Absstract of: CN120252175A
本申请实施例提供一种太阳能聚光装置及光热发电系统,涉及太阳能聚光集热技术领域。该装置包括底座,底座具有容纳腔;反射组件,包括反光镜和支架,支架上套设有第一驱动件,第一驱动件与反光镜相连,以驱动反光镜转动;集热管,设置于容纳腔内且位于反光镜的聚光轴线上;驱动机构,设置于底座上,且部分位于容纳腔内,支架设置于驱动机构上,驱动机构能够驱动支架沿底座的周向方向转动以跟踪太阳的变化,从而确保太阳光能够始终直射在反光镜上。同时,套设在支架上的第一驱动件驱动反光镜转动,使得太阳光能够始终从最合适的角度入射反光镜,进而实现了对太阳光的最大化接收、聚焦和跟踪,提高了太阳能聚光装置的聚光效率,降低了能量损失。
Absstract of: CN120252177A
本申请实施例提供一种双轴倾转太阳能聚光装置,涉及太阳能聚光集热技术领域。本申请实施例提供的双轴倾转太阳能聚光装置,包括底座;反射镜,设置于底座上,反射镜用于反射太阳光线;双轴倾转组件,设置于底座上,且与反射镜相连,双轴倾转组件被配置为带动反射镜绕东西方向和/或南北方向转动;集热管,位于反射镜的聚光轴线上,以吸收反射镜反射的太阳光线。通过根据太阳高度角的变化控制双轴倾转组件带动反射镜实现双轴旋转,从而使反射镜能够跟随太阳高度角的变化倾斜,以增加太阳光线的入射角度,进而增加了反射镜的聚光效率,提升了双轴倾转太阳能聚光装置所接收的全年太阳辐照量。
Absstract of: CN120252328A
本发明特别涉及一种利用鸡舍余热联合热泵的鸡粪干燥装置,包括鸡舍、鸡粪干燥机构、换热器与太阳能供热机构;通过设置外机机构一回收鸡舍内热量,提升干燥效率并实现鸡舍降温;冬季则通过外机机构二结合太阳能热水器对干燥机构供热,避免禽舍温度降低;干燥箱内设有多层可翻转传送板与透气结构,配合热风自下而上流动,实现鸡粪的分层均匀干燥;通过限位结构控制传送板自动翻转及间隙形成,提升热交换效率;清扫辊实现传送板通气孔自动清洁,防止堵塞;该装置节能高效,干燥均匀,适应性强,适用于规模化禽舍鸡粪干燥处理。
Absstract of: CN120263038A
本发明涉及太阳能发电技术领域,尤其是涉及一种风电‑光热‑光伏一体化能源系统。包括风力发电机构,风力发电机构包括塔筒,塔筒顶部设有发电机舱和风电叶片;光热发电机构包括安装在塔筒中部的集热器,塔筒四周的地面上设有多个反射镜,集热器接收反射镜聚焦的太阳光,并加热导热流体;光伏发电机构包括位于塔筒外周壁上的第一光伏电池组件、位于反射镜背面的第二光伏电池组件及位于风电叶片表面的第三光伏电池组件;反射镜用于将太阳光反射至集热器或第一光伏电池组件上;风力发电机构、光热发电机构和光伏发电机构均与能源管理系统连接。本发明充分将风电、光热与光伏结合,提高了能源利用效率,减少功率波动,增强了系统的稳定性与适应性。
Absstract of: CN120257131A
本发明属于协同管理技术领域,本发明公开了一种公共建筑时段化光伏光热热泵协同控制方法及系统,包括:获取公共建筑内的建筑管控信息,建筑管控信息包括建筑能耗数据、环境气象数据和设备运行数据;基于建筑能耗数据构建建筑用能模型;并结合环境气象数据进行关键分析,生成自适应能源分配矩阵;并基于其进行全方位监测和模式分析,获取设备运行效率日志;基于设备运行效率日志进行能源域划分和协同策略配置,构建虚拟能源网络和能量流转规则,并进行差异化控制参数生成和整合分析,形成动态优化策略和实时调控方案,并对所述自适应能源分配矩阵进行更新;本发明为公共建筑中光伏光热热泵的高效协同运行提供了全面、智能的控制解决方案。
Absstract of: CN120252174A
本申请提供一种光热发电系统,属于太阳能光热发电技术领域。本申请提供的光热发电系统,包括镜场;空冷塔;集热器,设置于空冷塔的顶部;循环组件,设置于空冷塔内,循环组件与集热器相连;抗振组件,设置于集热器下方;蒸汽发生组件;间接空冷组件,包括凝结件和凝结液泵,凝结件和凝结液泵均设置于空冷塔外,凝结件通过第一管路和第二管路与蒸汽发生组件相连,凝结液泵设置于第一管路上;第一换热器,设置于第一管路上,且与循环组件相连。本申请提供的光热发电系统通过将集热器设置于空冷塔的顶部,无需额外设置吸热塔,降低了生产建设成本。同时,通过将循环组件设置于空冷塔内,减少了在环境温度较低时存在的热损失,提高了换热效率。
Absstract of: CN120263045A
一种基于海上漂浮平台的光伏储能深水供电系统,涉及深海供电设备技术领域,它包括水上供电平台、水下探测设备,水上供电平台底部设置有爬升绳索与水下探测设备相连接,所述水上供电平台底部设置有充电母座,所述水下探测设备包括充电公座、电池仓,充电公座、电池仓密封连接,充电公座与充电母座相匹配,电池仓上层设置有爬绳机构与爬升绳索相配合,通过设置带爬绳机构的水下探测设备,能够实现自动爬升充电,从而实现不同水域深度的部署探测,无需改变供电架构,减少能耗需求,延长续航时间,提升了探测效率。
