Resumen de: FR3149438A1
« Dispositif de production d’électricité » Dispositif de production d’électricité (1), dit dispositif (1), comprenant une cellule (2), ladite cellule comprend deux compartiments (31, 32), chaque compartiment comprend une surface d’adsorption (41, 42) d’un ion prédéterminé et lesdits deux compartiments sont séparés par une membrane poreuse (5) à au moins l’ion prédéterminé. Les deux compartiments sont destinés à recevoir, chacun, un liquide (L1, L2) dont une concentration en l’ion prédéterminé est différente. La cellule comprend deux bornes (61, 62) respectivement connectées aux surfaces d’adsorption des deux compartiments et est apte à générer une différence de potentiel Eocv entre ses deux bornes en présence des liquides respectifs dans les deux compartiments. Le dispositif (1) comprend, en outre, un générateur de tension (7), dit générateur (7), comprenant deux bornes (71, 72) dont une borne (71) est connectée à une borne (62) de la cellule, ledit générateur étant agencé pour délivrer une différence de potentiel E0 entre ses deux bornes ; l’autre borne (72) du générateur constitue une borne (82) du dispositif et l’autre borne (81) du dispositif est constituée par l’autre borne (61) de la cellule Figure pour l’abrégé : Figure 1
Resumen de: FR3149437A1
Un système de refroidissement pour aéronef comporte une première boucle (100) destinée à refroidir des piles à combustible (110) et sur laquelle est présent un échangeur de chaleur à air dynamique (120), et une seconde boucle (200) destinée à refroidir des équipements électroniques de puissance (210) et à fournir de la chaleur à un évaporateur (230) pour gazéifier du dihydrogène afin d’alimenter les piles à combustible (110). La première boucle (100) et la seconde boucle (200) sont interconnectées par une canalisation d’écoulement (301) démarrant en sortie de l’échangeur de chaleur à air dynamique (120) et par une canalisation de retour (302). Un contrôleur (300) régule la température de liquide de refroidissement dans la première boucle (100), ainsi que dans la seconde boucle (200) en contrôlant en ouverture la canalisation d’écoulement (200). La température des équipements électroniques de puissance (210) est régulée avec un impact limité sur la traînée de l’aéronef. Figure à publier avec l’abrégé : Fig. 1A
Resumen de: FR3149311A1
La présente invention concerne un aéronef comprenant un système de refroidissement intégré au fuselage, et au moins une hélice entraînée par un moteur électrique adaptée pour propulser l’aéronef, le système de refroidissement comprenant : au moins une gaine de refroidissement (ou gaine d’air), implantée au sein du fuselage de l’aéronef, pourvue d'une entrée et d'une sortie d’air, la gaine de refroidissement étant conçue pour permettre la circulation de l’air entre l’entrée d’air et la sortie d’air; au moins un échangeur de chaleur positionné au sein de la gaine de refroidissement, l’échangeur de chaleur étant conçu pour transférer de l’énergie thermique à l’air circulant dans la gaine de refroidissement; dans lequel, l'entrée d'air est positionnée dans une zone de surpression engendrée par l’air accéléré par la rotation de l’hélice, et la sortie d’air est stratégiquement positionnée sur une surface externe du fuselage balayée par le flux d’air accéléré par la rotation de l’hélice, causant une zone de moindre pression facilitant facilitant la circulation de l'air à travers la gaine de refroidissement, permettant ainsi une dissipation efficace de la chaleur à travers l'échangeur de chaleur. Figures pour l’abrégé : figure 1, figure 2.
Resumen de: FR3149431A1
Dans un véhicule électrique, le système (SGT) comprend un circuit caloporteur de pile à combustible (CFC) et un échangeur thermique (HX) entre circuits caloporteurs. Conformément à l’invention, le système comprend également un premier circuit caloporteur d’équipement (CME) et au moins un autre circuit caloporteur d’équipement (CHA), et des moyens pilotés de connexion/déconnexion (VA, VB, VC, VD, VE) de l’échangeur et des circuits caloporteurs, les moyens pilotés autorisant un mode de déconnexion complète de l’échangeur et de tous les circuits caloporteurs et plusieurs modes de connexion de l’échangeur au circuit caloporteur de pile à combustible et à un des circuits caloporteurs d’équipement pour des échanges thermiques entre eux. Figure 1
Resumen de: WO2024245513A1
In a fuel cell system with a HT-PEM fuel cell (2), hydrogen is separated from the anode exhaust gas and recycled into the anode (10A) of the fuel cell (10) in order to increase efficiency. Separation of H2 gas from the anode exhaust gas leaves an option for collecting the remaining CO2 after condensing the water, with the additional aspect of using the dried remaining CO2-free anode exhaust gas for recirculation into the reformer (7) and/or the reformer heater (6). The latter is motivated by the fact that the electrochemical H2 separator (12) is only used for separating less than 90% of the H2 available H2 in the anode exhaust gas, which prolongs the lifetime of the H2 separator (12).
