Absstract of: US2025226404A1
Exemplary lithium-ion batteries comprise a cathode, an anode, and a non-aqueous electrolyte. Exemplary cathodes comprise a mixed metal oxide active material of formula:LiNixM′(1−x)O2wherein M′ is at least one metal element, and 0.60x≤0.999. Exemplary anodes comprise an active material, the active material comprising carbon.
Absstract of: US2025226391A1
There is provided a negative electrode material for a lithium ion secondary battery according to a first aspect includes composite particles in which amorphous carbonaceous particles and amorphous silicon particles are complexed. An average primary particle diameter of the silicon particles is 1 nm or more and 50 nm or less. The composite particles include a first composite particle having a silicon content of 0.5% by weight or more and 5% by weight or less, and a second composite particle having a silicon content of 60% by weight or more and 70% by weight or less.
Absstract of: US2025226382A1
A small format lithium-ion battery cell pre-lithiation assembly includes an enclosure having a first portion corresponding to a first battery cell terminal and a second portion corresponding to a second battery cell terminal. The assembly also includes an electrical insulator contacting the first portion and the second portion, a first lithium metal foil disposed in the enclosure and abutting the first portion, and a second lithium metal foil disposed in the enclosure and abutting the second portion. The assembly also includes an electrode assembly disposed in the enclosure between the first lithium metal foil and the second lithium metal foil.
Absstract of: US2025226403A1
A positive electrode active material for nonaqueous electrolyte secondary batteries according to the present invention is characterized by being a composite oxide which is represented by general formula LixTMtmNMyO2-fFf and has a crystal structure that belongs to the space group Fm-3m. In the general formula, TM represents a transition metal; M represents a non-transition metal; x, tm, y and f satisfy 1.75≤x+tm+y≤2 and 0
Absstract of: US2025226469A1
A battery module as provided includes a battery, a wiring harness board, a circuit board, a compressing piece and a temperature acquisition assembly. The battery includes a top cover. The wiring harness board is arranged on an outer side of the top of the top cover. The circuit board is arranged on a side, away from the battery, of the wiring harness board. The compressing piece is mounted on the wiring harness board. The temperature acquisition assembly includes a thermistor, and the thermistor is electrically connected to the circuit board. The compressing piece compresses the thermistor of the temperature acquisition assembly, so that the thermistor compresses the top cover. The temperature acquisition assembly acquires a temperature of the top cover of the battery, with a short temperature transfer path and rapid temperature transfer response.
Absstract of: US2025226682A1
An electricity storage system according to the present disclosure includes a detector, a determiner, and a charging controller. The charging controller sets, when the determiner determines, based on a result of detection by the detector, the degree of deterioration of the electrical storage unit to be a first level, a charge voltage, with which a charge circuit charges the electrical storage unit, at a first voltage. The charging controller sets, when the determiner determines the degree of deterioration to be a second level indicating more significant deterioration than the first level, the charge voltage at a second voltage higher than the first voltage. The charging controller sets, when the determiner determines the degree of deterioration to be a third level indicating more significant deterioration than the second level, the charge voltage at a third voltage higher than the second voltage.
Absstract of: US2025226673A1
A battery package is provided. The battery package includes a battery, at least one terminal coupled to an antenna, a single wire interface configured to communicate with a processor and coupled to the at least one terminal, a battery authentication circuit arranged on the battery, a choke inductor coupled to the single wire interface, and a clamping transistor circuit including a clamping transistor and coupled to the choke inductor and configured to clamp a voltage applied to the single wire interface to an operating voltage of the battery authentication circuit.
Absstract of: US2025226679A1
An electronic device and method are disclosed, including a first and second battery, a first and second fuel gauge, and a processor. The processor implements the method, including: determining capacity ratios of the first and second batteries based at least on absolute capacities of the first and second batteries, as identified via the first and second fuel gauges, respectively, calculating a residual capacity of the first battery and a residual capacity of the second battery based on at least one of the determined capacity ratios and the obtained states of the first and second battery, respectively, and outputting the calculated residual capacity of the first battery and the calculated residual capacity of the second battery.
