Absstract of: US2025344079A1
A method for managing a plurality of wireless devices. The method includes obtaining a plurality of base Machine Learning (ML) models, wherein each base ML model is operable to provide an output on the basis of which at least one RAN operation performed by a wireless device may be configured. The method further includes transmitting characterising information for individual models of the plurality of base ML models and configuration information for the plurality of base ML models over the RAN. The method further includes receiving an indication of which one or more of the plurality of base ML models the wireless device will be using as an ensemble ML model in connection with a RAN operation performed by the wireless device, and setting a value of at least one configuration parameter associated with the RAN operation performed by the wireless device based on the received indication.
Absstract of: US2025342373A1
Implementations described herein relate to methods, systems, and computer-readable media for automated generation and use of a machine learning (ML) model to provide recommendations. In some implementations, a method includes receiving a recommendation specification that includes a content type and an outcome identifier, and determining model parameters for a ML model based on the recommendation specification. The method further includes generating a historical user feature matrix (FM), generating a historical content feature matrix (FM), and transforming the historical user FM and the historical content FM into a suitable format for the ML model. The method further includes obtaining a target dataset that includes historical results for the outcome identifier for a plurality of pairs of user identifiers and content items of the content type. The method further includes training the ML model using supervised learning to generate a ranked list of content items for each user identifier.
Absstract of: US2025342374A1
Various embodiments of the present invention provide methods, apparatuses, systems, computing devices, and/or the like that are configured accurately and programmatically train a responder prediction machine learning model for generating response team predictions based on the systematic collection of one or more responder prediction training corpuses comprising one or more alert related datasets in a responder prediction server system. For example, the responder prediction server system may extract one or more alert attributes for each of the one or more alert related datasets for training one or more responder prediction machine learning models and/or one or more prioritization machine learning models. The responder prediction machine learning model and prioritization machine learning models may process one or more alerts, in real-time, to generate one or more response team prediction objects for rendering in a response team suggestion interface.
Absstract of: US2025342394A1
Producing an augmented dataset to improve performance of a machine learning model. A test series is created for a first type of data transformation. the test series defining a set of test values for at least one parameter characterizing the first type of data transformation. Test datasets are generated based on a source dataset, each of the test datasets corresponding to a respective test value of the set of test values for said at least one parameter characterizing the first type of data transformation. Each of the test datasets is input to the machine learning model to produce a corresponding model output. At least one score is determined for each test dataset based at least in part on the corresponding model output. Robustness metrics of the first type of data transformation are determined based on a function which maps said at least one score of each of the test datasets to said at least one parameter characterizing the first type of data transformation. A set of one or more data augmentations are determined to be applied to the source dataset based at least in part on said one or more robustness metrics of the first type of data transformation. An augmented dataset is generated based on the source dataset using the determined set of one or more data augmentations.
Absstract of: WO2025231033A1
A method including receiving activity data related to a first activity utilizing an unbound schema-specific identifier; training a machine learning engine based on at least one input to obtain a trained machine learning engine that is trained to identify a category associated with the entity; where the at least one input includes: an entity data feature vector, a historical user activity data feature vector, and/or a historical user schema-specific identifier data feature vector; predicting via the trained machine learning engine, a category associated with the first activity; binding the unbound schema-specific identifier to the category to generate a category bound schema-specific identifier; receiving a request to perform a second activity using the bound schema-specific identifier; determining if a second entity associated with the request to perform the second activity is associated with the category; performing one of: approving or denying the request to perform the second activity.
Absstract of: US2025342281A1
The present disclosure relates to an information processing device, an information processing method, and a program capable of effectively detecting counterfeit data using a more versatile method.A contribution indicating how much each feature in a training dataset contributes to a predicted label output from a trained model is calculated, the training dataset including both a legitimate sample including only legitimate data and a counterfeit sample at least partially including counterfeit data. Then, clustering is executed to classify each sample of the training dataset into a plurality of clusters using unsupervised learning with the contribution as input, and feature variability between the clusters in the result of the clustering is compared to identify a cluster to which the counterfeit sample included in the training dataset belongs. The present technology can be applied to, for example, a machine learning system that generates a fraud detection model.
Absstract of: US2025342250A1
An apparatus for detecting malicious files includes a memory and a processor communicatively coupled to the memory. The processor receives multiple potentially malicious files. A first potentially malicious file has a first file format, and a second potentially malicious file has a second file format different than the first file format. The processor extracts a first set of strings from the first potentially malicious file, and extracts a second set of strings from the second potentially malicious file. First and second feature vectors are defined based on lengths of each string from the associated set of strings. The processor provides the first feature vector as an input to a machine learning model to produce a maliciousness classification of the first potentially malicious file, and provides the second feature vector as an input to the machine learning model to produce a maliciousness classification of the second potentially malicious file.
Absstract of: US2025342171A1
Apparatus and methods are disclosed for implementing a copilot as a network of microservices including specialized large language models (LLMs) or other trained machine learning (ML) tools. The microservice network architecture supports flexible, customizable, or dynamically determinable dataflow from client input to corresponding output. Compared to much larger competing LLMs, comparable or superior performance is achieved for certain tasks, while significantly reducing computation time and hardware requirements, even to a single compute node with a single GPU. Examples incorporate a qualification microservice to test data, destined for a downstream microservice, for conformance with the copilot's competency. A knowledge graph of a corpus of documents is built, visualized, and pruned. The data is tested for conformance with the pruned graph representation, and non-conforming data is excluded from the dataflow. Variations and additional techniques are disclosed.
Absstract of: AU2024261237A1
In a general aspect, a quantum feature-map transforms an input dataset with original features to a preprocessed dataset with quantum-enhanced features. In some cases, pre-processing an input dataset for a machine learning model includes obtaining the input dataset comprising a plurality of data points; encoding the plurality of data points as parameters of a quantum logic circuit; and executing the quantum logic circuit on a quantum computing resource. Expectation values of a set of observables are obtained based on an output quantum state generated by executing the quantum logic circuit. The set of observables includes observables of first degree and observables of second degree. A pre-processed dataset is generated based on the expectation values and provided as an input to the machine learning model.
