Resumen de: MX2025009259A
A hydrogen generation system includes: a direct current (DC) power supply providing a driver signal, a reactive circuit coupled to the power supply and configured to generate a pulse drive signal from the driver signal, at least one reaction chamber coupled to the reactive circuit and receiving the pulse drive signal wherein the chamber is configured to generate hydrogen from feedstock material utilizing the pulse drive signal, a gas analyzer coupled to the at least one reaction chamber and configured to detect the generated hydrogen, and a control unit coupled to the reactive circuit and to the gas analyzer and configured to control the reactive circuit based on the detected hydrogen. The reaction chamber includes a plurality of positively charged elements and a plurality of negatively charged elements. The elements are composed of non-dis similar metallic material.
Resumen de: CN120659910A
The application relates to a flow field for use in an electrolytic cell comprising one or more porous sheets having a corrugated structure. The electrolytic cell comprises a membrane, an anode, a cathode, an anode reinforcement layer, a cathode reinforcement layer, an anode flow field, a cathode flow field, and a bipolar plate assembly comprising an embedded hydrogen seal. The anode flow field includes one or more porous sheets having at least one straight edge, and wherein at least one of the porous sheets has the form of a corrugated pattern having a plurality of peaks and valleys whose axes are substantially aligned with one straight edge of the sheet. The anode flow field geometry simultaneously provides elasticity for efficient mechanical compression of the cell and well distributed mechanical support for anode reinforcement layers adjacent the anode flow field.
Resumen de: GB2641804A
An ion-conducting membrane comprises (a) an ion-conducting polymer; and (b) a hydrogen radical scavenger. Also, a method of preventing degradation of an ion-conducting membrane by hydrogen radicals comprises using a material having a rate constant for the reaction with a hydrogen radical (H·) of at least 1 x 107 M-1s-1. The ion-conducting membrane 4 is preferably a proton-exchange membrane and may further comprise a reinforcing layer 5 formed from a porous polymer impregnated with the ion-conducting polymer. Anode 3 and cathode 2 catalyst layers are provided on opposite sides of the membrane to form a catalyst coated membrane for a fuel cell or water electrolyser.
Resumen de: CN120693423A
An electrolyzer system (10) and a method of operating an electrolyzer system (10) comprising an electrolyzer (16) and a metal hydride or adsorption-desorption compressor (24) wherein the electrolyzer (16) has at least one electrolytic cell having a vapor input (22) and at least one gas output. The method comprises supplying steam through a first side of the electrolytic cell at the steam input (22), operating the electrolyzer (16) to decompose a portion of the steam into hydrogen and oxygen in the at least one electrolytic cell, a mixture of the hydrogen and residual steam from a first side of the electrolytic cell is discharged at the at least one gas outlet (18), and the mixture is introduced into the metal hydride or adsorption-desorption compressor (24), and adsorbing the hydrogen in the mixture at a low temperature in the metal hydride or adsorption-desorption compressor (24) to compress the hydrogen, and desorbing the compressed hydrogen from the metal hydride or adsorption-desorption compressor (24). The electrolyzer system (10) is connected to a cold exhaust gas source to operate the cryogenic adsorption.
Resumen de: WO2024165389A1
The present invention relates to a pyrogenic process for manufacturing metal oxides or metalloid oxides wherein a metal precursor and/or a metalloid precursor is introduced into a flame formed by burning a gas mixture comprising oxygen and hydrogen, wherein at least a part of the hydrogen has been obtained from electrolysis of water or an aqueous solution, using electrical energy, at least a part of which has been obtained from a renewable energy source, and wherein at least a part of the thermal energy of the flame is transferred to a first heat transmission medium by means of at least one exchanger, thereby heating the first heat transmission medium to a maximal temperature in the range between 80 and 150 °C.
Resumen de: US2020190680A1
A composite metal porous body according to an aspect of the present invention has a framework of a three-dimensional network structure. The framework includes a porous base material and a metal film coated on the surface of the porous base material. The metal film contains titanium metal or titanium alloy as the main component.