Absstract of: US2025226681A1
The invention relates to a method for putting at least one energy-storage module into operation, which energy-storage module is preferably intended for a vehicle and comprises a multilevel converter system, in which method multiple energy-storage modules and transistors are provided, wherein each energy-storage module can be connected in parallel with or connected in series with the adjacent energy-storage module and/or can bypass the adjacent energy-storage module and comprises at least one energy-storage cell, and the energy-storage modules, preferably the transistors, are connected in such a way that formation and/or aging is carried out during storage, transport to the vehicle and/or after installation in the vehicle.
Absstract of: US2025226517A1
The present invention relates to a secondary battery module, a secondary battery pack including the same, and a secondary battery module inspection device for inspecting the secondary battery module, and more particularly, to a secondary battery module including a plurality of secondary batteries, a secondary battery pack including the same, and a secondary battery module inspection device for inspecting the secondary battery module. The present invention provides a secondary battery module including: a plurality of secondary batteries arranged in parallel to each other; and a plurality of buffer pads inserted to be adjacent to the secondary batteries along an arrangement direction of the plurality of secondary batteries, wherein the plurality of buffer pads are provided to have thicknesses different from each other and are selectively inserted according to thicknesses of the adjacent secondary batteries.
Absstract of: US2025226516A1
A battery assembly includes a base plate; a resin layer disposed on an upper surface of the base plate; a battery cell located above the resin layer; and an insulating sheet located between the battery cell and the resin layer, the insulating sheet having a score line.
Absstract of: US2025226525A1
Provided are a battery and an electrical device. The battery includes a battery cell and a functional component. A side of the battery cell along a first direction is provided with a pressure relief mechanism. The functional component is located on one side of the battery cell where the pressure relief mechanism is provided, and the functional component includes a thermal management component and a protective component. The thermal management component is attached to the battery cell, and the thermal management component is configured to regulate a temperature of the battery cell. A protective component is connected to the thermal management component and covers at least a portion of the pressure relief mechanism.
Absstract of: US2025226536A1
An insulation-layer forming composition for a lithium secondary battery, the composition not including carboxymethylcellulose, and comprising a conjugated diene copolymer as a binder polymer; a non-aqueous organic solvent; and an emulsifier. A gel content of the conjugated diene copolymer is 70 wt % or more with respect to a total weight of the conjugated diene copolymer, and a content of the emulsifier is 0.3 wt % or more with respect to the total weight of the conjugated diene copolymer. A cathode comprising the insulation-layer forming composition, a lithium secondary battery including the cathode, and a method of manufacturing the cathode are also provided.
Absstract of: US2025226548A1
An electrochemical apparatus includes an electrode plate. The electrode plate includes a current collector and an active material layer disposed on the surface of the current collector, and in an unwinding state of the electrode plate, a plurality of non-coated regions extend along width direction of the electrode plate on edges of the current collector, an electrode tab connecting sheet is provided with on the surface of each non-coated region, and the electrode tab connecting sheet is electrically connected to the non-coated region; where thickness L1 of the electrode tab connecting sheet satisfies: 3 μm≤L1≤35 μm, and/or fracture strength S1 of the electrode tab connecting sheet satisfies: 200 MPa≤S1≤880 MPa.
Absstract of: US2025226466A1
Systems and methods for measuring pressure applied to electrochemical cells are generally described. In some aspects, electrochemical devices including an electrochemical cell and an associated sensor are provided. The sensor may be configured to produce a signal indicative of the pressure experienced by the electrochemical cell. In some instances, the sensor measures the applied pressure by being responsive to displacement of load-bearing components of the electrochemical device. Such a configuration may permit the sensor to accurately measure the pressure at the cell while being positioned adjacent to an electrochemical device housing component rather than overlapping with the cell itself. For example, in some embodiments a strain gauge adjacent to a load-bearing member of an electrochemical device housing such as a housing fastener or frame component is employed to measure cell pressure.
Absstract of: US2025226433A1
A pressing apparatus, electrode plate processing equipment, and battery processing equipment are disclosed. The battery processing equipment includes the electrode plate processing equipment and shaping equipment. The electrode plate processing equipment includes the pressing apparatus. The pressing apparatus includes a first pressing piece with a first surface and a second pressing piece with a second surface. The first surface and the second surface are configured to coordinate to press a target piece. The first surface and/or the second surface are provided with a clearance groove. The clearance groove provides a clearance for a part of the separator, so that the separator is still sticky during shaping, thereby alleviating the problem of inferior adhesion in the electrode assembly.
