Resumen de: CN120999043A
本发明涉及新能源汽车燃料电池制造技术领域,尤其涉及一种质子交换膜燃料电池电堆增湿系统及工艺,包括依次连接的气体供给加热处理单元、超声雾化增湿处理单元、正负极切换处理及测试单元和冷凝回收处理单元;气体供给加热处理单元用于对氢气和空气进行加热预处理并控制其温度、压力及流量;超声雾化增湿处理单元用于通过超声波雾化方式对进入气体增湿,并可调控增湿湿度;正负极切换处理及测试单元用于电堆正负极的切换及电堆性能测试,并控制电堆正负极温度;冷凝回收处理单元用于对电堆排出湿气体进行冷凝处理,实现冷凝水回收再利用;本发明通过全流程的协同优化,提高燃料电池效率与寿命,适用于燃料电池的水分管理与性能优化。
Resumen de: CN120999039A
本发明涉及固态氢能技术领域,具体涉及一种固态氢能系统及氢动力人形机器人:包括固态储氢模块、氢气输送模块、氢燃料电池模块、数据采集模块、运动控制模块和能量管理模块,通过数据采集模块实时监测氢气流量、环境参数及机器人运动状态,并结合运动控制模块生成机器人的后续运动状态,并基于该运动状态,向能量管理模块输送调节指令,能量管理模块基于运动控制模块输入的调节指令动态调节固态储氢模块、氢气输送模块和氢燃料电池模块的运行参数,确保固态氢能系统的高效运行和能量的合理分配,采用本技术方案提供的固态氢能系统在对氢动力人形机器人供能时,能量转换效率更高,并且与机器人运动控制系统的协同性更好。
Resumen de: CN120999052A
本申请提供了一种多电堆集成磷酸燃料电池固定发电系统的优化控制方法,属于磷酸燃料电池技术领域。在多电堆集成设计发电系统中,由于电堆和电堆之间的性能差异,导致各个电堆的电效率差异,进一步导致各电堆可运行寿命的差异,使得多电堆集成系统各电堆运行难以优化。因此,本发明提供一种基于监控电堆寿命余值和电堆发电效率,通过调整系统控制参数使电效率均方残差和寿命余值均方残差最小化,实现对多电堆系统的协同优化控制,该方法可有效延长多电堆磷酸燃料电池发电系统的整体使用寿命,并提高各电堆发电效率的均衡性。
Resumen de: CN120999053A
本发明公开了一种钒电池电解液循环冷却方法及系统,属于钒电池电解液冷却技术领域,其方法具体包括:采集电池各电堆段的实时运行参数,将电解液动态分流,在循环流动过程中,通过剪切重分散对钒电池电解液中的气泡进行分离和处理,基于电池在不同运行阶段的负载波动,以非线性方式同步调整电解液的流速分配与换热接触面积,根据外部环境温度、压力和湿度变化,调整电解液循环参数及局部热交换路径;本申请能在负载快速波动时维持温度控制精度和动态响应速度,还可减少气泡积聚、提升电解液均匀性,并在极端环境下保持冷却效率和稳定性,从而显著提高钒电池的能量转换效率、运行安全性和使用寿命。
Resumen de: FR3162316A1
« Procédé de fabrication d’interconnecteurs pour dispositifs électrochimiques à oxyde solide et interconnecteur pour dispositifs électrochimiques à oxyde solide » Procédé de fabrication d’au moins un interconnecteur (1) pour dispositifs électrochimiques à oxyde solide, dit ISO (1), dit procédé. Le procédé comprend une compression (7) d’un empilement (2) comprenant au moins deux feuillets (3) métalliques usinés et en contact les uns des autres et un chauffage, concomitant à l’application de la pression, de l’empilement à une température comprise entre 700 et 1200°C. La compression comprend l’application d’une pression supérieure ou égale à 4 bars. Les au moins deux feuillets métalliques sont usinés et agencés pour former, après fabrication, l’ISO. La pression est appliquée perpendiculairement aux au moins deux feuillets. Figure pour l’abrégé : Figure 2
Resumen de: CN120999064A
本发明属于液流电池储能技术领域,具体涉及一种液流电池的电堆,包括多个电池单元、设置在电池单元两侧的取电件、将电池单元并联的第一导电件、将并联后的电池单元进行串联的第二导电件和绝缘件,至少两个电池单元通过第一导电件并联形成电池模组,绝缘件设置在相邻的两个电池模组之间,多个电池模组通过第二导电件串联。本发明的液流电池的电堆通过将电池单元并联形成电池模组、再将电池模组进行串联,既提升了输出电流、消除了旁路电流以减少损耗和延长寿命,又实现了总电压叠加,从而提升了电堆整体功率和系统适配性。