Absstract of: US2025344080A1
Disclosed is a method comprising collecting input data comprising at least weather forecast information for an area in which one or more cells are located; providing the input data to a prediction algorithm, wherein the prediction algorithm comprises: a machine learning model trained to predict tropospheric ducting events impacting the one or more cells, and a cell site database indicating a location and one or more configuration parameters of the one or more cells; and receiving, from the prediction algorithm, output data indicating one or more predicted tropospheric ducting events expected to impact the one or more cells based on the input data.
Absstract of: US2025343816A1
In various examples there is a method of empirically measuring a level of security’ of a training pipeline. The training pipeline is configured to train machine learning models using confidential training data. The method comprises storing a representation of a joint distribution of false positive rate and false negative rate of membership inference attacks on a plurality of machine learning models trained using the training pipeline. The method uses the representation to compute a posterior distribution of the level of security’ from observations of the membership inference attack on the plurality’ of machine learning models trained using the training pipelines. A confidence interval of the level of security is computed from the posterior distribution and the confidence interval is stored.
Absstract of: US2025342936A1
A system for generating a lifestyle-based disease prevention plan, the system including a computing device configured to receive at least a user biomarker input, produce a user profile as a function of the at least a user biomarker input, and generate a lifestyle-based disease prevention plan as a function of the user profile including training a machine learning process with a lifestyle training data set where the lifestyle training data set further comprises lifestyle elements correlated to a plurality of outputs containing diseases prevented and producing the lifestyle-based disease prevention plan as a function of the user profile and machine learning process.
Absstract of: US2025342959A1
A method for diagnosing Alzheimer's Disease or determining susceptibility to Alzheimer's Disease includes steps of obtaining a blood sample from a target subject and extracting cell-free (cf) DNA from the blood sample as extracted cf DNA. The degree of methylation in one or a plurality of Alzheimer indicator genes in the extracted cf DNA is identified. Each Alzheimer indicator gene identified is an indicator of the presence of or risk of developing Alzheimer's Disease where the plurality of Alzheimer indicators genes have been identified by a machine learning technique or by logistic regression. The target subject is identified as being at risk for Alzheimer's Disease if the amount of methylation of one or more Alzheimer's indicator genes differs from the amount of methylation established in control subjects not having Alzheimer's Disease to a statistically significant degree.
Absstract of: CN120500694A
Systems and methods for applying a machine learning (ML) model to determine a startup confidence value for a generator are presented herein. The computing system may identify a first plurality of parameters of the first generator. The plurality of parameters may identify operation of the first generator. The computing system may apply the first plurality of parameters to the ML model to determine a first confidence value that identifies a first likelihood that the first generator is started at initiation. The computing system may provide an output based on a first confidence value of the first generator.
Absstract of: EP4645322A1
Comprising at least one processor obtaining a combination of information identifying each of the raw materials received from the user and the amount of each of the raw materials, and obtaining a predicted value of a physical property of the property name to be predicted for a composition comprising each of the raw materials by inputting into a first machine learning model at least one of the chemical fingerprints, SMILES strings or chemical graph structure data or product name or substance name corresponding to each of the raw materials and the amount of each of the raw materials, or by inputting into a second machine learning model a set of values based on at least one of the chemical fingerprints, SMILES strings or chemical graph structure data or product name or substance name corresponding to each of the raw materials and the amount of each of the raw materials,wherein the first machine learning model is a model in which parameters are adjusted so that it can predict outputs from inputs by means of a learning data set that takes as inputs at least one of the chemical fingerprints, SMILES strings or chemical graph structure data or product names or substance names corresponding to each of the raw materials and the amount of each of the said raw materials, and as takes as outputs physical property values of the target property names to be predicted, and the second machine learning model is a model in which parameters are adjusted so that it can predict outputs from inputs b
Absstract of: CN120266139A
Systems and methods for predicting group composition of items are disclosed. A system for predicting group composition of items may include a memory storing instructions and at least one processor configured to execute the instructions to perform operations including: receiving entity identification information and a timestamp associated with a transaction without receiving information distinguishing items associated with the transaction; determining a localized machine learning model based on the entity identification information, the localized machine learning model trained to predict a category of an item based on transaction information applied to all of the items associated with the transaction; and applying the localized machine learning model to a model input to generate a predicted category of items associated with the transaction, the model input including the received entity identification information and timestamps but not information distinguishing items associated with the transaction.
Absstract of: EP4645709A1
Provided are a method and an apparatus for performing beam management in a wireless communication system. The method of a terminal may include triggering at least one beam failure recovery (BFR) for a cell that performs beam management using an artificial intelligence and/or machine learning model, deactivating the artificial intelligence and/or machine learning model based on the number of the at least one beam failure recovery triggered during a specific time duration, and transmitting deactivation information of the artificial intelligence and/or machine learning model to a base station. The method of the base station may include transmitting, to the terminal, configuration information related to the artificial intelligence and/or machine learning model, receiving, from the terminal, the deactivation information of the artificial intelligence and/or machine learning model, and, based on the received deactivation information, stopping beam generation related to the artificial intelligence and/or machine learning model.
Absstract of: WO2025226527A1
Systems and methods for application modernization using machine learning (ML) are disclosed herein. An example system receives software development information corresponding to one or more applications, the software development information including human-readable code. The system provides the software development information to an ML model. The ML model is trained using application modernization training data corresponding to best practices for modernizing historical applications based upon historical software development information. The ML model includes a large language model trained to interpret the human-readable code. The ML model generates application modernization information corresponding to at least one application of the one or more applications. The application modernization information includes technical requirements of a corresponding application, and application modernization recommendations of the corresponding application based upon the one or more technical requirements. In response to generating the application modernization information, the system provides the application modernization information to a computing device.
Absstract of: WO2025224675A1
A cell manufacturing management platform facilitates management of a cell manufacturing process. The cell manufacturing management platform tracks events associated with a cell manufacturing process and coordinates between disparate entities involved in the process. The cell manufacturing management platform utilizes machine learning techniques to generate inferences associated with event scheduling in a manner that optimizes an efficiency metric and reduces likelihood of exceptions occurring. Machine learning models may furthermore be used to generate various alerts or other actions associated with the process. A user interface enables different participating entities to track progress of the process and upcoming events.
