Absstract of: CN120515745A
本发明提供了一种用于水电解制氢PEM膜电极修复的清洗装置,属于PEM膜电极清洗技术领域。其技术方案为:包括溶剂槽,溶剂槽内两侧侧壁上均设置有转轴,两个转轴之间设置有用于放置PEM膜电极的夹持机构,溶剂槽外侧面上设置有电机,相应侧转轴设置在电机的输出轴上;夹持机构包括一对分别同轴设置在两个转轴内侧端的圆盘,两侧圆盘之间沿同一圆周设置有若干组支撑部,支撑部包括弧形长板,弧形长板上设置有若干组固定块,相邻两个固定块之间形成弧形夹槽。本发明的有益效果为:本装置通过创新的结构设计和自动化控制,不仅提高了PEM膜电极的清洗效果和完整性,还增强了装置的通用性、操作简便性和稳定性,具有显著的技术优势和经济效益。
Absstract of: CN120515454A
本发明提供了一种高暴露活性位点异金属多酸团簇催化剂的制备方法,将无催化活性位点的镍(Ni)取代POM(NiW)通过精准热活化改性,成功合成了高暴露活性位点的350‑HNiW材料。在水分解产氢的光催化反应中,350‑HNiW的产氢速率可达55mmol·g‑1·h‑1。催化剂的改性方法非常简单,只需要通过计算热稳定性差异,在管式炉中进行精准加热活化。催化剂经历从无催化活性到高催化活性的过程,从而高效分解水产氢。
Absstract of: CN120519896A
本发明公开了一种三金属尖晶石氧化物/高价金属氧化物复合OER电催化剂及其制备方法。所述方法先通过胶体磨一步合成缺陷丰富的三金属LDH纳米片,然后利用离子交换法将高价过渡金属氧酸根离子插入LDH层间,最后采用低温热氧化法使LDH向尖晶石结构拓扑转化同时产生更多的缺陷,制得复合氧化物电催化剂。本发明基于层状双氢氧化物层间阴离子的可调性质,结合成核晶化隔离法、离子交换法和热氧化技术,制备了具有超薄纳米片结构和丰富的表面缺陷的复合氧化物电催化剂,其具有远高于贵金属的OER催化性能。
Absstract of: CN120519883A
本发明涉及酸性析氧反应催化剂领域,公开了一种Ru基析氧催化剂及其制备方法和应用。制备方法为:制备CoMn‑ZIF‑L前驱体骨架;将CoMn‑ZIF‑L前驱体骨架在惰性气氛下煅烧,得到载体;将载体分散在溶剂中,然后加入RuCl3溶液中反应,将反应产物分离、洗涤、干燥后在空气氛围下煅烧,得到所述Ru基析氧催化剂。本发明以MOF骨架载体限域、原子掺杂配位重构、界面稳定性强化为协同调控路径,制备出基于沸石咪唑酯骨架结构前驱体的叶状薄片钴锰尖晶石作为新型载体,最终实现高Ru利用率、强界面相互作用、快传质效率的三重突破。
Absstract of: CN120515459A
本发明涉及光催化析氢技术领域,公开了一种光诱导高分散AgNi/CM‑C3N4催化剂的制备方法及应用,制备方法为:将CM‑C3N4分散在银盐和镍盐的混合水溶液中,通过超声搅拌直至分散均匀,将混合悬浮液置于氙灯光源下,将得到的沉淀物干燥后研磨,即得到AgNi/CM‑C3N4光催化剂。本发明使用的光诱导法操作简单,抑制颗粒团聚,得到的催化剂光催化析氢活性得到明显提升。
Absstract of: CN120515376A
本公开涉及氢气制备技术领域,特别是集成式本生反应器及热化学硫碘循环制氢工艺,包括内衬抗腐蚀材料的反应容器,反应容器上部设有通入本生反应原料的喷射器,中部设有硫酸相出口,底部设有氢碘酸相出口;喷射器包括夹套管和设于其内的内管,内管为本生反应原料的液相流道,夹套管为本生反应原料的气相流道,高压的本生反应原料通过喷射器形成雾状气液混合物,实现了气体和液体在带压下的瞬间均匀混合,消除了气液相的传质阻力,极大的缩短了反应所需的时间,同时在加压状态下,打破SO2的5%溶解度限制,实现了一次性完全溶解,解决了系统硫元素的完全闭环循环难题。
Absstract of: CN120515441A
本发明公开了一种基于金属载体的整体式催化剂、制备方法及应用;该方法包括:对金属载体进行碱/酸超声清洗、干燥后,通过梯度氧化处理在载体表面形成氧化层,最后采用浸渍法、3D打印涂覆或电弧喷涂法负载催化层;本发明通过碱刻蚀去除表面杂质,结合梯度氧化工艺在金属载体表面形成特殊氧化层结构,显著增强了催化剂与载体的界面结合强度,优化了传质/传热性能。该方法工艺简单、易于规模化生产,所制备的催化剂在氨分解制氢反应中表现出优异的催化活性和高温稳定性,特别适用于高温条件下的高效制氢应用。
Absstract of: US2023272543A1
A modular system for hydrogen generation includes a plurality of cores and a hub. Each core includes an electrolyzer and a power supply. The power supply is operable to manage electrical power to the electrolyzer of the core and is redundant to the power supply of at least another one of the plurality of cores. The hub includes a water module, a heat exchange module, and a switchgear module. The water module includes a water source in fluid communication with the electrolyzer of each one of the plurality of cores, the heat exchange module includes a heat exchanger in thermal communication with the electrolyzer of each one of the plurality of cores, and the switchgear module includes a switch activatable to electrically isolate the power supply of each one of the plurality of cores.
Absstract of: JP2023106855A