Resumen de: CN120992081A
本申请公开了一种基于微生物燃料电池的桥梁应力监测装置,涉及桥梁安全技术领域,解决了现有技术中桥梁应力监测装置存在维护周期短、运维成本高以及自供能寿命短的问题,该装置包括用于利用桥墩周围淤泥的有机物与电活性菌群进行发电的MFC发电单元、用于储能和升压的储能单元以及用于应力信号采集的应力采集单元,本申请中监测装置的供电依靠淤泥内在有机物,自供能寿命能够达到10年至15年,整个发电过程不依赖光照、风速或高幅震动,在阴暗、高湿、水下静流环境中仍保持输出稳定性,在运维过程中,仅需周期性检查或替换电极,极大的降低了运维成本。
Resumen de: CN120999031A
本发明涉及液流电池关键部件技术领域,具体公开一种柔性石墨双极板及其制备方法与应用。柔性石墨双极板,包括柔性石墨基体和填充于其孔隙内的纳米复合浸渍剂;纳米复合浸渍剂的组分包括:环氧树脂、表面功能化碳纳米管、固化剂、分散剂、活性稀释剂;表面功能化碳纳米管为羧基化处理。通过功能化碳纳米管与环氧树脂的协同增强作用,双极板的弯曲强度大幅提高,断裂韧性显著增强,彻底解决石墨双极板装配脆裂问题;功能化碳纳米管在基体内形成三维连续导电网络,使双极板面电阻大幅降低,体积电导率明显增长,从而降低电池堆欧姆损耗;真空‑压力联合浸渍工艺确保纳米复合剂深度填充石墨孔隙,显著降低了氦气渗透率,彻底阻断电解液交叉渗透。
Resumen de: CN120993240A
本发明涉及燃料电池测试技术领域,具体提供了一种燃料电池测试平台的远程交互方法及装置,包括:对燃料电池测试平台的远程控制器与本地控制器进行时间校准;时间校准后,通过燃料电池测试平台的远程控制器或本地控制器生成的控制指令对燃料电池测试平台的待测燃料电池进行控制。本发明提供的技术方案,能够在燃料电池测试过程中燃料电池功率突升变化条件下,为远端控制器提供实时基准,并在对燃料电池堆正确响应和精确控制的同时保障燃料电池安全运行。
Resumen de: CN120999018A
本发明提供一种高熵钙钛矿基复合电极材料及其制备方法以及电极浆料、电极与固体氧化物电池。该高熵钙钛矿基复合电极材料的化学式为(A1‑xCex)yBO3‑δ;A选自碱土金属元素和稀土元素中的四种或五种以上的组合,并且A不为Ce;B选自过渡族金属元素中的一种或两种以上的组合;0<x≤1,0.5≤y<1,δ为氧空位含量。本发明的高熵钙钛矿基复合电极材料具备优异的催化活性,在空气气氛及含有水、Cr等电池实际工作的严苛环境下表现出优异的稳定性,具有较低的极化阻抗。
Resumen de: CN120999151A
本发明公开了一种低熔点、高电导率和高稳定性熔盐电解质。所述熔盐电解质包括以下摩尔百分比的组分:10.0‑30.0mol%的LiCl,40.0‑60.0mol%的LiBr,5.0‑35.0mol%的KBr,1.0‑10.0mol%的KF。本发明首次提出并制备得到熔点为316.0±4.0℃,500.0℃的离子电导率不低于1.95S/cm,分解温度高于800.0℃的LiCl‑LiBr‑KBr‑KF熔盐电解质。该熔盐电解质熔点比现有经典熔盐电解质低8.0‑41.0℃,离子电导率至少高0.10‑0.22S/cm,热稳定性大幅提升,解决了现有熔盐电解质熔点高、离子电导率低与热稳定性低问题。
Resumen de: US2025357499A1
Provided is a method for manufacturing a membrane-electrode assembly (MEA) with a shortened initial activation time that involves preparing an assembly with cathode and anode layers on opposite sides of an electrolyte membrane, and applying specific pressure and temperature conditions. The electrolyte membrane includes a hydrocarbon-based ionomer with an ion pair comprising a cation and an activator anion. The cathode and anode layers each contain a fluorine-based ionomer with a functional group derived from the activator. This process results in a unit cell that achieves 95% of its maximum current density in about 10 hours or less under specified conditions. The MEA itself features the hydrocarbon-based ionomer and the fluorine-based ionomer, with an activator or phosphoric acid present throughout, achieving the same rapid activation time.
