Resumen de: FR3152486A1
L’invention concerne un ensemble (1) flottant pour la production d’énergie électrique comprenant une structure flottante (10) reliée une bouée (20) à l’aide d’au moins une liaison souple (30), des moyens (40) reliés à la bouée (20) pour ancrer ladite structure flottante (10) à un fond marin (5), une éolienne (100) comportant une structure porteuse (110) supportant une hélice (120) tournant autour d’un axe de rotation (XX’), et des moyens (60 ; 70) de détermination de l’un au moins des paramètres suivants parmi la direction du vent, la vitesse du vent, le sens du courant marin et la vitesse du courant marin, caractérisé en ce qu’il comporte en outre des moyens (128) pour motoriser l’hélice (120) afin de faire tourner son rotor (126) dans un sens de rotation ou dans le sens opposé, des moyens (50) pour mesurer la distance d’éloignement D entre la structure flottante (10) et un axe de rotation verticale (ZZ’) de la bouée (20), des moyens (80) pour mettre en route les moyens (128) de motorisation et faire tourner son rotor (126 ) afin d’éloigner la structure flottante (10) de ladite bouée (20) lorsque ladite distance d’éloignement D mesurée par le capteur de distance (50) est inférieure à un seuil déterminé. Figure pour l’abrégé : Fig. 1
Resumen de: WO2025045394A1
A power collection system (100) for collecting power from a plurality of offshore power generation units comprises a three-phase subgrid (120) and a subsea power substation (130). The subgrid has a plurality of power input points (121) towards the power generation units and a shared three-phase power output point (122). The power substation (130) is connected to the power output point, and its secondary side (132) is arranged to be connected to a power consumer (170). The power substation shall comprise three one-phase transformers (140), which are contained in respective housings (143), wherein each housing is arranged to rest on the seabed and to be liftable to the sea surface separately from the other housings. Each phase of the power output point is connected to a primary side (141) of a corresponding one of the one-phase transformers.
Resumen de: WO2025046083A1
A system comprising a renewable power floating structure (1) arranged in a body of water, and a power cable (4) extending from the floating structure (1) into the body of water and along the seabed (3). The power cable (4) extends from the floating structure (1) for a first portion (41) of its length, extends in a catenary shape to an imparting element (6) providing buoyancy to the power cable (4) and a second portion (42) of the power cable (4) extends from the imparting element (6) to a tethered point (7) of the power cable connected to the seabed (3) and a third portion (43) of the power cable (4) extends from the anchored point (7) to a touch down point (10) of the power cable (4) where the power cable (4) is laying on the seabed (3). That the second portion (42) is forming a curved configuration of concavity down turned towards the seabed (3) and the power cable continuing this curvature in the third portion (43) of the power cable (4) to the touch down point (10) of the power cable (4) when projected in a vertical plane comprising a first portion connection point (5) to the structure (1) and the anchored point (7) of the power cable (4).
Resumen de: WO2025048459A1
The present invention relates to an airborne wind power generation apparatus facilitating directionality assurance. To this end, the airborne wind power generation apparatus facilitating directionality assurance, of the present invention, comprises: a power generation apparatus body including one or more rotating bodies rotated by means of wind, and a power generator for producing electricity while operating by receiving the rotary force of the rotating bodies; and a buoyant body which is provided at the top of the power generation apparatus body so as to provide buoyancy for airborne flight, and which is stood up to be inclined toward the rear of the upper portion of the power generation apparatus body so as to move integrally with the power generation apparatus body such that the front surface of the power generation device body faces the direction from which the wind blows. Therefore, the present invention can provide the airborne wind power generation apparatus which allows the power generation apparatus body to float in the air by means of the buoyant body, to naturally change the direction thereof to the direction in which wind blows and, simultaneously, to maintain a horizontal orientation so as not to require a separate structure and a control device for direction changing or orientation maintenance, and thus is structurally simple and can stably ensure the orientation for power generation at a high altitude.
