Resumen de: US2025257415A1
A hydrogen-rich blast furnace ironmaking system based on mass-energy conversion, comprising a water electrolysis system (2). The water electrolysis system (2) is separately connected to a hydrogen storage tank (3) and an oxygen storage tank (4); a gas outlet of the hydrogen storage tank (3) is connected to a hydrogen compressor (5); an outlet of the hydrogen compressor (5) is connected to a hydrogen buffer tank (6); the hydrogen buffer tank (6) is connected to a hydrogen injection valve group (7); the hydrogen injection valve group (7) is connected to a hydrogen preheating system (8); and the hydrogen preheating system (8) is connected to a tuyere of a blast furnace body (1) or a hydrogen injector at the lower portion of the furnace body.
Resumen de: US2025257374A1
The invention described herein presents compositions and methods for a multistep biological and chemical process for the capture and conversion of carbon dioxide and/or other forms of inorganic carbon into organic chemicals including biofuels or other useful industrial, chemical, pharmaceutical, or biomass products. One or more process steps utilizes chemoautotrophic microorganisms to fix inorganic carbon into organic compounds through chemosynthesis. An additional feature described are process steps whereby electron donors used for the chemosynthetic fixation of carbon are generated by chemical or electrochemical means, or are produced from inorganic or waste sources. An additional feature described are process steps for recovery of useful chemicals produced by the carbon dioxide capture and conversion process, both from chemosynthetic reaction steps, as well as from non-biological reaction steps.
Resumen de: US2025256975A1
Embodiments of the disclosure pertain to the conditioning of the purge gas stream in an NH3 synthesis plant comprising a water electrolysis unit to produce a H2 stream, ammonia synthesis loop, and a treatment section for treating purge gas at 10-70 bar(a) using scrubbing and membrane separation.
Resumen de: US2025257022A1
The present invention relates to a process for producing methanol (MeOH) and hydrogen (H2) from methane, comprising the steps: a) providing a gaseous feed stream comprising methane; b) reacting said gaseous feed stream with at least one halogen reactant (X2), under reaction conditions effective to produce an effluent stream comprising methyl halide (MeX), hydrogen halide (HX); c) separating from the effluent stream obtained in step b): (i) a methyl halide (MeX) stream, optionally comprising unreacted methane; and, (ii) a hydrogen halide (HX) stream; d) reacting the methyl halide (MeX) stream separated in step c) with a solid metal hydroxide (MOH(s)) under reaction conditions effective to produce metal halide (MX) and methanol (MeOH); and, e) decomposing by means of electrolysis said hydrogen halide (HX) stream separated in step c) under conditions effective to produce a gaseous hydrogen (H2) stream and a stream comprising halogen reactant (X2).
Resumen de: US2025257489A1
A water electrolysis system includes: a water electrolysis stack that generates oxygen gas and hydrogen gas by electrolyzing water; a gas-liquid separator that separates the hydrogen gas from water; a hydrogen compression stack that compresses the hydrogen gas; a gas tank that stores an inert gas and is connected to a hydrogen flow path that connects the water electrolysis stack and the hydrogen compression stack; a supply valve that, when opened, supplies the inert gas to the hydrogen flow path; and a supply control unit that opens the supply valve in a case where the concentration of the oxygen gas that has flowed into the hydrogen flow path exceeds an oxygen concentration threshold determined in advance.
Resumen de: US2025257487A1
A method of producing hydrogen and/or bromine by electrolysing hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg≥110° C. in an electrolysis of hydrogen bromide, wherein the hydrogen bromide stems from a bromination of a hydrocarbon.
Resumen de: US2025257488A1
An electrolysis system includes at least one electrolyzer for generating hydrogen and oxygen as products, and at least two downstream compressors for compressing at least one of the products produced in the electrolyzer. A method of operating the electrolysis system in a part-load operation of the electrolyzer that is optimized in terms of efficiency and is also cost-effective. During the part load operation of the electrolyzer, a first group of compressors is operated in part-load operation, while the compressor(s) of a second group can be switched on or off individually for full-load operation.
