Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 487 resultados
LastUpdate Última actualización 02/01/2026 [06:56:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 375 a 400 de 487 nextPage  

GENERATING HYDROGEN FROM REFINERY WASTE AND CONSUMER WASTE PLASTIC FOR SUPPLY TO HYDROPROCESSING

NºPublicación:  US2025346818A1 13/11/2025
Solicitante: 
SAUDI ARABIAN OIL COMPANY [SA]
Saudi Arabian Oil Company

Resumen de: US2025346818A1

Electrical power derived from a renewable energy source is used to perform electrolysis of water to produce oxygen and hydrogen. A feed stream includes consumer waste plastics, a waste stream from a hydrocarbon refinery, or both. The feed stream is partially oxidized to produce syngas. At least a portion of the carbon monoxide of the syngas is reacted with water to produce additional carbon dioxide and hydrogen. A hydrocarbon feed stream is hydroprocessed using at least a portion of the hydrogen generated by electrolysis and at least a portion of the hydrogen from the syngas to produce a hydroprocessing product stream including a saturated hydrocarbon. At least a portion of the carbon dioxide of the syngas is hydrogenated using at least a portion of the hydrogen generated by electrolysis to produce a product stream including a hydrocarbon, an oxygenate, or both.

Catalysts and processes for the direct production of liquid fuels from carbon dioxide and hydrogen

NºPublicación:  US2025346542A1 13/11/2025
Solicitante: 
INFINIUM TECH LLC [US]
Infinium Technology, LLC
AU_2025202662_A1

Resumen de: US2025346542A1

Embodiments of the present invention relates to two improved catalysts and associated processes that directly converts carbon dioxide and hydrogen to liquid fuels. The catalytic converter is comprised of two catalysts in series that are operated at the same pressures to directly produce synthetic liquid fuels or synthetic natural gas. The carbon conversion efficiency for CO2 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as “drop-in” fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly, applicable to the conversion of CO2 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement.

PRODUCTION APPARATUS AND METHOD FOR HIGH PURITY HYDROGEN

NºPublicación:  US2025346486A1 13/11/2025
Solicitante: 
KOREA INST ENERGY RES [KR]
KOREA INSTITUTE OF ENERGY RESEARCH

Resumen de: US2025346486A1

An embodiment of the present disclosure provides a production apparatus for high purity hydrogen, the production apparatus including: a decomposition reaction unit configured to decompose ammonia through ammonia decomposition reaction and discharge reaction products including hydrogen and nitrogen produced from the ammonia decomposition reaction and non-reacting ammonia; an adsorption refinement unit configured to discharge intermediate refined products by separating or removing ammonia from the reaction products; and a hydrogen separation membrane configured to discharge a high-purity hydrogen product by refining high-purity hydrogen by separating and filtering the intermediate refined products.

PHOTOCATALYTIC SPLITTING OF WATER

NºPublicación:  US2025346485A1 13/11/2025
Solicitante: 
OXFORD UNIV INNOVATION LIMITED [GB]
Oxford University Innovation Limited
MX_2024000922_A

Resumen de: US2025346485A1

Photocatalytic water-splitting processes are described using an aqueous solution of at least one neutral salt, where the process is conducted at a temperature of 200-400° C. When compared with conventional photocatalytic water-splitting processes, the processes of the invention give rise to notably increased activity and quantum efficiency.

HYDROPROCESSING FOR PRODUCING CLEAN FUELS AND CHEMICALS WITH REDUCED CARBON FOOTPRINT

NºPublicación:  US2025346544A1 13/11/2025
Solicitante: 
SAUDI ARABIAN OIL COMPANY [SA]
Saudi Arabian Oil Company

Resumen de: US2025346544A1

Electrical power derived from a renewable energy source is used to perform water electrolysis to produce oxygen and hydrogen. A flue gas and heat are produced from combustion of a fuel using at least a portion of the oxygen generated by electrolysis. A feed stream including hydrocarbon oil is hydroprocessed using the generated heat and at least a portion of the hydrogen generated by electrolysis to produce a product including a saturated hydrocarbon. At least a portion of the flue gas is hydrogenated using at least a portion of the hydrogen generated by electrolysis to produce a second product stream including a hydrocarbon, an oxygenate, or both.

