefrom by means of a two-step hydrothermal-phosphorization method. The combination of the one-dimensional heterostructure and the nickel foam conductive carrier is beneficial for charge transfer and the release of bubbles on the surface of an electrode/electrolyte. The prepared Ni12P5/Ni2P/NF catalyst has a relatively low electrocatalytic water oxidation overpotential and long-term stability in an alkaline solution. After the Ni12P5/Ni2P/NF is loaded with monatomic Ir, the water oxidation overpotential can be further reduced.
Resumen de: US2025092544A1
Method for preparing a doped metal phosphorus trichalcogenide (dMPT) comprising: (a) contacting a first metal salt, an optional base and a fluorine salt under hydrothermal conditions thereby growing a first metal precursor on a conductive substrate; (b) contacting the first metal precursor with an aqueous solution of a second metal salt thereby forming a doped metal precursor; and (c) contacting the doped metal precursor, phosphorus, and sulfur thereby forming a mixture; and heating the mixture; a dMPT, and a method for producing hydrogen gas using the same.
Resumen de: US2025092531A1
The invention generally concerns processes for the production of hydrogen gas.
Resumen de: WO2025056589A1
The present invention relates to an ammonia synthesis plant having a hydrogen device and a synthesis circuit, wherein the synthesis circuit has a conveying device, a converter and a first bypass line. The hydrogen device is designed to provide hydrogen. The conveying device is designed to cyclically convey a gas mixture, containing nitrogen, hydrogen and ammonia, in a synthesis circuit conveying direction, wherein the conveying device has a suction side and a pressure side. The converter is designed to catalytically convert nitrogen and hydrogen at least partially into ammonia, wherein the converter has an inlet and an outlet, wherein the inlet of the converter is fluidically connected to the pressure side of the conveying device and the outlet of the converter is fluidically connected to the suction side of the conveying device. The first bypass line is arranged from the suction side of the conveying device to the pressure side of the suction device parallel to the conveying device in the fluidically opposite direction and is designed for the stoppable return of a first partial stream of the gas mixture from the pressure side of the conveying device to the suction side of the conveying device, wherein the first bypass line has a cooling device which is designed to cool the first partial stream of the gas mixture. The first bypass line has a second bypass line, which is arranged parallel to the cooling device in the fluidically same direction, and which is designed for the st
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092542A1
An electrode includes a metallic substrate and a layer of cobalt (Co) and cadmium (Cd) doped bimetallic metal-organic framework (BMMOF11) material at least partially covering a surface of the metallic substrate. The BMMOF11 material contains irregular shaped microcrystalline structures with pointed edges, and the irregular shaped microcrystalline structures are in the form of sheets that are stacked on top of one another. A method of making the electrode, and a method of electrochemical water splitting.
Resumen de: US2025092551A1
An electrolysis unit A fluid manifold system is feeding electrolytic solution into the electrolytic cells and discharging the electrolytic solution out of the electrolytic cells. The cavity of an expandable closing device is pressurized so that its shell expands and the volume of the cavity increases. The expandable closing device is arranged within the fluid manifold system, so that the fluid manifold system is open for the passage of electrolytic solution if the expandable closing device is in a depressurized state and the fluid manifold system is closed for the passage of electrolytic solution if the expandable closing device is in a pressurized state.
Resumen de: US2025091905A1
An eFuels plant and process for producing synthetic hydrocarbons using renewable energy are disclosed. The eFuels plant comprises a hydrocarbon synthesis (HS) system and a renewable feed and carbon/energy recovery (RFCER) system. The RFCER comprises a heat integration system between an electrolysis unit and a thermal desalination unit. The thermal desalination unit is configured to receive seawater and a first amount of thermal energy and to produce a desalinated water stream and a brine effluent stream. The electrolysis unit is configured to receive a demineralized water stream and an amount of electrical energy to produce a hydrogen stream, an oxygen stream, and a second amount of thermal energy, wherein the second amount of thermal energy is absorbed by a second low temperature heat transfer fluid stream to produce a second high temperature heat transfer fluid stream. A fluidly segregated piping system containing a heat transfer fluid is configured to withdraw heat from the electrolysis unit and deliver heat to the thermal desalination unit. A control system manages flows of the heat transfer fluid between the electrolysis unit and the thermal desalination unit, the addition of heat to the flow to the thermal desalination unit, and/or the removal of heat from the flow to the electrolysis unit.
Resumen de: WO2025056226A1
The present invention relates to a method for producing hydrogen from an ammonia-containing gas with a ruthenium-containing carrier catalyst, and to the use of a ruthenium-containing carrier catalyst in a method for producing hydrogen. The method comprises producing a ruthenium-containing carrier catalyst using an oxalate-containing ruthenium precursor compound, and bringing the carrier catalyst into contact with the ammonia-containing gas.
