Resumen de: US2025223011A1
The present invention relates to an assembly for lowering a pile onto a seabed, the assembly comprising: —a floating vessel (24) comprising a vessel positioning system (42), —a crane (12) provided on the vessel for lowering the pile (10) onto the seabed, —a pile guiding system (50) configured to guide the pile during the lowering thereof by the crane, the pile guiding system comprising: —o a base (40) connected to the vessel, o at least one pile guiding frame (20) comprising an annular portion (21), o one or more primary actuators (55) which are configured for moving the pile guiding frame, o one or more secondary actuators (60) connected to the annular portion of the pile guiding frame, o at least one frame position sensor (62) for measuring an excitation parameter, o a guiding control unit (64) comprising an excitation controller (80) configured to control the actuators and a resilience controller configured to control a stiffness.
Resumen de: US2025223017A1
A sensor assembly for use in a body of water is provided. The sensor assembly can be deployed to a predetermined location to measure water parameters to aid in wave and current prediction. A plurality of sensor assemblies can form a measurement swarm, where each sensor assembly measures water and air parameters and communicates with the other sensor assemblies. The sensor assemblies can be controlled by a control system running a swarm algorithm and providing route planning.
Resumen de: WO2025146447A2
The invention describes a wind turbine vessel (1) which autonomously sails at high sea by means of wind turbines (2) and produces, stores and transports energy. The wind turbine vessel (1) is a multi-hull vessel having three or more hulls (3), between which at least one wind turbine (2) is installed. The hulls (3) are installed rotationally symmetrically parallel to the longitudinal axis of the wind turbine vessel (1). This makes it possible for the wind turbine vessel (1) to pivot, that is to say to rotate about its own longitudinal axis, in order to be resilient in the case of sea storms. In the event that it capsizes in strong winds or waves, it retains its complete structural and functional integrity as a result of its rotationally symmetrical design. The wind turbines (2) are used simultaneously in two ways. Firstly, they are used for the production of electrical energy which is stored on board in the hulls (3), for example in batteries or with power-to-hydrogen. Secondly, the wind turbines (2) are used as sails for driving and controlling the wind turbine vessel (1) by means of yawing movements. It can thus sail autonomously at high sea in areas in which the wind conditions are favourable for energy production, that is to say it can use stronger and more uniform winds, and transport the energy stored on board to a location where it can be fed into the energy grid.
Resumen de: US2025223945A1
A device and a method are for assembling a wind turbine. The device has an assembling structure including a space for assembling a tower and a nacelle of a wind turbine, the space being defined by side portions of the assembling structure, and a hoisting device configured for handling the wind turbine tower and for hoisting the nacelle onto a top of the wind turbine tower while being positioned within said space, the hoisting device being movably connected to a hoisting device support structure arranged on top of the assembling structure. The device further includes a support arrangement for supporting a portion of the wind turbine at least when being within said space and a rotor blade manipulator for bringing rotor blades in contact with the nacelle.
Resumen de: WO2025140219A1
An installation method for an offshore wind turbine, comprising: providing a docking device (100), and movably fixing the docking device to a floating foundation (200), the docking device comprising an annular body (10) and a docking cavity penetrating therethrough; connecting a compensation device (300) to a hoisting appliance (400), the hoisting appliance being connected to a hoisted object by means of the compensation device; using the hoisting appliance to hoist a support tower (500), and inserting the support tower into the docking cavity and connecting same to the floating foundation (200); moving the docking device to the end of the support tower away from the floating foundation in the axial direction of the support tower and movably fixing same to the outer wall of the support tower; and using the compensation device to hoist a power generation assembly, the power generation assembly comprising a rotor, a nacelle (700) and a connection tower (800) connected to the nacelle, and inserting the connection tower into the docking cavity and connecting same to the support tower. The method improves the capability of installing offshore wind turbines and reduces installation costs.
Resumen de: US2025214688A1
The intervention platform comprises: a floating base, immersed in a body of water; at least a wind turbine equipment lifting tower, configured to lift at least an equipment of the wind turbine; The intervention platform has at least a heave plate configured to protrude laterally from the floating base, the heave plate defining an upper surface configured to engage a lower surface of the offshore wind turbine platform. The floating base has at least a ballast receiving volume, the intervention platform having a ballast controller configured to control a quantity of ballast received in the ballast receiving volume to lift the upper surface of the offshore heave plate in contact with the lower surface of the offshore wind turbine platform.
