Resumen de: CN120291415A
一种基于地热能源隧道蓄热的路面融雪除冰方法及系统,涉及道路的铺面领域,在该方法中,在第一时间段内关闭第二换热管网并打开第一换热管网;在第二时间段内且路面温度低于预设第一温度阈值时打开第二换热管网;计算目标热量;控制第一换热管网将当前热量散发至路面;在确定第一换热管网所存储的当前热量小于目标热量的情况下,调节第一换热管网和第二换热管网的循环工质流量,并控制热泵系统对循环工质进行加热,使路面温度维持在预设温度范围内。本申请通过将隧道底板下垫层和路面结构层的换热管网组成闭环循环系统,并结合热泵系统,实现了夏季路面热量的收集储存和冬季融雪除冰的双重功能,提高了系统的热量供给能力,提高了融雪除冰效果。
Resumen de: CN120291837A
本发明公开了一种地热‑风‑光协同强化绿色开发煤体与碳储一体化方法,包括如下步骤:S1:建设地面换热和采气联合工厂、风力或太阳能加热工厂;S2:钻设注入井和辅热井,再对地热储层中进行分段压裂,建立取热场;S3:钻设抽采井,再对深部煤层进行分段压裂,建立热解场;S4:向注入井内注入介质,介质地热储层加热和辅热井的强化加热下,以超临界状态进入深部煤层中对煤体进行热解,通过抽采井将煤体热解后的气体抽出后进行处理;S5:重复S4,当热解场完成热解后,关闭辅热井、注入井,并通过抽采井向热解场注入二氧化碳,当吸附到达饱和时,停止注入,并关闭抽采井。在实现深层煤炭资源的开发同时,还减少了能源消耗。
Resumen de: CN120292963A
本发明涉及地温井建造技术领域,公开了一种用于深层地温井发电的地下热交换池的建造方法,步骤包括自地表向地下干热岩层钻进至预定深度,形成具有通道的采热井;针对采热井的井底干热岩层区域,利用多次井底爆破技术,实施爆破与劈裂操作,扩张井底干热岩层空间,形成稳定的热交换池;多次井底爆破技术包括在采热井底部干热岩层放置炸药引爆,将采热井井底的碎石使用高压水冲出;在采热井底部干热岩层再次放入炸药,在炸药上部放入泥土覆盖,引爆,再将采热井井底的碎石使用高压水冲出。本发明解决干热岩层的地温热能采热井深度大,底部储水空间较小,干热岩层常规劈裂方法无法实施,导致采热井回水的热量不足,降低整个发电系统的效率的问题。
Resumen de: CN120292550A
本申请公开了一种地热供热系统和方法,所述系统包括:地源侧,包括:地热源、换热器和三通阀;地热源通过地源侧管路与换热器相连;并且,地源侧管路中设置有三通阀,三通阀的入口与地热源的出水端相连、三通阀的第一出口与换热器的一次侧供回水端相连、三通阀的第二出口与换热器的一次侧供水端相连,通过调节三通阀第一出口和第二出口的开度,从而控制换热器的换热量;地上换热侧,包括:热泵机组;热泵机组与地源侧管路相连;末端供应侧,与热泵机组相连,接收从热泵机组中流出的循环介质。本申请提供的方案,可以实现地源侧、地上换热提热侧和末端用户侧之间的负荷解耦、流量解耦、压力缓变及系统适稳。
Resumen de: US2025224150A1
Systems and processes are disclosed for enhanced geothermal energy production. The enhanced closed-loop geothermal system may include a wellbore, where at least a portion of the wellbore penetrates a geothermal heat source, a closed-loop geothermal system deployed in the wellbore, and a heat-buffer including a heat-buffer material disposed within the portion of the wellbore penetrating the geothermal heat source and accumulate heat when working fluid is not circulating and release it to the closed-loop geothermal system when working fluid is circulated. The closed-loop geothermal system deployed in the wellbore, includes a downhole heat exchanger deployed within the portion of the wellbore penetrating the geothermal heat source, a bidirectional fluid conduit, wherein a first end of the bidirectional fluid conduit is fluidly connected to the downhole heat exchanger, and a heat utilization facility, wherein a second end of the bidirectional fluid conduit is fluidly connected to the heat utilization facility.