Resumen de: US2025074554A1
Methods and systems are provided for nautical stationkeeping of free-floating objects. In one example, a method includes adjusting translational motion of a body freely floating in water by rotating the body. The translational motion may be adjusted, for instance, to maintain the body within a geographic area. In certain examples, the adjustment of the translational motion may be realized via a Magnus effect induced by rotating the body. The body may be configured as, for example, a free-floating object such as a wave engine.
Resumen de: EP4517084A1
The invention relates to an offshore wind turbine float (2) comprising an upper metal wall (4) forming an upper end of the float, a lower metal wall (6, 46, 60) forming a lower end of the float, and at least one side wall (8, 18, 28, 28', 48, 58) connecting the upper and lower metal walls to create a sealed enclosure for the float, wherein the side wall (8, 18, 28, 28', 48, 58) comprises:- an external metal panel (10, 20, 30, 30', 40, 50),- an internal metal panel (12, 22, 32, 32', 42, 52) parallel to the external panel,- at least one corrugated metal sheet (14, 24, 34, 34', 44', 44", 54) extending within a space formed between the external metal panel and the internal metal panel, wherein the corrugated metal sheet is attached to both the internal metal panel and the external metal panel.
Resumen de: US2025065992A1
The invention concerns a floating wind platform able to be placed on a body of water and comprising:a floater structure able to float on the body of water;a tower assembly protruding from the floater structure and extending along a main direction, the tower assembly being able to support a wind turbine nacelle.The tower assembly comprises:a tower able to support the wind turbine nacelle; anda connection part arranged between the floater structure and the tower.The connection part is formed of a composite material.
Resumen de: US2025067249A1
An offshore electricity production assembly comprising a floating platform, a wind turbine fixed to the floating platform, and inclined mooring tendons, the floating platform comprising:a tubular central buoyant column extending along a longitudinal axis intended to be vertical, the column having an immersed portion defining a first average external diameter, anda plurality of tubular radial buoyant pontoons protruding from the column along radial axes spaced around the longitudinal axis, each of the pontoons defining a second average external diameter, the pontoons being immersed in a body of water.The first average external diameter is larger than the second average external diameter.
Resumen de: US2025065993A1
A hull structure for a semi-submersible wind power turbine platform, a method for loading a set of hull structures onto a semi-submersible cargo carrying marine vessel, and a marine vessel carrying a set of hull structures. The hull structure includes: first, second and third buoyant stabilizing columns extending in a substantially vertical direction; first, second and third elongated submersible pontoon structures extending in a substantially horizontal direction. The hull structure has a general shape of a triangle in the horizontal plane with the first, second and third pontoon structures forming sides of the triangle. The pontoon structures extend between and connects to the columns at lower parts thereof, and the third pontoon structure is arranged so that an upper side of the third pontoon structure is located at a lower level in the horizontal direction than an upper side of each of the first and second pontoon structures.
Resumen de: US2025065994A1
A hull structure for a semi-submersible wind power turbine platform, a method for loading a set of hull structures onto a semi-submersible cargo carrying marine vessel, and a marine vessel carrying a set of hull structures. The hull structure includes: first, second and third buoyant stabilizing columns extending in a substantially vertical direction; and first, second and third elongated submersible pontoon structures extending in a substantially horizontal direction. The hull structure has a general shape of a triangle in the horizontal plane with the first, second and third pontoon structures forming sides of the triangle. The pontoon structures extend between and connects to the columns at lower parts thereof and the third pontoon structure is arranged so that an upper side of the third pontoon structure is located at a lower level in the horizontal direction than an upper side of each of the first and second pontoon structures.
Resumen de: WO2025042278A1
Method of forming a tube element for use as a longitudinal section of a brace for a truss structure of a floatable offshore support structure for a wind turbine, comprising: providing four elongate flat steel plates each extending along a longitudinal direction and having two opposite lateral edges; deforming each plate such that, along the longitudinal direction, a transverse shape of the plate smoothly transitions between a rectilinear shape and an arcuate shape; and forming the tube element by interconnecting the four deformed plates along their lateral edges. The interconnected plates each form a respective circumferential section of the tube element, wherein along the longitudinal direction, a transverse shape of the tube element smoothly transitions from a circular shape to a rectangular shape. The tube element may connect a cylindrical further tube element of the brace with a further part of the floatable offshore support structure.