Absstract of: WO2025226317A2
Techniques for encrypting data within a 5G Open Radio Access Network (O-RAN) includes receiving, at a first module of the 5G O-RAN, a first set of one or more data packets encrypted using mathematical encryption. The method also includes determining, using a machine-learning model trained to detect cybersecurity threats, the existence of a cybersecurity threat associated with the voice or data transaction, and in response, determining to switch encryption from the mathematical encryption to quantum encryption. The method further includes encrypting the one or more data packets using a quantum encryption key to generate quantum-encrypted data packets, transmitting the quantum encryption key from the first module of the 5G O-RAN core to a second module of the 5G O-RAN over a quantum key distribution (QKD) channel, and transmitting the quantum-encrypted data packets from the first module of the 5G O-RAN to the second module of the 5G O-RAN.
Absstract of: WO2025226533A1
A method may receive, by one or more processors, relevant data from a plurality of data sources. A method may input the relevant data, by the one or more processors into a machine learning model, for generating iterations of object models and iterations of object designs. A method may assess, by the one or more processors utilizing an artificial intelligence module, one or more of object performance metrics, user experience indicators, or industry acceptance probabilities based on user feedback and state pattern. A method may cause, by the one or more processors, iterative refinement of the object models and the object designs.
Absstract of: WO2025226511A1
Diagnostic laboratory systems provided herein employ a machine learning software model to identify locations of sample containers and empty container slots in different types of sample container carriers. The model training data is based on images of different sample container carrier types each having at least two sample containers and at least one empty container slot. The images are overlaid with an estimated grid of slots based on identified locations of the at least two sample containers in the image and at least one pre-determined grid parameter. Image patches are extracted from the images based on the estimated grid. Each image patch includes a sample container or an empty container slot upon which locations of sample containers and empty container slots can be identified in sample container carriers received in a diagnostic laboratory system. Systems and methods of training a model and operating a diagnostic laboratory system are disclosed.
Absstract of: US2025337742A1
Access to secured items in a computing system is requested instead of being persistent. Access requests may be granted on a just-in-time basis. Anomalous access requests are detected using machine learning models based on historic patterns. Models utilizing conditional probability or collaborative filtering also facilitate the creation of human-understandable explanations of threat assessments. Individual machine learning models are based on historic data of users, peers, cohorts, services, or resources. Models may be weighted, and then aggregated in a subsystem to produce an access request risk score. Scoring principles and conditions utilized in the scoring subsystem may include probabilities, distribution entropies, and data item counts. A feedback loop allows incremental refinement of the subsystem. Anomalous requests that would be automatically approved under a policy may instead face human review, and low threat requests that would have been delayed by human review may instead be approved automatically.
Absstract of: US2025336521A1
A cell manufacturing management platform facilitates management of a cell manufacturing process. The cell manufacturing management platform tracks events associated with a cell manufacturing process and coordinates between disparate entities involved in the process. The cell manufacturing management platform utilizes machine learning techniques to generate inferences associated with event scheduling in a manner that optimizes an efficiency metric and reduces likelihood of exceptions occurring. Machine learning models may furthermore be used to generate various alerts or other actions associated with the process. A user interface enables different participating entities to track progress of the process and upcoming events.
Absstract of: US2025335796A1
Systems and methods include machine learning models operating at different frequencies. An example method includes obtaining images at a threshold frequency from one or more image sensors positioned about a vehicle. Location information associated with objects classified in the images is determined based on the images. The images are analyzed via a first machine learning model at the threshold frequency. For a subset of the images, the first machine learning model uses output information from a second machine learning model, the second machine learning model being performed at less than the threshold frequency.
Absstract of: US2025335326A1
Aspects relate to system and methods for determining a user specific mission operational performance, using machine-learning processes. An exemplary system includes a computing device configured to perform operations including receiving user-input structured data from at least a user device, receiving observed structured data related to the user and a mission performance metric, inputting the user-input structured data and the observed structured data to a machine-learning model, generating a user performance metric as a function of the machine-learning model, receiving a deterministic mission operational performance metric, disaggregating a deterministic user performance metric as a function of the deterministic mission operation performance metric and the mission performance metric, inputting training data to a machine-learning algorithm, where the training data includes the user-input structured data and the observed structured data correlated to the deterministic user performance metric, and training the machine-learning model as a function of the machine-learning algorithm and the training data.
Absstract of: US2025334943A1
An AI-based platform for enabling intelligent orchestration and management of power and energy is provided herein. The AI-based platform includes a digital twin system including a plurality of digital twins of energy operating assets, the plurality of digital twins of energy operating assets including at least one energy generation digital twin, energy storage digital twin, energy delivery digital twin, and/or energy consumption digital twin, and a set of energy simulation systems configured to generate a simulation of energy-related behavior of at least one of the plurality of digital twins of energy operating assets, and a machine-learning system configured to generate a predicted state of at least one of the energy operating assets. The simulation of energy-related behavior is based on historical patterns, current states, and the predicted state of at least one of the energy operating assets.
Absstract of: US2025335160A1
Systems and methods for application modernization using machine learning (ML) are disclosed herein. An example system receives software development information corresponding to one or more applications, the software development information including human-readable code. The system provides the software development information to an ML model. The ML model is trained using application modernization training data corresponding to best practices for modernizing historical applications based upon historical software development information. The ML model includes a large language model trained to interpret the human-readable code. The ML model generates application modernization information corresponding to at least one application of the one or more applications. The application modernization information includes technical requirements of a corresponding application, and application modernization recommendations of the corresponding application based upon the one or more technical requirements. In response to generating the application modernization information, the system provides the application modernization information to a computing device.
Absstract of: KR20250155192A
본 개시의 실시 예는, 광액세스망과 머신 러닝 모델을 결합하는 방법에 있어서, 사용자 요구사항을 기반으로 하여 기계 학습(machine learning : ML) 모델을 선택하는 과정; 상기 선택된 ML 모델의 평가 지표값과 미리 설정된 기준값을 비교하는 과정; 및 상기 평가 지표값이 상기 기준값을 초과하는지에 기초하여, 상기 선택된 ML 모델 및 상기 선택된 ML 모델로부터 미세조정된 ML 모델 중 적어도 하나를 아티팩트 스토어에 등록하는 과정을 포함하되, 상기 아티팩트 스토어에 등록된 ML 모델은 상기 사용자의 요구사항에 기초로 하여 가상 수동형 광 네트워크(passive optical network : PON) 및 물리 PON에 결합된다.