Resumen de: WO2025146167A1
A frost-heaving-resistant pile system and a construction method. The frost-heaving-resistant pile system comprises a variable-cross-section pile body (1), an upright pile body (2) connected to the bottom of the variable-cross-section pile body (1), and a geothermal pipe (3) pre-buried in the variable-cross-section pile body (1) and the upright pile body (2). At least one variable-cross-section pile body (1) is arranged above the upright pile body (2); the variable-cross-section pile body (1) comprises a truncated cone portion (11) and an inverted truncated cone portion (12); the inverted truncated cone portion (12) is connected to the bottom of the truncated cone portion (11); and the geothermal pipe (3) is connected to a ground source heat pump set. The truncated cone portion (11) is combined with the inverted truncated cone portion (12) to form the variable-cross-section pile body (1), thereby achieving an effect of actively weakening a frost-heaving force, facilitating decomposition and conversion of the force, effectively reducing the frost-heaving effect of frost-heaving shear stress on a pile foundation, and improving the heaving resistance stability of the pile foundation; and the geothermal pipe (3) can effectively heat the variable-cross-section pile body (1) and the upright pile body (2), improving the frost-heaving resistance of the pile body. Such a frost-heaving-resistant pile structure can effectively improve the reliability of a pile foundation in a frozen area
Resumen de: US2025224151A1
Methods, systems, and compositions of matter for increasing heat transfer are disclosed herein. A slurry may include a quantity of a thermally conductive material configured to transfer heat. A slurry may include a quantity of a proppant configured to prop open one or more fractures. A slurry may include a quantity of a slurrying agent configured to suspend the quantity of the thermally conductive material within the quantity of the slurrying agent. The slurry is configured to preserve permeability within one or more fractures and facilitate a transfer of heat.
Resumen de: US2025224049A1
In a method for setting up a pipeline section of a pipe system in a heat network, which is provided for transferring a heat transfer fluid between a heat provider and a heat consumer, the pipeline section is subdivided into segments in a segmentation step. A segment characteristic variable is determined for each segment based on a physical soil characteristic variable. The determined segment characteristic variables of two adjacent segments differ by more than a predefined segment characteristic variable difference value. In a bedding determination step, segment embedding of a pipeline segment, introduced in the trench in this segment, in a water-permeable segment bedding material is predefined for each segment such that a heat loss of the heat transfer fluid transferred in the pipeline segment, which is averaged over the segment and is based on a unit of length, is lower than a predefined heat loss limit value.
Resumen de: WO2025147722A1
Systems and processes are disclosed for enhanced geothermal energy production, The enhanced closed-loop geothermal system may include a wellbore, where at least a portion of the wellbore penetrates a geothermal heat source, a closed-loop geothermal system deployed in the wellbore, and a heat-buffer including a heat-buffer material disposed within the portion of the wellbore penetrating the geothermal heat source and accumulate heat when working fluid is not circulating and release it to the closed-loop geothermal system when working fluid is circulated. The closed-loop geothermal system deployed in the wellbore, includes a downhole heat exchanger deployed within the portion of the wellbore penetrating the geothermal heat source, a bidirectional fluid conduit, wherein a first end of the bidirectional fluid conduit is fluidly connected to the downhole heat exchanger, and a heat utilization facility, wherein a second end of the bidirectional fluid conduit is fluidly connected to the heat utilization facility.
Resumen de: WO2025147719A1
Methods, systems, and compositions of matter for increasing heat transfer are disclosed herein. A slurry may include a quantity of a thermally conductive material configured to transfer heat. A slurry may include a quantity of a proppant configured to prop open one or more fractures. A slurry may include a quantity of a slurrying agent configured to suspend the quantity of the thermally conductive material within the quantity of the slurrying agent. The slurry is configured to preserve permeability within one or more fractures and facilitate a transfer of heat.
Resumen de: US2025228135A1
Systems and methods for generating electric power underwater using a thermoelectric generator. At least one wellhead upstream of the generator conveys a flow of fluid at an elevated temperature from a subterranean source to the generator. In one arrangement, at least one other wellhead downstream of the generator conveys to a subterranean formation substantially all of the fluid that flows from the source through the first wellhead. The source and the formation may be a common reservoir, allowing closed-loop operation in which the fluid is recirculated, reheated and repressurised by geothermal energy. In another, open-loop arrangement, the generator cools the fluid by transformation of heat energy to electrical energy and then outputs the cooled fluid to a surface facility. The generator may cool the fluid to just above or below the wax appearance temperature. Cold-flow processing may be used to convey the fluid downstream of the generator under cold-flow conditions.