Resumen de: TW202507083A
Gas composition reaching a flammability limit can be prevented by a method of stopping a gas production apparatus in a method of electrolyzing an alkaline electrolyte solution under pressurized conditions, the electrolyzing method including: circulating electrolyte solutions having flown out of anode and cathode chambers, respectively, to the anode and cathode chambers back again, the stopping method comprising: stopping operation of the gas production apparatus according to the procedure including predetermined steps.
Resumen de: US2025376399A1
The present invention regards an improved water treatment system and a water treatment process for producing an oxygen depleted, dried process steam suitable for use in high-temperature solid oxide electrolysis. The system and the process has been simplified compared to prior art systems and processes.
Resumen de: US2025376778A1
A control system for a hydrogen production facility is a control system for controlling operation of a hydrogen production facility including at least one water electrolyzer. The control system includes: a required hydrogen flow rate acquisition part configured to acquire a required hydrogen flow rate that is a hydrogen generation amount required for the water electrolyzer; a conversion part configured to convert the required hydrogen flow rate into a current required to generate hydrogen at the required hydrogen flow rate at the water electrolyzer and acquire a provisional required current; and a first correction part configured to acquire a current set value to be provided to the water electrolyzer by correcting the provisional required current using a first correction factor based on a difference between the required hydrogen flow rate and an actual hydrogen flow rate that is a hydrogen generation amount generated actually at the water electrolyzer.
Resumen de: US2025376772A1
A proton-conducting solid oxide electrolyzer includes a first electrode configured to produce oxygen gas from steam, a second electrode configured to produce hydrogen gas from the steam, and a proton-conducting solid oxide electrolyte between the first electrode and the second electrode. The first electrode includes barium zirconate of formula BaZrO3−δ doped with at least one transition metal and substantially free of a rare earth element, wherein δ is an oxygen deficit, and wherein the at least one transition metal comprises cobalt. Also disclosed are an electrode for the proton-conducting solid oxide electrolyzer, and a method of producing hydrogen gas.
Resumen de: US2025376627A1
Systems and methods for de-watering of hydrocarbon production wells which uses electrolysis of a water fraction in downhole fluids and a reaction chamber at a distal end of a hydrocarbon production well to generate hydrogen and oxygen gases, to improve hydrocarbon inflow into the production well. The produced hydrogen and/or oxygen gases may be used in combination with hydrocarbons produced by the production well to fuel a gas turbine at surface to generate electrical power for the electrolysis, or such gases may be recombined at surface to provide purified water. A first gas collection means surrounds a region above or proximate an anode for collecting the oxygen gas, and a first production tubing extends therefrom to surface. Means are further provided for collecting and producing hydrogen gas at a cathode, either in combination with produced hydrocarbons from the production well, or separately therefrom.
Resumen de: US2025376771A1
Systems and methods for producing hydrogen (H2) from a desalination plant are described. The method can include desalinating saline water using energy produced by a gas turbine. Producing by splitting the desalinated water with an electrolyzer. The electrolyzer uses energy produced from the gas turbine to split the desalinated water. CO2 can be captured from the gas turbine exhaust. Produced H2 and captured CO2 can be supplied to a reactor. In the reactor, a first product stream that includes H2 and optionally methane (CH4) can be obtained.
Resumen de: US2025376776A1
Embodiments of the present disclosure relate to a core-shell structure, a preparing method of the same, and an electrode including the same, and the core-shell structure may include a core comprising a perovskite nanocrystal; and a shell surrounding the core, thereby exhibiting improved optical, electrical, and catalytic properties and ensuring stable operating stability, thereby exhibiting excellent photoelectrochemical activity, compared to commercial catalysts such as conventional transition metal oxides.
Resumen de: US2025376422A1
Sulfur-incorporated bismuth ferrite nanoparticles (SBFNPs) contain Bi2Fe4O9 nanoparticles doped with Fe(0) and Bi(0) and sulfur in an amount of 0.5 to 5 percent by weight. At least a portion of bismuth is bonded to at least a portion of the sulfur and at least a portion of iron is bonded to at least a portion of the sulfur. The bismuth ferrite nanoparticles have a longest dimension of 1 to 50 nm. A method of photocatalytic degradation of dyes and a method of hydrogen generation and storage using the nanoparticles.