Resumen de: US2025214685A1
A computer system comprising processing circuitry configured to:control a set of gyro stabilizers, said set of gyro stabilizers comprising at least two gyro stabilizers, attached to a same marine vessel. The processing circuitry is adapted to provide control data to the control system of each gyro stabilizer in said set of gyro stabilizers to establish a control procedure such that, at each one of a plurality of different time instances of the control procedure, said set of gyro stabilizers comprises at least one non-active gyro stabilizer and at least one active gyro stabilizer. Each passive gyro stabilizer is controlled by the control system such that the passive gyro stabilizer is prevented from rotating around its precession axis, andeach active gyro stabilizer is controlled by the control system such that the active gyro stabilizer is allowed to rotate around its precession axis.
Resumen de: US2025214680A1
A deployment device is provided for use in deploying an offshore renewable energy system mounting platform to a submerged operating configuration. The deployment device has a body portion including a platform engaging portion, the platform engaging portion arranged to fixably engage a corresponding portion of an offshore renewable energy system mounting platform, a mooring line tensioning member coupled to the body portion, in which the platform engaging portion is arranged to disengage from the platform. In use, when the platform engaging portion is engaged with the platform, the mooring line tensioning member applies a tensioning force to at least one mooring line along a plane substantially perpendicular to the base of the platform, in which under the tensioning force, the body portion is arranged to move relative to the at least one mooring line from a first undeployed position to a second deployed position.
Resumen de: DE102024000107A1
TECHNISCHES GEBIET UND ANWENDUNGSBEREICHDie Erfindung bezieht sich auf die Weiterentwicklung der Energieproduktion aus Offshore-Windkraft und deren Energietransport mittels eines neuartigen segelnden Windturbinenschiffes.ZUSAMMENFASSUNGDie Erfindung beschreibt ein Windturbinenschiff (1), dass autonom auf hoher See mittels Windturbinen (2) segelt und Energie produziert, diese speichert und transportiert. Das Windturbinenschiff (1) ist ein Mehrrumpfschiff mit drei oder mehr Rümpfen (3), zwischen denen mindestens eine Windturbine (2) installiert ist. Die Rümpfe (3) sind rotationssymmetrisch parallel zur Längsachse des Windturbinenschiffes (1) installiert. Dies ermöglicht es dem Windturbinenschiff (1) zu pivotieren, d.h. um die eigene Längsachse zu rotieren, um resilient bei Seestürmen zu sein. Im Fall, dass es bei starkem Wind oder Wellengang kentert, behält es seine vollständige strukturelle und funktionale Integrität durch seine rotationssymmetrische Konstruktion. Die Windturbinen (2) werden auf zwei Arten gleichzeitig genutzt. Erstens für die Produktion von elektrischer Energie, die an Bord in den Rümpfen (3) gespeichert wird, z. B. in Batterien oder mit Power-to-Hydrogen. Zweitens werden die Windturbinen (2) mittels Gierbewegungen als Segel für den Antrieb und die Steuerung des Windturbinenschiffes (1) verwendet. Damit kann es autonom auf hoher See in Gebieten segeln, an denen die Windbedingungen für die Energieproduktion günstig sind, d.h. stärkere und gleich
Resumen de: EP4578775A1
A computer system (1) comprising processing circuitry (2) configured to:control a set (S) of gyro stabilizers, said set (S) of gyro stabilizers comprising at least two gyro stabilizers (G), attached to a same marine vessel, such as a ship, a floating platform, or a floating wind turbine. The processing circuitry (2) is adapted to provide control data to the control system of each gyro stabilizer (G) in said set (S) of gyro stabilizers to establish a control procedure such that, at each one of a plurality of different time instances of the control procedure, said set (S) of gyro stabilizers comprises at least one non-active gyro stabilizer and at least one active gyro stabilizer, wherein the at least one non-active gyro stabilizer and the at least one active gyro stabilizer are different gyro stabilizers at different time instances of said control procedure, wherein:each passive gyro stabilizer (G) is controlled by the control system such that the passive gyro stabilizer (G) is prevented from rotating around its precession axis (A2), andeach active gyro stabilizer (G) is controlled by the control system such that the active gyro stabilizer (G) is allowed to rotate around its precession axis (A2).
Resumen de: WO2025136363A1
A floating offshore wind turbine includes a buoyant tension leg platform with radially extending braces. A tensioned mooring line and tensioning device is connected to each brace. A control system in communication with the tensioning devices determines determine a wind condition of wind acting on the wind turbine and, based on the wind condition, determines a set length of the mooring lines to induce a pitch offset in the tension leg platform and a lean angle of the tower into the wind The lean angle is computed to generate a gravity moment in the wind turbine that offsets a bending moment induced in the tower from the wind.
