Resumen de: CN118461072A
The invention discloses an electrolytic hydrogen production system and a control method thereof. The electrolytic hydrogen production system comprises a plurality of electrolytic cells, the control method comprises the following steps: acquiring a state code of each electrolytic cell; the state code reflects the state information of the electrolytic cell; and controlling the hydrogen production capacity of each electrolytic cell according to each state code. According to the technical scheme, intelligent control over the electrolytic hydrogen production system is achieved, the hydrogen production capacity of all the electrolytic cells is reasonably distributed, and therefore the electrolytic hydrogen production system is in the optimal operation state all the time, and the stability of the electrolytic hydrogen production system and the electrolytic hydrogen production efficiency can be improved.
Resumen de: US2025223547A1
Microorganisms and bioprocesses are provided that convert gaseous substrates, such as renewable H2 and waste CO2 producer gas, or syngas into high-protein biomass that may be used directly for human nutrition, or as a nutrient for plants, fungi, or other microorganisms, or as a source of soil carbon, nitrogen, and other mineral nutrients. Renewable H2 used in the processes described herein may be generated by electrolysis using solar or wind power. Producer gas used in the processes described herein may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Resumen de: US2025223546A1
Microorganisms and bioprocesses are provided that convert gaseous substrates, such as renewable H2 and waste CO2 producer gas, or syngas into high-protein biomass that may be used directly for human nutrition, or as a nutrient for plants, fungi, or other microorganisms, or as a source of soil carbon, nitrogen, and other mineral nutrients. Renewable H2 used in the processes described herein may be generated by electrolysis using solar or wind power. Producer gas used in the processes described herein may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Resumen de: US2025223539A1
A method for optimal production of methane from a storage horizon configured as an underground bioreactor, the method including obtaining environmental data for a renewable energy facility that produces hydrogen and obtaining process data from an industrial facility that produces carbon dioxide. The method further includes injecting the produced hydrogen, the produced carbon dioxide, and a selection of microbes, the selection defined by a set of microbe parameters, into the bioreactor. The bioreactor produces a quantity of methane that is controlled by, at least in part, a set of operation parameters. The method further includes determining, with a composite artificial intelligence model, a predicted methane production from the bioreactor based on the environmental data, the process data, the set of microbe parameters, and the set of operation parameters and adjusting, automatically, the set of operation parameters and the set of microbe parameters to optimize methane production.
Resumen de: US2025223707A1
Provided is a power generation system (100) comprising: a gas turbine (10) for combusting air compressed by a compressor (11) and a fuel gas using a combustor (12) to generate combustion gas and drive a turbine (13) and a compressor connected to the turbine using the combustion gas; a heat storage structure (30) heated by the combustion gas with which the turbine is driven; a boiler (40) for generating steam using heat stored in the heat storage structure (30); and a solid oxide electrolytic cell (50) having a hydrogen electrode (51), an oxygen electrode (52), and an electrolyte layer (53) positioned between the hydrogen electrode and the oxygen electrode, the solid oxide electrolytic cell (50) supplying steam generated by the boiler (40) to the hydrogen electrode (51) to generate hydrogen through steam electrolysis.
Resumen de: US2025223713A1
An electrochemical cell for a high-pressure electrolyzer contains a closed cell frame made of a high-pressure-resistant first material; an electrochemical reaction region, which is arranged completely inside the cell frame and contains an anodic half-cell and a cathodic half-cell; a gap, which spatially separates the reaction region from the cell frame; and a second material introduced into the gap. The second material is an electrical insulator, and the second material has a lower diffusion coefficient with respect to the entry of foreign ions into the reaction region. A plurality of the electrochemical cells are used to form a cell stack and the cell stack is used to form a high-pressure electrolyzer.
Resumen de: WO2025147215A1
The present disclosure relates to a bipolar hydrogen production system and a method for producing hydrogen gas from the bipolar hydrogen production system. The system comprises a silver-based anodic catalyst deposited on an anode electrode, a cathode electrode, and an alkaline electrolyte containing an organic compound with aldehyde functional group extracted from lignocellulosic biomass waste or an aldehyde-containing chemical compound extracted from chemical waste.
Resumen de: US2025223163A1
A highly crystalline mesoporous sulphur functionalized carbon nitride and a process for producing the same. The process including the steps of: providing a carbon nitride precursor material; mixing the carbon nitride precursor material with a metal salt to form a first mixture; and, thermally treating the first mixture to produce the crystalline carbon nitride.
Resumen de: US2025223714A1
Provided are a proton conductor 2 obtained by molding a solid electrolyte ceramic using hydrogen ions or ions containing hydrogen as charge carriers into a flat plate shape or a curved surface shape; a pair of hydrogen permeable electrode bodies 31 and 32 that have hydrogen permeability and conductivity and are formed of a solid that is airtight to gases other than hydrogen, and are arranged so as to sandwich the hydrogen ion conductive solid; a pair of media 41 and 42 arranged so as to sandwich the proton conductor 2 and the pair of hydrogen permeable electrode bodies 31 and 32; and a power supply 5 that applies a voltage between the pair of hydrogen permeable electrode bodies 31 and 32 to induce a current.