AEM ELECTROLYZER WITH STRUCTURAL GASKETS

NºPublicación:  WO2025233816A1 13/11/2025
Solicitante: 
NE M E SYS SRL [IT]
NE.M.E.SYS. SRL
WO_2025233816_PA

Resumen de: WO2025233816A1

An AEM electrolyzer comprises structural end elements (20, 30) and an electrolytic structure (22) comprising a plurality of electrolytic cells (40) to which respective gasket assemblies (50) completely made of elastomeric material are associated and in which portions of anode side inlet channels (23) and outlet channels (24) and of cathode side inlet channels (25) and outlet channels (26) are obtained, while a pressurisable chamber is obtained between at least one of the end elements (20, 30) and the electrolytic structure (22) to compensate for the gas pressure in the electrolytic structure itself. An AEM electrolyzer is obtained with reduced production costs and high electrical efficiency.

CATALYST FOR AMMONIA DECOMPOSITION REACTION, METHOD FOR PREPARING SAME, AND METHOD FOR PRODUCING HYDROGEN BY USING SAME

NºPublicación:  US2025345783A1 13/11/2025
Solicitante: 
KOREA RESEARCH INSTITUTE OF CHEMICAL TECH [KR]
Korea Research Institute of Chemical Technology
JP_2025533632_PA

Resumen de: US2025345783A1

The present invention relates to a catalyst for an ammonia decomposition reaction, a method for preparing same, and a method for producing hydrogen by using same. More specifically, the present invention relates to a method for preparing a catalyst for an ammonia decomposition reaction, which economically and efficiently supports highly active ruthenium on a lanthanum-cerium composite oxide support, thereby preparing a catalyst that exhibits a higher ammonia conversion rate than conventional catalysts for an ammonia decomposition reaction, to a catalyst for an ammonia decomposition reaction prepared by the same method, and a method for producing hydrogen by using the same.

METHOD OF PRODUCING A HYDROGEN STREAM AND AN OXYGEN STREAM AND PASSING THE HYDROGEN STREAM AND THE OXYGEN STREAM TO A REVERSE WATER-GAS SHIFT REACTOR

NºPublicación:  AU2024285985A1 13/11/2025
Solicitante: 
JOHNSON MATTHEY DAVY TECH LIMITED
JOHNSON MATTHEY DAVY TECHNOLOGIES LIMITED
AU_2024285985_PA

Resumen de: AU2024285985A1

A method of producing a hydrogen stream and an oxygen stream and passing the hydrogen stream and the oxygen stream to a reverse water-gas shift reactor is described, the method comprising: providing a water stream to an electrolysis system configured to form: a hydrogen stream at a first pressure, and an oxygen stream at a second pressure; passing the hydrogen stream, a carbon dioxide stream, and the oxygen stream to the reverse water-gas shift reactor, wherein the first pressure is lower than the second pressure.

Adhesive-fixed Electrolysis Module

NºPublicación:  AU2025202385A1 13/11/2025
Solicitante: 
TECHCROSS INC
TECHCROSS Inc
AU_2025202385_A1

Resumen de: AU2025202385A1

The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, 5 the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wherein the bipolar plates are adhered and fixed to the cell frame using an adhesive, thereby simplifying product assembly 10 and reducing assembly costs compared to a single stack fixing method using welding, riveting, bolting, etc. between conventional parts. The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of 5 diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wher

AEM ELECTROLYZER WITH CONTACT FORCES STABILIZATION SYSTEM

NºPublicación:  WO2025233819A1 13/11/2025
Solicitante: 
NE M E SYS SRL [IT]
NE.M.E.SYS. SRL
WO_2025233819_PA

Resumen de: WO2025233819A1

An AEM electrolyzer comprises end structural elements (20, 30) and an electrolytic structure (22) comprising a plurality of electrolytic cells (40) to which are associated respective structural support and sealing assemblies (50) completely made of elastomeric material and in which are obtained portions of anode side inlet channels (23) and outlet channels (24) and of cathode side inlet channels (25) and outlet channels (26), while a pressurizable chamber is obtained between at least one of the end elements (20, 30) and the electrolytic structure (22) to compensate the gas pressure in the electrolytic structure itself. An AEM electrolyzer is obtained with reduced production costs and high electrical efficiency.

