Resumen de: US2025250686A1
A water electrolysis device includes a water electrolysis module that generates hydrogen by water vapor electrolysis. The water electrolysis device includes: a blower configured to supply hydrogen to the water electrolysis module; a recycle passage configured to supply generated hydrogen generated by the water electrolysis module from the water electrolysis module to an intake port of the blower; a condenser configured to condense water vapor contained in the generated hydrogen; and a temperature increasing portion configured to increase a temperature of the generated hydrogen between the condenser and the blower.
Resumen de: WO2025163032A1
The invention relates to an electrolysis device (10) for generating hydrogen from water using an electric current, having a cell stack (11) comprising a plurality of cell stack elements (12) in the form of electrolysis cells; a first pressure sensor (28) for detecting a first hydrogen-side pressure; a second pressure sensor (29) for detecting a second hydrogen-side pressure; and a control device (30) which checks whether the electrolysis device (10) has a leak on the basis of the first pressure measured by the first pressure sensor (28), the second pressure measured by the second pressure sensor (29), and the electric current applied to the electrolysis device (10) for the electrolysis process.
Resumen de: WO2025162963A1
The invention relates to a system consisting of a plurality of electrolysis devices (10), which are accommodated in a frame or shelf (19), for generating hydrogen from water using an electric current. Each electrolysis device (10) has at least the following: a cell stack (11) consisting of a plurality of cell stack elements (12) in the form of electrolysis cells; end plates (14, 15) lying opposite each other, wherein the cell stack (11) consisting of the cell stack elements (12) is provided and compressed between the end plates (14, 15); at least one water supply connection (16) which is formed on the end plates (14, 15) and via which water can be supplied to the respective electrolysis device (10); and at least one water discharge connection (17) which is formed on the end plates (14, 15) and via which water and oxygen can be discharged from the respective electrolysis device (10). At least one pre-separator (20) for oxygen is installed on the frame or shelf (19) and/or in the frame or shelf (19) and/or in the immediate vicinity of the frame or shelf (19) in order to separate oxygen from the water discharged from the electrolysis devices (10).
Resumen de: US2025250696A1
Hydrogen is produced using high temperature heat from a progressive heat collection system that utilizes sun and air for collection and transfer of heat. Thermal energy from the sun superheats the water into steam and also powers a Stirling engine based electrical generator for operating a high temperature steam electrolyzer.
Resumen de: US2025250695A1
A platform technology that uses a novel membrane electrode assembly, including a cathode layer, an anode layer, a membrane layer arranged between the cathode layer and the anode layer, the membrane conductively connecting the cathode layer and the anode layer, in a COx reduction reactor has been developed. The reactor can be used to synthesize a broad range of carbon-based compounds from carbon dioxide and other gases containing carbon.
Resumen de: US2025250594A1
Compositions and methods for a hybrid biological and chemical process that captures and converts carbon dioxide and/or other forms of inorganic carbon and/or CI carbon sources including but not limited to carbon monoxide, methane, methanol, formate, or formic acid, and/or mixtures containing CI chemicals including but not limited to various syngas compositions, into organic chemicals including biofuels or other valuable biomass, chemical, industrial, or pharmaceutical products are provided. The present invention, in certain embodiments, fixes inorganic carbon or CI carbon sources into longer carbon chain organic chemicals by utilizing microorganisms capable of performing the oxyhydrogen reaction and the autotrophic fixation of CO2 in one or more steps of the process.
Resumen de: US2025250688A1
An electrolysis system includes: an electrolysis cell configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.
Resumen de: US2025250164A1
The invention relates to a photocatalytic unit for the production of hydrogen from water, comprising: (i) a photoreactor comprising a plurality of tubes, wherein said tubes internally comprise a photocatalyst, and are adapted for internally conducting a stream of water vapor; and absorbing external solar radiation focused on said tubes; and (ii) a plurality of solar reflectors adapted for concentrating incident solar radiation on the tubes of the photoreactor. Advantageously, the tubes of the photoreactor are arranged in a plane substantially perpendicular to the ground, and the solar reflectors w are arranged at both sides of said plane. The invention also relates to a solar plant for generating hydrogen comprising, at least, one photocatalytic unit according to any of the embodiments herein described, and a water vapor stream source connected to the photocatalytic unit.