Resumen de: WO2025251905A1
The present application relates to an anode electrode for a PEM electrolyzer, and a method for producing hydrogen. An anode electrode for a PEM electrolyzer uses an aqueous solution containing perchlorate, a substrate of the anode electrode comprising, in terms of mass percentage, 22%≤Ni<80%, 95%≤Ni+Fe, and unavoidable impurities, and the aqueous solution containing perchlorate at a concentration of 0.01 mol/L to 1 mol/L; the anode electrode is configured such that, during use of the PEM electrolyzer, at least one surface of the substrate is exposed to the aqueous solution, so that when an anodic polarization potential of 1.4-2.5 VSHE is applied to the anode electrode, a corrosion-resistant passive film can be formed on at least one surface, the passive film comprising nickel oxide and iron oxide, which together account for at least 90% of the passive film in terms of mass percentage. The present application also discloses a PEM electrolyzer, and a steel plate capable of being used to manufacture an anode electrode for a PEM electrolyzer, as well as a use thereof.
Resumen de: WO2025254597A1
The present disclosure relates to a membrane electrode assembly for hydrogen production and a method of producing hydrogen using the membrane electrode assembly
Resumen de: WO2025254008A1
The objective of the present invention is to provide: an electrode in which an increase in overvoltage hardly occurs even when repeatedly turning on and off a power source and starting and stopping the generation of hydrogen; a method for producing the electrode; an electrolysis cell including the electrode; an electrolysis tank for alkaline water electrolysis including the electrolysis cell; and a method for producing hydrogen by means of alkaline water electrolysis using the electrolysis tank for alkaline water electrolysis. To achieve the above objective, an electrode according to the present invention has a nickel-containing conductive substrate and a platinum-containing catalyst layer, and is characterized by including a PtNi alloy and having a Ni atom concentration on the electrode surface of 20% or less.
Resumen de: WO2025254339A1
A method for operating a high-temperature water electrolysis stack. The disclosed method for operating a high-temperature water electrolysis stack comprises the steps of: (S210) injecting a reducing gas into a hydrogen electrode of a high-temperature water electrolysis stack; (S220) initially increasing the temperature of the hydrogen electrode of the high-temperature water electrolysis stack; (S230) blocking the reducing gas injected into the hydrogen electrode of the high-temperature water electrolysis stack; (S240) primarily oxidizing the hydrogen electrode of the high-temperature water electrolysis stack; (S250) reinjecting the reducing gas into the hydrogen electrode of the high-temperature water electrolysis stack; (S260) blocking, again, the reducing gas injected into the hydrogen electrode of the high-temperature water electrolysis; (S270) secondarily oxidizing the hydrogen electrode of the high-temperature water electrolysis stack; and (S280) reinjecting the reducing gas into the hydrogen electrode of the high-temperature water electrolysis stack and performing normal operation.
Resumen de: WO2025249562A1
A water electrolysis device (5) is provided with gaskets (10). The gaskets (10) are configured to be used in a state where, with respect to one of the gaskets (10), another one of the gaskets (10) is reversed and overlayed. The gaskets (10) seal, in a cell (100), a space (S1) between a separator (101) and an electrolyte membrane (104) of a membrane assembly (103), and a space (S2) between a separator (102) and the electrolyte membrane (104). The gaskets (10) each have: a seal lateral surface (11) and a contact lateral surface (12) which form a pair; a first seal part (3) for sealing the space (S1) or the space (S2); and a second seal part (4) for sealing, on the outer peripheral side of the electrolyte membrane (104), a plurality of flow paths (2) between the separators (101, 102). The first seal part (3) is formed on the seal lateral surface (11) and the contact lateral surface (12), and the second seal part (4) is formed on the seal lateral surface (11) and the contact lateral surface (12).
Resumen de: WO2025252730A1
The present invention relates to a method for supplying a compressed combined gas stream comprising hydrogen and carbon dioxide for at least one downstream process, preferably for production of alcohols (e.g. methanol) or carbon fuels. More specifically, disclosed is a method wherein the hydrogen gas stream is dosed with a carbon dioxide gas stream and the combined gas stream is compressed in a multistage compression system.
