Resumen de: US2025354490A1
Techniques and systems extract water from lunar regolith using microwave radiation and may also produce fuel from the extracted water. The system can distill the extracted water to remove impurities before electrolyzing the purified water into oxygen and hydrogen gases, which may then be cooled to form liquid oxygen and liquid hydrogen. A portion of the system may reside on a lunar landing module. Another portion of the system may be affixed to a robotic arm that is extendable from the lunar landing module. This portion of the system includes a water extraction unit, comprising a cone used as a cold trap. The cone may include cooling channels to keep the temperature of the smooth inner surface of the cone cold enough to trap particles of frost that attach to the inner surface. The frost is then scraped from the inner surface and collected.
Resumen de: US2025353739A1
The present invention is directed to piezo photocatalytic process for the production of hydrogen from water, wherein the process comprises the steps of: (a) providing non-metal-doped barium titanate which includes at least one defect; (b) contacting the non-metal-doped barium titanate provided in step (a) with water to form a mixture; and (c) subjecting the mixture formed in step (b) to: (i) actinic radiation; and (ii) mechanical force, to produce hydrogen from the water, as well as non-metal-doped barium titanate and methods of production thereof.
Resumen de: US2025353737A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating target hydrogen flows.
Resumen de: US2025352946A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: US2025353758A1
The present description relates to metal alloy electrocatalysts, preferably composed of Ni and Co as transition metals and Se as a chalcogen. The electrocatalysts can take the form of nanochalcogenides that can be made using cryogenic milling followed by surfactant-assistant milling. The electrocatalysts can be used in the context of water electrolysis or electroreduction of CO2 gas into carbon based products.
Resumen de: US2025352926A1
A water sealed tank include a tank body and a heat conducting pipe. The tank body includes a gas-liquid inlet, a water outlet, and a gas outlet. The gas outlet is close to or located on a top portion of the tank body and communicates with the tank body. The water outlet is close to or located on a bottom portion of the tank body. The gas-liquid inlet communicates with the tank body and is used for feeding a gas-water mixture into the tank body, and a gas separated from the gas-water mixture inside the tank body is discharged from the gas outlet. At least a part of the heat conducting pipe is located inside the tank body, and used for a liquid to flow through, to allow the heat conducting pipe to exchange heat with water inside the tank body and heat the water inside the tank body.
Resumen de: WO2025238301A1
The present invention is providing a nanoparticle, preferably a nano-urchin particle, comprising plasmonic material and a catalytic metal, wherein said plasmonic material comprises tungsten oxide W18O49 and the catalytic metal is selected from a group consisting of: platinum (Pt), iridium (Ir), nickel (Ni), iron (Fe), molybdenum (Mo), ruthenium (Ru), and cobalt (Co), wherein the nanoparticle comprises 0.2 wt. % - 3.0 wt. % of said catalytic metal; and wherein said nanoparticle is capable of catalysing a hydrogen evolution reaction or an oxygen evolution reaction. The present invention is also providing a solvothermal method for producing a nanoparticle product comprising the steps of: a) dissolving a reagent comprising plasmonic material into a first solvent to obtain a first solution; b) adding to said first solution i) a reagent comprising a catalytic metal and ii) α-naphthol to obtain a second solution; c) subjecting said second solution to heat treatment at temperature of at least 150 °C, preferably at 180 °C; and d) collecting the nanoparticle product from the heat treated second solution, preferably by centrifugation.
Resumen de: WO2025239823A1
A hydrogen providing system (1) for providing hydrogen to an ironworks plant (4) in a heavy industry site (3). The hydrogen providing system (1) comprises an electrical power control unit (5) connected to a main electrical line (2) providing alternating current, AC, power, an electrolyser (6) configured to produce hydrogen gas, at least one hydrogen storage tank (7) configured to store hydrogen gas, and a fuel mixer (8) in fluid communication with and configured to direct the flow of hydrogen between the electrolyser (6), the hydrogen storage tank (7), and the ironworks plant (4). The hydrogen providing system (1) also comprises an electrical mixer (9) connected to and configured to control the flow of current between an AC current power line (10) connected to the electric power control unit (5), which is configured to control the AC power to the AC current power line (10),a first direct current, DC, power line (11) connected to the electrolyser, and a second DC power line (12) connected to a solar power plant (13).
Resumen de: WO2025237669A1
Disclosed is a method for preparing an electrochemically activated electrode for electrochemical reduction reactions, the electrode comprising at least one catalytic material based on at least one fluorinated group VIB metal, the method consisting in carrying out an oxidative electrochemical treatment on an electrode comprising at least one catalytic material based on at least one fluorinated group VIB metal.