Resumen de: WO2025146950A1
The present invention relates to a system for producing hydrogen while interworking with a nuclear power plant, the system comprising: a water electrolysis facility for producing hydrogen and oxygen by using vapor supplied from a nuclear power plant; and a power supply controller for selecting at least one reactor module from multiple reactor modules for hydrogen production by the water electrolysis facility, and selecting at least one from multiple generators or power grids such that power is supplied therefrom to the water electrolysis facility. According to an embodiment, power and hydrogen can be simultaneously produced. Particularly, hydrogen can be produced continuously in an economical and effective manner by selecting an optimal reactor module from multiple reactor modules for hydrogen production and by selecting an optimal power supply source from various power sources.
Resumen de: EP4582589A1
The present application belongs to the technical field of electrolytic hydrogen production, and particularly relates to a direct air electrolytic hydrogen production system. The system comprises an energy supply module, an electrolytic hydrogen production module, an electrolyte recycling module and a moisture vapor self-trapping module, wherein the energy supply module is connected to the electrolytic hydrogen production module; the electrolytic hydrogen production module comprises an electrolyzer; and the electrolyte recycling module is connected to the electrolytic hydrogen production module and the moisture vapor self-trapping module separately. The system may realize direct air electrolytic hydrogen production, while its energy consumption for electrolysis is comparable to that of industrial pure water electrolysis for hydrogen production, without additional energy consumption for desalination/purification of impure water solutions or for harvesting moisture from the air. The system greatly broadens the range of hydrogen energy sources without time and space limitation, providing technical support for future distributed hydrogen energy arrangement.
Resumen de: GB2636962A
An electrolyser system (10) and a method of operating an electrolyser system (10), the electrolyser system (10) comprising an electrolyzer (16) and a metal hydride or adsorption-desorption compressor (24), where the electrolyser (16) has at least one electrolyser cell with a steam input (22) and at least one gas output. The method comprises supplying steam through a first side of the electrolyser cell at the steam input (22), operating the electrolyser (16) to split part of the steam into hydrogen and oxygen in the at least one electrolyser cell, venting a mixture of the hydrogen and the remaining steam from the first side of the electrolyser cell at the at least one gas output (18), passing the mixture into the metal hydride or adsorption-desorption compressor (24), and cryo-adsorbing the hydrogen of the mixture in the metal hydride or 15 adsorption-desorption compressor (24) to compress the hydrogen and desorbing the compressed hydrogen from the metal hydride or adsorption-desorption compressor (24). The electrolyser system (10) is connected to a source of cold waste gas to operate the cryo-adsorption.
Resumen de: EP4582592A1
An alkaline water electrolysis apparatus includes: a separation membrane including a first main surface and a second main surface opposite to the first main surface; a first electrode including a third main surface and a fourth main surface opposite to the third main surface, the third main surface being provided to face the first main surface of the separation membrane; and a first bipolar plate including a fifth main surface, the fifth main surface being provided in contact with the fourth main surface of the first electrode, wherein the first electrode consists of a first metal porous body having a three-dimensional mesh structure.
Resumen de: EP4582593A1
A membrane electrode assembly 6 for a water electrolysis cell includes a polymer electrolyte membrane 1 having a first main surface 1A and a second main surface 1B, a first electrode catalytic layer 2 disposed to the first main surface 1A of the polymer electrolyte membrane 1, a second electrode catalytic layer 3 disposed to the second main surface 1B of the polymer electrolyte membrane 1, an annular outer peripheral film 4 disposed to surround an outer peripheral surface of the polymer electrolyte membrane 1, and a first adhesive film 5A having a substrate layer 51 and an adhesive agent layer 52. The first main surface 1A of the polymer electrolyte membrane 1 has a first annular non-covered section 1AN that is not covered with the first electrode catalytic layer 2 along an outer periphery of the first main surface, and the adhesive agent layer 52 of the first adhesive film 5Ais adhered to the first annular non-covered section 1AN of the polymer electrolyte membrane 1 and to a main surface 4A of the outer peripheral film 4 at the same side as the first main surface 1A of the polymer electrolyte membrane 1.
Resumen de: EP4582594A1
The present invention discloses a water electrolysis device including a metal particle fluidic electrode. The water electrolysis device of the present invention includes a cathode; a first fluid channel formed on the cathode; a cation exchange membrane (CEM) formed on the first fluid channel; a second fluid channel formed on the cation exchange membrane; and an anode formed on the second fluid channel, wherein the second fluid channel includes metal particles and is used as a metal particle fluidic electrode.