Resumen de: US2025206420A1
A marine structure includes a jacket-structure including at least one float element having a first buoyancy, and a linear guide sleeve; a sub-structure including a counterweight structure having a second buoyancy and a leg extending through the guide sleeve, the leg having a lower end connected to the counterweight structure and having an upper end provided with a stop element, where the leg is movable through the corresponding guide sleeve between a towing position, where the stop element is remote from the guide sleeve and where the guide sleeve allows linear motion of the at least one leg with respect to the support structure, and an operating position, where the stop element engages a corresponding counter element of the guide sleeve and wherein the at least one leg is fixated with respect to the at least one guide sleeve.
Resumen de: US2025162696A1
A first and a second tubular member are welded to opposite sides of a stiffening ring in order to obtain a double-segment. Further segments can be added to form a tubular multi-segment with stiffening rings in between adjacent tubular members. The resulting multi-segment is used as a tubular buoyancy module in a floating offshore structure.
Resumen de: WO2025127929A1
Method for forming a section for a floating body for an offshore floating foundation, comprising providing a metal sheet having a sheet length direction and a sheet width direction, and bending said sheet, such that the sheet is curved in the sheet length direction, forming a concave side. Furthermore a stiffener is formed, having a stiffener length direction, wherein the stiffener is curved in said stiffener length direction, forming a convex side. Said curved stiffener is placed with the convex side against the concave side of the sheet and is pushed against the concave side of the sheet, such that a curvature of the concave side of the sheet matches a curvature of the convex side of the stiffener at least at the position where the stiffener is placed. Then the stiffener is welded against the sheet.
Resumen de: WO2025125175A1
An assembly (10) for producing offshore electricity comprising: - a wind turbine (12), - an elongated support (14) extending along an axis (Z) intended to be vertical, and adapted for floating on a body of water (16), - a buoyant system (18) surrounding a tubular casing (20) of the support around the axis, intended for floating in the body of water, and vertically free with respect to the support, - a plurality of anchoring members (24), - a first plurality of connecting members (26) connected to an anchoring portion (28) of the support and to at least some of the anchoring members, the first plurality of connecting members (26) being intended to be tensioned by the support, - a second plurality of connecting members (30) connected to the buoyant system and to at least some of the anchoring members, the second plurality of connecting members being intended to be tensioned by the buoyant system.
Resumen de: WO2025128793A1
A support system includes a platform floating at a surface of a body of water, a set of mooring elements, and a set of motion dampers. Each mooring element is rigidly coupled to the platform and to a bottom of the body of water. Each motion damper is coupled to the platform. Each motion damper includes a spool, a line, and a rotation controller. The line is coupled to and partially wound on the spool and has an end rigidly coupled to the bottom of the body of water wherein a tension force in the line is affected by rotation of the spool. The rotation controller is coupled to the spool and is operable to control the rotation of the spool based on the tension force in the line.
Resumen de: WO2025128795A1
A support system includes a platform for floatation at a surface of a body of water. The platform includes a first pontoon and a set of second pontoons coupled to the first pontoon. Each second pontoon includes a container, a pair of spaced-apart and gas-filled compressible elements disposed in the container, a liquid filling the container between the pair of compressible elements, and a gas flow controller coupled to each compressible element and operable to control a flow of the gas between the compressible elements.
Resumen de: WO2025126739A1
The present invention addresses the problem of providing a tension-mooring cable for a tension-moored floating body, with which it is possible to, without adjusting the lengths of the tension-mooring cables in each mooring cable bundle that moors and supports the tension-moored floating body, equalize tension generated in the tension-mooring cables and prevent occurrence of resonance with the frequency of waves on the ocean. The problem is solved by a mooring cable that is for a tension-moored floating body, and that links a connection part 5b formed on the tension-moored floating body and a sea bottom-mooring part 9 fixed to a sea bottom 103. The tension-mooring cable is configured such that tension is generated in a tension-mooring cable 7 due to buoyancy generated in a tension-moored floating body 5 when the tension-mooring cable 7 is linked to the tension-moored floating body 5, and the tension-moored floating body 5 can be held in a tension-moored state. The tension-mooring cable 7 is configured such that a low rigidity mooring cable 7b, having a low extensional rigidity which is the product of the modulus of longitudinal elasticity and the cross-sectional area of a cable material, is linked to a high rigidity mooring cable 7a having a higher extensional rigidity than that of the low rigidity mooring cable 7b, by a linking tool.
