Resumen de: CN223156045U
本实用新型提供了一种电堆封装装置,包括:堆芯、两个端板、弹性部件和钢带,两个端板分别位于堆芯的相对两侧,钢带将堆芯和两个端板捆扎,弹性部件位于钢带和两个端板中的第一个之间;主升降机构,主升降机构设置在弹性部件和钢带之间或者主升降机构设置在钢带和两个端板中的第二个之间,主升降机构沿竖直方向可移动地设置,以通过调节弹性部件和钢带之间的距离调整弹性部件的长度,以调节对堆芯的封装力。
Resumen de: CN223156043U
本实用新型公开了一种燃料电池热电联供系统,包括燃料电池系统控制器、燃料电池电堆模块和冷却系统,PTC加热器的输出端与电控三通阀的第四管路接口连接,电控三通阀的第五管路接口与燃料电池电堆模块的冷却液入口连接,电控三通阀的第六管路接口与换热器的输入端连接,换热器的输出端与燃料电池电堆模块的冷却液入口连接,通过控制电控三通阀可以实现液体全部或部分或完全不流经至换热器,通过对恒温三通阀、电控三通阀的开度进行控制,在保证燃料电池电堆模块的性能的前提下,优先保证供热系统需求,回收冷却系统热量,减少散热器的工作时间及功率,提升燃料电池系统效率。
Resumen de: CN223153325U
本申请提供了一种便于组装的储氧储水装置,属于燃料电池技术领域。该便于组装的储氧储水装置包括高压气瓶、端部水箱、底部水箱、滑块、滑轨、支撑托板、翅板、吊装环、绑扎带、连接轴和锁紧件,所述高压气瓶用于盛装高压气源,所述端部水箱卡设在所述高压气瓶的端部,该便于组装的储氧储水装置利用锁紧件实现将滑轨快速组装到翅板上,即摈除了利用螺栓连接,提高了对设备的组装效率,给使用者带来更好的使用体验,且通过设置滑移卡接的方式,实现底部水箱、端部水箱和高压气瓶的快速组装连接和精准定位,提高生产效率,同时对端部水箱和高压气瓶间的轴向、径向锁死定位,避免使用过程载荷作用下发生位移而产生应力。
Resumen de: CN223156046U
本实用新型公开了一种电池堆组装定位工装,包括基准底座,基准底座上设置有多个基准立柱,基准立柱具有第一定位面,多个第一定位面围成用于定位电池堆端板的第一定位空间;每个基准立柱的第一定位面上均安装有定位块,定位块具有第二定位面,多个第二定位面围成用于定位电池堆板框的第二定位空间,定位块包括固定定位块和滑动定位块,滑动定位块可滑动地安装在固定定位块的上侧,且滑动定位块与固定定位块在竖直方向至少部分地重合。通过基准立柱和定位块分别实现电池堆端板和电池堆板框的定位,并利用滑动定位块保证电池堆的堆叠高度且避免压制时干涉,具有定位精度高、结构简单、制造成本低的优点。
Resumen de: CN223153314U
本实用新型提供水下燃料电池系统用贮供水装置,由内至外依次包括高压氢气瓶、内置橡胶囊、外壳;高压氢气瓶的尾端套装有带帽圆套,高压氢气瓶的首端固定连接有进排气金属嘴;内置橡胶囊的尾端内侧与带帽圆套相锲接,内置橡胶囊的尾端外侧与外壳相抵接,带帽圆套与外壳紧固连接;内置橡胶囊的首端内侧与进排气金属嘴相锲接,内置橡胶囊的首端外侧与外壳相抵接,金属嘴锁紧件与进排气金属嘴紧固连接并与外壳相抵接;内置橡胶囊及高压氢气瓶之间形成可变储气腔,外壳与内置橡胶囊之间形成可变储水腔,外壳上开设有出水口,进排气金属嘴内的低压气体流道与可变储气腔相连通,进排气金属嘴内的高压气体流道与高压氢气瓶内腔相连通。
Resumen de: WO2024136389A1
The present invention relates to a cartridge for a fuel cell humidifier, and a fuel cell humidifier, the cartridge being provided in a fuel cell humidifier which uses a second gas to humidify a first gas which is to be supplied to a fuel cell stack, and the cartridge comprising: an inner case provided with respective openings in both ends thereof; and a hollow fiber membrane bundle received inside the inner case, wherein the hollow fiber membrane bundle comprises a plurality of hollow fiber membranes so as to satisfy at least one among a flow velocity condition for enabling a first gas to flow at a flow velocity of 1 m/s to 10 m/s, and a turbulence condition for enabling the first gas to flow at a Reynolds number of 50 to 400.