Resumen de: WO2024249446A1
A method of manufacturing a polymer electrolyte membrane comprising solubilizing an ionomer in a first solvent to produce a solubilized ionomer; thermally-treating the solubilized ionomer to produce a thermally-treated solubilized ionomer;solubilizing a structuring agent in a second solvent to form a solubilized structuring agent; and contacting the thermally-treated solubilized ionomer with the solubilized structuring agent to form a composite solution; and casting the composite solution onto a substrate to form a cast membrane. An electrochemical device comprising a polymer membrane wherein the polymer membrane comprises a sulfonic acid containing-polymer and a structuring agent characterized by an extent of entanglement of from about 5% to about 25%.
Resumen de: WO2024249566A1
Described are enzyme fuel cells and batteries comprising an anode with a multicopper oxidase enzyme immobilized with a phenolic substrate.
Resumen de: WO2024249646A1
A multi-tier integrated power-to-ammonia system includes a converter for generating ammonia and heat through a reaction involving a compressed mixture of hydrogen and nitrogen gases. The system includes a steam generator that can generate steam using the heat from the reaction, and a reversible solid-oxide system in fluid communication with the steam generator that can separate the steam into oxygen gas and hydrogen gas.
Resumen de: WO2024249641A1
Described are copper dehydrogenase enzymes that are engineered from multicopper oxidases to have reduced oxidase activity. The oxygen-insensitive copper dehydrogenases catalyze the dehydrogenation of a phenolic substrate on an electrode to generate electrical current. Compositions, devices, kits, and methods are disclosed for assaying L-DOPA with a copper dehydrogenase. Anodes, enzyme fuel cells and batteries are disclosed with the copper dehydrogenase immobilized with a substrate.
Resumen de: WO2024247989A1
This electrochemical cell comprises a first electrode layer, a second electrode layer, and a solid electrolyte layer. The solid electrolyte layer is positioned between the first electrode layer and the second electrode layer. The solid electrolyte layer contains a first element. The first electrode layer includes a second element the valency of which is less likely to vary than the first element.
Resumen de: US2024405235A1
A computer-implemented method automates generation of a representative volume elements (RVE) unit fuel cell model. A finite element model (FEM) of a unit cell of a proton exchange membrane fuel cell (PEMFC) is received. Input identifying a unit region with a discretization of the FE unit cell is received. A mesh rule corresponding to the unit region is received. An RVE unit region corresponding to the FE unit region is generated based on the FE unit region and the mesh rule.
Resumen de: AU2023277884A1
Provided is a potential difference generation device which can directly generate electricity. The potential difference generation device 10 comprises: a nano structure 16A which has a pedestal 24 which is composed of a hydrogen storage metal or the like and a multilayer film 25A provided on the pedestal 24; a first electrode 17 which is provided on the nano structure 16A; and a second electrode 18 which is provided to face the multilayer film 25A, wherein the multilayer film 25A has a configuration comprising a first layer including a hydrogen storage metal and having a thickness less than 1000 nm, a second layer including a hydrogen storage metal of a different type than the first layer and having a thickness less than 1000 nm, and a heterogeneous material interface formed between the first layer and the second layer. A nano structure 16A is heated and thus hydrogen permeates or diffuses through the heterogeneous material interface due to quantum diffusion, charged particles are emitted from the multilayer film 25A, the charged particles are captured by the second electrode 18, and thus a potential difference is generated between the first electrode 17 and the second electrode 18.
Resumen de: AU2023274395A1
The invention relates to a power supply system comprising a modular combination of a hydrogen generation unit, a hydrogen usage unit, and a control or regulation unit for controlling or regulating the operation of the hydrogen generation unit and the hydrogen usage unit.