Absstract of: CN120390929A
A skill chain including a set of ML model evaluations is generated, the input is processed with the set of ML model evaluations, and the skill chain is used to eventually generate a model output accordingly. Each ML model evaluates a "model skill" corresponding to the skill chain. The intermediate output generated by the first ML evaluation for the first model skills of the skill chain may then be processed as an input for the second ML evaluation for the second model skills of the skill chain, thereby ultimately generating a model output for the given input. Such a skill chain may include any number of skills according to any of the various structures and do not need to be evaluated using the same ML model.
Absstract of: CN120303583A
In some aspects, a device may receive sensor data associated with a vehicle and a set of frames. The device may aggregate sensor data associated with the set of frames using the first gesture to generate an aggregated frame, where the aggregated frame is associated with the set of cells. The device may obtain an indication of a respective placeholder flag from each cell of the set of cells, where the respective placeholder flag includes a first placeholder flag or a second placeholder flag, and where the set of cells from the set of cells is associated with the first placeholder flag. The device may train a machine learning model using data associated with the aggregated frame to generate a placeholder grid based on a loss function that calculates only losses from respective cells of the set of cells. Numerous other aspects are described.
Absstract of: US2025328780A1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for battery performance prediction. One of the methods includes actions of receiving battery test data of a battery cell. The battery test data includes data of at least one battery cell property of at least two battery tests. Each battery test includes applying pulses on the battery cell during a battery cycle. The battery test data is provided as input to a machine learning system to predict battery cell performance. The machine learning system includes a machine learning model that has been trained using training data includes test data of battery cells that reached respective end of life (EOL) cycles. In response, a prediction result for the battery cell is automatically generated by the machine learning model. The prediction result indicates an EOL cycle of the battery cell. An action is taken based on the prediction result.
Absstract of: WO2025221413A1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for battery performance prediction. One of the methods includes actions of receiving battery test data of a battery cell. The battery test data includes data of at least one battery cell property of at least two battery tests. Each battery test includes applying pulses on the battery cell during a battery cycle. The battery test data is provided as input to a machine learning system to predict battery cell performance. The machine learning system includes a machine learning model that has been trained using training data includes test data of battery cells that reached respective end of life (EOL) cycles. In response, a prediction result for the battery cell is automatically generated by the machine learning model. The prediction result indicates an EOL cycle of the battery cell. An action is taken based on the prediction result.
Absstract of: WO2025221872A1
The technology evaluates the compliance of an AI application with predefined vector constraints. The technology employs multiple specialized models trained to identify specific types of non-compliance with the vector constraints within AI-generated responses. One or more models evaluate the existence of certain patterns within responses generated by an AI model by analyzing the representation of the attributes within the responses. Additionally, one or more models can identify vector representations of alphanumeric characters in the AI model's response by assessing the alphanumeric character's proximate locations, frequency, and/or associations with other alphanumeric characters. Moreover, one or more models can determine indicators of vector alignment between the vector representations of the AI model's response and the vector representations of the predetermined characters by measuring differences in the direction or magnitude of the vector representations.
Absstract of: WO2025221286A1
In a general aspect, benchmarking for data quality monitoring is described. In some embodiments, a system identifies a base data set to be used as input to a machine learning (ML) model. The system generates a modified base data set by causing synthetic anomaly injection operations to be performed on data of the base data set. The system causes the ML model to run, using the base data set as input, to determine a first output of the ML model, and to run, using the modified base data set as input, to determine a second output of the ML model. The system determines a set of performance metrics representing performance of the ML model at detecting data anomalies and outputs a representation of the set of performance metrics.
Absstract of: US2025329252A1
A system and method for communicating road condition data. The system and method includes a plurality of inter-changeable housings, including a sensor housing comprising a sensor configured to generate sensor data; a data processing housing comprising a processor configured to receive the sensor data and vehicle-originated data, and apply one or more layers of a machine learning architecture to the sensor data and the vehicle-originated data to generate at least a portion of vehicle instruction data; and a wireless communication housing comprising a wireless interface circuit configured to receive the vehicle-originated data and to transmit the vehicle instruction data generated by the processor.
Absstract of: US2025328822A1
The technology evaluates the compliance of an AI application with predefined vector constraints. The technology employs multiple specialized models trained to identify specific types of non-compliance with the vector constraints within AI-generated responses. One or more models evaluate the existence of certain patterns within responses generated by an AI model by analyzing the representation of the attributes within the responses. Additionally, one or more models can identify vector representations of alphanumeric characters in the AI model's response by assessing the alphanumeric character's proximate locations, frequency, and/or associations with other alphanumeric characters. Moreover, one or more models can determine indicators of vector alignment between the vector representations of the AI model's response and the vector representations of the predetermined characters by measuring differences in the direction or magnitude of the vector representations.
Absstract of: US2025328783A1
Systems and methods are described for identifying and resolving performance issues of automated components. The automated components are segmented into groups by applying a K-means clustering algorithm thereto based on segmentation feature values respectively associated therewith, wherein an initial set of centroids for the K-means clustering algorithm is selected by applying a set of context rules to the automated components. Then, for each group, a performance ranking is generated based at least on a set of performance feature values associated with each of the automated components in the group and a feature importance value for each of the performance features. The feature importance values are determined by training a machine learning based classification model to classify automated components into each of the groups, wherein the training is performed based on the respective performance feature values of the automated components and the respective groups to which they were assigned.
Absstract of: WO2025221398A1
Systems, methods, and apparatus, including computer-readable media, for bandwidth prediction using machine learning. In some implementations, a device detects a series of requests for streaming media content. The device generates a set of feature values based on times that the requests for the streaming media content were issued. The device provides the set of feature values as input to a machine learning model that has been trained to predict a time that a future request for media content will be issued. The device receives output of the machine learning model that indicates a predicted time of a subsequent request for the streaming media content or a predicted time to request bandwidth allocation for the subsequent request. Based on the output generated by the machine learning model, the device sends a bandwidth allocation request to allocate bandwidth to transmit data in a wireless network.
Absstract of: US2025328787A1
Embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for processing an inclusion of an entity for an event. In accordance with one embodiment, a method is provided that includes: determining whether a graph representation data object comprises an inbound edge connecting an entity node representing the entity with an event node representing the event; and responsive to determining the graph representation data object comprises the inbound edge, performing an action involving inclusion of the entity for the event. The inbound edge is generated via an inbound edge generator machine learning model configured to: traverse entity and/or inclusion edges of the graph representation data object to identify inclusion and entity edges connected, generate an entity score data object for the entity based at least in part on the inclusion edges, and responsive to the data object satisfying a threshold, generate the inbound edge.