Absstract of: CN120252048A
本发明涉及太阳能技术领域,公开一种供热供水系统及其控制方法。该供热供水系统包括太阳能集热装置、辅助集热装置、第一储热装置和第二储热装置,辅助集热装置的出口端连通用水设备和采暖装置的进水口;第一储热装置包括换热配合的第一换热流道和第一供水流道,第一换热流道分别与太阳能集热装置的低温工质进口和高温工质出口连通,第一供水流道的一端连通外部水源,另一端分别连通用水设备和辅助集热装置;第二储热装置包括换热配合的第二换热流道和第二供水流道,第二换热流道分别与太阳能集热装置的低温工质进口和高温工质出口连通,第二供水流道的一端用于连通采暖装置出水口,另一端用于连通辅助集热装置,从而保证用户对采暖及热水的需求。
Absstract of: CN120252173A
本申请提供一种光热发电系统,属于太阳能光热发电技术领域。光热发电系统包括镜场;空冷塔,设置于镜场的中心;集热器,设置于空冷塔的顶部,集热器收集镜场聚集的太阳能直射光,并转换为热能;循环组件,设置于空冷塔内且与集热器相连;抗振组件,设置于集热器下方;蒸汽发生组件;直接空冷组件,设置于空冷塔内且通过第一管路和第二管路与蒸汽发生组件相连,第一管路和第二管路的一端均位于直接空冷组件内;第一换热器,设置于第一管路上,且与循环组件相连。通过将集热器设置于空冷塔的顶部,无需额外设置吸热塔,降低了建设成本。同时,通过将循环组件设置于空冷塔内,减少了在环境温度较低时存在的热损失,提高了换热效率。
Absstract of: CN120252176A
本申请实施例提供一种坡地自流太阳能光热发电系统,包括坡地基台,具有第一安装段、第二安装段和倾斜段,倾斜段位于第一安装段和第二安装段之间,倾斜段具有倾斜角度;镜场,设置于倾斜段上;集热管,位于镜场的聚光轴线上;冷罐,设置于第二安装段上,通过第一管路与集热管的入口端相连通,冷罐内设置有待加热的储热介质,第一管路用于向集热管内传输储热介质;热罐,设置于第一安装段上,与集热管的出口端相连通;发电组件,与热罐相连通;回收管组,分别与发电组件和冷罐相连通。从而通过将镜场设置于倾斜段上,使得储热介质在集热管中实现自流,相较于将镜场设置于地面上,能够增加太阳光的入射角度,提升了镜场所接收的全年太阳辐照量。
Absstract of: WO2024089610A1
A system for coating a metal strip with a layer of molten metal, comprising - a pot (2) containing the molten metal bath; - an annealing furnace (3), arranged upstream of said pot (2), for annealing a strip advancing towards said pot (2); - at least one heating zone (4), arranged upstream of said annealing furnace (3) for preheating the metal strip, or in an intermediate position or end position of said annealing furnace (3) for further heating said strip; - a solar plant (5) for recovering heat from solar radiation; - at least one first conduit (6) adapted to carry a first heat-transfer fluid to convey said heat from said solar plant (5) towards the heating zone (4); - at least one heat exchanger (15, 7, 7') cooperating with said at least one first conduit (6, 6') for recovering heat from said first heat-transfer fluid and heating the metal strip in said at least one heating zone (4, 4').
