Resumen de: WO2026018874A1
An ion exchange membrane comprising: a sulfonic-acid-type membrane body containing a polymer having a sulfonic-acid group; and a reinforcement material disposed in the sulfonic-acid-type membrane body, wherein the surface roughness R1 of a first surface of the sulfonic-acid-type membrane body is lower than the surface roughness R2 of a second surface of the sulfonic-acid-type membrane body.
Resumen de: WO2025021544A1
The invention relates to a cell frame (100) configured to be integrated in an electrolyzer. The frame is forming a closed shape having an inner contour (InnCont) that defines an opening (Op) extending in an extension plane (ExtP1). The inner contour is presenting at least two steps (St1, St2, St3, St4, St5, St6) each comprising a first surface (S1) perpendicular to the extension plane and a second surface (S2) parallel to the extension plane. The respective second surfaces of two (St1, St3, St5) of the steps is configured to support two respective bipolar plates (BP-1, BP-21, BP-22).
Resumen de: CN120476490A
The present invention provides a reinforced ion conducting membrane comprising: (a) a reinforcement layer comprising a porous polymer structure; and (b) a polymer ion conducting membrane material impregnated within the porous polymer structure; wherein the porous polymer structure comprises a polymer backbone based on a nitrogen-containing heterocyclic ring, and the polymer ion-conducting membrane material has a transition temperature T alpha in the range of from 60 DEG C to 80 DEG C and including end values.
Resumen de: AU2024240321A1
An electrochemical system includes a counter electrode and a working electrode spaced from the counter electrode. The working electrode includes a substrate, an array of conductive projections supported by the substrate and extending outwardly from the substrate, each conductive projection of the array of conductive projections having a semiconductor composition, and including a surface, the surface including nitrogen, and an oxynitride layer disposed on the surface. The counter electrode and the working electrode are arranged in a two-electrode configuration.
Resumen de: CN120882908A
The invention relates to an electrolysis cell system (10) comprising at least one electrolysis cell (20) comprising at least one steam inlet (41) and at least one exhaust gas outlet (38; 39), and a turbocharger (62) for compressing the exhaust gas from the electrolysis cell (20). The turbocharger (62) comprises a driving fluid inlet, a driving fluid outlet, a compressed fluid inlet, a compressed fluid outlet, a compressor (13) and a turbine (12). The turbine (12) is configured to drive the compressor (13). A driving fluid outlet of the turbocharger (62) is fluidly connected to at least one steam inlet (41) of the electrolysis cell (20). At least one exhaust gas outlet (38; 39) is fluidly connected to a compressed fluid inlet of the turbocharger (62). The system (10) may further include a steam source in fluid connection with the drive fluid inlet of the turbocharger (62) to power the turbine (12) using pressurized steam.
Resumen de: EP4682297A1
A ceramic reversible cell including any one or more selected from the group consisting of a perovskite-type metal oxide, a hydrate of the perovskite-type metal oxide and a hydride of the perovskite-type metal oxide, in which the any one or more selected from the group consisting of the perovskite-type metal oxide, the hydrate of the perovskite-type metal oxide, and the hydride of the perovskite-type metal oxide include A (A being any one or more selected from the group consisting of Ba, Sr and Ca), B (B being any one or more selected from the group consisting of Zr, Sn, Ce, Ti and Hf), and M (M being any one or more selected from the group consisting of In, Fe, Cr and Mn) as main metal atoms, and satisfy the predetermined formula and include hydride ions when brought into an equilibrium state by contact with dry hydrogen having a water content of 20 ppm or less in a volume ratio at 500°C to 900°C.
Resumen de: AU2024236667A1
The present disclosure is directed to a geothermal hydrogen production and compression system, wherein the system comprises an impure water intake to receive water from a impure water source, at least one geothermal well having a well inlet to receive the impure water from the impure water intake in to the geothermal well and one or more well outlets adapted to return heated impure water from the geothermal well, one or more well outlets being adapted to direct the heated impure water from the geothermal well through a steam engine providing a mechanical output, a purification plant comprising one or more purification chambers for separating impurities from the heated impure water expelled from the steam engine to produce at least some fresh water, one or more discharge outlets to discharge one or more products of the purification plant wherein the fresh water is directed to an electrolyser for electrolysis to produce hydrogen gas, where the hydrogen gas is passed through a hydrogen compressor coupled to the mechanical output and pressurised in a storage apparatus.
Resumen de: EP4681815A1
Disclosed are a catalyst for the dehydrogenation of ammonia, a manufacturing method therefor, and a method for producing hydrogen using same. The disclosed catalyst for the dehydrogenation of ammonia comprises clay and an alkali metal and ruthenium impregnated in the clay.