Absstract of: US2025328793A1
Methods and systems for training and using a binary classifier implemented using quantum computing techniques are disclosed. The described approach involves deriving, from an input data set, a plurality of training samples, each training sample comprising a data vector having a plurality of features and a class label. Each data vector is processed using a quantum classification process including: encoding the data vector as an Ising Hamiltonian; implementing the Ising Hamiltonian on a set of real or virtual qubits of a quantum processing unit or an emulation thereof to form a quantum system representing the data vector; executing operations on the (emulation of the) quantum processing unit to prepare the ground state of the quantum system; determining one or more properties of the ground state; and identifying one of a set of possible ground states corresponding to the data vector based on the one or more properties. The system then determines, based on the identified ground states and class labels for the training samples, a mapping that maps ground states to class labels. The mapping is stored and used for classifying further data samples.
Absstract of: WO2025221523A1
Methods, systems, and apparatuses include receiving, via a conversational interface, user input from a user of an online system. A user input embedding is generated for the user input. A vector store is retrieved including tool description embeddings. A similarity search is performed using the user input embedding and the tool description embeddings. A set of tool descriptions is determined using results of the similarity search. A prompt is generated using the set of tool descriptions and the user input. Machine learning agents are applied to the prompt to cause the machine learning agents to use tools associated with the set of tool descriptions. A response to the prompt is received, from the machine learning agents, in response to the machine learning agents using the tools. An output to the user input based on the response is sent, via the conversational interface, to the user of the online system.
Absstract of: US2025328785A1
The invention is generally directed to systems and methods of monitoring or predicting a service event for an industrial asset using an artificial intelligence of things (AIoT) system including an AIoT device, AIoT cloud, and a self-learning AI classification and analytics engine. The device may include one or more sensors and an inference engine for reducing power consumption and detecting anomalies at the edge and sending data associated with anomalies to a signal processor for classification and AI-driven automatic configuration. Classification may be based on narrow-band analysis and/or machine learning models. If an anomaly is detected power may be provided to a communication module to send sensor data to the signal processor for classification and/or further processing. Classifications or determinations made by the signal processor or detected through a work-order system may be used to automatically retrain the inference model on the edge, so that the system is self-learning.
Absstract of: US2025328505A1
In a general aspect, benchmarking for data quality monitoring is described. In some embodiments, a system identifies a base data set to be used as input to a machine learning (ML) model. The system generates a modified base data set by causing synthetic anomaly injection operations to be performed on data of the base data set. The system causes the ML model to run, using the base data set as input, to determine a first output of the ML model, and to run, using the modified base data set as input, to determine a second output of the ML model. The system determines a set of performance metrics representing performance of the ML model at detecting data anomalies and outputs a representation of the set of performance metrics.
Absstract of: US2025328821A1
Approximating a more complex multi-objective feed item scoring model using a less complex single objective feed item scoring model in a multistage feed ranking system of an online service. The disclosed techniques can facilitate multi-objective optimization for personalizing and ranking feeds including balancing personalizing a feed for viewer experience, downstream professional or social network effects, and upstream effects on content creators. The techniques can approximate the multi-objective model-that uses a rich set of machine learning features for scoring feed items at a second pass ranker in the ranking system-with the more lightweight, single objective model-that uses fewer machine learning features at a first pass ranker in the ranking system. The single objective model can more efficiently score a large set of feed items while maintaining much of the multi-objective model's richness and complexity and with high recall at the second pass ranking stage.
Absstract of: US2025190475A1
Systems and methods are configured to generate a set of potential responses to a prompt using one or more data models with data from at least a plurality of data domains of an enterprise information environment that includes access controls. A deterministic response is selected from the set of potential responses based on scoring of the validation data and restricting based on access controls in view profile information associated with the prompt. These enterprise generative AI systems and methods support granular enterprise access controls, privacy, and security requirements. enterprise generative AI providing traceable references and links to source information underlying the generative AI insights. These systems and methods enable dramatically increased utility for enterprise users to information, analyses, and predictive analytics associated with and derived from a combination of enterprise and external information systems.
Absstract of: US2025322312A1
Techniques are disclosed for revising training data used for training a machine learning model to exclude categories that are associated with an insufficient number of data items in the training data set. The system then merges any data items associated with a removed category into a parent category in a hierarchy of classifications. The revised training data set, which includes the recategorized data items and lacks the removed categories, is then used to train a machine learning model in a way that avoids recognizing the removed categories.
Absstract of: US2025322027A1
A system and method include generating synthetic data by generating a first set of hyperparameters for a first trained machine learning model and a second set of hyperparameters for a second trained machine learning model, generating a plurality of synthetic data vectors using the first and second trained machine learning models, computing an error function for the first and second set of hyperparameters using a third machine learning model, computing an objective function value, responsive to determining that the objective function value is not an optimal value, updating the first set of hyperparameters and the second set of hyperparameters or responsive to determining that the objective function value is an optimal value outputting the plurality of synthetic data vectors as a set of synthetic data.
Absstract of: US2025322026A1
A system and method include generating synthetic data by generating a first set of hyperparameters for a first trained machine learning model and a second set of hyperparameters for a second trained machine learning model, generating a plurality of synthetic data vectors using the first and second trained machine learning models, computing an error function for the first and second set of hyperparameters using a third machine learning model, computing an objective function value, responsive to determining that the objective function value is not an optimal value, updating the first set of hyperparameters and the second set of hyperparameters or responsive to determining that the objective function value is an optimal value outputting the plurality of synthetic data vectors as a set of synthetic data.
Absstract of: US2025322342A1
Mitigation of temporal generalization losses a target machine learning model is disclosed. Mitigation can be based on identifying, removing, modifying, transforming, etc., features, explanatory variables, models, etc., that can have an unstable relationship with a target outcome over time. Implementation of a more stable representation can be initiated. Temporal stability measures (TSMs) for one or more model feature(s) can be determined based on one or more variable performance metrics (VPMs). A group of one or more VPMs can be selected based on features of a model in either a development or production environment. Model feature modification can be recommended based on a TSM, which can prune a feature, transform a feature, add a feature, etc. Temporal stability information can be presented, e.g., via a dashboard-type user interface. Models can be updated based on mutations of a model comprising a feature modification(s), including competitive champion/challenger model updating.