Absstract of: WO2025141560A1
A floating photovoltaic (PV) arrangement for supporting at least one PV module having at least one support region, the arrangement including a first elongate float; and a second elongate float having an end that is interconnected to a side of the first elongate float, wherein at least one of the floats comprises at least one mounting location for supporting the PV module via the at least one support region thereof.
Absstract of: WO2025141256A1
The present invention relates to a plant for desalinating seawater of the type made up of a succession of cells (60, 62, 64) each provided with a tank (78), the plant comprising: a condenser (72) consisting of a bundle of tubes open at their two ends; a first pump (40) capturing the seawater by suction ducts (36) and supplying a boiler (34) capable of heating this seawater in order to generate a primary pure steam (46) sent via a circuit (44, 52, 56) to the inlet of each of the condensers (72); a second pump (76) supplying the tanks (78) of the cells (60, 62, 64) with seawater which is sprayed onto the condensers (72) via nozzles (84) arranged at the top of the tanks (78); nozzles (85) also arranged at the top of the tanks (78) to discharge the secondary pure steam (50) resulting from the contact between the sprayed seawater and the condensers (72). Such a plant is characterised in that: it further comprises a heat exchanger device (32) inside the boiler (34) allowing the latter to generate a primary pure steam (46) at a temperature of at least 300°C; in that the cells (60, 62, 64) include partitioned steam circuits which are separated from one another and do not deliver steam from one to the other; and in that it also comprises means for supplying the cells (60, 62, 64) with primary pure steam (46) and seawater, respectively.
Absstract of: US2025216648A1
A heliostat includes a reflector that has at least one segment arranged in a segment assembly and that defines a reflecting surface; a rigid spaceframe structure that includes a plurality of struts joined at nodes, the plurality of struts supporting the segment assembly so as to hold the reflecting surface in a concave toroidal shape; a dual-axis mount constructed and arranged to support and orient the rigid spaceframe structure and the segment assembly so as to reflect sunlight incident on the reflecting surface toward a distant receiving surface, the dual-axis mount including at least two drives; at least one mechanical linkage coupled to at least one drive of the dual-axis mount and configured to change a relative position of at least two nodes of the rigid spaceframe structure in synchronization with motion of the at least one drive, and thereby changing a shape of the rigid spaceframe structure and the reflector.
Absstract of: US2025214056A1
A reactor system with a heating chamber, with at least one reactor with a reactor chamber, which has a first opening, and with a first isolating device, by way of which the first opening can be opened and can be closed in a gas-tight manner, wherein a conducting device for supplying and/or removing fluid is connected to the reactor chamber, wherein the at least one reactor has at least one reaction device with at least one block of solid medium, and with at least one transporting device, by way of which the at least one reaction device can be transported out of the reactor chamber through the first opening into a first position, in which the at least one reaction device is at least partially arranged in the heating chamber, and out of the heating chamber into a second position.
