Resumen de: US2025219222A1
A frame structure includes an outer frame body and a battery rack disposed within the outer frame body. The battery rack includes at least two supporting frames disposed at intervals in a first direction. A flexible fixing member and a battery bracket for bearing a battery are disposed between two adjacent supporting frames. One end of the flexible fixing member is connected to a top frame of the outer frame body, a middle portion of each battery bracket is provided with a through hole, and another end of the flexible fixing member extends in a second direction through the through hole. A periphery of the flexible fixing member is provided with a supporting member. The supporting member is borne at a bottom of the battery bracket to support a middle position of the battery bracket, and thus the middle portion of the battery bracket is supported.
Resumen de: US2025219219A1
A container device includes a housing having six substantially quadrangular surfaces facing mutually different directions, the housing being formed in a substantially polyhedral shape, and a container portion provided inside the housing. The container portion contains a contained item to enable the contained item to be inserted and removed. The housing has a first member and a second member, the first member and the second member each being attached to the container portion, and the second member is attached to an opposite side of the first member across the container portion.
Resumen de: US2025219254A1
This application provides a separator and a preparation method thereof, a secondary battery, and an electric apparatus. The separator includes a substrate and a coating, with the coating being provided on at least one side of the substrate and the coating including organic materials, where a weight per unit area of the coating for a single side is denoted as M, a thickness of the coating for a single side is denoted as H, and a true density of the organic materials is denoted as ρorganic, and the separator satisfies M/(H×ρorganic)≥0.4, where M is in unit of g/m2, H is in unit of μm, and ρorganic is in unit of g/cm3.
Resumen de: US2025219251A1
Disclosed herein is a novel lithium-ion battery separator of a cellulose base exposed to a heat treatment within a specific range of temperatures and times subsequent to manufacture thereof. Such a separator exhibits an unexpected level of effective water scavenging within a lithium-ion battery cell without any compromise in separator capability in order to provide a simplified manner of mitigating hydrofluoric acid generation. Such a procedure protects transition metal cathode constituents from oxidation/dissolution which in turn leads to improvements in capacity retention within a subject lithium-ion battery.
Resumen de: US2025219216A1
The disclosure provides a cell housing, a cell, and a high-capacity battery. The cell housing has a soluble mechanism, and an inner cavity of the cell housing is in communication with an exterior after the soluble mechanism is in contact with an electrolyte. The cell housing has a simple housing structure, such that electrolyte cavities of cells can be in communication without mechanical operation, a plurality of cells are in a uniform electrolyte system, and a performance of the battery is improved.
Resumen de: US2025219073A1
The present invention may provide a cathode active material that exhibits excellent structural stability and lifespan retention rate even in a high-temperature environment where a battery is operating. In addition, the present invention may provide a cathode including an active material layer containing the cathode active material and provide a battery cell including the cathode. In addition, the present invention is aimed at providing a battery cell assembly including the battery cell. In addition, the present invention may provide an electric device including one or more selected from the group consisting of the battery cell and the battery cell assembly.
Resumen de: US2025219182A1
Embodiments described herein relate to removal of aluminum impurities from battery waste. In some aspects, a method for removing aluminum impurities includes preprocessing a quantity of battery waste to improve removal of aluminum impurities from the quantity of battery waste. The method further includes removing at least a portion of the aluminum impurities from the quantity of battery waste, modifying the removed aluminum impurities to form a coating precursor and/or a doping precursor, and applying the coating precursor and/or the doping precursor to an electrode material. In some embodiments, the method further includes characterizing the aluminum impurities in the quantity of battery waste and regenerating the electrode material. In some embodiments, the removing can be via sieving, cyclone separation, air separation, elutriation, and/or dissolution. In some embodiments, the doping precursor can include aluminum hydroxide (Al(OH)3). In some embodiments, the regenerating includes applying a heat treatment to the electrode material.
Resumen de: US2025219189A1
A battery pack includes a battery module, a pack housing on which at least one battery module is mounted, and a cooling tube assembly that is mounted within the pack housing. The battery module includes a cell assembly formed by stacking a plurality of battery cells, and a module frame for housing the cell assembly. One end of the battery module overlaps with the cooling tube assembly.