Resumen de: CN120376685A
本发明涉及燃料电池技术领域,具体公开一种氢气燃料电池双极板结构,包括隔板,隔板的两侧分别固定连接有第一冲压板和第二冲压板,第一冲压板和第二冲压板的两侧均设置有多个槽结构,槽结构与隔板和质子交换膜配合形成冷却液通道、氢气通道、氧气内部通道和氧气外部通道;第二冲压板上开设有多个连接口,氧气内部通道与氧气外部通道之间通过连接口连通。本发明提供的氢气燃料电池双极板结构,通过设置氧气内部通道和氧气外部通道,氧气内部通道与氧气外部通道通过连接口连通,在双极板整个装配中适当的减少了冷却液的流通区域,增加了氧气的流通面积,这样的设计有利于改善氧气供给不足、气体流通不均匀和水管理等问题。
Resumen de: CN120376691A
本发明公开了一种制氢加氢装置与固态储氢式燃料电池装置耦合系统,包括制氢加氢装置和固态储氢式燃料电池装置,所述制氢加氢装置包括太阳能光伏板、蓄电池、电解机构、加热器和第一固态储氢模块,所述太阳能光伏板与蓄电池相连,所述蓄电池分别与电解机构和加热器相连以进行供电,所述电解机构用于制氢并充入第一固态储氢模块中进行存储,所述加热器用于加热第一固态储氢模块以提高第一固态储氢模块的储氢压力,所述第一固态储氢模块用于向固态储氢式燃料电池装置加氢。本发明的系统具有结构简单、成本低和便捷性好的优点。
Resumen de: DE102024200626A1
Die vorgestellte Erfindung betrifft ein Brennstoffzellensystem (100) zum Wandeln von Energie,wobei das Brennstoffzellensystem (100) umfasst:- einen ersten Brennstoffzellenstapel (101),- einen zweiten Brennstoffzellenstapel (103), ein einzelnes Anodensubsystem (105), das dazu konfiguriert ist, den ersten Brennstoffzellenstapel (101) und den zweiten Brennstoffzellenstapel (103) gemeinsam mit Brennstoff zu versorgen.
Resumen de: JP2025109066A
【課題】白金又は白金合金ナノ粒子を担持することができるメソ孔が形成されている多孔質カーボンであって、カソードでの電池反応における白金又は白金合金ナノ粒子の利用効率が高く、且つ、カソードでの電池反応で発生する水蒸気を、電極から抜け易くするなど物質の高速輸送に適した構造を有する多孔質カーボンを提供すること。【解決手段】三次元網目構造を有し、該骨格部の平均径が20.0~45.0nmであり、細孔Aの合計容積VP2.9-8.3が0.060~0.100cm3/gであり、細孔Bの合計容積VP10.0-62.0が0.100~0.400cm3/gであり、SEM画像において該骨格部に形成されている孔径が3.0nm以上10.0nm以下である細孔の密度が30.0~120.0個/104nm2であること、を特徴とする多孔質カーボン。【選択図】図1
Resumen de: JP2025109052A
【課題】燃料電池の体積増大を抑制しつつ、セル面圧を均一化する。【解決手段】燃料電池は、長手方向及び短手方向を有する複数の燃料電池単位セルが積層して構成された燃料電池積層体であって、長手方向に沿う長手方向端面と、短手方向に沿う短手方向端面とを有する燃料電池積層体と、燃料電池積層体を積層方向から挟持するように配置された一対のエンドプレートと、燃料電池積層体の外側でエンドプレートを互いに近接する方向に締め付けて燃料電池積層体及びエンドプレートを保持する複数のタイロッドと、燃料電池積層体の長手方向端面に取り付けられ、燃料電池積層体にガスを供給する外部マニホールドと、を備える。外部マニホールドは、短手方向においてタイロッドと燃料電池積層体の長手方向端面との間に配置される。【選択図】図1
Resumen de: JP2022131905A
To provide a cell, a cell stack device, a module, and a module housing device that can improve battery performance.SOLUTION: A cell includes an element part. The element part has a first electrode and a second electrode. The element part has a concave outer surface on a surface of the second electrode located on the opposite side of the first electrode.SELECTED DRAWING: Figure 1C
Resumen de: WO2025155945A1
A composite electrode plate and its manufacturing method and a solid state battery are provided. The composite electrode plate includes an electrode plate body. At least part of side edges of the electrode plate body is provided with an edge sealing portion, and the edge sealing portion is made of an insulation material. The electrode plate body includes a current collector and a functional layer stacked with the current collector, and the edge sealing portion at least covers part of side edges of the current collector and part of side edges of the functional layer. By providing the edge sealing portion, the composite electrode plate can reduce the risk of short circuit during the hot-pressing process, the risk of coming into contact with water and oxygen during the manufacturing process, and the risk of occurring cracks or even fractures during use.