DIRECT COATING OF ANION EXCHANGE MEMBRANES WITH CATALYTICALLY ACTIVE MATERIAL

NºPublicación:  AU2025202787A1 13/11/2025
Solicitante: 
EVONIK OPERATIONS GMBH [DE]
EVONIK OPERATIONS GMBH
AU_2025202787_A1

Resumen de: AU2025202787A1

Abstract The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water electrolysis. It was an object of the invention to specify a process for producing a CCM by direct 5 coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that the addition of certain organic substances has the result that the AEM swells only to a small extent, if at all (antiswelling agent). It has surprisingly been found that substances suitable as antiswelling agents 10 are identifiable by their solubility behaviour, more particularly by their Hansen parameters. Fig. 4 accompanies the abstract Abstract The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water 5 electrolysis. It was an object of the invention to specify a process for producing a CCM by direct coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that th

OXYGEN EVOLUTION REACTION CATALYST AND METHOD FOR ITS PREPARATION

NºPublicación:  AU2024276790A1 13/11/2025
Solicitante: 
JOHNSON MATTHEY PLC
JOHNSON MATTHEY PUBLIC LIMITED COMPANY
AU_2024276790_PA

Resumen de: AU2024276790A1

The specification describes a process for preparing an oxygen evolution reaction catalyst, comprising the steps of: (i) combining iridium powder and a peroxide salt to produce a powder mixture; (ii) carrying out thermal treatment on the powder mixture; (iii) dissolving the product from (ii) in water to produce a solution; (iv) reducing the pH of the solution from (iii) to affect a precipitation and form a solid and a supernatant; (v) separating the solid from the supernatant; and (vi) drying the solid. An oxygen evolution catalyst obtainable by the process is also described.

ELECTROLYTIC METHOD, ELECTROLYSIS CELL, AND SYSTEM

NºPublicación:  AU2024249829A1 13/11/2025
Solicitante: 
PHLAIR GMBH
PHLAIR GMBH
AU_2024249829_PA

Resumen de: AU2024249829A1

The invention relates to an electrolytic method for producing carbon dioxide, having the following steps: a. anodically oxidizing hydrogen gas within an electrolysis cell, an acidic oxidation product being obtained; b. reacting the acidic oxidation product with an aqueous electrolyte solution within the electrolysis cell, an acidic aqueous solution being obtained; c. cathodically reducing water within the electrolysis cell, an alkaline aqueous solution and hydrogen gas being obtained; d. reacting the alkaline aqueous solution outside of the electrolysis cell with a gas which contains carbon dioxide, wherein the gas is air in particular, in order to obtain a carbonate-containing aqueous solution; and e. reacting the carbonate-containing alkaline aqueous solution with the acidic aqueous solution outside of the electrolysis cell in order to obtain dissolved carbon dioxide gas.

COATING OF ANION EXCHANGE MEMBRANES

NºPublicación:  AU2024245553A1 13/11/2025
Solicitante: 
EVONIK OPERATIONS GMBH [DE]
EVONIK OPERATIONS GMBH
AU_2024245553_PA

Resumen de: AU2024245553A1

The invention relates to the coating of anion exchange membranes with catalytically active substances. The catalytically actively coated anion exchange membranes are used in electrochemical cells, especially for water electrolysis. The problem addressed by the invention is that of specifying a process for coating an anion exchange membrane which can be conducted at relatively low temperatures. This problem is solved by a swelling step. Aside from the swelling step and the processing temperature, the sequence of the process according to the invention resembles a decal process. However, the use of the partly liquid swelling agent means that the process according to the invention can be considered to be a wet process. The process enables the processing of anion-conducting polymers at moderate temperatures. The anion-conducting polymers may be present in the anion exchange membrane and/or in the composition that is applied to the anion exchange membrane. The advantage of the process according to the invention is that it can be conducted at comparatively low temperatures, namely below 100°C.

MEMBRANE-FREE CHEMICAL-LOOPING CYCLIC WATER ELECTROLYSIS HYDROGEN PRODUCTION DEVICE AND METHOD BASED ON INTRINSIC SAFETY

NºPublicación:  WO2025232414A1 13/11/2025
Solicitante: 
SOUTHEAST UNIV [CN]
\u4E1C\u5357\u5927\u5B66
WO_2025232414_PA