Resumen de: CN120274435A
本发明公开了一种用于井群集输及跨季地层储热多功能井口设备,包括保温内管G1、地热循环供水管道G2、井口设备主体管J2、地热循环回水管道G3、旁通管道G4、井口设备上端盖J1、换热井套管J3、地热循环供水管道压力表P1和地热循环供水管道温度变送器T1、地热循环回水管道压力表P2和地热循环回水管道温度变送器T2以及热计量表HM和储热小功率循环水泵WP、Y型过滤器V1、能量阀V2、地热循环回水管道阀门V3、排污阀V5、地热循环回水管道控制蝶阀V6和视镜V7、旁通管道旁通阀V8、地热循环供水管道控制蝶阀V9、储热循环水泵旁通控制阀V10。本发明能实现多口换热井流量精准输配、流体参数监测、水质观测、测温光纤的柔性密封、确保流体流速的平稳变化。
Resumen de: CN120274316A
本发明提供了一种多能协同的闭式地热供暖系统,涉及可再生能源技术领域,上述系统包含闭式地热循环单元、多功能协同单元及控制单元。地热循环单元通过注入井、采出井及嵌入岩体的井下换热结构实现工质循环吸热。协同单元设有并联的工业余热回路、电加热储热回路及热泵机组,热泵一次侧闭环连接采出井与注入井,二次侧连通用户供热管路。控制单元通过路径切换实现两种模式:采暖模式下,热泵机组提温地热工质并联动电加热回路共同供热,工业余热同步补充热能;储热模式下关闭热泵及电加热,利用工业余热工质反向注入采出井进行地热储热。本发明能够兼顾闭式地热供暖系统取热的高效性和热源供给的稳定性。
Resumen de: CN120274436A
本发明公开了一种矿区废弃地热井的改造方法及系统,涉及地热资源的开发利用技术领域,包括以下步骤:对矿区的废弃地热井的井口、井壁的裂缝和损坏部位进行密封处理;对密封处理后的废弃地热井井壁安装保温材料;根据废弃地热井的地温梯度和对应的井深选择对应的储热材料,基于废弃地热井的体积获取储热材料的敷设量;将储热材料按照敷设量布置在安装保温材料后的废弃地热井中,在储热材料内壁设置地埋管换热器,将地埋管换热器与地面系统连接。本发明不仅局限于单一的冬季供暖或热水供应,能够提高地热井的能源利用效率,并实现地热资源与可再生能源的有机结合,满足不同领域的多样化需求。
Resumen de: CN120278497A
本发明涉及地热井数据处理技术领域,具体为一种地热井实时数据采集与处理系统及方法,所述方法包括:获取处理参数,对处理参数进行特性分析,构建回归模型,基于回归模型构建地热井处理参数之间的动态因果网络;基于因果网络对处理参数进行修正,并对修正后的处理参数进行更新;计算投入成本和能源产出量;获取对投入成本和能源产出量的重要性评分,基于重要性评分计算经济效益指数;获取地热井相关多维数据,计算安全效益指数;基于经济效益指数和安全效益指数,利用分级决策规则对地热井进行控制优化。本发明融合经济效益与安全风险双维度评估,改进地热井评估的片面性;利用分级决策规则,实现精准综合决策,优化决策能力。
Resumen de: CN120252180A
本发明提供一种地热储能用换热装置,主要涉及地热能源采集技术领域。一种地热储能用换热装置,包括底座、换热模块,所述底座的顶面固定安装换热模块,所述换热模块包括数个呈环形阵列分布的换热管,所述换热管的上端共同固定连接布水箱,所述换热管均与布水箱相连通,所述布水箱的上端固定安装有进液管,所述底座内设有出液管,所述换热管均与出液管相连通。本发明的有益效果在于:该地热储能装置具有多方面显著有益效果。环形阵列换热管与螺旋扰流板配合,极大提升换热效率,充分吸收地热能;导流与集水结构使液体高效排出,保障循环流畅。
Resumen de: CN120252212A
本发明公开了一种矩形阵列布置的地埋管地源热泵系统的布设方法,属于一般建筑物构造领域,解决了现有的矩形阵列布置的地埋管地源热泵系统的换热竖井容易出现功能性失效的问题;各热井中的U形地埋换热管顶端的换热水输入端与各自的地面换热水输入管的一端连通在一起,各自的地面换热水输入管的另一端与循环水泵(5)的输出端连通在一起;各热井中的U形地埋换热管顶端的换热水输出端与各自的地面换热水输出管连通在一起,各自的地面换热水输出管的另一端与循环水泵(5)的输入端连通在一起;每个热井中的U形地埋换热管上连接的各自的地面换热水输入管长度加上各自的地面换热水输出管长度的和均是相等的。
Resumen de: CN120252185A
本发明建立了一种清洁能源耦合多级压缩式热泵的联合循环机组进气加热系统及方法,利用三级压缩式热泵依次提取地热能、烟气余热、太阳能,使多种清洁能源高效耦合,提高清洁能源利用率;克服太阳能间歇性、不稳定性对系统的影响,提高太阳能利用率;提高系统循环热效率,降低天然气消耗量与污染物排放量;提高热泵COP,减少压缩机耗功,提高能源转换效率;以多种清洁能源耦合三级压缩式热泵代替天然气性能加热器,代替原高品位蒸汽热源,减少机组热耗率,降低运行成本与CO2等污染物排放量,响应“双碳”与清洁供能政策,收获经济与环保双重效益。
Resumen de: CN120252207A
本发明提出一种海水基纳米流体增强型海上地热换热器系统,包括海水基纳米流体调配模块:用于以海水为基液制备纳米流体并调控纳米流体浓度;海水基纳米流体地埋管循环模块:用于开采海上浅层地热能,其包括埋设于海底恒温地层中的地埋管回路、驱动纳米流体循环的纳米流体蠕动泵;相变热交换模块:与地埋管循环模块耦合连接,用于将低品位热能转换为高品位热能,其包括与地埋管连通的纳米流体热交换仓、换热管道和热泵工质等;储能/输出模块:用于将高品位热能转换为其他形式能量并存储或输出。本发明就地取材以海水为基液配制纳米流体,纳米流体浓度可调,避免纳米颗粒聚集,克服了地层冷热负荷不平衡问题,有效实现海上地热能的高效稳定开发。
Resumen de: CN120252181A
本发明提供一种地热回灌井异层采灌系统及采灌方法,涉及地热井技术领域,该系统包括:井身;中心管,插设在井身的内部;分隔组件,设置在井身的内部,以使井身的内部由上至下依次形成两个独立的储层;潜水泵,设置在中心管的内部且中心管的下端处于底部储层内;第一回灌管路和第二回灌管路,第一回灌管路的一端和第二回灌管路的一端分别与顶部储层和中心管连接。相较于现有技术,本发明不仅可以有效提高地热高回灌井热储的回灌能力,保障各层系的有效动用,还可以较好的利用热储中的底部储层内较高的温度水作为供热补充,提高了地热资源的利用率。
Resumen de: US2025216124A1
Closed loop hydronic systems, devices and methods to control a temperature of a petroleum are described herein. The closed loop hydronic systems use a body of water as a heat sink and, optionally, a heat source to control a temperature of the petroleum. The systems include at least one heat exchanger positioned within the body of water. Water is pumped through pipes connected to the heat exchanger(s) to a surface where a vessel, such as but not limited to a transfer pipe or a storage tank, holding the petroleum is present. In one example, the systems may provide a heat sink to cool petroleum in tanks during extreme hot weather conditions. In another example, the systems may provide a heat source to warm marine fuel in tanks during extreme cold weather conditions.