Resumen de: US2024425149A1
A floatable offshore structure includes at least one submarine power cable connector configured to connect a submarine power cable. At least one anchor connector is configured to connect at least one anchor connection for anchoring the floatable offshore structure to an underwater bottom, at least one detection arrangement configured to detect an anchor connection breakage indication, and at least one switching equipment configured to at least electrically disconnect the electrical connection to the submarine power cable connected to the submarine power cable connector upon or after the detection of an anchor connection breakage indication.
Resumen de: EP4513029A1
A power collection system (100) for collecting power from a plurality of offshore power generation units (110), comprising: a plurality of subgrids (123), each of which interconnects a cluster of one or more power generation units; a subsea power collector module (150) comprising a plurality of individually switchable input terminals (151), each connected to one of the subgrids, and one output terminal (152); and a subsea power substation (130) comprising at least one input terminal (133) connected to the output terminal of the power collector module and at least one transformer (140), which is shared by two or more clusters of power generation units, wherein a secondary side (132) of the power substation is arranged to be connected to a power consumer (170).
Resumen de: EP4513704A1
A power collection system (100) for collecting power from a plurality of offshore power generation units comprises a three-phase subgrid (120) and a subsea power substation (130). The subgrid has a plurality of power input points (121) towards the power generation units and a shared three-phase power output point (122). The power substation (130) is connected to the power output point, and its secondary side (132) is arranged to be connected to a power consumer (170). The power substation shall comprise three one-phase transformers (140), which are contained in respective housings (143), wherein each housing is arranged to rest on the seabed and to be liftable to the sea surface separately from the other housings. Each phase of the power output point is connected to a primary side (141) of a corresponding one of the one-phase transformers.
Resumen de: US2025058856A1
Disclosed herein are a floating structure and a wind power generation apparatus. The floating structure according to an aspect of the disclosure includes a plurality of columns providing buoyancy and a connecting body connecting the plurality of columns, wherein at least one of the plurality of columns includes a plurality of column bodies connected to each other, and a hollow portion formed surrounded by the plurality of column bodies.
Resumen de: US2025058857A1
A hull structure for a semi-submersible wind power turbine platform. The hull structure includes first, second and third buoyant stabilizing columns extending in a substantially vertical direction; and first and second elongated submersible buoyant pontoon structures extending in a substantially horizontal direction. The the hull structure generally has a V-shape in the horizontal plane with the first and second pontoon structures forming legs in the V-shape and with the second column located where the legs meet. The second column has a cross sectional area at its intended operational waterline that is larger than the cross sectional area of each of the first and third columns at their corresponding intended operational waterlines so that the second column exhibits an operational waterplane area that is larger than the operational waterplane area of each of the first and third columns when the hull structure is set in the operational state.
Resumen de: US2025059721A1
A method for installation of a transition piece on a monopile foundation of an offshore wind turbine along a common axis extending in a longitudinal direction is performed from a floating installation vessel. Buffer elements are arranged around an inner circumference of the transition piece and/or the monopile structure. The transition piece is lifted and lowered onto the monopile structure by use of a crane, and landed onto the monopile structure through the use of the buffer elements. A number of hydraulic cylinder jacks for circumferential alignment of bolt holes are provided in the transition piece and monopile, and alignment tools are used for alignment of the flanges provided on each of the transition piece and the monopile. The transition piece is lifted and the buffer elements are removed after which the transition piece is lowered onto the monopile, and bolts are tensioned fix the transition piece to the monopile.
Resumen de: AU2023309353A1
Disclosed are dense fluids for use in offshore applications, such as wind turbine platforms, oil and gas platforms, gravity anchors, catenary weights as well as other gravity-based structures. The dense fluid can be mixed with low-density fluid and high-density solid particles to form an intermediate dense fluid. The intermediate dense fluid is mixed with intermediate-density solid particles having the same density as the intermediate dense fluid to form a dense fluid with the desired target density. The dense fluid can be produced cost-effectively by selecting intermediate-density particles which are plentiful and can be obtained cheaply.