Resumen de: WO2025056228A1
The present invention relates to a process for producing hydrogen from an ammonia-containing gas with a supported catalyst in the form of a ruthenium-endowed support body, and to the use of such a ruthenium-containing supported catalyst in a process for producing hydrogen. The process comprises the providing of a supported catalyst in the form of a ruthenium-endowed support body, wherein the support body comprises a refractory oxide as support material, is cylindrical and has at least three mutually spaced-apart channels that extend fully through the support body, where one of the channels extends along a central longitudinal axis.
Resumen de: AU2025201415A1
The invention relates to an electrolytic cell com-prising or consisting of (i) two metal half-cells which form the an-ode chamber and the cathode chamber, (ii) an anode and a cathode arranged in the anode chamber and cathode chamber respective-ly, (iii) a separator membrane, which separates the two electrodes from one another; (iv) for each half-cell at least one inflow and one outflow for reactant and product; and (v) optionally spacers which position the two electrodes in their respective electrode chambers, the two half-cells being connected over their perimeters, but elec-trically isolated from one another and having a wall thickness of 0.05 to 0.15 mm.
Resumen de: AU2024204846A1
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst 5 layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is 10 more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region. Fig. 1 Fig. 2
Resumen de: WO2025059026A1
Provided herein are systems and methods for utilizing aqua-ammonia as an energy or hydrogen storage and transport medium. A method for delivering power, the method comprises converting enriched ammonia to electrical power and heat; and using the heat to remove water from aqua-ammonia, thereby producing the enriched ammonia.
Resumen de: WO2025058457A1
The present application relates to a hybrid electrode comprising plasmonic nanoparticles and an electrolytic system comprising same. The hybrid electrode and the electrolytic system comprising same according to embodiments of the present application may reactivate a catalyst surface by utilizing a plasmonic phenomenon during an electrochemical reaction using a plasmonic-active electrode (antenna-reactor) composite electrode.
Resumen de: WO2025058339A1
The present invention relates to a copper-nickel-iron double layer hydroxide nanoprism, a manufacturing method thereof, and a use thereof as a water electrolysis catalyst. The present invention discloses a catalytic electrode for water electrolysis, the catalytic electrode comprising: a metal foam; and a composite transition metal chalcogenide heterostructure formed on the metal foam. This catalytic electrode for water electrolysis can exhibit improved electrochemical catalytic activity for both a hydrogen evolution reaction (HER) and an oxygen evolution reaction (OER) in a water electrolysis reaction, can efficiently produce hydrogen with a lower energy supply than conventional noble metal electrodes, and can be used in both anion exchange membrane water electrolyzers and solar cell-water electrolysis systems. The present invention relates to a nanosphere hybrid structure containing nickel cobalt selenide and molybdenum selenide, and a use thereof as a water electrolysis catalyst. The present invention relates to a water electrolysis catalyst in which zinc cobalt sulfide and molybdenum disulfide are hetero-bonded, and a manufacturing method thereof.
Resumen de: DE102023209125A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend einen Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird und das Wasser im Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (10) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) einem Gas-Flüssigkeit-Separator (8) zugeführt wird. Erfindungsgemäß ist vorgesehen, dassa) beim Abschalten der Elektrolyseanlage (1) ein Absperrventil (11) in einer Inertgasleitung (12) geöffnet wird, die einen Inertgasbehälter (13) mit der Kathode (4) verbindet, und die Kathode (4) mit dem Inertgas gespült wird, während die Wasserversorgung der Anode (3) eingestellt wird, undb) beim Wiederanfahren der Elektrolyseanlage (1) die folgenden Schritte ausgeführt werden:(i) Schließen des in die Inertgasleitung (12) integrierten Absperrventils (11),(ii) Versorgen der Anode (3) mit Frischwasser über eine an den Wasserkreislauf (5) angeschlossene Frischwasserversorgung (14) bei noch abgeschaltetem Strom,(iii) Versorgen des Stacks (2) mit dem für die Elektrolyse benötigten Strom und(iv) Produktion einer Wasserstoffmenge, die mindestens der Menge an in der Kathode (4) vorhandenem Inertgas, vorzugsweise der 1,5- bis 10-fachen Menge an in der Kath
Resumen de: DE102024119758A1
Die vorliegende Erfindung betrifft eine Vorrichtung (10) zur Erzeugung von Energie, aufweisend wenigstens ein Photovoltaikmodul (17) mit einer oder mehreren Photovoltaikzellen (102; 17a), sowie wenigstens ein Elektrolysemodul (19) mit wenigstens einer Elektrolysezelle (19d). Um eine Vorrichtung (10) bereitzustellen, die zum einen konstruktiv einfach aufgebaut ist, ohne dass es für deren Betrieb zwischengeschalteter Komponenten bedarf, und die zum anderen vielseitig eingesetzt und modular verwendet werden kann, ist vorgesehen, dass die wenigstens eine Photovoltaikzelle (17a) elektrisch direkt mit der wenigstens Elektrolysezelle (19d) verbunden ist, und dass das Photovoltaikmodul (17), insbesondere die wenigstens eine Photovoltaikzelle (17a) und das Elektrolysemodul (19), insbesondere die wenigstens eine Elektrolysezelle (19d) konfiguriert sind, dass die Maximalleistungs-Spannung der Photovoltaikzellen (17a) der Spannung im Betriebspunkt der wenigstens einen Elektrolysezelle (19d) entspricht.