Resumen de: WO2025238387A1
The subject of the invention relates to an electric energy conversion unit, especially for the use of electricity with time-varying power for the production of hydrogen gas, which has a current conducting piece (2) provided with an input gate (3) that may be connected to the electrical energy supply unit (4), at least one hydrogen gas production subunit (20) connected to the current conducting piece (2), and at least one hydrogen gas storage tank (30) connected to the hydrogen gas production subunit (20), where the hydrogen gas production subunit (20) has an electrolysing cell (21), and the gas output (21a) of the electrolysing cell (21) is connected to the input pipe (31)of the hydrogen gas storage tank (30), and the hydrogen gas storage tank (30) is provided with an unloading pipe (32). It is characteristic of the invention that an electric current regulation subunit (10) is fitted between the input gate (3) of the current conducting piece (2) and the hydrogen gas production subunit (20), where the electric current regulation subunit (10) has at least one transformer (11), a rectifier device (12) and a current intensity regulation device (13), and the current intensity regulation device (13) is interposed between the input gate (3) of the current conducting piece (2) and the input (11a) of the transformer (11), or between the output (11) of the transformer (11) and the input (12a) of the rectifier device (12), or between two transformers (11) in the case of several transfor
Resumen de: WO2025239840A1
The invention provides a catalytic composition, the catalytic composition comprising copper oxide nanoparticles, carbon black, and a binder. The invention also provides a catalyst, an electrode and an electrolyser comprising the catalytic composition. In addition, the invention provides a method of preparing a catalytic composition, the method comprising (a) providing a binder in a solvent to provide a binder mixture; (b) incorporating carbon black into the binder mixture; (c) incorporating copper oxide nanoparticles into the binder mixture; and (d) stirring the mixture to form a composite material of the binder, carbon black, and copper oxide nanoparticles. The invention also provides a method of producing hydrogen comprising contacting an aqueous electrolyte with the catalytic composition, the catalyst, or the electrode, and applying a voltage sufficient to split water into hydrogen and oxygen.
Resumen de: WO2025240177A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating target hydrogen flows.
Resumen de: WO2025239623A1
The present invention relates to a photoelectrode and a photoelectrochemical water splitting system using same, and more specifically, to a photoelectrode in which a lower electrode, an electron transport layer including SnO2, a light absorption layer including FAPbI3, a hole transport layer, an upper electrode, and a Ni passivation thin film layer are sequentially stacked and can operate when immersed in water, and an efficient and stable large-area water splitting system capable of splitting water and producing hydrogen without an external voltage by using the photoelectrode.
Resumen de: WO2025238525A1
The invention provides an integrated system for preparing a dehydrogenated product from an alcohol, the integrated system comprising a heat integration system for heat transfer from at least one heat source to the at least one heat sink. The at least one heat sink includes a feed stream comprising an alcohol and/or an electrolyser system having an electrochemical cell configured for carrying out a partial dehydrogenation process to produce a product stream comprising hydrogen and a co-product stream comprising a dehydrogenated product from the alcohol of the feed stream and/or an infrastructure for handling and/or storing the co- product stream. The at least one heat source includes a hydrogen fuel cell for generating electricity from the product stream of the electrolyser system, wherein operation of the hydrogen fuel cell generates heat, and/or the electrolyser system, wherein the electrolyser system is configured to operate the electrochemical cell so as to generate heat.
Resumen de: WO2025238527A1
An electrochemical process and apparatus for generating electricity from an alcohol. Electricity is generated in a hydrogen fuel cell utilising hydrogen produced by partial dehydrogenation of the alcohol in an electrolyser.
Resumen de: WO2025238524A1
An electrochemical process and apparatus for producing hydrogen and a dehydrogenated product from partial oxidation of an alcohol. The hydrogen may be utilised in a hydrogen fuel cell to generated electricity, e.g., to power a vehicle.
Resumen de: US2025354279A1
The present invention relates to a method of preparing a composite material, in particular one useful as a catalyst in an electrolytic hydrogen evolution reaction and/or the oxygen evolution reaction and/or urea oxidation-assisted water electrolysis. Provided is a method of preparing a composite material, the method comprising the steps of:(i) electrochemically depositing material onto a substrate from a deposition solution comprising a nickel (II) salt and graphene oxide, to obtain a nickel-reduced graphene oxide composite material comprising nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate;(ii) after step (i), placing the substrate, having the nickel-reduced graphene oxide composite deposited thereon, in an alkaline solution along with a counter electrode; and(iii) after step (ii), partially electrochemically oxidising the nickel, to obtain a partially oxidised nickel-reduced graphene oxide composite material comprising partially oxidised nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate.The composite of the invention demonstrates high catalytic activity for electrolytic hydrogen production under alkaline water electrolysis conditions (for example, a hydrogen evolution current of up to 500 mA cm−2 at −1.35 V against a Reversible Hydrogen Electrode). High activity is demonstrated even when the substrate (on which the composite is deposited) does not contain any, or at m
Resumen de: US2025354275A1
Systems and methods are provided for integration of molten carbonate electrolysis cells in applications for hydrogen production and for operating turbines using oxycombustion. In some aspects, the unusual output flows from an MCEC (or more typically a plurality of MCECs) can be synergistically used in combination with reverse flow reactors and/or partial oxidation units to allow for hydrogen production while also performing carbon capture. In other embodiments, the anode output from an MCEC (or a plurality of MCECs) can be used as the oxygen-containing gas for a combustion turbine or a furnace.