Absstract of: CN120232301A
本发明公开了装配式建筑墙板余热回收方法及系统,属于节能型热交换装置技术领域,其包括获取装配式墙板的预埋结构参数,基于预埋结构参数生成墙板的分区结构参数;利用预设的热虹吸效应梯度模型生成热虹吸梯度参数,并基于热虹吸梯度参数配置墙板空腔的导流路径;通过压力差动态控制余热气流的流动速率并基于分区结构参数获取各墙板分区的实时温度数据及流量数据,生成动态热调控指令,将余热按预设梯度划分为一级热网和二级热网,并分配到对应终端设备。本发明采用热虹吸效应梯度模型动态配置导流路径,并结合微型涡轮扇与跨系统协同分配机制,能够提升余热回收效率,降低运行能耗,实现建筑节能与能源系统的优化集成。
Absstract of: FR3157377A1
La présente invention a trait à une installation de désalinisation d’eau de mer comprenant une chaudière d’ébullition (34) recevant un fluide caloporteur chauffé par énergie solaire, générant une vapeur d’eau primaire (46) envoyée dans des condenseurs (72) constitués d’un faisceau de tubes disposés dans chacune des cuves (78) d’une succession de cellules (60, 62, 64) afin de réaliser une condensation dans lesdits condenseurs produisant une eau distillée (74), cette condensation chauffant une eau de mer pulvérisée dans les cuves (78), au-dessus des condenseurs, en générant une vapeur d’eau secondaire basse pression (50) qui est ajoutée à la vapeur d’eau primaire (46). Une telle installation est caractérisée en ce qu’elle comporte un dispositif de chauffage à très haute température, supérieure à 300°C, du fluide caloporteur amené à circuler dans la chaudière d’ébullition (34), un dispositif d’aspiration (42) maintenant une basse pression inférieure à 1 bar dans la chaudière d’ébullition (34), un dispositif (32) échangeur de chaleur apte à porter l’eau reçue par la chaudière d’ébullition à une très haute température supérieure à 300°C, un compresseur thermique (48) pour obtenir une vapeur d’eau primaire haute pression (52), et un circuit délivrant à chacune des cellules (60, 62, 64)) de la succession une vapeur d’eau primaire haute pression et à très haute température (50, 56), supérieure à 300°
Absstract of: CN120210842A
本申请提供一种太阳辐射能分级与余光能量热互补耦合的电/热化学梯级制氢系统及方法,系统包括聚光组件;用于太阳光谱辐射分级的分频组件;光伏电池发电装置;用于利用余光热能实现天然气富氧燃烧,并利用燃烧后产生的高温烟气产生的辐射能发电的甲烷富氧燃烧高温光伏发电装置;用于逐级利用高温烟气所含热能以及电能推动固体氧化物电解水制氢的固体氧化物电解池装置;用于逐级利用高温烟气所含热能以及电能推动各步热化学反应进行的热化学反应装置。系统能量来源为太阳辐射和天然气,产出为氢和电,系统利用不同的能量转换方式实现了太阳能分频后余光能量的温度梯级有序转化利用,在能量梯级转化基础上实现了不同品质的互补耦合。
Absstract of: CN120211429A
本发明公开了一种光伏屋面及其制备方法、一种屋面安装方法,涉及光伏建筑一体化领域。光伏屋面包括数个相互拼接的安装单元,每个安装单元包括相对设置的两个弧形支架,两个弧形支架之间沿弧形方向固定有数个平板光伏瓦,相邻的平板光伏瓦之间分别设有弯弧连接件,弯弧连接件用于连接其两侧的平板光伏瓦,弯弧连接件不与平板光伏瓦接触的两侧分别与弧形支架连接。本发明还提供光伏屋面的制备方法和安装方法,在提供曲面结构的光伏屋面的同时,考虑曲面弧度等多因素,优化安装方法如光伏瓦连接组串方式等,较大改善曲面结构大幅度降低光伏瓦发电量的缺陷,产品结构稳定寿命高,解决了现有技术发电量大幅度降低生产成本较高产品寿命较低的问题。
Absstract of: CN120212559A
本发明公开了一种热泵辅助的太阳能热电耦合采暖系统及其运行控制方法,属于太阳能热电耦合采暖系统技术领域。包括热电集合单元、热泵模块、热电耦合循环单元和电热单元,所述采暖蓄热单元包括下蓄热筒,所述下蓄热筒顶部设置有上蓄热筒;所述下蓄热筒和上蓄热筒之间固定有隔热层;所述下蓄热筒轴心处固定有进液管,所述隔热层中心处固定有第一单向阀,所述上蓄热筒轴心处固定有换热腔,所述进液管、第一单向阀和换热腔依次连通,所述换热腔顶部连接有采暖供液管;所述上蓄热筒和下蓄热筒内侧均设置有换热环管;本发明的热泵辅助的太阳能热电耦合采暖系统及其运行控制方法,能够保证稳定供暖输出温度,且系统运行更加节能。
Absstract of: FR3157523A1
Concentrateur (C) d’un rayonnement solaire incident présentant un spectre solaire, le concentrateur (C) comportant : - un miroir cylindro-parabolique (1), agencé pour recevoir le rayonnement solaire incident, conçu pour réfléchir un premier domaine spectral du spectre solaire ; - un ensemble de réflecteurs (2), agencé au-dessus du miroir cylindro-parabolique (1) pour recevoir le rayonnement solaire incident, conçu pour transmettre le premier domaine spectral au miroir cylindro-parabolique (1) et réfléchir un deuxième domaine spectral, différent du premier domaine spectral. Figure 1
Absstract of: US2025205647A1
A desalination system, including a membrane distillation portion, a solar power concentration portion, and a thermal vapor compression portion operationally connected to the membrane distillation portion and to the solar power concentration portion. The membrane distillation portion includes a first vessel having a first portion and a second portion separated by a hydrophobic membrane operationally connected therebetween and oriented to pass water from the first portion to the second portion, wherein the hydrophobic membrane further comprises a hydrophilic membrane and an air blocking layer connected to the hydrophilic membrane and disposed in the first portion, a vacuum gap adjacent the hydrophobic membrane and disposed in the second portion, a first fluid inlet and a first fluid outlet operationally connected to the first portion, and a second fluid inlet and a second fluid outlet operationally connected to the second portion. The solar power concentration portion includes a pump having a pump outlet and a pump inlet operationally connected to a water line and to the vacuum gap, a linear Fresnel mirror collector for collecting and focusing sunlight, and an outlet line operationally connected to the pump outlet and positioned to receive focused sunlight from linear Fresnel mirror collector. The thermal vapor compression portion includes an ejector having an ejector inlet portion and an ejector outlet portion, wherein the ejector inlet portion is operationally connected to th
