Resumen de: EP4588562A1
An ammonia dehydrogenation catalyst, a method for producing same, and a method for producing hydrogen using same are disclosed. The disclosed ammonia dehydrogenation catalyst comprises: a zeolite having an intracrystalline cation; and an alkali metal and ruthenium impregnated on the zeolite.
Resumen de: EP4589053A1
An electrode, including: a substrate that has a surface composed of at least one of nickel, nickel oxide, and nickel hydroxide; and scale-like protruding parts provided on the surface of the substrate.
Resumen de: EP4589054A1
An object of the present invention is to provide a polymer electrolyte membrane with excellent low gas permeability and chemical durability and to provide a membrane electrode assembly, a method for producing a membrane electrode assembly and a water electrolyzer. The polymer electrolyte membrane of the present invention includes a fluorinated polymer having ion exchange groups, a platinum-containing material, cerium oxide and a woven fabric.
Resumen de: EP4588566A1
The present disclosure relates to a method of preparing a NiMo-MoO<sub>3-x</sub> porous nanorod catalyst based on a metal-organic framework and a non-precious metal alloy catalyst prepared thereby. The method of preparing a non-precious metal alloy catalyst according to the present disclosure can prepare an alloy catalyst that combine alloys and oxides and form nanorods having porosity and high surface area, and possess excellent HER performance close to that of commercial platinum catalysts.
Resumen de: EP4588957A1
A block copolymer including one or more segments containing an ionic group (hereinafter referred to as an "ionic segment(s)") and one or more segments containing no ionic group (hereinafter referred to as a "nonionic segment(s)"), wherein the ionic segment has an aromatic hydrocarbon polymer having a number-average molecular weight of more than 40,000 and 50,000 or less, and wherein the block copolymer satisfies the relation of: Mn3 / (Mn1 + Mn2) > 1.5, wherein Mn1 represents the number-average molecular weight of the ionic segment, Mn2 represents the number-average molecular weight of the nonionic segment, and Mn3 represents the number-average molecular weight of the block copolymer. Provided is a block copolymer and a polymer electrolyte material produced using the same, wherein the block copolymer has excellent proton conductivity even under low-humidity conditions, has excellent mechanical strength and physical durability, and has an excellent in-process capability.
Resumen de: GB2637436A
Provided are a battery management system and method, and a related device. Battery units are controlled to be connected or disconnected in a power supply circuit by using collected operation parameters of the battery units, so that the safety in a battery operation process is improved. The battery management system comprises N first nodes, a second node, and M control switches. The first node is used for generating a first signal and sending the first signal to the second node, wherein the first signal comprises operation parameters of the battery unit corresponding to the first node in the power supply circuit. The second node is used for generating a second signal on the basis of the N first signals from the N first nodes and sending the second signal to the control switches. The control switch is used for controlling, on the basis of the second signal, the battery unit corresponding to the control switch to be connected or disconnected in the power supply circuit.
Resumen de: KR20250111786A
본 발명의 일 실시예는, 선박에 탑재되며, 증기 또는 열을 생산하는 원자로와, 원자로의 출력을 조절가능한 출력조절부와, 원자로에서 생산되는 증기를 공급받아 발전가능하며, 선박에 전기를 공급하는 제1발전부와, 원자로에서 생산되는 열을 공급받아 발전가능하며, 선박에 전기를 공급하는 제2발전부 및 출력조절부와 전기적으로 연결되며, 제1발전부 및 제2발전부의 구동을 제어하는 제어부를 포함하며, 제어부는 원자로의 출력 크기와 미리 설정되는 출력값을 비교하여, 제1, 2발전부를 선택적으로 구동시키는 것을 특징으로 하는, 선박 발전 시스템 및 선박 발전 방법을 제공한다.