Absstract of: US2025322037A1
A method for assessing and/or monitoring a process and/or a multi-axis machine includes recording at least one data time series, wherein the at least one data time series includes at least one channel describing at least one parameter of the process and/or of the multi-axis machine, and wherein the data time series is caused by the process. An interpretable result is determined by a machine learning algorithm based on the at least one data time series, wherein the result describes a classification value of a state in the process and/or of a state of the multi-axis machine. A warning is output when determining the result if the classification value of the state in the process and/or of the state of the multi-axis machine is assigned to a value of an error class that is in a warning range or corresponds to a warning range, and an all-clear signal is output if the classification value of the state in the process and/or of the state of the multi-axis machine is assigned to a value of an error class that is in an all-clear range or corresponds to an all-clear range.
Absstract of: US2025322302A1
An information processing apparatus 100 of the present invention includes: an explanation generating unit 121 that generates explanatory data explaining a prediction value output by a machine learning model as a response to an input of training data; and a parameter calculating unit 122 that calculates a parameter of the machine learning model so as to reduce a prediction loss representing a degree of difference between a preset ground truth value and a prediction value output by the machine learning model as a response to the input of the training data, and to reduce an explanation loss representing a degree of unsatisfaction, by the explanatory data, of a preset criterion that the explanatory data should satisfy.
Absstract of: US2025322366A1
The present disclosure generally relates to a computer device, method and system utilizing machine learning for capturing and analyzing profile data communicated across a computing environment including but not limited to: each user's profile, online behaviors and career progression path and provides dynamic recommendations of online actions to be performed to reach a desired target state.
Absstract of: US2025322407A1
Systems, apparatuses, methods, and computer program products are disclosed for providing emotionally intelligent interaction guidance. An example method includes detecting a user interaction event for a user within an environment and receiving media pertaining to the user. The example method further includes determining an inferred emotional classification for the user based on the received media. The example method further includes generating the emotionally intelligent interaction guidance based on the inferred emotional classification using a guidance machine learning model and providing the emotionally intelligent interaction guidance to an entity device.
Absstract of: US2025322958A1
Techniques are disclosed for using feature delineation to reduce the impact of machine learning cardiac arrhythmia detection on power consumption of medical devices. In one example, a medical device performs feature-based delineation of cardiac electrogram data sensed from a patient to obtain cardiac features indicative of an episode of arrhythmia in the patient. The medical device determines whether the cardiac features satisfy threshold criteria for application of a machine learning model for verifying the feature-based delineation of the cardiac electrogram data. In response to determining that the cardiac features satisfy the threshold criteria, the medical device applies the machine learning model to the sensed cardiac electrogram data to verify that the episode of arrhythmia has occurred or determine a classification of the episode of arrhythmia.
Absstract of: AU2024243389A1
Disclosed are systems, methods, and devices for correcting or otherwise cleaning sensor data. Sensor readings and metadata or other information about the sensor readings can be collected, and one or more detection rules (e.g., machine learning models or other detection rules) can be automatically generated for modifying subsequent sensor data. Sensor readings can be refined or supplemented by applying applicable detection rules.
Absstract of: WO2025215207A1
Method of automated spatial patterning of defect centers (6) in a substrate, particularly a diamond crystal lattice (50), comprising the following steps: - providing a defect center (6) distribution to a machine-learning model, the machine-learning model being particularly trained to determine an output for displacement of at least one defect center (6) based on the provided defect center (6) distribution, the machine learning model providing an output for displacement of individual defect centers (6), - particularly providing a substrate, particularly diamond, comprising defect centers (6) in a bulk structure of the substrate, particularly a bulk diamond crystal lattice (50), - detecting the position of at least one defect center (6) in the bulk structure of the substrate, particularly the bulk diamond crystal lattice (50), and - displacing (61) the at least one defect center (6) in the bulk structure of the substrate, particularly the bulk diamond crystal lattice (50), particularly site-specific, in a defined direction.
Absstract of: WO2025215209A1
Method of automated spatial patterning of defect centers (6) in a substrate, particularly a diamond crystal lattice (50), comprising the following steps: - providing a defect center (6) distribution to a machine-learning model, the machine- learning model being particularly trained to determine an output for displacement of at least one defect center (6) based on the provided defect center (6) distribution, the machine learning model providing an output for displacement of individual defect centers (6), - particularly providing a substrate, particularly diamond, comprising defect centers (6) in a bulk structure of the substrate, particularly a bulk diamond crystal lattice (50), - detecting the position of at least one defect center (6) in the bulk structure of the substrate, particularly the bulk diamond crystal lattice (50), and - displacing (61) the at least one defect center (6) in the bulk structure of the substrate, particularly the bulk diamond crystal lattice (50), particularly site-specific.
Absstract of: WO2025215117A1
Methods and systems are disclosed in which the trustworthiness of predictive models, e.g., machine learning models, is enhanced by incorporating feedback regarding training set reactions is used to train the model so that the model is adapted so that subsequent predictions align with or account for the feedback. The feedback may include, e.g., process level reasoning, mechanism level reasoning, outlines of mechanistic reasoning, suggestions of reference reactions, or estimates of a probability of success of a given reaction. The feedback may itself be generated or proposed by a machine learning model. The model may direct an automated laboratory to perform reactions from which feedback is extracted and used to train the model.
Absstract of: WO2025215513A2
Disclosed embodiments relate to systems and methods for acoustically detecting leakage of a fluid using one or more acoustic sensors. Techniques include receiving a signal from the one or more acoustic sensors; performing pre-processing on the signal; inputting the pre-processed signal to a machine learning algorithm; receiving, based on the pre-processed signal and the machine learning algorithm, a classification of the pre- processed signal, the classification being associated with an acoustic profile of leakage of a fluid; and providing a prompt associated with the classification to a user device.
Absstract of: US2025322316A1
A candidate content item is identified for integration into a content collection. The candidate content item is associated with a first value. Using at least one machine learning model, a select value and a skip value are automatically generated for the candidate content item. The select value indicates a likelihood that the user will select the candidate content item, and the skip value indicates a likelihood that the user will bypass the candidate content item. A second value is generated for the candidate content item based on the first value, the select value, and the skip value. The candidate content item is automatically selected from a plurality of candidate content items based on the second value meeting at least one predetermined criterion. The selected candidate content item is then automatically integrated into the content collection, which is caused to be presented on a device of a user.