Absstract of: AU2025204006A1
Abstract concentrated solar combination heating and power generation system, comprising a solar receiver comprising: a fluid chamber comprising a fluid inlet, a fluid outlet, and an opening for receiving concentrated solar radiation; a solar absorber housed within the fluid chamber; and a transparent object that defines at least a portion of a wall of the fluid chamber, wherein concentrated solar radiation received through the opening passes through the transparent object into the fluid chamber and impinges upon the solar absorber to produce a heated first fluid having a first pressure that is less than 2 atmospheres; a thermal storage unit comprising a vessel containing a thermal storage medium therein, and having a fluid inlet and a fluid outlet, the fluid inlet in valved fluid communication with the fluid outlet of the fluid chamber of the solar receiver; and a power generation system comprising: a heat exchange system comprising at least a first heat exchange unit, the heat exchange system positioned downstream of the solar receiver and the thermal storage unit and having an inlet in valved fluid communication with the fluid outlet of the fluid chamber of the solar receiver and in valved fluid communication with the fluid outlet of the thermal storage unit such that the heat exchange system can receive the heated first fluid selectively from either or both of the fluid chamber of the solar receiver and the thermal storage unit, the heat exchange system being configured to
Absstract of: US2025207565A1
A method for determining target points of heliostats during preheating of a tower-type solar photo-thermal power station comprises: establishing a coordinate system of a heliostat field of the station; obtaining coordinates of each heliostat according to a layout of the heliostat field; obtaining vertex coordinates of each heat absorbing panel on a heat absorber according to a layout of the heat absorbers; carrying out grid division for each panel to obtain vertex coordinates of each grid; obtaining X and Y coordinates of the target point of each heliostat on the panel; taking a Z coordinate of the target point of each heliostat on the panel as an independent variable and a sum of squares of differences between an actual number and an expected number of target points in each grid as an objective function to establish a non-linear optimization model, and solving the model to obtain the Z coordinate.
Nº publicación: WO2025132166A1 26/06/2025
Applicant:
HULIN BISCHOF PETER [DE]
HULIN-BISCHOF, Peter
Absstract of: WO2025132166A1
A system (11) for achieving an efficient energy management in a building (13), in particular for a highly efficient use of renewable energies, comprises at least one module array (19, 20) which can be attached to the building (13) and which forms an air duct (29) on the building (13) for enclosing an air cushion (27). The system (11) achieves previously unused synergistic effects by means of an absolutely innovative use, in particular by means of a unique combination of possibly already known or existing technologies, in that energy losses occurring on the building (13) can be reduced to a minimum and used in order to increase the efficiency of devices for generating or converting renewable energies. Embodiments can have an air duct (29) enclosing the building (13) in order to use synergistic effects explained in the description in conjunction with one another. In particular, such an air duct (29) can be connected to an air-to-soil collector (41), a roof ridge draw-off point and a heat pump (37) in order to be able to improve the operating point of the heat pump (37) by supplying heated air. In addition, a systematic construction of insulating layers (for example, with reflective elements on the roof and with controllable insulating materials on the facade) in conjunction with a module array (19, 20) can provide an energy management that is as efficient as possible. Any additional energy requirement can be compensated for by a supplementary innovative system (69) comprising e