Resumen de: EP4597673A1
An electrochemical device of this application includes a positive electrode, a negative electrode, and an electrolyte, where the positive electrode includes a positive electrode active material, the positive electrode active material includes element A, and element A is selected from at least one of La, Y, or Nb; based on a mass of the positive electrode active material, a mass percentage of element A is x%; the electrolyte includes a compound represented by formula (I); and based on a mass of the electrolyte, a mass percentage of the compound represented by formula (I) is a%.
Resumen de: WO2024068583A1
The technology of the present invention generally relates to the field of battery technology, and more particularly relates to a cell fixture assembly for testing of a single electrochemical cell or a number of electrochemical cells stacked on top of each other, wherein the cell fixture assembly comprises at least one cell fixture and a base station; wherein the cell fixture comprises: at least one fixed base plate; at least two moveable plates arranged parallel to the base plate; whereby the moveable plates have oppositely arranged surfaces for contacting the electrochemical cell mounted between them; whereby the fixed and moveable plates comprise a plurality of apertures that are at least partially aligned to create a plurality of vertical channels that extend through said plates; a pressure sensor means, disposed between the base plate and at least one of the moveable plates, comprising a sensor member arranged to support said moveable plate, and configured for measuring a pressure applied to the electrochemical cells; a plurality of rotatable rods, insertable in the plurality of vertical channels, that are configured to rotatably couple with at least one of the moveable plates; whereby a rotation of the plurality of rotatable rods causes one of the moveable plates to move relative to the other moveable plate, thereby clamping or releasing the electrochemical cell mounted between them; and, a plurality of coupling members in connection with the plurality of rotatable rods;
Resumen de: AU2023352888A1
The present disclosure relates to an electrolyte product (1), formed as a solid or semi-solid layer, comprising a polymer-based matrix, having dispersed therein an amount of an electrolyte salt composition (4) and an amount of an additive salt composition (5). The disclosure further relates to a method of manufacturing a battery cell product, a battery cell product comprising the electrolyte product, and a battery product comprising a plurality of battery cell products.
Resumen de: MX2025003810A
The present disclosure relates to a battery unit (100) for an electric vehicle. The battery unit (100) comprises a battery tray (1) made of a composite material and defining an interior space configured to receive a battery (2) comprising one or more battery cells. The interior space is delimited by a bottom wall (3) and one or more lateral walls (4). Further, the lateral walls (4) comprise a side flange (5) extending outwardly from the lateral walls (4), and the side flange (5) comprises one or more embedded metal inserts (6). The metal inserts (6) are configured to receive one or more fasteners to secure the battery tray (1) to a load bearing structure of the electric vehicle. The present disclosure further relates to methods (500) for manufacturing a battery unit.
Resumen de: WO2024068707A1
An inspection device comprises a first layer conveyor, which has a receiver and a first drive in order to receive a respective anode or cathode layer by means of the receiver from a first transfer point and to bring same to a first depositing point. At the first depositing point, a stacking table receives the anode or cathode layer from the receiver to form a layer stack. At the first depositing point, the first layer conveyor deposits an anode or cathode layer from its receiver on the stacking table when the receiver is at the first depositing point. A third image recorder is directed to a region comprising an upper edge of a layer stack located on the stacking table, seen in a side view of the layer stack, which region contains a connection lug of an anode or cathode layer at the top of the layer stack, and the third image recorder acquires a third image before or after the anode or cathode layer is placed on the stacking table. Depending on signalling based on a processing of the third acquired image, a controller indicates the (un)usability of the layer stack.
Resumen de: EP4597672A1
An electrochemical device and an electronic device are provided. The electrochemical device includes a negative electrode, a positive electrode, a separator, and an electrolyte. The positive electrode includes a positive electrode active material containing a doping element, where the doping element includes one or more selected from the group consisting of aluminum, magnesium, zirconium, titanium, and lanthanum; and based on a mass of the positive electrode active material, a mass percentage of the doping element is b%, where 0.01≤b≤3 . The electrolyte includes a polynitrile additive. The positive electrode active material of this application includes the doping element in the mass percentage of 0.01 mass% to 3 mass%. The doping element can improve the structural stability and thermal stability of the positive electrode active material after delithiation. The polynitrile additive of the electrolyte can form an interfacial protection film on a surface of the positive electrode active material, reducing the risk of side reactions at an interface of the positive electrode active material, thereby reducing the heat generated at the interface, further improving the thermal stability of the positive electrode active material, and improving the cycling performance of the electrochemical device at high temperatures.