Resumen de: CN120989633A
本发明公开了一种五氧化二钒直接电解还原合成钒电解液的方法,所述方法采用隔膜电解槽,以颗粒状导电材料为阴极材料,以含五氧化二钒粉末的酸性水溶液为阴极液,以酸性水溶液为阳极液,将直流或者脉冲电流从阳极到阴极依次经过阳极液、隔膜和阴极液,将5价钒还原成4价或3价钒离子。在20‑30A/dm2电流密度下,电流效率可提高18‑22%。
Resumen de: CN120999048A
本发明提供一种燃料电池。本发明还提供一种基于调节空压机转速的电堆密封性在线检测方法,通过调节空压机转速监测绝缘电阻的变化情况,判断电堆气密性。本发明还提供一种基于调节水泵转速的电堆密封性在线检测方法,通过调节水泵转速监测绝缘电阻的变化情况,判断电堆气密性。本发明还提供一种基于调节电堆输出电流的电堆密封性在线检测方法,通过调节电堆电流监测绝缘电阻的变化情况,判断电堆气密性。
Resumen de: CN120999044A
本发明公开了一种燃料电池系统的在线活化控制方法及系统,旨在解决现有燃料电池活化需停车进行、导致运营中断的技术问题。本发明方法包括:获取燃料电池系统的性能状态参数;当参数满足活化判定条件时,启动一分阶段活化过程;该过程包含多个与特定车辆运行工况(如启动、低速运行、停机)相关联的活化子程序;系统监控车辆当前工况,当匹配到预设工况时,在判断动力电池SOC满足安全条件后,自动执行对应的活化子程序。本发明将长时活化分解为多个短时在线任务,利用车辆的天然运行间隙“见缝插针”地完成活化,能够在不影响车辆正常运营的情况下,及时恢复燃料电池性能,同时确保电池安全,显著提升了燃料电池载具的经济性、可靠性和使用寿命。
Resumen de: CN120999019A
本发明属于固体氧化物电池技术领域,涉及基于原位重构的掺杂型双相氧电极材料及其制备方法和应用。所述基于原位重构的掺杂型双相氧电极材料为钙钛矿型氧化物,化学式为PrBaCo2‑x‑y‑zM1xYzM2yO5+δ;式中,M1为Zr、Hf、Ti中的任意一种,M2为Nb、Mo、Ta、V中的任意一种,0.05≤x≤0.15,0.05≤y≤0.15,0.05≤z≤0.2,δ表示非化学计量氧空位。本发明通过M1、M2与Y以特定比例共掺杂部分取代B位的Co,制得具有双相结构的掺杂型氧电极材料,该氧电极材料具有较低的热膨胀系数,与电解质BCZYYb匹配性佳。该氧电极材料具有良好的电化学性能和优异的长期工作稳定性。
Resumen de: CN120998571A
本发明提供了一种复合电解质薄膜及其制备方法,本发明将高离子电导率的陶瓷材料与延展性金属合金材料复合,引入陶瓷‑金属氧化物的界面过渡层,形成具有周期性波纹结构的复合薄膜。本发明结合了陶瓷的高离子电导率和金属的机械韧性,达到可缓解电化学循环过程中的应力,提升界面稳定性的技术效果。
Resumen de: CN120999038A
本发明涉及新能源汽车热管理技术领域,公开了一种用于氢燃料电车的绝缘散热器,包括芯体,芯体上方设有上水室,芯体下方设有下水室,还包括设在上水室上方的上护板、设在下水室下方的下护板,上水室与上护板之间、下水室与下护板之间均设有若干个绝缘软垫,阻断电流传导路径并吸收振动能量。本发明用于氢燃料电车的绝缘散热器,通过结构设计实现绝缘要求,且具有芯体减震作用,有效释放热应力,防止产品因热应力失效。
Resumen de: US2025357506A1
A fuel cell exhaust management device for a fuel cell system of a fuel cell electric vehicle is disclosed. The fuel cell exhaust management device includes an intake water vapor portion connected to a fuel cell stack of the fuel cell system and adapted to receive exhaust water vapor generated by the fuel cell stack; and a fuel cell exhaust conversion zone connected to the intake water vapor portion and arranged to enable absorption of heat via a heat exchange portion from heated compressed air generated by a compressor of the fuel cell system, said absorption of heat causing conversion of the exhaust water vapor into steam. The fuel cell exhaust conversion zone is connected to an exhaust of the fuel cell electric vehicle for exhausting the steam to an external environment.