Resumen de: MX2022009657A
A power generator is described that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for reactions involving atomic hydrogen hydrogen products identifiable by unique analytical and spectroscopic signatures, (ii) a molten metal injection system comprising at least one pump such as an electromagnetic pump that provides a molten metal stream to the reaction cell and at least one reservoir that receives the molten metal stream, and (iii) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the at least one steam of molten metal to ignite a plasma to initiate rapid kinetics of the reaction and an energy gain. In some embodiments, the power generator may comprise: (v) a source of H<sub>2</sub> and O<sub>2</sub> supplied to the plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high-power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter.
Resumen de: CN120936421A
A method for generating and treating a two-phase effluent from one or more pressurized electrolysis cell stacks adapted to electrolyze water into hydrogen and oxygen, whereby a pump supplies a cathodic electrolysis fluid stream from a first gas-liquid gravity separator vessel to the electrolysis cell stack, whereby another pump supplies an anode electrolysis fluid flow from a second gas-liquid gravity separator vessel to the electrolysis cell stack, and whereby at least one cyclone gas-liquid separator receives a combined effluent from the cathode electrolysis chamber and/or receives a combined effluent from the anode electrolysis chamber, these combined effluents are respectively located within respective gas-liquid gravity separator containers, whereby further, the at least one cyclonic gas-liquid separator separates the gas from the liquid within the gas-liquid gravity separator container along a substantially horizontal cyclonic axis of rotation. An electrolytic cell system is also provided.
Resumen de: CN120981607A
A selective membrane is described that includes a porous polymer membrane and a selective material on at least one outer surface. A selective material comprising a composite material of an ion exchange polymer and zirconia particles (ZrO2) distributed throughout the ion exchange polymer may be applied as a liquid by a spray method. Selective membranes made by the methods described herein are suitable for alkaline water electrolysis applications.
Resumen de: WO2024132579A1
A process for producing a synthesis gas product comprising hydrogen from an endothermic cracking reaction of an ammonia feedstock stream, comprising the following steps: - Providing an ammonia feedstock stream, - Performing a catalytic conversion by catalytically converting the ammonia feedstock stream by cracking endothermically said ammonia feedstock stream into a synthesis gas product comprising hydrogen, - Performing heat exchanges step by performing heat exchanges between the synthesis gas product and the catalytic conversion of the ammonia feedstock stream, said heat exchanges step comprising the following steps: • Discharging the synthesis gas product in a synthesis gas product circulation duct, said duct being arranged for the heat exchanges between the discharged synthesis gas product and the catalytic conversion of the ammonia feedstock stream, • Recovering heat from the discharged synthesis gas product, • Directing the recovered heat to the catalytic conversion of the ammonia feedstock stream.
Resumen de: WO2024262441A1
This electrode 1 for water electrolysis comprises a conductive base material 10 and a layered double hydroxide layer 20. The layered double hydroxide layer is provided on the surface of the conductive base material 10. The extinction coefficient k800 of the layered double hydroxide layer 20 at the wavelength of 800 nm is 0.08 or more.
Resumen de: WO2025051333A1
The invention relates to a plate-like element (10) of a cell stack (2) of an electrochemical system (1), having a first plate side (26), a second plate side (27), a plurality of openings (13, 21, 22, 23, 23') and a first structure (14) for forming a flow field for coolant and several further structures (14') for forming distributors for operating media on the first plate side (26). The structure (14) comprises a coolant conducting structure (15, 16) through which a first coolant path (15) and a second coolant path (16) arranged mirror-symmetrically thereto are formed, each of which have, starting from one of the openings (21), an elongate inflow portion (17), a centre portion (18) which starts from the inflow portion (17), fans out and describes at least one meandering bend (19), and an elongate outflow portion (20) which adjoins the centre potion (18) and is narrower than the centre portion (18). A longitudinal axis (30) of the inflow portion (17) of the first coolant path (15) matches a longitudinal axis (30) of the outflow portion (20) of the second coolant path (16), and a longitudinal axis (30') of the inflow portion (17) of the second coolant path (16) matches a longitudinal axis (30') of the outflow portion (20) of the first coolant path (15). The invention also relates to a cell stack (2) comprising a plurality of such plate-like elements (10) which are parallel to one another.
Resumen de: AU2024303520A1
Methods for producing renewable hydrogen and systems related to the same are provided.
Resumen de: WO2026013303A1
The invention provides a system and process for facilitating the direct electrolysis of saltwater, such as seawater. The system comprises an acid-base flow battery comprising an acid solution outlet, an alkaline solution outlet and a saltwater inlet; and a water electrolyser downstream of the acid-base flow battery for producing hydrogen, comprising a negative electrode and a positive electrode.