Resumen de: WO2024248238A1
A liquid hydrogen-based fuel cell powertrain system according to the present invention comprises: a motor for generating driving force of a liquid hydrogen-based fuel cell power engine; a fuel cell stack, which converts the chemical energy of hydrogen and oxygen into electrical energy so as to supply same to the motor; a hydrogen tank for storing hydrogen to be supplied to the fuel cell stack through a hydrogen supply path; and a cooling water circulation system which includes a plurality of cooling paths for circulating the cooling water of which the temperature has increased after cooling the fuel cell stack in order to re-cool same, wherein the cooling water circulation system switches and controls, in correspondence to the operation situation of the fuel cell stack, the cooling path through which the cooling water flows.
Resumen de: WO2024248102A1
Problem To provide: a nanofiber adduct in which it is possible to suppress any deterioration of an electrolyte membrane over a long period of time without lowering ion conductivity in a fuel cell; an electrolyte membrane; a composite electrolyte membrane; and a fuel cell provided with the electrolyte membrane or the composite electrolyte membrane. Solution A nanofiber adduct composed of a nucleus and an outer shell, said nucleus being composed of metal, or an oxide of the metal, having activity whereby hydrogen peroxide is decomposed and deleted by a nanofiber adduct or an ion conductivity imparting agent in which an isopoly acid or a heteropoly acid serving as an ion conductivity imparting agent is bonded to a nanofiber, and said outer shell being composed of an isopoly acid or a heteropoly acid that covers the nucleus. An electrolyte membrane containing the ion conductivity imparting agent. A composite electrolyte membrane containing the ion conductivity imparting agent, nanofibers, and an ion conductive polymer compound. A composite electrolyte membrane containing the nanofiber adduct and the ion conductive polymer compound. A fuel cell in which an electrolyte membrane is the electrolyte membrane or the composite electrolyte membrane.
Resumen de: WO2024247762A1
This connection structure of fuel cells (30) in a bicycle is applied to a bicycle provided with: a drive shaft (23) that drives a wheel by means of human power; a motor (27) that applies an assist drive force to the drive shaft (23); and the fuel cells (30) that supply electric power to the motor (27). The connection structure is a structure for connecting a fuel cell stack (31) to a vehicle body frame (10) of the bicycle, and has a connection mechanism (80). The connection mechanism (80) connects the fuel cell stack (31) to the vehicle body frame (10) in a relatively oscillating manner. The connection mechanism (80) restricts attitude displacement of the fuel cell stack (31) so that the attitude inclination (θ1) of the fuel cell stack (31) from an upright attitude is to be smaller than the attitude inclination (θ2) of the vehicle body frame (10) from the upright attitude.
Resumen de: WO2024248059A1
This electroconductive member comprises a metal plate, a first porous layer, and a second porous layer. The metal plate has a first surface and a second surface positioned on the opposite side of the first surface, and gas can flow between the first surface and the second surface. The first porous layer is positioned on the first surface. The second porous layer is positioned on the second surface. When the thermal expansion coefficient of the metal plate is α0, the thermal expansion coefficient of the first porous layer is α1, and the thermal expansion coefficient of the second porous layer is α2, α1<α0 and α2<α0, or α1>α0 and α2>α0 are satisfied.
Resumen de: WO2024246414A1
Disclosed is a method for producing hydrogen by using metal as a catalyst, the method comprising providing a reactor (10) comprising an inlet for aqueous solution of organic acid, outlet for hydrogen (20) and a receiving part (12) for receiving metal-containing material, providing metal- containing material (14) to the reactor, providing an aqueous solution of organic acid to the reactor, contacting the metal- containing material and the organic acid to obtain a reaction mixture in the reactor (16), providing controllable external energy to directly heat the metal-containing material to adjust the temperature of the reaction mixture in the reactor to 90ºC or more, allowing the reaction mixture to react at the increased temperature to produce hydrogen, and recovering the hydrogen Disclosed is also a device for producing hydrogen by using metal as a catalyst, and use of a batch (14) comprising metal-containing material in a porous or permeable form and/or enclosed in a casing for producing hydrogen with the method.
Resumen de: WO2024243683A1
Described herein are ionomeric random, statistical, linear, branched, and block copolymers, and reinforced membranes thereof. Such ionomeric copolymers comprise both sulfonated polyphenylene monomers and non-sulfonated polyphenylene monomers. Applications of such ionomeric polymer membranes are also described herein. Such ionomeric copolymers, and membranes prepared therefrom, have applications in fuel cells, water electrolyzers, water purification, and battery products.