Resumen de: WO2025232414A1

The present invention relates to a membrane-free chemical-looping cyclic water electrolysis hydrogen production device and method based on intrinsic safety. The device comprises two electrolytic cells, a normal-temperature alkali liquor buffer tank, a high-temperature alkali liquor buffer tank, an oxygen separation device, a hydrogen separation device, a storage tank, and an external power supply, wherein at least one electrolytic chamber is formed in each electrolytic cell, an anode plate and a cathode plate are provided in each electrolytic chamber, a porous partition plate is provided between the anode plate and the cathode plate, and the anode plate material contains a chemical-looping oxygen carrier. The method comprises: each electrolytic cell alternately operating in first and second working conditions, and the two electrolytic cells in the same time period being in different working conditions, so as to realize synchronous and continuous production of hydrogen and oxygen in different spaces. The first and the second working conditions are respectively as follows: under the conditions of a normal-temperature alkali liquor and circuit connection, a cathode performs electrochemical hydrogen production, and the chemical-looping oxygen carrier of an anode is oxidized into an oxidized-state chemical-looping oxygen carrier; and under the conditions of a high-temperature alkali liquor and circuit disconnection, the oxidized-state chemical-looping oxygen carrier of the anode i

PROCESO DE RECUPERACIÓN DE Li

NºPublicación:  AR133932A2 12/11/2025
Solicitante: 
MANGROVE WATER TECH LTD [CA]
MANGROVE WATER TECHNOLOGIES LTD

Resumen de: AR133932A2

En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.

PROCESOS DE RECUPERACIÓN DE Li

NºPublicación:  AR133930A2 12/11/2025
Solicitante: 
MANGROVE WATER TECH LTD [CA]
MANGROVE WATER TECHNOLOGIES LTD

Resumen de: AR133930A2

En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.

Hydrogen charging system and method

NºPublicación:  KR20250160290A 12/11/2025
Solicitante: 
티유브이슈드코리아주식회사
KR_20250160290_PA

Resumen de: KR20250160290A

본 발명의 일 실시예에 따른 수소 충전 시스템은, 복수의 수소 튜브 트레일러에 수소를 순차적으로 충전하기 위한 수소 충전 시스템에 있어서, 외부로부터 투입되는 물을 분해하여 수소를 생성하는 수전해기; 상기 수전해기에서 생성된 수소를 일시적으로 저장하는 버퍼탱크; 상기 버퍼탱크로부터 배출되는 수소의 압력인 제1 압력값을 측정하는 제1 압력센서; 상기 버퍼탱크로부터 분기된 후 이송되는 수소를 압축시키는 압축기; 상기 압축기로부터 압축되되, 상기 수소 튜브 트레일러에 충전될 수소를 저장하는 저장탱크; 상기 버퍼탱크로부터 분기된 후 상기 압축기를 향하지 않는 수소 또는 상기 압축기에서 압축된 후 상기 저장탱크로 저장되기 전에 우회되는 수소를 내측에 수용하는 수소배관; 상기 수소배관의 내측에 수용된 수소의 압력인 제2 압력값을 측정하는 제2 압력센서; 상기 제1 압력값과 제2 압력값을 이용하여 수소의 이송방향을 제어하는 제어부; 및 상기 복수의 수소 튜브 트레일러에 수소가 충전되도록 상기 저장탱크가 일측에 배치되는 충전 스테이션;을 포함할 수 있다.

Method of Methanol Production Using Ammonia

NºPublicación:  KR20250160293A 12/11/2025
Solicitante: 
티유브이슈드코리아주식회사
KR_20250160293_PA

Resumen de: KR20250160293A

본 발명의 일 실시예에 따른 암모니아를 이용한 메탄올 생산 방법은, a) 선박에 저장된 암모니아가 접안 부두에 정차된 탱크로리로 운송 및 저장되는 단계; b) 상기 탱크로리에 저장된 암모니아의 일부가 친환경 연료로서 발전소로 공급된 후에 상기 발전소의 발전에 사용되는 단계; c) 상기 발전소가 암모니아를 기반으로 발전하는동안 생성되는 이산화탄소를 포집, 분리 및 액화시킨 후 저장하는 단계; d) 상기 발전소로 공급되지 않고 상기 탱크로리에 남은 나머지 암모니아가 수소 생산소로 운송되며, 상기 수소 생산소에서 수소와 질소로 분해됨으로써 수소를 생산하는 단계; 및 e) 메탄올 생산소가 상기 c) 단계에서 저장된 이산화탄소와, 상기 d) 단계에서 생산된 수소를 이용하여 메탄올을 생산하는 단계;를 포함할 수 있다.