Resumen de: AU2023350690A1
Disclosed herein is a method for recovering metals from electronic waste or a leach residue thereof, the electronic waste or leach residue comprising elemental copper and one or more lithium compounds, the method comprising: leaching the electronic waste or leach residue with a leach solution comprising ammonium sulphate in the presence of an oxidant to provide a leachate comprising Cu ions and Li ions and a solid residue; and separating the leachate and the solid residue.
Resumen de: US2025243032A1
An inspection device for a layer material has a layer conveyor and a drive to pick up an anode or cathode layer by a pickup from a transfer location and bring it to a delivery location. The layer turner delivers a single anode or cathode layer from its pickup to a stacking table at the delivery location. The drive aligns the pickup and the stacking table relative to each other depending on a signal based on processing of a first or second image feed. A first image sensor is aligned between the transfer location and the delivery location to perform a first image feed when the pickup of the layer turner passes the first image sensor. A second image sensor is aligned between the transfer location and the delivery location to perform a second image feed when the pickup of the layer turner passes the second image sensor.
Resumen de: WO2024068752A1
The present invention relates to a negative electrode, in particular suitable for use in a lithium-ion battery, having a negative electrode layer formed on at least one surface of a current collector, wherein said negative electrode layer comprises at least one Si-C composite particulate material comprising silicon-based particles and one or more carbonaceous material; particles of at least one uncompressible graphite; and particles of at least one compressible graphite, the total uncompressible graphite content ranging from 2% to 60% by mass of the total mass of the negative electrode layer.
Resumen de: CN119998985A
The invention relates to a thermal conditioning device (5) for a battery, comprising: a housing (3) having at least two side walls (3A) and a circuit (5A) for the circulation of a heat transfer fluid and capable of accommodating a battery comprising at least two battery cells (1A), the heat transfer fluid circulating around the cells (1A) being supplied and discharged by an input collector (5B) and an output collector (5C). According to the invention, a spacer (5F) is mounted between the cells (1A), at least one collector (5B, 5C) extends along the side wall (3A), a circuit (5A) of heat transfer fluid is at least partially defined by the spacer (5F), and at least two apertures (5F. 2a, 5F. 2b) are arranged on the spacer (5F), each aperture (5F. 2a, 5F. 2b) leading to an input collector (5B) and an output collector (5C), respectively.
Resumen de: CN120077499A
This porous insulating layer imparting object is provided with: a base material; and an adhesive porous insulating layer on the base material. The adhesive porous insulating layer is a porous structure having a co-continuous structure having a resin as a skeleton, and the resin is a crosslinked resin. In a peel strength measurement method using an element for measuring peel strength, the peel strength of an adhesive porous insulating layer is 2 N/m or more, and the element for measuring peel strength is obtained by: preparing a base material, as one of two base materials each having a size of 30 mm * 100 mm, forming a base material having a thickness of 30 mm * 100 mm; an adhesive porous insulating layer is provided by disposing an adhesive porous insulating layer on the entire surface of each of the two substrates, and the adhesive porous insulating layers face each other and are thermally bonded at a temperature of 140 DEG C and a cylinder thrust of 500 N for 1 minute.
Resumen de: CN120051885A
The invention relates to a device for spacing cells of a battery, comprising a spacer in contact with adjacent large sides of the cells, the spacer comprising:-a flow region positioned opposite the adjacent large sides of the cells and extending over a majority of these large sides,-one or more ribs, the invention relates to a heat transfer device comprising a plurality of cells forming at least one forced flow circuit (C) of the fluid between the cells, in which turbulators (T) are present in the flow region along the forced flow circuit (C) so as to generate turbulent flow in the flow of the heat transfer fluid between the inlet (E) and the outlet (S) of the forced flow circuit, which turbulators are raised and extend in the height direction in the ribs.