Resumen de: US2025219101A1
One embodiment of the present disclosure provides a copper foil including a copper film including 99.9 wt % or more of copper, and a protective layer disposed on the copper film, wherein the copper foil has a first moisture absorption rate of 0.1% or less. The first moisture absorption rate is expressed by Equation 1 below,first moisture absorption rate=(weight after 24-hour immersion-weight before immersion)/(weight after 24-hour immersion)×100 Equation 1wherein the immersion in Equation 1 refers to immersing a specimen in water at room temperature for 24 hours.
Resumen de: US2025219163A1
The present disclosure relates to an electrode for a secondary battery and a secondary battery comprising the same. The present disclosure is to provide an electrode which may prevent a short between electrodes in a secondary battery and to improve safety of a battery by preventing a short between an anode and a cathode.
Resumen de: US2025219217A1
A secondary battery includes an electrode assembly, a pouch accommodating the electrode assembly, and a cover tape attached to the pouch so as to at least partially cover at least two surfaces of the pouch. The cover tape includes a fixing area attached to a first surface of the pouch, a dot area attached to a second surface of the pouch, and adhesives on the fixing area and the dot area, and the adhesives have different adhesive forces.
Resumen de: US2025219253A1
A separator, a method for manufacturing the separator, an energy storage device, and an electricity-consumption apparatus are provided. The separator has a portion with a first porosity and a portion with a second porosity arranged in a width direction of the separator. The second porosity is less than the first porosity. The first portion is disposed closer to the tab of the energy storage device than the second portion.
Resumen de: US2025219212A1
In a method for manufacturing a power storage device, when a surface position of an accuracy requiring surface of a sealing member is located on a back surface side relative to a support point, the surface position is displaced toward a front surface side in advance. It is determined whether a surface displacement amount of the accuracy requiring surface relative to the support point satisfies a required reference value. When the surface displacement amount is determined to not satisfy the reference value, the sealing member is corrected by a load applied to the accuracy requiring surface until a position corresponding to a corrective deformation amount determined by adding the surface displacement amount and an elastic deformation amount allowing the sealing member to restore by its own elastic force to a normal position at which the surface displacement amount is zero, and then the load is removed.
Resumen de: US2025219239A1
A battery pack case includes an accommodating space for accommodating a plurality of battery cells; a plurality of mutually independent first air passages are provided in the battery pack case, wherein the cells of a plurality of battery cell units are suitable for communicating with the outside of the battery pack through separate first air passages. A battery pack includes a batter pack case and a plurality of batter cell units wherein each battery cell of the plurality of battery cell units communicates with the outside of the battery pack through a separate first air passage and a plurality of battery cell units are provided in the accommodating space.
Resumen de: US2025219218A1
The present disclosure describes an energy storage device and its associated charging/discharging control system. This energy storage device comprises an energy storage power supply and a detachably connected battery pack. The energy storage power supply features a housing with a mounting part that includes an interface, a built-in battery, and an inverter, all arranged to avoid interference with the mounting part. User-accessible input and output interfaces are also present on the housing. The battery pack connects freely to the mounting part and includes a power output port designed for mechanical and electrical connection to the interface. The battery pack has two operational states: in the first state, it charges using power from the energy storage supply via the connection; in the second state, it couples with the inverter to output alternating current through the output interface.
Resumen de: US2025219099A1
An electrochemical cell including a positive electrode (e.g., a cathode) and a negative electrode (e.g., an anode), at least one of which includes an integrated ceramic separator. An integrated ceramic separator may include a plurality of ceramic particles. In some examples, an interlocking region may be disposed between the integrated ceramic separator layer and a corresponding electrode layer, the region including a non-planar boundary between the two layers. In some examples, the electrochemical cell includes a polyolefin separator disposed between the positive electrode and the negative electrode. In some examples, both the positive electrode and the negative electrode include an integrated ceramic separator. In these examples, the positive electrode and the negative electrode may be calendered together such that the integrated separator layers merge and become indistinguishable from each other.
Resumen de: US2025219096A1
A sub-assembly for an electrode-solid electrolyte, an all-solid-state battery comprising the same, and a method of preparing the all-solid-state battery. The electrode-solid electrolyte sub-assembly includes an electrode including a porous current collector having a first side and an opposite second side; an elastic layer including an elastic polymer and disposed on the first side of the porous current collector; and a solid electrolyte disposed on the opposite second side of the porous current collector. The porous current collector includes a plurality of internal pores and the elastic polymer is disposed in at least one internal pore of the plurality of internal pores of the porous current collector.