Resumen de: US2025354283A1
A water electrolysis installation includes a dioxygen separator configured to separate a mixture of electrolyte and dioxygen and to obtain an electrolyte with dissolved dioxygen; a dihydrogen separator to separate a mixture of electrolyte and dihydrogen and to obtain an electrolyte with dissolved dihydrogen; a recombination zone configured to receive the electrolytes to produce, at a mixing region, a mixed electrolyte stream. The installation includes a dihydrogen and/or dioxygen depleting system, including a catalyst configured to react dioxygen and dihydrogen dissolved in the mixed electrolyte stream, to produce a treated electrolyte stream with reduced dioxygen and dihydrogen. The depleting system is positioned in contact with the mixed electrolyte stream downstream of the mixing region and upstream of the inlet of the electrochemical stack device.
Resumen de: US2025354276A1
The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.
Resumen de: US2025354280A1
Polymer electrolysis membrane (PEM) or alkali electrolyzers are provided. The PEM or alkali electrolyzers have a compact structure that produces high-purity hydrogen and a device and method for increasing the hydrogen production efficiency of these devices. An electrolyzer control circuit includes: an electrolysis cell, a mosfet, a square wave oscillator integration, a potentiometer, a mosfet driver integration, a first resistance, a second resistance, a first adjustable direct current power supply, a second adjustable direct current power supply, and an oscilloscope.
Resumen de: EP4650491A1
Provided is an electrolysis cell system with energy efficiency improved. An electrolysis cell system (10) includes: an electrolysis cell (11) that has an anode and a cathode and generates hydrogen on the cathode and oxygen on the anode by electrolyzing steam supplied to the cathode; a supply line (20) that supplies air that controls the temperature of the electrolysis cell (11), to the electrolysis cell (11); an exhaust line (30) through which the air exhausted from the electrolysis cell (11) flows; a circulation line (40) that guides the air exhausted to the exhaust line (30), to the supply line (20); and a supply air temperature control heat exchanger (28) that controls the temperature of the air to be supplied to the electrolysis cell (11).
Resumen de: EP4650492A1
Provided is an electrolysis system (100) including an electrolysis module (10); a water vapor supply system (40) that supplies water vapor to a hydrogen electrode; a hydrogen recovery system (50) that recovers hydrogen-enriched water vapor; an air supply system (20) that supplies air to an oxygen electrode; an oxygen recovery system (30) that recovers exhaust air; a hydrogen-enriched water vapor release system (60) that releases hydrogen-enriched water vapor from the hydrogen recovery system (50) into the atmosphere; an exhaust air release system (70) that releases exhaust air from the oxygen recovery system (30) into the atmosphere; a hydrogen-enriched water vapor discharge valve (63) disposed in the hydrogen-enriched water vapor discharge system (60); and an exhaust air discharge valve (73) disposed in the exhaust air discharge system (70), wherein the opening degrees of the hydrogen-enriched water vapor discharge valve (63) and the exhaust air discharge valve (73) are controlled to be adjustable when the electrolytic module (10) is stopped.
Resumen de: EP4650904A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating target hydrogen flows.
Nº publicación: EP4650493A1 19/11/2025
Solicitante:
HYDROLYZER DOO [RS]
Hydrolyzer DOO
Resumen de: EP4650493A1
The present invention relates to a method of preparing a composite material, in particular one useful as a catalyst in an electrolytic hydrogen evolution reaction and/or the oxygen evolution reaction and/or urea oxidation-assisted water electrolysis. Provided is a method of preparing a composite material, the method comprising the steps of:(i) electrochemically depositing material onto a substrate from a deposition solution comprising a nickel (II) salt and graphene oxide, to obtain a nickel-reduced graphene oxide composite material comprising nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate;(ii) after step (i), placing the substrate, having the nickel-reduced graphene oxide composite deposited thereon, in an alkaline solution along with a counter electrode; and(iii) after step (ii), partially electrochemically oxidising the nickel, to obtain a partially oxidised nickel-reduced graphene oxide composite material comprising partially oxidised nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate.The composite of the invention demonstrates high catalytic activity for electrolytic hydrogen production under alkaline water electrolysis conditions (for example, a hydrogen evolution current of up to 500 mA cm<sup>-2</sup> at -1.35 V against a Reversible Hydrogen Electrode). High activity is demonstrated even when the substrate (on which the composite is deposited) does not c