Resumen de: WO2025238141A1
The invention relates to a method (100) for operating a fuel cell system (200), said method (100) having the steps of: - ascertaining (101) the hydrogen concentration at an anode inlet of a fuel cell stack (201) of the fuel cell system (H2in) (200) using a first mathematical model, - ascertaining (102) the hydrogen concentration at an anode outlet of the fuel cell stack (H2out) (201) using a second mathematical model, - ascertaining (103) a lambda value on the basis of H2in and H2out, and - adjusting (104) the fuel cell system (200) on the basis of the ascertained lambda value. At least one operating parameter of a recirculation fan of the fuel cell system (200) and a parameter of the electrical state of the fuel cell stack (201) of the fuel cell system (200) are supplied, as input signals, to the first mathematical model, and a signal of a hydrogen concentration sensor (203), which is provided at an exhaust tract (205) of the fuel cell system (200), is supplied, as an input, to the second mathematical model.
Resumen de: WO2025237894A1
The invention relates to a method for operating a fuel cell system (1), comprising a fuel cell stack (2) and a cooling circuit (3) which conducts a coolant and into which the fuel cell stack (2) is integrated, wherein, during normal operation, the coolant is circulated with the aid of a coolant pump (4) which is integrated into the cooling circuit (3). According to the invention, in the event of a shutdown, the coolant pump (4) is activated intermittently and/or at specific time intervals and the coolant is conducted through an ion exchanger (5) integrated into the cooling circuit (3) such that any acids or bases produced in the coolant are bonded with the aid of the ion exchanger (5). The invention also relates to a control device for a fuel cell system (1).
Resumen de: WO2025237897A1
The invention relates to a method for operating a fuel cell system, comprising a fuel cell stack having - an anode inlet and an anode outlet, via which the fuel cell stack is connected to an anode circuit, and - a coolant inlet and a coolant outlet, via which the fuel cell stack is connected to a cooling circuit, wherein the fuel cell stack and the anode circuit are subjected to a drying process before the system is shut down, in particular in the presence of ambient temperatures below 0°C. According to the invention, the following steps are carried out after the drying process: a) detecting the temperature at the coolant outlet and detecting the temperature at the anode inlet and/or at the anode outlet, b) determining the difference between the detected temperature at the coolant outlet and the detected temperature at the anode inlet and/or at the anode outlet, c) comparing the difference with a previously defined maximum value, wherein additional drying is carried out by flushing the anode circuit if the comparison shows that the maximum value is exceeded. The invention also relates to a control device for a fuel cell system.
Resumen de: US2025357512A1
The regenerative fuel cell system includes a fuel cell, a water tank that stores water discharged from the fuel cell, a recombiner that is disposed in the water tank and generates water by combining hydrogen and oxygen, and a water electrolyzer that generates hydrogen and oxygen by electrolyzing the water supplied from the water tank. The internal pressure of the water tank storing the water is lower than the internal pressure of the fuel cell during power generation and the internal pressure of the water electrolyzer during electrolysis.
Resumen de: US2025357507A1
A method for operating a fuel cell assembly, the fuel cell assembly including a fuel cell stack having a solid oxide fuel cell, the solid oxide fuel cell having an anode, a cathode, and an electrolyte, the method including: determining a temperature setpoint for the fuel cell stack, for output products of the fuel cell stack, or both; and controlling a volume of oxidant provided to the anode in response to the determined temperature setpoint to control a temperature of the fuel cell stack, a temperature of the output products of the fuel cell stack, or both.
Nº publicación: US2025357519A1 20/11/2025
Solicitante:
RAMAN C S [US]
GRAHAM JOEL E [US]
UNIV OF MARYLAND BALTIMORE [US]
RAMAN C. S,
GRAHAM Joel E,
UNIVERSITY OF MARYLAND, BALTIMORE
Resumen de: US2025357519A1
Disclosed are methods and apparatuses utilizing an O2-insensitive FDH2 from the sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris Hildenborough (DvH). The O2-insensitive FDH2 may be applied to a biofuel cell for generating electricity and generating hydrogen peroxide. The biofuel cell can also be applied to wearable or implantable devices as a power source. The O2-insensitive FDH2 can also be used in other applications not applying a fuel cell, such as hydrogen peroxide generation, a formate testing kit, or carbon capture applications.