Resumen de: US2025219097A1
A polymer satisfies: 5≤m/n≤1000, in which n represents a mass of the polymer, in grams, and m represents a mass, in grams, of a first substance that is obtained adding the polymer to a first solvent at a first temperature to form a polymer system, allowing the polymer system to stand for 8 hours at the first temperature and for ≥24 hours at a second temperature; and then filtering the polymer system through a 200-mesh screen, to obtain remains on the screen as the first substance and wherein the first temperature is higher than the second temperature.
Resumen de: US2025219095A1
A positive electrode sheet, a secondary battery, a battery pack and an electricity-consumption equipment are provided. The positive electrode sheet includes a positive current collector. At least one surface of the positive current collector is provided with a positive active material layer. In any 25 μm×25 μm region of a cross section of the positive active material layer, a percentage of an area of a first positive active material with a cracked structure to a total area of the region is a %, 5≤a≤20.
Resumen de: US2025219166A1
A high voltage box includes: a box, a cover plate, and electrical elements received in a receiving space inside the box. A top of the box defines an opening, and the cover plate covers the opening of the box. The box includes a first side panel and a second side panel opposite to the first side panel; the receiving space is defined between the first side panel and the second side panel; the electrical elements include a battery management system, a positive-electrode fuse arranged on a positive-electrode circuit and/or a negative-electrode fuse arranged on a negative-electrode circuit. The battery management system is located on a side of the receiving space near the first side panel; the positive-electrode fuse and/or the negative-electrode fuse is located on another side of the receiving space near the second side panel.
Resumen de: US2025219158A1
The present invention provides bromine-based additives for overcharge protection in aqueous zinc-ion batteries. These additives undergo oxidation before electrolyte decomposition during overcharging, effectively preventing overcharge. As a result, the batteries demonstrate significantly extended lifespans and maintain stable electrolyte environments. The overcharge protection is effective for more than 650 hours in Zn∥MnO2 batteries and 500 hours in Zn∥MnVO batteries.
Resumen de: US2025219148A1
The present application relates to an electrolyte, comprising an organic solvent and an electrolyte salt dissolved in the organic solvent, wherein the electrolyte salt comprises an alkali metal double salt, the alkali metal double salt containing lithium ions and at least one other alkali metal ion other than lithium ions. The present application also relates to a corresponding secondary battery, battery module, battery pack and power consuming device. In the electrolyte, an alkali metal double salt containing lithium ions and at least one other alkali metal ion other than lithium ions is used in an electrolyte salt, such that the cycling performance of a secondary battery can be effectively improved and the cycle life of the secondary battery can be prolonged without introducing additional impurities and causing side reactions.
Resumen de: US2025219241A1
An energy storage device is provided, including at least one energy storage module, and each energy storage module includes a box body, a plurality of batteries, and a smoke exhaust assembly. The plurality of batteries are arranged in the box body, wherein each battery includes a battery box and a plurality of battery cells, wherein the battery cells include a pressure relief mechanism and electrode terminals; the pressure relief mechanism is arranged on a first wall of the battery cells; the electrode terminals are arranged on a second wall of the battery cells; the second wall is different from the first wall; and the battery box is provided with a first exhaust port. The smoke exhaust assembly is connected to the first exhaust port of each battery, and is configured to discharge smoke discharged by the plurality of batteries to the outside of the box body.
Resumen de: US2025219149A1
A non-aqueous electrolyte includes: a first sodium salt, where the first sodium salt includes at least one of sodium hexafluorophosphate, sodium hexafluoroarsenate, sodium perchlorate, and sodium trifluoroacetate; and a second sodium salt, where the second sodium salt includes one, two, or more of a sodium salt having sulfonate, a sodium salt having oxalate, a sodium salt having phosphate, and a sodium salt having borate.
Nº publicación: US2025219165A1 03/07/2025
Solicitante:
XIAOMI EV TECH CO LTD [CN]
XIAOMI EV TECHNOLOGY CO., LTD
Resumen de: US2025219165A1
A battery pack includes a battery pack case, a switch device, and a plurality of battery cell units. The plurality of battery cell units are arranged in the battery pack case, a positive electrode of each of the battery cell units is configured to be electrically connected to a positive terminal of the power distribution unit, and a negative electrode of each of the battery cell units is configured to be electrically connected to a negative terminal of the power distribution unit. In addition, the plurality of battery cell units are sequentially arranged in a series circuit of the battery pack, and two ends of the series circuit are respectively connected to the positive terminal and the negative terminal of the power distribution unit. The switch device is arranged in the series circuit for connecting or disconnecting the series circuit.