Resumen de: US2025257484A1
An electrode suitable for carrying out oxygen evolution reaction in the electrolysis of water in alkaline conditions. The electrode includes a ceramic material having a stability factor (SF) between 1.67≤SF≤2.8 and which is calculated by formula (II), where rO is the ionic radius of oxide ion (O2−), rB,av is the weighted average ionic radius of a transition metal, nA,Av is the weighted average oxidation state of a rare earth or alkaline earth metal, rA,av is the weighted average ionic radius of a rare earth or alkaline earth metal. An alkaline electrolysis stack includes the electrode, as well as a method for the electrolysis of water in alkaline conditions using the alkaline electrolysis stack.
Resumen de: US2025257483A1
Clean version of Abstract A catalyst and anode for hydrogen production by electrolysis as well as a preparation method, activation method and use thereof are provided. The anode for hydrogen production by electrolysis includes a catalyst which is nickel iron barium hydrotalcite with a nano hexagonal sheet structure and a thickness of 100-200 nm. The catalyst can be prepared by a one-step solvothermal reaction method. Alkaline-earth metal ions are evenly doped in the nickel iron barium hydrotalcite and are in atomic level dispersion, so that the anode for hydrogen production by electrolysis based on the catalyst, when being applied to a process for hydrogen production by electrolysis of an aqueous solution containing chlorine ions, not only can maintain good catalytic performance, but also has greatly improved chlorine ion corrosion resistance, leading to significant improvement of working stability and service life.
Resumen de: US2025257477A1
A method of electrolysing hydrogen bromide comprising the steps i) synthesizing sulfuric acid such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode.
Resumen de: WO2025169081A1
PRODUCTION OF HYDROGEN USING METHANOL The present disclosure relates generally to processes for producing hydrogen. In particular, the disclosure relates to a process comprising: providing a first feed stream comprising H2 and CO2; contacting the first feed stream with a hydrogenation catalyst (e.g., in a hydrogenation reaction zone) to hydrogenate at least a portion of the CO2 to form a first product stream comprising methanol; storing at least a portion of the methanol of the first product stream; providing a second feed stream comprising at least a portion of the stored methanol; in a methanol dehydrogenation reaction zone, dehydrogenating at least a portion of the methanol of the second feed stream to form a second product stream comprising H2 and CO2; providing a third feed stream comprising at least a portion of H2 of the second product stream; in a hydrogen reaction zone, reacting hydrogen of the third feed stream with one or more co-reactants to provide a third product stream comprising one or more products including reacted hydrogen atoms from hydrogen of the third feed stream.
Resumen de: EP4600203A1
The present disclosure provides an improved ammonia-producing plant and process for the simultaneous production of hydrogen and ammonia as end products, by integrating a hydrogen separation unit into an ammonia-producing plant. More in particular, the present disclosure provides an ammonia production plant comprising (a) a reforming section, (b) a purification section, downstream of the reforming section, and (c) an ammonia synthesis section, downstream of the purification section, wherein the plant further comprises (d) a hydrogen separation unit, wherein the hydrogen separation unit has an inlet for a hydrogen-containing gas stream, a first outlet for a pure hydrogen gas and a second outlet for a tail gas, particularly wherein the inlet of the hydrogen separation unit is in fluid communication with a hydrogen-containing gas stream in the purification section and/or in the ammonia synthesis section, and/or with a hydrogen-containing gas stream between the purification section and the ammonia synthesis section of the ammonia production plant, and, particularly, wherein the second outlet is in fluid communication with the reforming section and/or with the purification section of the ammonia production plant.