Resumen de: EP4597596A1
A method of estimating an electrode density in secondary batteries according to one or more embodiments of the present disclosure includes: preparing an electrode comprising a current collector and first and second coating layers coated on the current collector; measuring first characteristic values of the electrode; removing the first coating layer of the electrode; measuring second characteristic values of the electrode from which the first coating layer has been removed; removing the second coating layer of the electrode from which the first coating layer has been removed; measuring third characteristic values of the electrode from which the first and second coating layer have been removed; and estimating at least one of a density of the first or second coating layer, a thickness of the current collector, or a weight of the current collector, based on the first characteristic values, the second characteristic values, and the third characteristic values.
Resumen de: EP4597656A1
A cylindrical secondary battery including an electrode assembly including a negative electrode plate and a positive electrode plate; a cylindrical can accommodating the electrode assembly and including a terminal hole in one side of the cylindrical can and an open inlet in another side of the cylindrical can; a terminal coupled to the cylindrical can through the terminal hole; and a negative electrode current collector in the cylindrical can and electrically connecting the cylindrical can to the negative electrode plate. The negative electrode current collector includes a notch groove or a cutting hole configured to be cut in response to an increase in pressure in the cylindrical can.
Resumen de: EP4597639A1
A secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte having lithium ion conductivity. The negative electrode includes a negative electrode current collector. The negative electrode current collector includes a resin film, and a transition metal layer laminated with the resin film. The resin film includes a base resin layer, and a surface resin layer, and at least the surface resin layer contains a nitrogen-containing resin. Accordingly, in the secondary battery, it is possible to suppress the embrittlement of the negative electrode current collector including a resin film.
Resumen de: EP4597623A1
A positive electrode active material for a non-aqueous electrolyte secondary battery according to one embodiment comprises a lithium transition metal composite oxide represented by the compositional formula LiαNaβNi1-b-cMnbXcOd (where X is at least one element selected from metallic elements other than Li, Na, Ni, and Mn, 0.80≤α≤1.20, 0≤β≤0.05, 0.80≤α+β≤1.20, 0.25
Resumen de: EP4597636A1
Provided is a power storage device binder aqueous solution comprising: a water-soluble polymer; a (meth)acrylamide; and a (meth)acrylonitrile, wherein the water-soluble polymer includes 0.01-1 mass% of a polymerization initiator unit, and the content of the (meth)acrylamide with respect to the water-soluble polymer is 0.01-1,000 mass ppm (exclusive of 1,000 mass ppm).
Resumen de: EP4597735A1
This cylindrical battery (10) is provided with a positive electrode lead (20) which is led out from an electrode body (14) to a sealing body (17) side, and which is bonded to the inner surface of the sealing body (17). The sealing body (17), which closes an opening of an outer package can (16), has a projected part (40) that is arranged along a concentric circle of the outer circumference circle of the sealing body (17) on the electrode body (14)-side inner surface (30). The positive electrode lead (17) has, sequentially in the lead-out direction from the electrode body (14) side toward the sealing body (17) side, a first bent part (23) that is bent radially inward and a second bent part (24) that is bent into a generally U-shape toward the first bent part (23) side. The second bent part (24) overlaps with a region R, which is surrounded by the projected part (40), in the axial direction.
Resumen de: WO2024069291A1
An electrochemical cells and methods of making the same are disclosed. An electrochemical cell may include a cell housing and a cell core disposed in the cell housing. The cell body may extend along a longitudinal axis from a distal end to a proximal end. The cell core may include a cathode electrode, an anode electrode, and a separator disposed between the cathode electrode and the anode electrode. The cathode electrode may define a plurality of cathode windings around the longitudinal axis. Each cathode winding may include a porous conductive strip and a cathode active material disposed on the porous conductive strip. The anode electrode may be disposed around the cathode electrode.
Resumen de: WO2024067924A1
The present invention relates to a solid-state battery system (1, 2), having at least one solid-state battery (1) with a preferred size-changing direction (A), and having at least one solid-state battery holder (2) which is designed to counteract the size change of the solid-state battery (1) in the size-changing direction (A) by means of at least one variable fluid volume (23).