Absstract of: US2025322236A1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting machine learning language models using search engine results. One of the methods includes obtaining question data representing a question; generating, from the question data, a search engine query for a search engine; obtaining a plurality of documents identified by the search engine in response to processing the search engine query; generating, from the plurality of documents, a plurality of conditioning inputs each representing at least a portion of one or more of the obtained documents; for each of a plurality of the generated conditioning inputs, processing a network input generated from (i) the question data and (ii) the conditioning input using a neural network to generate a network output representing a candidate answer to the question; and generating, from the network outputs representing respective candidate answers, answer data representing a final answer to the question.
Absstract of: US2025322210A1
A method of performing sustainability optimization includes processing a set of inputs using a trained machine learning model to generate a set of outputs, wherein the set of inputs correspond to configuration parameters of a process configured to be performed on a physical machine, and wherein the set of outputs includes a plurality of predicted waste metrics resulting from performance of the process on the physical machine. The method further includes optimizing the set of inputs and the set of outputs for meeting sustainability constraints in view of process constraints and outputting a recommendation for operating the process on the physical machine based on the optimized set of inputs and set of outputs, for avoiding a risk of failure to operate the process, while meeting the sustainability constraints and the process constraints.
Absstract of: US2025322952A1
A computer-implemented method for control of a surgical device includes accessing raw data captured by a sensor of the surgical device during a procedure, filtering the raw data with a filter, generating a difference data based on a difference between the raw data and the filtered data, generating zero-crossing data based on determining a point in time where an amplitude of the difference data last crossed from a non-zero amplitude value through a zero amplitude value to a non-zero amplitude value of the opposite sign, providing the zero-crossing data as an input to a machine learning classifier, and predicting a probability of an end stop point based on the machine learning classifier. The end stop point includes a point in time where a knife of the surgical device ceases to cut tissue.
Absstract of: US2025322167A1
Systems and methods to use one or more machine learning models to summarize a set of one or more documents are disclosed. Exemplary implementations may obtain one or more documents including divisions and organized into individual hierarchies; identify the divisions using at least one of the one or more machine learning models, wherein individual sets of sections and sets of subsections are identified; create sets of semantic vectors characterizing semantic meaning of individual divisions organized at the bottom level of individual hierarchies using at least one of the one or more machine learning models, wherein semantic vectors for individual subsections are created; and recursively generate summary vectors summarizing semantic meaning of individual divisions using at least one of the one or more machine learning models, wherein summary vectors are generated for subsections based on the semantic vectors, sections based on subsection summary vectors, and documents based on section summary vectors.
Absstract of: US2025321930A1
Techniques for optimizing project data storage are disclosed. An example system includes processors and memories communicatively coupled with the processors storing a trained machine learning (ML) model, a data inbox, a project database associated with a project, and instructions that cause the processors to: receive, at the data inbox, an input including data corresponding to the project, wherein the data is formatted in accordance with a non-standardized format; execute the trained ML model to: extract the data from the input, and analyze the data to output (i) a predicted classification and (ii) a predicted impact associated with the project; convert the data to a standardized format based on the predicted classification; store (i) the data and (ii) the predicted impact in the project database; and generate an indication of the data and the predicted impact for display to a user as part of the data inbox.
Absstract of: US2025322289A1
A smart shopping cart includes a load sensor to measure the weight of items added to the cart. To avoid waiting for the load sensor to converge, a detection system predicts the weight of items added to the storage area of a smart shopping cart based on the shape of a load curve output by the load sensor when an item is added to the cart. The detection system receives load data from the load sensor, detects that an item was added to the storage area of the shopping cart during a time period and identifies a set of load measurements captured by the load sensor during the time period. The set of load measurements comprise a load curve, to which the detection system applies a weight prediction model to generate a predicted weight of the added item.
Absstract of: US2025322272A1
A multimodal content management system having a block-based data structure can include a question and answer (Q&A) assistant (e.g., a chatbot). The system can receive a natural language prompt and generate a result set. The result set can include blocks (e.g., blocks that include responsive content, including content in different modalities). The system can apply a set of authority signals to items in the result set to generate a ranked result set. The authority signals can be generated using aspects of the block-based data structure, such as block properties. The system can cause the Q&A assistant to return a set of hyperlinks to the ranked result set items. The hyperlinks can be operable to enable navigation to block content without closing the Q&A assistant.
Absstract of: US2025322260A1
A system and method include generating synthetic data by generating a first set of hyperparameters for a first trained machine learning model and a second set of hyperparameters for a second trained machine learning model, generating a plurality of synthetic data vectors using the first and second trained machine learning models, computing an error function for the first and second set of hyperparameters using a third machine learning model, computing an objective function value, responsive to determining that the objective function value is not an optimal value, updating the first set of hyperparameters and the second set of hyperparameters or responsive to determining that the objective function value is an optimal value outputting the plurality of synthetic data vectors as a set of synthetic data.
Absstract of: US2025322262A1
A system and method include generating synthetic data by generating a first set of hyperparameters for a first trained machine learning model and a second set of hyperparameters for a second trained machine learning model, generating a plurality of synthetic data vectors using the first and second trained machine learning models, computing an error function for the first and second set of hyperparameters using a third machine learning model, computing an objective function value, responsive to determining that the objective function value is not an optimal value, updating the first set of hyperparameters and the second set of hyperparameters or responsive to determining that the objective function value is an optimal value outputting the plurality of synthetic data vectors as a set of synthetic data.
Absstract of: US2025322269A1
Systems and methods for implementing a threat model that classifies contextual events as threats. The method can include: accessing a threat model; identifying a set of contextual events, wherein each contextual event comprises a set of semantic primitives predicted from a plurality of sensor streams; and determining a threat level for each contextual event based on threat probabilities.
Absstract of: US2025322297A1
Techniques are described for training a machine learning model on parameters calculated from usage parameters of a plurality of training instances of a mixed reality graphical environment (MRGE) to determine usage scenarios using a supervisory signal and then using the trained machine learning model to ascertain usage scenarios for non-training instances of the MRGE to determine usage scenarios. The ascertained usage scenarios may then be used to dynamically adjust features of the non-training instances of an MRGE.