Resumen de: KR20250111478A
본 발명의 실시예에 따른 전기화학적 수소 압축기용 분리판은 바디 플레이트, 바디 플레이트의 일측에 형성되며 제1 깊이를 갖는 공급 유로, 바디 플레이트의 타측에 형성되며 제2 깊이를 갖는 배출 유로, 바디 플레이트에 형성되며 공급 유로와 배출 유로를 연결하는 중간 유로 및 중간 유로와 인접한 중간 유로 사이에 배치되는 적어도 하나 이상의 리브를 포함하며, 제1 깊이와 제2 깊이는 서로 다르게 형성될 수 있다.
Resumen de: US2025230562A1
A solid oxide electrochemical cell includes a solid oxide electrolyte, a fuel-side electrode located on a first side of the solid oxide electrolyte, and an air-side electrode located on a second side of the solid oxide electrolyte. The air-side electrode includes a strontium getter material, a current collector layer and a functional layer located between the current collector layer and the second side of the solid oxide electrolyte.
Resumen de: KR20250110977A
개시된 물 전기분해 시스템은, 적어도 하나의 금속 원소를 포함하며 산소팔면체간 연결성이 낮은 복합 산화물을 포함하는 촉매 및 상기 복합 산화물의 금속 원소와 동적 평형 원소 교환이 가능한 알칼리 금속, 알칼리 토금속 및 전이 금속 원소 중 적어도 하나를 포함하는 수용액을 포함한다. 상기 시스템은 동적 평형 원소 교환을 통해 촉매 내부 구조 붕괴를 억제함으로써 안정성을 개선할 수 있다.
Resumen de: NZ793935A
The present invention describes a processes, systems, and catalysts for the conversion of carbon dioxide and water and electricity into low carbon or zero carbon high quality fuels and chemicals. In one aspect, the present invention provides an integrated process for the conversion of a feed stream comprising carbon dioxide to a product stream comprising hydrocarbons between 5 and 24 carbon atoms in length.
Resumen de: KR20250111624A
본 발명은 암모니아를 이용한 수소생산장치에 관한 것으로, 제1전해질에 접촉하는 제1전극을 구비하는 제1전극모듈, 제1전극의 일 측에 배치되고 제2전해질에 접촉하는 제2전극을 구비하는 제2전극모듈, 제1전극과 상기 제2전극 사이에 배치되고 제1전해질과 제2전해질을 격리하되 이온을 통과시키는 분리막을 포함하고, 분리막은 다이아프램인 것을 특징으로 하는 바, 충분한 크기의 분리막을 저렴한 비용으로 제조하여 실제 상용화할 수 있는 수소생산장치에 관한 것이다.
Resumen de: AU2023397261A1
The invention relates to an electrolysis system (1) with a pressure electrolyzer (3) for generating hydrogen (H
Resumen de: WO2024137217A1
A new multilayer ion-exchange membrane comprising an ion-exchange membrane layer, a catalyst layer coated on a first surface of the ion exchange membrane, a first polyelectrolyte multilayer coated on the catalyst layer, and optionally a second polyelectrolyte multilayer coated on a second surface of the ion-exchange membrane for electrolysis applications has been developed.
Resumen de: KR20250111615A
본 발명은 수소생산장치에 관한 것으로, 제1전해질에 접촉하는 제1전극을 구비하는 제1전극모듈, 제1전극의 일 측에 배치되고 제2전해질에 접촉하는 제2전극을 구비하는 제2전극모듈, 제1전극과 제2전극 사이에 배치되고 제1전해질과 제2전해질을 격리하되 이온을 통과시키는 분리막을 포함한다. 제1전극모듈 또는 제2전극모듈 중 적어도 어느 하나는, 전극모듈 바디, 전극모듈 바디의 일 측에 형성되고 전극이 배치되는 전극홀을 포함하고, 제1전극은 전극모듈 바디에 분리 가능하게 결합되는 바, 전극의 손쉽게 교체할 수 있는 수소생산장치에 관한 것이다.
Resumen de: WO2024137217A1
A new multilayer ion-exchange membrane comprising an ion-exchange membrane layer, a catalyst layer coated on a first surface of the ion exchange membrane, a first polyelectrolyte multilayer coated on the catalyst layer, and optionally a second polyelectrolyte multilayer coated on a second surface of the ion-exchange membrane for electrolysis applications has been developed.