Resumen de: EP4597635A1
Provided are a binder storage container for a secondary battery and a binder product for a secondary battery that enable long-term storage of even a binder composition that can inhibit aggregate formation while also improving adhesiveness of a functional layer. The binder storage container for a secondary battery includes an accommodating part where a binder composition for a secondary battery is to be accommodated. The accommodating part is obtained through shaping of a resin composition that contains a polyolefin resin having a weight-average molecular weight of 400,000 or more as a main component. The accommodating part has a wall thickness of 2.5 mm or more and has a durability of 72 hours or more in an environmental stress cracking test in accordance with JIS K-6761 using dialkyl sodium sulfosuccinate aqueous solution of 1.5 mass% in concentration.
Resumen de: EP4597608A1
A disclosed positive electrode is a positive electrode for a nonaqueous electrolyte secondary battery. The positive electrode includes a positive electrode current collector and a positive electrode mixture layer disposed on the positive electrode current collector. The positive electrode mixture layer contains active material particles having an average particle diameter less than 5 µm, a conductive material, a dispersant, and a binder. The active material particles include composite oxide particles and a surface modification layer formed on surfaces of the composite oxide particles and containing a boron compound. The composite oxide particles are particles of a lithium transition metal composite oxide. The conductive material includes a carbon material. The dispersant includes nitrile group-containing rubber. The binder includes a fluorine-containing polymer.
Resumen de: EP4596731A1
Provided is a method which makes it possible to suppress wear of a treatment furnace, and to safely and efficiently collect valuable metals from raw materials including waste lithium-ion batteries and the like. This method is for producing a valuable metal from a raw material including the valuable metal and comprises: a preparation step for preparing a raw material including at least lithium (Li), aluminum (Al), and a valuable metal; a reduction melting step for subjecting the raw material to a reduction melting treatment to obtain a reduced product including a slag and an alloy containing the valuable metal; and a slag separation step for separating the slag from the reduced product to collect the alloy. The preparation step and/or the reduction melting step include adding, to the raw material, a flux containing calcium (Ca), and also adding thereto magnesia (MgO) .
Resumen de: EP4597652A1
A power storage device (10) comprises: a positive electrode (21) in which a positive electrode active material layer (21b) is formed on a first surface (21a1) of a positive electrode collector (21a); and a sealing part (24) that is adhered to the first surface (21a1) of the positive electrode (21). The sealing part (24) is formed from an acid-modified polyolefin resin. The positive electrode (21) comprises a carbon coating layer (M) that is provided at the portion of the first surface (21a1) of the positive electrode collector (21a) to which the sealing part (24) is adhered. The carbon coating layer (M) includes carbon particles and a coating layer binding agent. For the coating layer binding agent, the intensity ratio (P<sub>COO</sub>/P<sub>CH</sub>) of a peak (P<sub>COO</sub>) that represents a COO structure to a peak (P<sub>CH</sub>) that represents a CH structure on an IR absorption spectrum, as measured by infrared spectrophotometer, is 0.5-3.3.
Nº publicación: EP4593945A1 06/08/2025
Solicitante:
BIOTRONIK SE & CO KG [DE]
BIOTRONIK SE & Co. KG
Resumen de: WO2024068158A1
An electrical energy storage device (2, 2A-2C) for an implantable medical stimulation device (1) comprises a housing (20), a first electrical electrode and a second electrical electrode having different electrical polarities, one of the first electrical electrode and the second electrical electrode being formed by an electrode element (21) having an electrically conductive electrode body (210) arranged in the housing (20), and a current collector arrangement (22) electrically connected to the electrode element (20). The current collector arrangement (22) comprises a first current collector element (220) forming a first current collection section (222) having a first free end (227) and a second current collector element (221) forming a second current collection section (223) having a second free end (228), wherein the first current collection section (222) and the second current collection section (223) each extend in the electrode body (210) or along a surface of the electrode body (210) such that the first free end (227) of the first current collector element (220) and the second free end (228) of the second current collector element (221) are arranged at a distance with respect to one another in or on the electrode body (210).