Resumen de: US2025250187A1
The present disclosure describes a process for producing a reducing liquid comprising providing a liquid; providing a reducing gas and/or a metasilicate; and infusing the reducing gas and/or the metasilicate to the liquid, for the reducing gas and/or metasilicate to react with the liquid to produce a reducing liquid that has an oxidation reduction potential (ORP) value of about −100 mV or more negative. Further described is the process for preparing a reducing gas, which includes the steps of preparing an activator, introducing the activator into an electrolytic reactor, adding water, and applying a direct current to produce the reducing gas. Also described is a system for producing a reducing liquid.
Resumen de: US2025253377A1
The invention relates to an electrochemical cell assembly including a first end plate assembly, a stack of cell repeat units, and a second end plate assembly. The stack is held in a compressed state between the first end plate assembly and the second end plate assembly. The first end plate assembly and/or the second end plate assembly each include an end plate. The electrochemical cell assembly includes an insulation plate located between the end plate and the stack. At least one through-hole is provided in the insulation plate and a sealing insert is provided in the at least one through-hole of the insulation plate, the sealing insert defining a fluid pathway along the stacking direction. The invention also relates to an end plate assembly and a method of manufacturing an electrochemical cell assembly.
Resumen de: WO2025162555A1
The present disclosure relates to a method for producing a purified oxygen-containing stream, the method comprising: heating a Solid Oxide Electrolyzer Cells (SOEC) unit to a SOEC operating temperature; providing a water source or a steam source at a water source or steam source temperature; heating the water source or the steam source to produce a steam stream at a steam stream temperature; providing a sweep gas at a sweep gas temperature; feeding the steam stream and the sweep gas to the SOEC unit to produce an oxygen-containing stream and a hydrogen-containing stream; cooling the oxygen-containing stream to a temperature in the range of about 20°C to about 100°C, preferably about 40°C to about 60°C, more preferably about 44°C to about 55°C, and even more preferably about 50°C; and, after the cooling step, purifying the oxygen-containing stream to produce the purified oxygen-containing stream The present disclosure also relates a system for producing a purified oxygen-containing stream.
Resumen de: WO2025162564A1
A control system for a hydrogen production system is proposed. The hydrogen production system includes a plurality of electrolyzers and a plurality of converter modules each of which is coupled to one or more of the plurality of electrolyzers. The control system includes: a plurality of local controllers each of which is coupled with one or more of the plurality of converter modules and one more of the plurality of the electrolyzers; and a system controller in communication with the plurality of local controllers. The system controller is configured to receive an external dispatch value and electrolyzer state information regarding states of the plurality of electrolyzers, and to determine internal dispatch values for one or more electrolyzer from the plurality of electrolyzers based on the external dispatch value and the electrolyzer state information. A least one local controller from the plurality of local controllers associated with the one or more electrolyzers is configured to receive the internal dispatch values from the system controller, and to control operations of the one or more electrolyzers according to the internal dispatch values.
Resumen de: EP4596757A1
A hydrogen production facility is disclosed, comprising a plurality of electrolyser stacks arranged for electrolyzing water using an electrolyte and for generating at least a hydrogen-aqueous solution mixture; and a hydrogen separator arrangement for producing a flow of hydrogen from the hydrogen-aqueous solution mixture; wherein the hydrogen separator arrangement comprises a plurality of first stage hydrogen collector separators, the first stage hydrogen collector separators being fluidly coupled to a respective sub-set of the plurality of electrolyser stacks; and wherein the plurality of first stage hydrogen collector separators are fluidly coupled to a downstream hydrogen buffer vessel. A related method is further disclosed.
Resumen de: EP4596659A1
The present invention aims to provide a liquid fuel production system and a method for producing liquid fuel capable of reducing the amount of hydrogen gas used.The liquid fuel production system 1 includes: an electrolytic reduction device 2 for obtaining a mixed gas and an oxygen gas by an electrolytic reduction of carbon dioxide and water; a carbon dioxide separation device 3 for separating the carbon dioxide from the mixed gas; a water separation device 4 for separating water from the mixed gas; a cryogenic separation device 5 for separating the mixed gas into ethylene, hydrogen, and a residual off-gas; a first reaction device 6 for obtaining a first mixture by oligomerization of ethylene obtained in the cryogenic separation device; a first separation device 7 for separating light hydrocarbons from the first mixture; a second reaction device 8 for obtaining a second mixture containing liquid fuel by hydrocracking and hydroisomerizing the first mixture; and a second separation device 9 for separating the second mixture into at least liquid fuel, cracked gas, and heavy hydrocarbons.