Resumen de: WO2025254547A1
The subject of the invention is a hydrogen burner using water thermolysis, incorporating a hydrogen combustion chamber (1) containing heating nozzles (3) connected to a fuel transport duct (4), with at least one magneto (6) installed in its vicinity. This burner is characterised in that the chamber (1) contains water (2) in which a duct (6) with heat exchange medium is immersed, and the heating nozzles (3) are dir3ected towards the table of that water (2). The chamber (1) is made of heat-resistant steel and coated with a thermal insulation layer (5) on the outside. Water (2) in the chamber (1) contains transition metals acting as catalysts for water thermolysis, particularly such as cerium, nickel, molybdenum, or chromium.
Resumen de: DE102024205219A1
Die Erfindung betrifft einen Elektrolyseur für die Erzeugung von Wasserstoff mittels Elektrolyse, umfassend eine Vielzahl von Elektrolysezellen (1), die in Elektrolysestapel aufgeteilt sind, wobei jede Elektrolysezelle (1) eine ionenselektive Membran mit einem Rekombinationskatalysator (3) aufweist, auf der beidseitig Elektroden (4, 5) angeordnet sind, an welche im Betrieb eine äußere Spannung angelegt wird, wobei anodenseitig eine erste Wasser-Zuleitung (6) zum Zuführen von Wasser zu einem Anodenraum (8) vorgesehen ist und eine Sauerstoff-Produktleitung (10) zum Abführen des erzeugten Sauerstoffs (O2) aus dem Anodenraum (8) angeschlossen ist und kathodenseitig eine Wasserstoff-Produktleitung (11) zum Abführen des erzeugten Wasserstoffs (H2) aus einem Kathodenraum (9) vorgesehen ist, umfassend weiterhin ein Kontrollsystem (12) zum Steuern des Betriebs der Elektrolysestapel, wobei das Kontrollsystem (12) dafür eingerichtet ist, einen im Wesentlichen gleichbleibenden Druck (pK) im Kathodenraum (9) einzustellen und einen Druck (pA) im Anodenraum (8) als Funktion einer Wasserstoffkonzentration (CH2) im Sauerstoff zu regeln. Die Erfindung betrifft ferner ein Verfahren zum Betrieb eines Elektrolyseurs.
Resumen de: MX2025008939A
The present disclosure relates to methods of sequestering CO<sub>2 </sub>comprising a first cathodic chamber, performing a first alkaline process, a first anodic chamber, performing a first acidic process, and dechlorinating a solution by contacting the solution with a dechlorinating agent. Also provided herein are systems comprising a first cathodic chamber and a first anodic chamber.
Resumen de: WO2024162842A1
A method of generating hydrogen and oxygen from a liquid feed stream through an integrated system of forward osmosis and electrolysis, wherein the method comprising the steps of feeding water into an electrolyte solution by means of forward osmosis and applying a voltage across the electrolyte solution to generate hydrogen and oxygen, characterized in that the electrolyte solution comprising an electrolyte, an ionic liquid and a solvent, wherein the electrolyte is used in an amount ranging between 1 wt% to 10 wt% of the electrolyte solution, wherein the ionic liquid is used in an amount ranging between 1 wt% to 5 wt% of the electrolyte solution and wherein the solvent is used in an amount ranging between 75 wt% to 99 wt% of the electrolyte solution.
Nº publicación: JP2025179670A 10/12/2025
Solicitante:
東邦チタニウム株式会社
Resumen de: WO2025248902A1
A method for electrolyzing water according to the present invention is a method for splitting water with the use of a PEM water electrolysis device which is provided with a cell in which a cathode, an electrolyte membrane, a porous transport layer, and an anode are stacked, wherein: the porous transport layer has a titanium porous body; in the electrolyte membrane-side surface of the titanium porous body, the average value of the areas of pores that open to the surface is 5 μm2 to 45 μm2 inclusive; the standard deviation value of the areas of the pores is 90 μm2 or less; the number of the pores that are present within a rectangular region that has an area of 22,000 μm2 and an aspect ratio of 4:3 is 120 or more; and the pressure applied in the stacking direction of the cathode, the electrolyte membrane, the porous transport layer, and the anode at the time of assembling the cell is set to 6 MPa or more.