Absstract of: US2025226471A1
A method for generating a recyclate from dry coating material includes providing an agglomerated solidified coating material, where the coating material has a binder in the form of fibrils which form aggregates. A recyclate is generated by introducing forces, especially shearing forces, into the coating material in such a way that the agglomerate is broken up and the aggregate-forming fibrils are retained.
Absstract of: US2025226463A1
Disclosed may be a spectral image-based battery heat generation inspection method and an apparatus supporting same, the method comprising the steps of: collecting a current spectral image of a battery that is being charged or discharged; performing processing on the current spectral image; a processor, on the basis of the result of the processing, determining whether the battery is of high quality or poor quality; and outputting the result of determining whether being of high quality or poor quality.
Absstract of: US2025226423A1
The present disclosure discusses a system with a nanoporous carbon material with a pore structure and lithium metal disposed adjacent to the nanoporous carbon material. The present disclosure discussion includes an electrical energy storage device including at least one anode, at least one cathode, and an electrolyte comprising lithium ions, wherein the electrical energy storage device has a first cycle efficiency of at least 50% and a reversible capacity of at least 150 mAh/g.
Absstract of: US2025226498A1
Disclosed herein relates to a battery pack for accommodating battery modules. More specifically, the battery pack of the present invention includes a pack case including a module area where the battery module is seated, wherein the pack case includes: a base plate; a side wall coupled along the perimeter of the base plate; and a support wall coupled to an inner surface of the side wall, wherein the support wall includes a coupling part protruding in a ribbed shape on one side opposite the side wall, and the side wall includes an insertion groove recessed for insertion of a coupling part of the support wall on the inside.
Absstract of: US2025226515A1
A housing is divided into a first case and a second case. The first case and the second case are joined at a position where the first case and the second case overlap each other, and include at the position: a first engagement mechanism in which the first case includes a first protrusion protruding in first direction DA, and the second case includes a second recess formed at a position corresponding to the first protrusion; and a second engagement mechanism in which the first case includes a first recess provided at a position separated from the first protrusion and the second case includes a second protrusion formed at a position separated from the second recess, the position corresponding to the first recess when the second case is joined to the first case, and the second protrusion protruding in second direction DB opposite to first direction DA.
Absstract of: US2025226534A1
Unit cells for use in electrical current conductance, the electrode structure comprising an electrode separated from a counter electrode by a separator, the unit cell being configured to accommodate expansion of electrode active material during a second use of the device e.g., at least in part by using spacer structures.
Absstract of: US2025226482A1
A battery thermal management system includes a battery and a pulse charging and discharging apparatus, wherein the battery includes a pole and an electrically conductive housing, which is arranged at the periphery of the pole; the pulse charging and discharging apparatus is electrically connected to the battery, and is used for performing pulse charging and discharging on the battery to generate a varying magnetic field; and the electrically conductive housing is located within the varying magnetic field, and is used for generating an induced current and heating the pole.
Absstract of: US2025226559A1
An electrochemical apparatus includes a housing, a conductive member, an electrode assembly, and an insulating member. The housing has a first wall, and the first wall is provided with a first through hole. The conductive member covers the first through hole. The electrode assembly is accommodated in the housing and is electrically connected to the conductive member. The insulating member is arranged between the conductive member and the first wall, the insulating member has a second through hole, and along a first direction, at least a part of a projection of the conductive member is located within both the first through hole and a second through hole. A convex portion is disposed between a surface of the first wall facing the conductive member and a surface of the conductive member facing the first wall
Nº publicación: US2025226431A1 10/07/2025
Applicant:
GM GLOBAL TECH OPERATIONS LLC [US]
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Absstract of: US2025226431A1
Aspects of the disclosure include ultraviolet-curable gluing reagents and methods of using the same for electrode stacking. An exemplary vehicle includes an electric motor and a battery pack electrically coupled to the electric motor. The battery pack includes a plurality of battery cells, each battery cell having an electrode stack. The electrode stack of each battery cell includes a plurality of battery foils separated by an insulated member in a stacked configuration that includes alternating battery foil and insulated member layers. The electrode stack of each battery cell further includes an ultraviolet-curable gluing reagent. The ultraviolet-curable gluing reagent is applied between the alternating battery foil and insulated member layers, thereby gluing the plurality of battery foils to the insulated member. The ultraviolet-curable gluing reagent includes a multifunctional acrylate crosslinking agent and an initiator.