Resumen de: AU2023331556A1
The invention relates to a photoelectric cell with a silicon carbide electrode (4) for photocatalytic production of hydrogen and to a production method for same. The cell has, on one side of the silicon carbide electrode (4), a window (2) for letting in light (5) and, on the other side of the silicon carbide electrode (4), an aqueous electrolyte (10) and a counter electrode (6). The cell is electrolyte-free on the side of the silicon carbide electrode (4) facing the window. The silicon carbide electrode (4) is preferably produced by coating a substrate (3) with silicon carbide (4).
Resumen de: CN119866395A
A membrane electrode assembly (MEA) for generating hydrogen gas in a water electrolyser is provided. The MEA comprises a polymer electrolyte membrane (REM); a cathode comprising a cathode catalyst on a first side of the REM; an anode comprising an anode catalyst on a second side of the REM; and a platinum-ruthenium (Pt-Ru) catalyst on a second side of the REM to electrochemically convert hydrogen to hydrogen cations in use. The Pt-Ru catalyst is in electrical contact with the anode and in contact with the REM ions.
Resumen de: CN119866392A
A coating method for an electrolytic cell assembly is provided. The method includes coating at least a portion of the component with an acidic solution of platinum cations, and reducing the coated platinum cations with a reducing agent to form a layer of platinum metal on the component.
Resumen de: CN115976552A
The invention provides an electrolytic bath which comprises a cathode end plate, a cathode insulating layer, an electrolytic unit, an anode insulating layer and an anode end plate which are sequentially arranged in the same direction, and the electrolytic unit comprises small electrolytic chambers which are arranged in series; from the cathode insulating layer to the anode insulating layer, each small electrolysis chamber comprises a cathode plate, a cathode sealing ring, a cathode gas diffusion layer, a diaphragm, an anode gas diffusion layer, an anode sealing ring and an anode plate which are sequentially arranged, and the cathode plates and the anode plates at the series connection parts between the small electrolysis chambers are combined to form a bipolar plate; the cathode plate comprises a cathode surface, the anode plate comprises an anode surface, the bipolar plate comprises a cathode surface and an anode surface, the cathode surface and the anode surface are provided with a concave area and an outer frame area, the outer frame area surrounds the concave area, the concave area is respectively provided with two confluence runners, and a branch runner is arranged between the two confluence runners; and the two ends of the branch flow channel are communicated with the confluence flow channel. According to the scheme, uniform diffusion of the electrolyte is realized.
Resumen de: AU2023405114A1
The invention relates to an electrolysis system (1) comprising an electrolyser (3) for producing hydrogen (H
Resumen de: WO2024240539A1
The invention discloses a gas generator (20) for a tool comprising an electrolytic cell (30) for producing oxyhydrogen gas with a hollow cell body (31) and an electrode pair (32) with a first electrode (33) and a second electrode (35). Said first electrode (33) and said second electrode (35) are separated by a non-conductive separator (37) in said hollow cell body (31). A gas extraction tube (55) is arranged in the hollow cell body (31). Furthermore, said invention disclose a usage of such a gas generator in a tool and a tool with such a gas generator.
Resumen de: US2025219549A1
A system comprises at least one transformer for galvanically isolating the system from an electrical power grid and adapting an input voltage level associated with an alternating current received from the electrical power grid. A converter unit connected to the transformer is configured to convert the alternating current into a direct current output between a positive pole and a negative pole. The converter unit comprises at least one modular multilevel converter comprising at least two converter branches. Each branch comprises a converter cell and an inductor. One branch is connected from an AC line of the transformer to the positive pole and another branch is connected from the AC line to the negative pole. An electrolyser unit may be arranged between the positive and negative poles, and a control unit may be configured to control the direct current output based on a reference value.
Resumen de: US2025219421A1
An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub-system as a voltage source to energize an electrical load electrically connected thereto; if it is determined the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: US2025215331A1
Production of fuels from low carbon electricity and from carbon dioxide by the use of a solid oxide electrolysis cell (SOEC) and Fischer-Tropsch is shown. Fischer-Tropsch is an exothermic reaction that can be used to produce steam. Steam produced from the Liquid Fuel Production (LFP) reactor system, where the Fischer-Tropsch reaction occurs, is used as feed to the SOEC. The higher temperature steam improves the efficiency of the overall electrolysis system. The integration of the LFP steam improves the efficiency of the electrolysis because the heat of vaporization for the liquid water does not have to be supplied by the electrolyzer.
Nº publicación: US2025215576A1 03/07/2025
Solicitante:
KYROS HYDROGEN SOLUTION S GMBH [DE]
Kyros Hydrogen Solution s GmbH
Resumen de: US2025215576A1
Systems and methods for increased oxygen output from an electrolyzer system are provided. The electrolyzer system includes a water storage tank. The electrolyzer system also includes an electrolyzer in fluid communication with the water storage tank and configured to produce oxygen and hydrogen from water e.g., (H2O). The electrolyzer system also includes one or more pressure isolating components configured to increase the oxygen output pressure of the system by pressure isolating the water storage tank from the electrolyzer stack.