Resumen de: TW202446709A
The invention relates to the field of hydrogen production from the catalytic cracking of ammonia. The invention comprises a primary cracking pathway comprising one or more catalyst containing reaction tubes disposed within a fired ammonia cracking reactor; and a parallel cracking pathway comprising one or more secondary ammonia cracking reactors arranged sequentially and in fluid connection with one another. The invention may be used to produce hydrogen from ammonia.
Resumen de: AU2023359480A1
The invention relates to a bipolar plate for an electrolytic cell, the plate comprising, on at least one of its main faces: a first zone running circumferentially; a second zone running circumferentially so as to be bordered on the outside by the first zone; a third zone running circumferentially so as to be bordered on the outside by the second zone, the various zones being arranged on the periphery of the associated main face. The invention also relates to the corresponding cell, electrolyzer cell and assembly method.
Resumen de: WO2023246668A1
Disclosed in the present invention is an ammonia decomposition reactor having an ammonia preheating function. The reactor comprises a heat exchanger body and a reactor body; the heat exchanger body wraps the outer side of the reactor body; heat exchange tubes on the heat exchanger body are arranged in heat exchange housings; one end of each heat exchange tube is communicated with an ammonia heat exchange inlet, and the other end of the heat exchange tube is communicated with an ammonia heat exchange outlet; a heating agent inlet and a heating agent outlet on the heat exchanger body are respectively communicated with the heat exchange housings; catalyst tubes on the reactor body are arranged in a reaction housing; the ammonia heat exchange outlet on the heat exchanger body is communicated with an ammonia inlet on the reactor body; the ammonia inlet is communicated with an ammonia decomposition gas outlet by means of the catalyst tubes; and the ammonia decomposition gas outlet is communicated with the heating agent inlet on the heat exchanger body. According to the present invention, the reactor is compact in structure, high-temperature gas of an ammonia decomposition gas in the reactor is used as a heat medium of a heat exchanger, and heat is provided for ammonia for preheating, so that ammonia entering the reactor is in a high-temperature state, and the ammonia decomposition reaction in the reactor is more sufficient.
Resumen de: US2025179941A1
A thermal energy storage system with fluid flow insulation, the system including heated thermal storage blocks positioned within a housing, and a method for operating the thermal energy storage system, including providing a flow of fluid into the housing, the fluid convectively extracting heat from a top region, a side region and a bottom region of the thermal energy storage system, to generate heated fluid that insulates the thermal storage blocks from the housing and a foundation of the thermal energy storage system.
Resumen de: US2025179941A1
A thermal energy storage system with fluid flow insulation, the system including heated thermal storage blocks positioned within a housing, and a method for operating the thermal energy storage system, including providing a flow of fluid into the housing, the fluid convectively extracting heat from a top region, a side region and a bottom region of the thermal energy storage system, to generate heated fluid that insulates the thermal storage blocks from the housing and a foundation of the thermal energy storage system.
Resumen de: MX2025002822A
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: MX2025002871A
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: MX2025002826A
The problem addressed by the present invention is that of specifying a process for electrochemical production of LiOH from Li<sup>+</sup>-containing water using an electrochemical cell having a LiSICon membrane which is operable economically even on an industrial scale. The process shall especially have a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities damaging to LiSICon materials. The problem is solved by adjusting the flow conditions in the anodic compartment of the electrochemical cell such that the anolyte flows along the membrane at a certain minimum flow rate.
Nº publicación: CL2025001510A1 18/07/2025
Solicitante:
RONDO ENERGY INC [US]
RONDO ENERGY, INC
Resumen de: US2025179941A1
A thermal energy storage system with fluid flow insulation, the system including heated thermal storage blocks positioned within a housing, and a method for operating the thermal energy storage system, including providing a flow of fluid into the housing, the fluid convectively extracting heat from a top region, a side region and a bottom region of the thermal energy storage system, to generate heated fluid that insulates the thermal storage blocks from the housing and a foundation of the thermal energy storage system.