Resumen de: WO2025155039A1
Disclosed in the present invention are a steam generation device and a fuel cell system including same. The steam generation device comprises: a steam generation unit that receives reformed water to generate steam; and a buffer unit that alleviates a pressure change of the steam discharged from the steam generation unit.
Resumen de: WO2025155302A1
Described are Redox Flow Lithium Extraction (RFLE) technologies for fast, high- purity lithium obtention in the forms of LiCl, LiOH, Li2CO3, and lithium metal from geothermal seawater or brine or other lithium sources. The REEL cells described herein are multi-component systems utilizing Li+ ion conducting solid-state electrolyte (LiCSSE) membranes and anion exchange membranes (AEMs) within arrangements of flow cells continually supplied with redox shuttle molecules (RSM) to maintain charge balance within the system. The described systems and methods therefore achieve a continuously flowing system for obtaining high-purity lithium from diverse lithium sources. Relatively high lithium extraction rates are obtained through these described systems and methods with relatively low cost and high longevity compared with existing and legacy technologies. The systems and methods described herein provide an environmentally low impact solution for lithium extraction.
Resumen de: WO2025154350A1
A frame body according to the present disclosure is used in a cell frame of a battery cell. The frame body according to the present disclosure comprises a first surface, a second surface that is on the opposite side from the first surface, an outer peripheral surface, and an inner peripheral surface. The outer peripheral surface is provided with a first outer peripheral surface that is connected to the first surface by a first corner portion, a second outer peripheral surface that is connected to the second surface by a second corner portion, and a connection surface that connects the first outer peripheral surface and the second outer peripheral surface. The connection surface has a first connection surface that is connected to the first outer peripheral surface. The interior angle formed by the first connection surface and the first outer peripheral surface is less than 180°.
Resumen de: WO2025154582A1
Hydrogen supplied through a hydrogen supply port is injected together with water supplied through a water supply port into this solid oxide fuel cell stack. The solid oxide fuel cell stack generates power using hydrogen as a raw fuel.
Resumen de: WO2025154310A1
As shown in fig. 1, an electroconductive sheet 10 according to the present invention has a first electroconductive layer 12 and a second electroconductive layer 14. The first electroconductive layer 12 contains a first thermoplastic resin 122 and first electroconductive particles 124. At least some of the first electroconductive particles 124 penetrate the thickness of the first electroconductive layer 12. The second electroconductive layer 14 contains a second thermoplastic resin and electroconductive fibers. The electroconductive fibers are arranged so as to extend in the direction of the surface of the second electroconductive layer 14.
Resumen de: WO2025154459A1
Provided is a fuel cell system comprising: a fuel cell; a first injection device for intermittently injecting a reaction gas to be supplied to the fuel cell; and a second injection device for continuously injecting the reaction gas. The fuel cell system includes a control unit for controlling the first injection device and the second injection device. When an output region of the fuel cell is defined as a low output region, a medium output region, and a high output region in order from a lower side to a higher side, the control unit causes the first injection device to perform injection in the low output region, causes at least one of the first injection device and the second injection device to perform injection in the medium output region, and causes the first injection device and the second injection device to perform injection simultaneously in the high output region.