Resumen de: US2024401208A1
The invention relates to a dynamic hydrogen economy (DHE) system with first and second electrolytic active circuit (EAC) electrodes providing an electrical current to produce hydrogen gas. The first/second EAC electrodes can be provided in an aqueous or non-aqueous electrolyte, they can be provided in a galvanic system, they can be configured like homopolar generators, they can form an array, they can be oriented substantially vertically or horizontally, they can be provided in a flexible enveloping material, they can include an enlarging element, they can be provided in a stacked configuration, they can have defined shapes, they can be coupled with a vehicle and/or a vessel. A hydrogen gas electrolysis production method using the first and second EAC electrodes is provided. A dynamic galvanic method comprising the first and second EAC electrodes is provided.
Resumen de: US2024400372A1
System unit (100) having a tank storage system (20) that can be filled with fuel, a consumer system (101) and a cooling circuit (10), which is connected to the consumer system (101), for cooling the consumer system (101). Furthermore, a latent heat store (30) is arranged in the system unit (100), which latent heat store (30) is in the form of a thermal coupling (33) between the consumer system (101) and the tank storage system (20) or between the tank storage system (20) and the cooling circuit (10).Moreover, the invention relates to a method for deicing a spigot of a petrol pump of a filling station device having such a system unit.
Resumen de: WO2024247005A1
The purpose of the present invention is to provide a fuel cell capable of securing an effective area of a fuel cell while suppressing parasitic resistance of the fuel cell. A fuel cell according to the present invention, wherein a conductive substrate is disposed so as to contact a porous support layer at a location where a through-hole is not formed, and a structure in which gas can flow in a direction orthogonal to the extending direction of the through-hole is formed at the boundary between the conductive substrate and the porous support layer at said location (see fig. 1).
Resumen de: US2024399720A1
The present invention relates to a multilayer structure for storing or transporting a gas comprising hydrogen, wherein the multilayer structure comprises at least three layers comprising an inner layer comprising at least one first polymer, a middle layer comprising ethylene-vinyl alcohol copolymer, and an outer layer comprising at least one second polymer, and wherein the water-vapour transmission rate of the inner layer is lower than that of the outer layer. The multilayer structure has excellent hydrogen gas barrier properties. Therefore, the multilayer structure is suitable for a hydrogen storage vessel and a hydrogen transportation pipe.
Resumen de: US2024399356A1
Disclosed is a synthetic method of ultrafine catalyst powder. The synthetic method of ultrafine catalyst powder includes the following steps: (1) uniformly mixing iron nitrate nonahydrate, cobalt nitrate hexahydrate, magnesium nitrate hexahydrate, aluminum nitrate nonahydrate, ammonium heptamolybdate, citric acid and water, and then heating and concentrating to obtain concentrated liquor; (2) uniformly mixing EDTA, an aqueous ammonia solution and urea to obtain an EDTA solution; then, uniformly mixing the concentrated liquor with the EDTA solution to obtain mixed liquor; and (3) carrying out spray pyrolysis on the mixed liquor at 450-500° C. for 5-10 min to obtain the ultrafine catalyst powder. According to the present disclosure, the organic salt solution can be rapidly evaporated and decomposed, and thus the ultrafine catalyst powder with uniformly distributed components is synthesized; and the particle size of the prepared ultrafine catalyst powder is controlled within a range of less than 5 μm.
Nº publicación: US2024399307A1 05/12/2024
Solicitante:
HYUNDAI MOTOR COMPANY [KR]
KIA CORP [KR]
HYUNDAI MOTOR COMPANY,
Kia Corporation
Resumen de: US2024399307A1
An apparatus for treating hydrogen gas includes an inner canning member configured to define a movement flow path through which the hydrogen gas flows, a catalyst provided in the internal canning member and configured to reduce a concentration of the hydrogen gas flowing along the internal canning member, and an external canning member surrounding a periphery of the internal canning member and configured to define an air guide flow path to guide air to an outlet end portion of the movement flow path along an external surface of the internal canning member, and a mixing flow path in which the hydrogen gas including passed through the catalyst is mixed with the air, obtaining an advantageous effect of effectively reducing a concentration of hydrogen gas.