Resumen de: WO2024074817A1
An ammonia cracker module for converting ammonia into hydrogen is provided. The ammonia cracker module includes: (i) a heat exchange reactor including: (a) a first reaction zone including: a first working fluid flowpath; a first reactant flowpath; and one or more heat exchange interfaces positioned between the first working fluid flowpath and first reactant flowpath; (b) a second reaction zone including: a second working fluid flowpath; a second reactant flowpath; and one or more heat exchange interfaces positioned between the second working fluid flowpath and second reactant flowpath; (c) a catalyst positioned to contact reactant fluid flowing through the first and second reactant flowpaths to convert ammonia flowing through the first and second reactant flowpaths into hydrogen; and (ii) a heating system including: a first heat source, configured to heat working fluid to create a first heated working fluid to enter the first working fluid flowpath; and a second heat source, configured to receive a first thermally depleted working fluid from the first working fluid flowpath and output a second heated working fluid to the second working fluid flowpath when the cracker module is in use. A method of producing hydrogen using an ammonia cracker is also provided.
Resumen de: EP4600407A2
An electrolysis system (10) includes: an electrolysis cell (20) configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit (30) that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit (50) that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit (70) configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.
Resumen de: WO2024112460A1
Herein discussed is a method of co-producing carbon monoxide and hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide and water, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
Resumen de: EP4600283A1
The subject disclosure relates to a crosslinked copolymer that has outstanding ion exchange capacity, exhibits high ion conductivity and water content under diverse temperature conditions, and features high density, low hydrogen permeability, and excellent thermal and oxidative stability, making it well-suited as an anion exchange membrane for water electrolysis to produce high-purity hydrogen and oxygen
Resumen de: US2025250695A1
A platform technology that uses a novel membrane electrode assembly, including a cathode layer, an anode layer, a membrane layer arranged between the cathode layer and the anode layer, the membrane conductively connecting the cathode layer and the anode layer, in a COx reduction reactor has been developed. The reactor can be used to synthesize a broad range of carbon-based compounds from carbon dioxide and other gases containing carbon.
Resumen de: EP4600408A1
An anode for electrolysis in which electrolysis performance is less likely to deteriorate even when electric power having a large output fluctuation, such as renewable energy, is used as a power source and in which excellent catalytic activity is stably maintained for a long period of time is provided. The anode for electrolysis 10 includes a conductive substrate 2 in which at least a surface of the conductive substrate 2 is formed of nickel or a nickel-based alloy; and a first layer 4 formed on the surface of the conductive substrate 2, the first layer 4 being capable of functioning as a catalyst layer containing a lithium-containing nickel cobalt oxide represented by a composition formula LixNiyCo2O4 (0.05 ≤ × ≤ 1.0, 1.0 ≤ y ≤ 2.0, 1.0 ≤ z ≤ 2.0, and x + y + z = 2 to 3).
Resumen de: WO2024076575A1
A method can include: processing precursors, electrochemically oxidizing sulfur dioxide, processing sulfuric acid and hydrogen, and/or any suitable steps. An electrolyzer can include an anode, a cathode, and a separator. The anode can include an anolyte, an electrode, an anolyte reaction region, and/or any suitable components. The cathode can include a catholyte, an electrode, a catholyte reaction region, and/or any suitable components.
Resumen de: EP4600236A1
A hydrocarbon generation system (1) includes a hydrocarbon generator (2, 21, 22), an electrolyzer (3), a water vapor supply line (4), and a heat exchanger (51). The hydrocarbon generator generates hydrocarbon through an exothermic reaction between a carbon oxide gas and hydrogen. The electrolyzer generates hydrogen from water vapor of raw materials, the generated hydrogen being supplied to the hydrocarbon generator. The water vapor supply line generates the water vapor of the raw materials by evaporating liquid water of the raw materials and supplies the generated water vapor to the electrolyzer. The heat exchanger uses heat of a reaction generated in the hydrocarbon generator to evaporate the liquid water of the raw materials in the water vapor supply line via heat transfer oil.