Resumen de: WO2025153938A1
The present invention provide a method for applying separator coating on three- dimensional electrode, comprising steps of: a) connecting a vacuum pump (3) to a vacuum base plate (1); b) placing a three-dimensional electrode (4) to be coated on an electrode die (2) of said vacuum base plate (1); c) establishing a seal area between said vacuum base plate (1) and a closed vacuum chamber; d) securing a spraying apparatus (6) on said closed vacuum chamber; e) connecting an air compressor (5) to said spraying apparatus (6); f) energizing said vacuum pump (3) to evacuate the air from said closed vacuum chamber; g) energizing said air compressor (5) to apply ceramic separator coating on said three- dimensional electrode (4) by a spray nozzle (7) of said spraying apparatus (6); h) de- energizing said air compressor (5) after spraying operation is complete; and i) de- energizing said vacuum pump (3) to release said three-dimensional electrode (4) from said electrode die (2) after coating of ceramic separator is complete on said three-dimensional electrode (4).
Resumen de: WO2025152385A1
The present application relates to a heat engine control method during starting of a fuel cell system, and a fuel cell system, applied to the technical field of fuel cells. The method comprises: starting a fuel cell system, opening a small-circulation cooling loop, and loading an output power to a first power; running at the first power, and monitoring an inlet temperature of a cell stack; if the inlet temperature reaches a first temperature, rotating a three-way valve at a first rotating speed; monitoring a cell voltage value of the cell stack, and calculating a voltage variance; if the voltage variance is less than or equal to a first threshold, returning to the step of rotating the three-way valve at the first rotating speed until a large-circulation cooling loop is completely opened and the small-circulation cooling loop is completely closed; loading the output power of the fuel cell system to a rated power; if the voltage variance is greater than the first threshold and less than or equal to a third threshold, decreasing the voltage variance to be within the first threshold, and returning to the step of rotating the three-way valve at the first rotating speed; and if the voltage variance is greater than the third threshold, stopping starting. The fluctuation of the internal temperature of the cell stack can be reduced.
Resumen de: WO2025151929A1
A process for loading an electrolyte membrane of a hydrogen fuel cell with hydrogen protons is disclosed. The process comprises contacting the electrolyte membrane with hydrogen at a pressure of up to 15,000 psig at a temperature of up to 500 degrees Celsius whilst removing electrons from the hydrogen.
Resumen de: US2025236961A1
A device (1) for performing electrolysis of water is disclosed. The device comprising: a semiconductor structure (10) comprising a surface (11) and an electron guiding layer (12) below said surface (11), the electron guiding layer (12) of the semiconductor structure (10) being configured to guide electron movement in a plane parallel to the surface (11), the electron guiding layer (12) of the semiconductor structure (10) comprising an InGaN quantum well (14) or a heterojunction (18), the heterojunction (18) being a junction between AlN material and GaN material or between AlGaN material and GaN material; at least one metal cathode (20) arranged on the surface (11) of the semiconductor structure (10); and at least one photoanode (30) arranged on the surface (11) of the semiconductor structure (10), wherein the at least one photoanode (30) comprises a plurality of quantum dots (32) of InxGa(1-x)N material, wherein 0.4≤x≤1. Also a system comprising such device is disclosed.
Resumen de: US2025236964A1
Electrochemical cells having recombination layers are disclosed herein. One example of such a cell includes a membrane configured to be positioned between an anode flow field and a cathode flow field of the electrochemical cell. The cell further includes a recombination layer configured to be positioned between the anode flow field and at least a portion of the membrane. The recombination layer includes a catalyst configured to assist in a formation of water from hydrogen gas and oxygen gas produced within the electrochemical cell, therein mitigating any hydrogen gas crossover from a cathode side to an anode side of the electrochemical cell.
Nº publicación: US2025236705A1 24/07/2025
Solicitante:
THE REGENTS OF THE UNIV OF CALIFORNIA [US]
The Regents of the University of California
Resumen de: US2025236705A1
The present disclosure is directed to microporous ladder polymers containing amine-functionalized monomer segments, amidoxime-functionalized monomer segments, or a combination thereof. Monomer compounds for preparation of the polymers are also described, as well as membranes and electrochemical cells containing the polymers.