Resumen de: DE102023125551A1
Die Erfindung betrifft eine Elektrolysevorrichtung (1) zur elektrochemischen Erzeugung von Wasserstoff aus Wasser, mit- einem Kathodenbereich (3) und einem von dem Kathodenbereich (3) separierten Anodenbereich (5),- einer Wasserzufuhrvorrichtung (7), die eingerichtet ist, um dem Anodenbereich (5) Wasser zur elektrochemischen Umsetzung in dem Anodenbereich (5) zuzuführen,- eine Wasserrückführvorrichtung (9), die eingerichtet ist, um Wasser aus dem Kathodenbereich (3) in den Anodenbereich (5) zurückzuführen, wobei- die Wasserrückführvorrichtung (9) eine Energiewandlungsvorrichtung (11) aufweist, die angeordnet und eingerichtet ist, um Energie des über die Wasserrückführvorrichtung (9) zurückgeführten Wassers zu wandeln.
Resumen de: US2025092537A1
In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
Resumen de: US2025092323A1
There is provided a method and apparatus for producing hydrogen gas from biogenic material (210) within a pressure vessel (10). The method comprises heating a granular material (15) to greater than 500° C., adding a batch of biogenic material (210) into the pressure vessel with the heated granular material (15) at atmospheric pressure, closing the pressure vessel, and mixing the heated granular material (15) with the biogenic material (210) inside the closed pressure vessel (10) to raise the temperature of the biogenic material (210) and commence gasification, the gasification producing gas that increases the pressure inside the pressure vessel (10), the produced gas comprising hydrogen gas.
Resumen de: US2025091976A1
A method of producing formaldehyde, the method comprising: generating electrolytic hydrogen from the electrolysis of water; providing a feedstock gas stream comprising the electrolytic hydrogen and one or both of carbon monoxide and carbon dioxide; converting at least a portion of the feedstock gas to methanol; converting at least a portion of the methanol to formaldehyde and hydrogen; separately recovering at least some of the formaldehyde and at least some of the hydrogen; and recycling at least some of the recovered hydrogen to the feedstock gas stream.
Resumen de: US2025091862A1
A plant, such as a hydrocarbon plant, is provided, which has a syngas stage for syngas generation and a synthesis stage where the syngas is synthesized to produce syngas derived product, such as hydrocarbon product. The plant makes effective use of various streams; in particular, CO2 and H2. The plant does not comprise an external feed of hydrocarbons. A method for producing a product stream, such as a hydrocarbon product stream is also provided.
Resumen de: US2025092532A1
A process of producing hydrogen from air comprising: contacting a hygroscopic liquid with a source of air to absorb a water content from said source of air into the hygroscopic liquid; and electrolytically converting the water absorbed in the hygroscopic liquid into hydrogen and oxygen.
Resumen de: US2025087718A1
A bipolar plate for a fuel cell having a two-phase cooling system and a fuel cell system includes a coolant inlet, a coolant outlet, and coolant channels with the coolant inlet being in fluid connection with the coolant outlet via the coolant channels. At least one inner surface of coolant inlet, coolant outlet and at least one of the coolant channels has a surface treatment to influence a flow regime of a cooling fluid along at least one inner surface and/or a phase transition of the cooling fluid.
Resumen de: KR20250039100A
본 발명은, 귀금속이 아닌 원소를 양기능성 전극 촉매로 사용한 철-셀레늄 기반 양기능성 수전해 촉매체 및 그 제조방법, 및 그를 포함하는 수전해 장치를 제공한다. 본 발명의 일 실시예에 따른 양기능성 수전해 촉매체의 제조방법은, 베이스 기판을 제공하는 단계; 상기 베이스 기판을 질산 니켈 용융액에 침지하여, 상기 베이스 기판 상에 수산화니켈 아질산 어레이 구조체를 성장시키는 단계; 상기 수산화니켈 아질산 어레이 구조체를 어닐링하는 단계; 및 상기 어닐링된 수산화니켈 아질산 어레이 구조체 상에 철 및 셀레늄을 전착시켜 철-셀레늄 촉매층을 형성하는 단계를 포함한다.
Nº publicación: WO2025058260A1 20/03/2025
Solicitante:
KOREA INSTITUTE OF OCEAN SCIENCE & TECH [KR]
\uD55C\uAD6D\uD574\uC591\uACFC\uD559\uAE30\uC220\uC6D0
Resumen de: WO2025058260A1
An apparatus integrated with floating offshore wind power for producing offshore green hydrogen, according to one embodiment, comprises: an offshore wind power generator; a hydrogen production system for producing hydrogen by using seawater; a control unit for controlling at least one portion of the hydrogen production system; and a power source unit for supplying power to at least one portion of the hydrogen production system or the control unit.