Resumen de: KR20200094876A
The present invention relates to a solid oxide fuel cell and a solid oxide electrolysis cell. According to the present invention, the solid oxide fuel cell and the solid oxide electrolysis cell comprises, respectively; a flat tubular unit cell (100) having a plurality of tubular through-holes (111a, 111b) for transferring fuel gas formed in a longitudinal direction; an upper cap (200) coupled to one longitudinal end of the flat tubular unit cell (100) and blocking one end of the flat tubular unit cell (100) from the outside while communicating the plurality of tubular through-holes (111a, 111b) with each other; a cell lower slit (300) coupled to the other longitudinal end of the flat tubular unit cell (100), having an opening part (320) opening the plurality of tubular through-holes (111a, 111b) formed therein, and having an insertion groove (330) formed on a lower surface; and a manifold (400) coupled to the cell lower slit (300), having spaces (420, 430) formed therein to communicate with the plurality of tubular through-holes (111a, 111b), including a reaction gas inlet (450) through which the fuel gas is supplied and a reaction gas outlet (460) through which the fuel gas reacting with air is discharged, and dividing the spaces (420, 430) and the plurality of tubular through-holes (111) into halves to form the flow of fuel gas in a U-shape. Accordingly, since a flat tubular unit cell and a flat planar unit cell are divided into halves, respectively, inflow and outflow of t
Resumen de: WO2024129246A1
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane conducts both electrons and protons, wherein the anode and cathode are porous; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia or a cracked ammonia product; and (c) extracting a second stream from the cathode, wherein the second stream comprises hydrogen, wherein the first stream and the second stream are separated by the membrane.
Resumen de: US2025250698A1
Disclosed herein are a catalyst for a hydrogen evolution reaction, a water electrolysis electrode including the same, and a method of manufacturing the same, wherein the catalyst can be manufactured at room temperature, and catalyst diversity can be given through an alloy structure including ruthenium and two or more metals. According to the present disclosure, the catalyst can be manufactured at room temperature due to characteristics of an electroplating manufacturing method, and the catalyst diversity can be given through the alloy structure that includes ruthenium and two or more metals.
Resumen de: JP2025116859A
【課題】シート状チタン多孔質を高効率で、かつ歩留まり良く製造可能な方法を提供すること。【解決手段】この製造方法は、少なくとも一つの貫通孔を有する少なくとも一つのステージ、少なくとも一つのステージを囲み、少なくとも一つのステージから離隔するフレーム、および少なくとも一つのステージとフレームを互いに連結する少なくとも一つの連結部を備える治具上に、少なくとも一つの貫通孔および少なくとも一つのステージとフレーム間の隙間を覆うように、チタン多孔質体を含むマザーシートを配置すること、マザーシートを治具上に吸着すること、ならびに隙間に沿って、ファイバレーザから射出されるレーザ光をマザーシート上で走査することによってマザーシートを切断することを含む。【選択図】図6B
Nº publicación: KR20250119893A 08/08/2025
Solicitante:
주로우카본
Resumen de: WO2025165039A1
The present invention relates to a high-efficiency hydrogen production system by a direct air capture method using renewable energy. According to an embodiment of the present invention, the high-efficiency hydrogen production system comprises: a direct air capture device in which a chemical reaction occurs when an alkaline liquid mixture containing a specific component, such as potassium hydroxide or sodium hydroxide, is brought into contact with air, to capture carbon dioxide from the air; an electrolysis tank into which pure water and the sodium carbonate or potassium carbonate solution generated in the process of the chemical reaction for capturing carbon dioxide in the direct air capture device are introduced and then electrolyzed by using renewable energy including solar or wind power generation energy, to generate a gas containing hydrogen and a liquid containing potassium hydroxide or sodium hydroxide and separate and extract the generated gas and liquid; a gas storage tank in which the gas separated and extracted from the electrolysis tank is stored; and a liquid storage tank in which the remaining liquid after the gas is separated and extracted from the electrolysis tank is stored and potassium hydroxide or sodium hydroxide contained in the liquid is reintroduced into the direct air capture device.