To provide a hydrogen system operation planning device which can accurately create an operation plan that achieves an efficient operation in a hydrogen system.SOLUTION: A hydrogen system operation planning device 200 that plans an operation of a hydrogen system comprising a hydrogen manufacturing deice for manufacturing hydrogen by using electric power, includes: a classification part 210 into which a DR command related to a demand of the power in the hydrogen system is input, and which classifies the input DR command into a first DR group and a second DR group having a priority lower than that of the first DR group; a first plan part 220 that creates a first operation plan so as to reflect the DR command classified into the first DR group; and a second plan part 230 that creates a second operation plan by reflecting contents of the DR command classified into the second DR group upon the first operation plan so that the command of the DR command classified into the first DR group is more prioritized than the content of the DR command classified into the second DR group.SELECTED DRAWING: Figure 2
Absstract of: CN120519914A
双极膜强化电解水制氢电解槽,涉及电解水制氢技术领域,包括集成底座,集成底座上设有双极膜电解模块、水路循环模块、散热模块、纯化干燥模块;双极膜电解模块包括电解箱,电解箱焊接在集成底座上;电解箱内焊接有分隔竖板,分隔竖板上固定有电场发生器;分隔竖板上开设有连通口,连通口的两侧固定设有前段电解管和后段电解管;前段电解管上开设有阳离子排出口,阳离子排出口内固定有阳离子交换膜;前段电解管内还固定设有水平界面膜;后段电解管上开设阴离子排出口,阴离子排出口内固定有阴离子交换膜;后段电解管内还固定设有竖直界面膜。本发明解决了电解水制氢中存在的高能耗、低纯度、散热难、耗水多、系统庞杂、控制僵化及安全风险等问题。
Absstract of: CN120515408A
本发明提供了一种锂促进钌基氨分解催化剂及其制备方法,属于热催化技术领域。本发明所述制备方法的步骤如下:将LiNO3和Al(NO3)3·9H2O混合,得到第一混合溶液,之后将其与NaOH溶液滴加至Na2CO3溶液中生成沉淀,保持沉淀pH稳定,得到锂铝复合氢氧化物前驱体,将该前驱体进行焙烧,得到锂铝复合氧化物;将所述锂铝复合氧化物分散于乙醇中,之后滴加钌前驱体溶液,得到第二混合溶液,之后对其进行真空蒸发处理,最后进行还原处理,得到所述锂促进钌基氨分解催化剂。本发明所述催化剂在氨分解反应中表现出良好的活性和稳定性。
Absstract of: CN120515449A
本申请属于催化剂制备技术领域,具体涉及一种Ni/D‑TiOSO4纳米催化剂及其制备方法和应用。该催化剂包括D‑TiOSO4纳米片和分散在D‑TiOSO4纳米片上的Ni纳米粒子;该D‑TiOSO4纳米片为富含氧缺陷的TiOSO4纳米片;Ni纳米粒子的平均粒径为2.9 nm‑3.6 nm,所述Ni的含量为3.4 wt%‑15.0 wt%。本发明提供的Ni/D‑TiOSO4纳米催化剂表现出优异的催化性能、100%的H2选择性以及出色的稳定性,并且于298 K下添加0.1 M NaOH后,TOF显著提升至414.1 min‑1,具有良好的应用前景。
Absstract of: WO2025172046A1
The invention relates to a method for operating an electrolyzer (1) comprising an anode chamber (3) and a cathode chamber (5), in which water (H2O) is supplied as a reactant and hydrogen (H2) and oxygen (O2) are generated as product gases. On the anode side, the oxygen product gas, which also contains hydrogen as a foreign gas, is generated in a product flow out of the anode chamber (3) and is introduced into a horizontal anode-side collecting line (7) having a surrounding wall (11) and is removed via the collecting line (7), wherein water (H2O) is sprayed onto an inner surface of the surrounding wall (11) of the collecting line (7) so that the surrounding wall (11) is wetted with water and the inner surface is inerted. The invention additionally relates to an electrolyzer (1), in particular for carrying out the method.
Absstract of: DE102024201557A1