Resumen de: US20260015741A1
Solid oxide electrolytic cell assembly (SOEC) and methods for making SOECs are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC). The functionalized ZTC is formed by forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites. In the method, the functionalized ZTC is incorporated into electrodes by forming a mixture of the functionalized ZTC with a calcined solid oxide electrolyte, and calcining the mixture. The method includes forming an electrode assembly, forming the SO electrolytic cell assembly, and coupling the SO electrolytic cell assembly to a heat source.
Resumen de: US20260015743A1
An electrosynthetic cell and its use are disclosed. The electrosynthetic cell can be used in a reductive electrosynthesis of one or more desired chemical products from one or more chemical reactants. The electrosynthetic cell comprises a hydrogen anode half-cell and a cathode half-cell. The hydrogen anode half-cell comprises hydrogen (H2), a first liquid phase solution that is in contact with an anode and a heterogeneous redox catalyst capable of catalyzing the oxidation of H2 to H+, and a redox mediator capable of transferring or accepting electrons and/or protons while undergoing reduction or oxidation. The cathode half-cell comprises a second liquid phase solution comprising the one or more chemical reactants that is in contact with a cathode and a reductive synthesis catalyst capable of catalyzing the reductive synthesis of the one or more desired chemical products from the one or more chemical reactants.
Resumen de: US20260015230A1
A solid state storage system includes a pressure-sealed storage unit defining an interior and having an outlet, an upper manifold and a lower manifold separated by a dividing plane having a set of ports, a set of chambers, and a solid state storage, wherein at least some gas is supplied to the outlet.
Resumen de: US20260015229A1
A system including a gas production device including (a) a solid containing compartment configured to contain a solid, (b) at least one fluid channel with an inlet and an outlet comprising an opening along at least a portion of its length, the opening facing the solid, (c) a solution compartment configured to contain a solution, the solution compartment: (1) being in fluid communication with the fluid channel inlet and outlet, (2) located along a fluid pathway in between the fluid channel outlet and inlet, and (3) at least one hydrogen gas outlet, (d) a fluid flow driver in fluid communication with the fluid pathway, and (e) a fluid flow rate regulator connected to the fluid flow driver. Disclosed is also a method for producing a gas (e.g., hydrogen).
Resumen de: US20260015745A1
The present invention relates to an electrode for electrolysis, a laminate, a wound body, an electrolyzer, a method for producing an electrolyzer, a method for renewing an electrode, a method for renewing a laminate, and a method for producing a wound body. An electrode for electrolysis according to one aspect of the present invention has a mass per unit area of 48 mg/cm2 or less and a force applied per unit mass-unit area of 0.08 N/mg·cm2 or more.
Resumen de: US20260015744A1
POM particles are suitable as photocatalytic or electrocatalytic catalyst in the production of hydrogen and a method of producing such POM particles. The POM particles are produced by subjecting a heteropoly acid with the chemical formula HzXY12O40, or a hydrate thereof, to acidic conditions in the presence of a polyvalent cation, wherein z=3 or 4, X is selected from the group consisting of P, Si, Ge, As, Sb and V, and Y is selected from the group consisting of W, Mo and V.
Resumen de: US20260018632A1
A power generation system includes a housing, a lid defining an opening in the housing, and a chamber inside the housing configured to receive a cartridge comprising a powdered fuel mixture. The system also includes a fluid reservoir that stores a fluid configured to react with the powdered fuel mixture to produce hydrogen gas. A processor is configured to control ingress of the fluid from the fluid reservoir to the powdered fuel mixture in the cartridge and control egress of the gas from the cartridge to the gas storage compartment. The system also includes a generator configured to generate electricity from the gas in the gas storage compartment.
Resumen de: US20260018642A1
A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes adding heat to (or removing heat from) a salinity gradient generator configured to generate a more concentrated and a less concentrated saline solution. The method further includes drawing the more concentrated saline solution and the less concentrated saline solution from the salinity gradient generator and feeding the more concentrated saline solution and the less concentrated saline solution into a power generator. Feeding the saline solutions into the power generator causes the power generator to receive the saline solutions and generate power by performing a controlled mixing of the more concentrated saline solution and the less concentrated saline solution. The method further includes drawing, from the power generator, a combined saline solution comprising the mixed saline solutions and feeding the combined saline solution to the salinity gradient generator.
Nº publicación: US20260015742A1 15/01/2026
Solicitante:
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
Resumen de: US20260015742A1
The invention relates to an electrolysis system including an electrolysis plant and a power supply source with a direct voltage output and including a central supply line, wherein the central supply line is connected to the direct voltage output of the power supply source such that a direct current can be fed to the central supply line, where a central DC high-performance strand designed for the direct voltage is provided, to which high-performance strand the electrolysis plant is connected via the central supply line, wherein at least the power supply source and the DC high-performance strand are designed as a network insulated from ground. The invention also relates to the use of an insulated DC network in an electrolysis system.