Resumen de: US2025216123A1
Systems and methods using fluid flow through concentric channels for ground heat exchange. A heat exchange system may be installed by inflating a flexible tube in a borehole. An accessible subsurface adaptor provides connections between the heat exchange features and laterals, as well as the ability to measure and monitor performance of the system.
Resumen de: US2025207563A1
A geothermal energy system, having a carbon dioxide store at a first temperature and density, a retrieving device for retrieving carbon dioxide at a second temperature higher than the first temperature and a second density lower than the first density, a heat pump having a first heat exchanger, a compressor, a second heat exchanger, and an expander or a throttle. The first heat exchanger transmits thermal energy of the carbon dioxide to a process medium of the heat pump. The compressor compresses the process medium downstream of the first heat exchanger. The second heat exchanger transmits thermal energy of the compressed process medium to a consumer, and the expander or the throttle expands the process medium downstream of the second heat exchanger, and an introduction device introduces carbon dioxide downstream of the retrieving device and upstream of the heat pump into the system.
Resumen de: US2025215861A1
A system includes a pressure exchanger (PX) configured to receive a first fluid via a first inlet and a second fluid via a second inlet. The PX is to exchange pressure between the first fluid and the second fluid and provide the first fluid at a first outlet and the second fluid at a second outlet. The system further includes a heat exchanger to exchange corresponding thermal energy between the first fluid and the second fluid. The system further includes a turbine configured to receive the second fluid output from the first heat exchanger and convert corresponding energy of the second fluid into rotational kinetic energy.
Nº publicación: GB2636831A 02/07/2025
Solicitante:
MICRO THERMAL ENERGY LTD [GB]
Micro Thermal Energy Limited
Resumen de: GB2636831A
A heat exchanger 5 is disclosed for the lower end of a pipe (3, fig 1) disposed in a geothermal well bore (2, fig 1). The heat exchanger includes one or more vanes 19 arranged to cause a working fluid exiting the lower end of the pipe to return up the geothermal well bore via a helical path 22 between an outer radius of the pipe and an interior radius of the geothermal well bore. The helical path having a pitch length (P, fig 4B) and a total length (H) parallel to the geothermal well bore. A thermosiphon (1, fig 1) connected to a turbine (9, fig 1) and comprising the heat exchanger is also claimed. A method of coupling the heat exchanger to a pipe and lowering it into a geothermal well bore is also claimed. Use of the heat exchanger or thermosiphon in generation of electricity is also claimed.