Absstract of: WO2025215419A1
The present disclosure provides a system and method for optimal decision-making in multi-criteria decision-making (MCDM) problems. The invention addresses limitations of conventional approaches, which rely heavily on subjective expert inputs and biased preprocessing techniques, by introducing a statistically driven framework based on distribution normalization and data-driven weight assignment. The system comprises modules for preprocessing, evaluation, assessment, and output generation, wherein input data is normalized, criteria constraints inverted where necessary, and statistical weights optimally assigned. Decision alternatives are then computed, evaluated, and ranked to derive one or more optimal decisions. This framework ensures unbiased, efficient, and replicable outcomes across applications including Geographic Information Systems (GIS), Data Analysis, Artificial Intelligence, and Machine Learning.
Absstract of: WO2025216752A1
A multimodal content management system having a block-based data structure can include an artificial intelligence (AI)-based embeddings generator and indexer. After receiving an item update instruction that includes an object (e.g., a block content, a block property, or a block schema) identifier and an update payload, the system can transform the update payload—for example, by generating a chunk to capture at least a portion of the update payload. The chunk can correspond to a particular content modality included in the update payload. The system can generate and retrievably store a vector comprising a set of embeddings corresponding to the chunk, where the embeddings represent a vectorized portion of block content, block property, or block schema.
Absstract of: WO2025217351A1
Methods, systems, and computer program products for providing global personalized recommendations are provided. An example method may include generating embeddings for a first plurality of entities based on a first dataset, determining first identifiers of the first plurality of entities included in the first dataset that corresponds to second identifiers of a second plurality of entities included in a second dataset to provide a matched set of entities, wherein the second dataset includes attribute data associated with each entity of the second plurality of entities, generating a graph representation of the second plurality of entities, and wherein the graph includes nodes and each node represents an entity of the second plurality of entities, determining one or more first nodes that lacks data associated with a node embedding, and generating data associated with the node embedding for the one or more first nodes using a graph neural network (GNN) machine learning model.
Absstract of: WO2025217397A1
Disclosed are systems and methods for improving processes for developing cell therapies by applying machine learning to data including manufacturing process data and clinical measurements (e.g., patient response and treatment data) to determine parameters and settings for a manufacturing process for engineering cells for use in cell therapy. Parameters and settings for a manufacturing process for genetically engineered T-cells including, but not limited to, Chimeric Antigen Receptor (CAR) T cells can be determined. A method can include receiving a set of process parameters of a cell engineering process, predicting a clinical response associated with an output of the cell engineering process by applying a machine learning model on the received set of process parameters, where the machine learning model is trained on process parameter data and clinical response data, and generating a visualization for use in a graphical user interface of the predicted clinical response.
Absstract of: WO2025216929A1
A smart shopping cart includes a load sensor to measure the weight of items added to the cart. To avoid waiting for the load sensor to converge, a detection system predicts the weight of items added to the storage area of a smart shopping cart based on the shape of a load curve output by the load sensor when an item is added to the cart. The detection system receives load data from the load sensor, detects that an item was added to the storage area of the shopping cart during a time period and identifies a set of load measurements captured by the load sensor during the time period. The set of load measurements comprise a load curve, to which the detection system applies a weight prediction model to generate a predicted weight of the added item.
Absstract of: WO2025217449A1
The present disclosure relates to generating suggested responses to customer requests using machine learning models. In one example, a method includes: receiving, from a customer, a customer request via a communication channel; displaying in a customer support user interface the customer request; processing the customer request with a machine learning model to determine a suggested response to the customer request; and displaying in an agent assistance user interface element in the customer support user interface: the suggested response to the customer request; a first user interface element configured to implement the suggested response; and a second user interface element configured to dismiss or modify the suggested response.
Absstract of: EP4632619A1
A method of performing sustainability optimization includes processing a set of inputs using a trained machine learning model to generate a set of outputs, wherein the set of inputs correspond to configuration parameters of a process configured to be performed on a physical machine, and wherein the set of outputs includes a plurality of predicted waste metrics resulting from performance of the process on the physical machine. The method further includes optimizing the set of inputs and the set of outputs for meeting sustainability constraints in view of prospcess constraints and outputting a recommendation for operating the process on the physical machine based on the optimized set of inputs and set of outputs, for avoiding a risk of failure to operate the process, while meeting the sustainability constraints and the process constraints.
Absstract of: GB2640229A
An apparatus 100 comprising: means for receiving a network configuration 106 derived from a plurality of machine-learning, ML models, each ML model directed towards a respective one or more radio access network, RAN functionalities; means for receiving a plurality of predicted performance, PM measurement counters output 108 from a plurality of ML performance measurement models, each ML prediction measurement model corresponding to one of the plurality of ML models; and means for processing, using a common ML performance measurement counter model 102, the network configuration and the plurality of predicted performance measurement counters to determine a model output comprising, for one or more performance measurement counters, a respective plurality of impact scores 112, wherein each impact score is indicative of a predicted impact of a corresponding ML model in the plurality of ML models on the respective performance measurement counter of said impact score for the network configuration. The apparatus may further comprise means for executing the plurality of ML models on respective measurement data to generate a plurality of respective RAN functionality predictions; and means for generating, from the plurality of respective RAN functionality predictions, the network configuration.
Absstract of: EP4632637A1
Provided is an information processing method, etc. that assists a user in interpreting behavior of a generated machine learning model. In the information processing method, a computer executes processing of recording a plurality of sets of an explanatory data vector xn input to an existing machine learning model (21) and an objective data vector yn output from the machine learning model (21) in association with each other, calculating an interpretation matrix A† which is a vector product of an explanatory matrix X in which a plurality of sets of the explanatory data vector xn is arranged and a generalized inverse matrix of an objective matrix Y in which the objective data vector yn is arranged in an order corresponding to the explanatory data vector X, and outputting a chart (41, 42, and 43) related to the interpretation matrix A†.
Nº publicación: KR20250144672A 13/10/2025
Applicant:
성균관대학교산학협력단
Absstract of: US2025307630A1
In accordance with an embodiment of the present invention, there is provided a method for training a deep learning model for generative retrieval, the method comprising: performing a first training step of the deep learning model to generate vocabulary identifiers for each of at least two documents by receiving the at least two documents as input; and performing a second training step of the deep learning model to determine weights for the vocabulary identifiers by receiving a query, a relevant document associated with the query, and an irrelevant document not associated with the query as input.