Resumen de: AU2023383069A1
Methods and systems are provided for nautical stationkeeping of free-floating objects. In one example, a method includes adjusting translational motion of a body freely floating in water by rotating the body. The translational motion may be adjusted, for instance, to maintain the body within a geographic area. In certain examples, the adjustment of the translational motion may be realized via a Magnus effect induced by rotating the body. The body may be configured as, for example, a free-floating object such as a wave engine.
Resumen de: US2025198386A1
A high capacity, shallow draft, ocean-borne wind turbine is described, featuring a floating structure with at least three floats and a turbine rotor coupled to a generator with a power capacity of at least 3 MW. The turbine includes multiple blades, each with a length, and an operational draft less than about one-sixth of the blade length. Variations include configurations with round surface piercing floats and specific arrangements of four floats in a square formation. The design ensures a draft in operation of less than 1 meter per MW of rated capacity, providing an efficient and stable platform for offshore wind energy generation.
Resumen de: US2025196971A1
A support system includes a platform floating at a surface of a body of water, a set of mooring elements, and a set of motion dampers. Each mooring element is rigidly coupled to the platform and to a bottom of the body of water. Each motion damper is coupled to the platform. Each motion damper includes a spool, a line, and a rotation controller. The line is coupled to and partially wound on the spool and has an end rigidly coupled to the bottom of the body of water wherein a tension force in the line is affected by rotation of the spool. The rotation controller is coupled to the spool and is operable to control the rotation of the spool based on the tension force in the line.
Resumen de: US2025196974A1
Systems and methods for utilizing nuclear-based marine craft to generate electricity for external or grid usage are disclosed. In accordance with some embodiments, the system may include a nuclear-based marine craft having a propeller shaft and an electrical generator coupled external to the marine craft and configured to transmit generated electricity. In accordance with some other embodiments, the system may include a nuclear-based marine craft having a nuclear reactor and a turbine, a dock or barge having its own turbine and electrical generator, a steam outlet pipe connecting the nuclear reactor to the dock or barge turbine, and a steam inlet pipe connecting the dock or barge turbine back to the nuclear reactor, whereby heated steam from the nuclear reactor spins the dock or barge turbine, which then powers the electrical generator on the dock or barge to generates electricity.
Resumen de: US2025196975A1
A support system includes a platform for floatation at a surface of a body of water. The platform includes a first pontoon and a set of second pontoons coupled to the first pontoon. Each second pontoon includes a container, a pair of spaced-apart and gas-filled compressible elements disposed in the container, a liquid filling the container between the pair of compressible elements, and a gas flow controller coupled to each compressible element and operable to control a flow of the gas between the compressible elements.
Resumen de: US2025196978A1
The intervention platform comprises at least a wind turbine equipment lifting tower, having at least a lifting unit comprising: a mast, a wind turbine equipment elevator configured to vertically move along the mast between a lower loading/unloading position and at least an upper intervention position and a lifting actuator, configured to move the wind turbine equipment elevator between the lower unloading/loading position and the upper intervention position. The lifting unit comprises at least a position compensation device configured to be activated in the loading/unloading position and/or in the intervention position to compensate local vertical displacements between the intervention platform and the wind turbine platform when the intervention platform is docked to the wind turbine platform.
Nº publicación: US2025198496A1 19/06/2025
Solicitante:
GOLDWIND SCIENCE & TECH CO LTD [CN]
GOLDWIND SCIENCE & TECHNOLOGY CO., LTD
Resumen de: US2025198496A1
A gear speed change device. The gear speed change device comprises a first planetary gear train (100). The first planetary gear train (100) comprises a first ring gear (101), a first planetary carrier (102), first planetary gears (103), a solar idle gear (104), and a planetary idle gear (105). The planetary idle gear (105) and the first planetary gears (103) are all mounted on the first planetary carrier (102); each first planetary gear (103) comprises a pinion (103a) and a large gear (103b) coaxially connected to the pinion (103a); the planetary idle gear (105) and the pinion (103a) are both engaged with the inside of the first ring gear (101) and are both engaged with the outside of the solar idle gear (104); the pinion (103a) can float along the radial direction thereof relative to the first planetary carrier (102), and the maximum radial floating amount of the pinion (103a) is greater than the maximum radial floating amount of the planetary idle gear (105); and the large gears (103b) of at least two first planetary gears (103) are arranged in a staggered manner in the axial direction, and projections thereof on a plane perpendicular to the axial direction overlap with each other. The gear speed change device has a relatively high torque load density, and can give consideration to a small volume, a large transmission speed ratio and a high torque load capability.