Resumen de: WO2025032110A1
A system and corresponding method for connecting a power cable (10) to an offshore structure (100) is provided. The offshore structure comprises a routing unit (102) for the power cable (10) such that the power cable is protected and in a position to be electrically connected to the offshore structure (100). The routing unit (102) is movably attached to the offshore structure (100) between at least two positions relative to the offshore structure. Furthermore, the system comprises an actuator (300) adapted to selectively move the routing unit (102) between at least two positions relative to the offshore structure. The at least two positions comprise a first position, in which the routing unit is completely above sea level (40) and a relative lower end of the routing unit is accessible from the offshore structure (100); and a second position, relatively lower than the first position, in which the lower end of the routing unit (102) is in a normal installed position relative the offshore structure (100).
Resumen de: US2025050979A1
Disclosed herein is an offshore anchor system comprising two or more helical anchors, each having a predetermined length; and a template acting as a base connecting the two or more helical anchors. Some embodiments further comprise a skirt protruding from the periphery of the template in a direction substantially parallel to the length of the two or more helical anchors thereby providing additional lateral support.
Resumen de: US2025052232A1
The invention concerns a floating wind platform able to be placed on a body of water and comprising:a floater structure able to float on the body of water;a tower protruding from the floater structure and extending along a main direction, the tower being able to support a wind turbine nacelle; the tower comprising a composite material.
Resumen de: US2025052222A1
Disclosed is a floating platform integrating wave attenuation with marine energy power generation and a working method thereof, the platform includes a breakwater, a tuned damping wave energy converter, and an offshore floating wind turbine. The breakwater includes double-cylindrical-boxes and connecting bulkheads, and a moon pool area is formed in a middle of the breakwater; the offshore floating wind turbine and the tuned damping wave energy converter are both connected to the breakwater through a connecting rod. A circular groove is formed on an inner side of each of the connecting bulkheads of the breakwater. The breakwater provides the floating base and power generation environment for the offshore floating wind turbine and the tuned damping wave energy converter, and a plurality of the tuned damping wave energy converters can be disposed, and are evenly distributed beneath the offshore floating wind turbine.
Resumen de: US2025050978A1
Techniques are disclosed herein for minimizing movement of a fixed marine structure. Using the technologies described, a wind turbine may be mounted on a fixed marine platform (e.g., a fully restrained platform (FRP)) that is secured by mooring lines that may be maintained at a tension to restrain movement of the platform due to environmental loads (e.g., wind, waves, etc.). The mooring lines may be attached to the platform with assemblies that include a stopper attached to the mooring line and engaged with a mooring porch. The stopper may be positioned and/or repositioned to adjust the tension on the connected mooring line and secured in the adjusted position using the various systems and techniques described herein.
Resumen de: AU2023338052A1
A wave energy converter is provided which includes a nacelle having a starboard side and a port side axis, and housing a power take-off. The wave energy converter also includes at least one buoyancy member coupled to the nacelle, and a ballast tank coupled to the nacelle. The ballast tank, the at least one buoyancy member, and the nacelle, together form a first body, where the first body is coupled to the power take-off. The wave energy converter further includes a float and a drive arm forming a second body, where the second body is rotatably coupled to the first body about a coupling axis, and the second body is coupled to the power take-off. The second body is configured to rotate relative to the first body about the coupling axis within a radial span bounded by a proximal end of the float and a radially distal end of the float. Methods for generating power with the wave energy converter are also provided.
Nº publicación: EP4504590A1 12/02/2025
Solicitante:
OCERGY INC [US]
Ocergy, Inc
Resumen de: TW202340041A
The invention relates to a method for manufacturing a floating marine platform by means of templates. The floating marine platform comprises a central column, multiple peripheral columns circumferentially around the central column, and radially extending outriggers from the central column that connect the peripheral columns with the central column. The templates comprise an inner outrigger template, an outer outrigger template, a central column template and a peripheral column template, wherein on a first location under a first temperature a first pair with the inner outrigger template and the central column template is formed, and on a second location under a second temperature a second pair with the outer outrigger template and the peripheral column template is formed. Subsequently the central column, the peripheral columns and the outriggers are formed by means of the templates, under different temperatures.