Die Erfindung betrifft ein Verfahren zum Betrieb einer Elektrolyseanlage (1, 20) umfassend einen Elektrolyseur (11) zur Erzeugung von Wasserstoff (H2) und Sauerstoff (O2) als Produktgase, wobei Wasser als Edukt zugeführt wird und an einer protonenleitenden Membran (21) aus einem fluorfreien Polymer (24) zu Wasserstoff (H2) und Sauerstoff (O2) gespalten wird, wobei das Polymer (24) ein nicht-funktionelles Polymermaterial mit einer funktionellen hydrophilen Gruppe aufweist, wobei ein Produktgasstrom (5) in einem Phasengemisch umfassend Wasser (H2O) sowie ein jeweiliges Produktgas gebildet wird, und wobei ein Produktgasstrom einem dem Elektrolyseur (11) nachgeschalteten Gas-Separator (3, 13) zugeführt wird, und bei dem die Freisetzung eines ionischen Abbauproduktes der funktionellen hydrophilen Gruppe der Membran (21) über die Betriebszeit bestimmt wird, wobei dessen zeitlicher Verlauf der Konzentration ermittelt wird, wobei ein Maß für die betriebsbedingte Degradation der protonenleitenden Membran (21) infolge einer Freisetzung des ionischen Abbauprodukts der hydrophilen Gruppe ermittelt wird.Die Erfindung betrifft weiterhin eine entsprechende Elektrolyseanlage (1, 20) sowie eine Messsystem zur Durchführung des Verfahrens.
Absstract of: WO2025171924A1
Method for producing a hydrogen product from ammonia, comprising the steps of: - Providing an ammonia feed stream; - Passing the ammonia feed stream to at least one ammonia pre-cracking reactor for producing a partly converted ammonia feed stream comprising ammonia, hydrogen and nitrogen by a pre-cracking reaction, said pre-cracking reactor comprising a pre-cracking catalyst bed comprising from 20 wt% to 60 wt% of nickel, preferably from 25 wt% to 50 wt% of nickel as a pre-cracking catalytically active material, - Passing the partly converted ammonia feed stream to an ammonia cracking reactor for producing an effluent gas stream comprising hydrogen and nitrogen and optionally also unconverted ammonia by a cracking reaction, said cracking reactor comprising a cracking catalyst bed comprising from 10 wt% to 20 wt% of nickel as a cracking catalytically active material.
Absstract of: US2025263853A1
A control device includes a controller that controls a first power supplier structured to supply power to an electrolytic bath for generating an organic compound and a second power supplier different from the first power supplier and structured to supply power to the electrolytic bath. The controller controls the second power supplier based on a change in a voltage between a cathode electrode and an anode electrode provided in the electrolytic bath to a specified voltage, a change in a potential of the cathode electrode to a specified potential ECA1, or a change in a potential of the anode electrode to a specified potential EAN1.