固体電気化学セルスタック

NºPublicación:  JP2025537021A 12/11/2025
Solicitante: 
ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト-ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー
JP_2025537021_PA

Resumen de: CN120226171A

The present disclosure relates to an electrochemical cell stack comprising solid state electrochemical cells (20), an electrically conductive separator (30); and a sealing element (40). The separator comprises: a central portion (31) having an oppositely recessed support surface (32) supporting the solid oxide cell, and a contact surface (34) opposite the recessed support surface contacting an adjacent solid state electrochemical cell; and a boundary portion (36) providing a relatively elevated top (37) and upstanding side walls (38). A sealing element (40) extends between an elevated top surface of the boundary portion and an opposing support surface (39) of an adjacent bulkhead. The spacing distance between the concave support surface and the contact surface of the adjacent separator, defined by the combined height of the sealing element and the upstanding side wall, is matched to the thickness of the solid state electrochemical cell.

CATALYST FOR DECOMPOSITION OF AMMONIA, AND METHOD FOR DECOMPOSITION OF AMMONIA

NºPublicación:  EP4647161A1 12/11/2025
Solicitante: 
LG CHEMICAL LTD [KR]
LG CHEM, LTD
EP_4647161_PA

Resumen de: EP4647161A1

The present disclosure relates to a catalyst for decomposition of ammonia and a method for decomposition of ammonia.

水素・酸素発生装置用の電極板、及び水素・酸素発生装置

NºPublicación:  JP2025169014A 12/11/2025
Solicitante: 
株式会社神鋼環境ソリューション
JP_2025169014_PA

Resumen de: JP2025169014A

【課題】水を満遍なく分散させることにより、局所的な温度上昇が生じにくく、水素ガス及び酸素ガスを効率よく発生させやすい水素・酸素発生装置用の電極板と、該電極板を備える水素・酸素発生装置とを提供する。【解決手段】電極板10の一端側に形成された少なくとも一つの水供給孔101aと、電極板10の他端側に形成された少なくとも一つの水排出孔101bと、少なくとも一つの水供給孔101aから供給された水が電極板10に沿って少なくとも一つの水排出孔101bへと流れる途中で通過する領域において、少なくとも一つの水供給孔101aと少なくとも一つの水排出孔101bとを結ぶ仮想直線VSLを基準として、仮想直線VSLの近くには流水に与える抵抗が大きい大抵抗部113を有し、仮想直線VSLから遠くには流水に与える抵抗が小さい小抵抗部114を有する水整流部と、を備える、水素・酸素発生装置用の電極板10である。【選択図】図3

ELECTROCHEMICAL METHOD THAT FACILITATES THE RECOVERY OF CARBON DIOXIDE FROM ALKALINE WATER BY THE ACIDIFICATION OF SUCH WATER SOURCES ALONG WITH THE CONTINUOUS HYDROGEN GAS PRODUCTION

NºPublicación:  EP4646395A1 12/11/2025
Solicitante: 
US GOV SEC NAVY [US]
THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY
WO_2024129657_PA

Resumen de: WO2024129657A1

The present invention provides a device for carbon dioxide recovery from alkaline water using a module having at least three compartments where each compartment is separated by an electrode pair (anode and cathode) with electrochemical reactions occurring at the electrodes. The electrodes can be in a unipolar or bipolar configuration. Multiple electrochemical modules can be electrically connected in series, in parallel, or in a combination of both series and parallel. Also disclosed it the related process for recovering carbon dioxide from alkaline water.

REFORMER INTEGRATED GASIFICATION FOR PRODUCING HYDROGEN

NºPublicación:  EP4647396A1 12/11/2025
Solicitante: 
TECHNIP ENERGIES FRANCE [FR]
Technip Energies France
EP_4647396_PA

Resumen de: EP4647396A1

There is described a hydrogen production system comprising: a gasification sub-system to produce a syngas stream from a biomass and/or refuse derived fuel feed stream; and a steam methane reformer (SMR) sub-system to produce an SMR syngas stream from a hydrocarbon feed, and to produce a low carbon hydrogen final product by integrating the syngas stream from the gasification sub-system and the SMR syngas stream.

COOLING SYSTEM FOR AN ELECTROCHEMICAL PLANT

Nº publicación: EP4647532A2 12/11/2025

Solicitante:

ELECTRIC HYDROGEN CO [US]
Electric Hydrogen Co

EP_4647532_PA

Resumen de: EP4647532A2

The present disclosure advantageously provides an improved cooling system for an electrochemical plant. The configurations disclosed herein provide advantages and improvements in a cooling system for the electrochemical plant. The cooling system advantageously cools multiple subsystems within the plant using dry coolers, thereby easing maintenance and access to various components within the plant, minimizing or reducing the amount of process piping within the plant used to cool the multiple subsystems, and reducing the complexity of the overall plant.

traducir