Resumen de: WO2024073537A2
A hydrogen-rich hydrocarbon fuel gas can be separated into a methane fuel stream and a hydrogen product stream. The methane fuel stream can be fed to a methane fuel fired furnace, combustion of the methane fuel stream can produce a carbon-dioxide-rich flue gas, and a carbon capture process can be performed on the carbon-dioxide-rich flue gas. The hydrogen product stream can be fed to a hydrogen fired furnace or elsewhere. Combustion of the hydrogen product stream in a hydrogen fired furnace can generate a flue gas the is low in carbon dioxide. Electrolysis of water obtained from the hydrogen fired furnace flue gas can produce hydrogen for a desired use, such as fuel for the hydrogen fired furnace, and can produce oxygen for enriching the fuel gas fed to the methane fuel fired furnace.
Resumen de: EP4596755A1
A hydrogen production facility is disclosed, comprising: a plurality of electrolysis systems to electrolyze water using lye; and a mutualized lye circulation system coupled with the plurality of electrolysis systems to circulate the lye among the plurality of electrolysis systems to facilitate electrolyzing the water, the lye circulation system comprising one or more pumps, wherein a number of the one or more pumps is less than a number of electrolysis systems of the plurality of electrolysis systems. A hydrogen production facility comprising first and second modular structures is also disclosed.
Resumen de: CN119948208A
Disclosed are a membrane suitable for alkaline water electrolysis and an alkaline water electrolysis device comprising the same. A method for producing hydrogen and a method for producing a membrane for alkaline water electrolysis are also disclosed.
Resumen de: CN119866558A
The invention relates to a power plant (1) comprising two units (A) and (B), a first unit (A) and a second unit (B), located in two separate industrial sites, having:-the first unit (A) comprising a synthesis device (8) capable of producing methane or methanol (15) from hydrogen (2) and carbon dioxide (4) originating from the second unit (B), and-a second unit (B) comprising fuel cell means (5) that can be supplied with electric current (1) by methane or methanol (15) originating from the first unit (A) and an anode gas stream (6) comprising carbon dioxide, said fuel cell means being combined with collecting means (7) for collecting carbon dioxide (17) in the anode stream (6) intended for the first unit (A).
Resumen de: MX2025004437A
Electrochemical cell system (100) which comprises an electrochemical cells arrangement (10), a control unit (20) configured to operate the electrochemical cells arrangement (10) only as electrolytic cells or only as fuel cells, a heat unit (40), external to the electrochemical cells arrangement (10), which is thermally coupled to the electrochemical cells arrangement (10) and which is configured to alternately store heat from the electrochemical cells arrangement (10) to the heat unit (40) and supply heat from the heat unit (40) to the electrochemical cells arrangement (10), and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cells arrangement (10) to the heat unit (40) and from the heat unit (40) to the electrochemical cells arrangement (10).
Resumen de: EP4596756A1
Aspects of the present disclosure relate to a hydrogen production facility. The hydrogen production facility includes one or more electrolyser stacks to electrolyze water using an electrolyte and generate a hydrogen-aqueous solution mixture and an oxygen-aqueous solution mixture, the one or more electrolyser stacks comprising a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device. The oxygen separator comprises an oxygen gas-liquid separation device and an oxygen coalescing device.
Resumen de: EP4596493A1
Provided is a method for producing a tantalum nitride material including a nitriding step of heating a precursor containing a lithium tantalum composite oxide in the presence of a nitrogen compound.
Resumen de: EP4596758A1
A water electrolysis device (1) includes a water electrolysis module (2) that generates hydrogen by water vapor electrolysis. The water electrolysis device includes: a blower (7, 8) configured to supply hydrogen to the water electrolysis module; a recycle passage configured to supply generated hydrogen generated by the water electrolysis module from the water electrolysis module to an intake port of the blower; a condenser (6) configured to condense water vapor contained in the generated hydrogen; and a temperature increasing portion (18) configured to increase a temperature of the generated hydrogen between the condenser and the blower.
Resumen de: CN119317736A
An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
Resumen de: MX2025005140A
Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.
Nº publicación: KR20250117814A 05/08/2025
Solicitante:
도요타지도샤가부시키가이샤
Resumen de: JP2024102507A
To provide a water electrolysis stack capable of improving durability.SOLUTION: A water electrolysis stack has a cell laminate in which a plurality of water electrolysis cells are laminated. In the cell laminate, inter-cell regions are formed in adjacent water electrolysis cells, and gas flows in the inter-cell regions during water electrolysis.SELECTED DRAWING: Figure 6