Absstract of: US2025263847A1
A system and method to precipitate calcium hydroxide at low temperatures (T<40° C.) using an electrolytic reactor with hydrodynamic separation. The calcium can be supplied by any calcium bearing material such as calcium carbonate or basalt rock, or from industrial wastes such as brine or steel slag. The solid feedstock undergoes dissolution, whereas the brine may be utilized as is. Once in solution, the feed stream is directed towards an electrolyzer reactor which comprises a cathode, an anode, and a membrane separator. At the cathode, or in a separate precipitation chamber, an alkaline catholyte solution containing calcium hydroxide (portlandite) and magnesium hydroxide (brucite) precipitates, and hydrogen gas is produced.
Absstract of: US2025263844A1
A system for hydrogen recovery includes a dryer having an inlet that may be fluidly connected to a hydrogen outlet of a hydrogen generator, a hydrogen using device having an inlet fluidly connected to a dry hydrogen outlet of the dryer, and one or more conduits fluidly connecting a wet hydrogen outlet from the dryer and an impure hydrogen exhaust outlet of the hydrogen using device to the inlet of the dryer.
Absstract of: US2025263848A1
Particular embodiments described herein provide for a synthetic fuel creation system. The synthetic fuel creation system includes a syngas creation station to create syngas, a crude creation station to create heavy syncrude, and a crude cracking station to convert the heavy syncrude into synthetic fuel. The synthetic fuel creation system can use an electrocatalysis system to create the syngas and the electrocatalysis system can include an anode, a cathode, oxygen evolution reaction catalysts, hydrogen/carbon monoxide evolution reaction catalysts, and an electrolyte, where the hydrogen/carbon monoxide evolution reaction catalysts include a graphitic carbon nitride.
Absstract of: US2025263859A1
A method of producing hydrogen and/or bromine by electrolysing hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg≥110° C. in an electrolysis of hydrogen bromide, wherein the hydrogen bromide stems from a sulfuric acid synthesis.
Absstract of: US2025263846A1
To provide a water electrolysis stack capable of suppressing deterioration in sealability. A water electrolysis stack configured by laminating a plurality of water electrolysis cells to generate hydrogen by supplying water to the water electrolysis cell and applying electric power, wherein a laminated member for improving sealing property, which is a member that does not introduce water therein, is laminated at a predetermined position of the water electrolysis cell to be laminated.
Absstract of: WO2025172702A1
An apparatus comprising an electrolyser subsystem (20), a Haber Bosch subsystem (22), and an Ostwald subsystem (24), and a method for producing nitric acid. Fluid passageways are configured to: route hydrogen produced by the electrolyser subsystem (20) to the Haber Bosch subsystem (22) via a first path (26) for use in a Haber process at the Haber Bosch subsystem (22) to produce ammonia; route at least a portion of the ammonia produced by the Haber Bosch subsystem (22) to the Ostwald subsystem (24) via a second path (28) for use in an Ostwald process at the Ostwald subsystem (24) to produce nitric acid; and route at least a portion of steam produced using heat from the Ostwald subsystem (24) to the electrolyser subsystem (20) via a third path (30) for use as at least a part of an infeed gas for the electrolyser subsystem (20).
Absstract of: EP4601053A1
An electrochemical cell stack includes at least two electrochemical cells that each contain a fuel electrode, an air electrode, and an electrolyte located between the fuel electrode and the air electrode, at least one interconnect located between the at least two electrochemical cells, and a contact layer that electrically connects the at least one interconnect and the fuel electrode of an adjacent one of the at least two electrochemical cells. The contact layer includes first wires that extend in a first direction, the first wires including thinner first wires and thicker first wires, the thicker first wires having a thickness that is larger than a thickness of the thinner first wires, and second wires that extend in a second direction different from the first direction.
Absstract of: US2025263361A1
The present invention relates to a process for producing dimethyl ether (DME) and hydrogen (H2) from methane, comprising the steps of: a) providing a gaseous feed stream comprising methane; b) reacting said gaseous feed stream with at least one halogen reactant (X2), under reaction conditions effective to produce an effluent stream comprising methyl halide (MeX), and hydrogen halide (HX); c) separating from the effluent stream obtained in step b): (i) a methyl halide (MeX) stream; and, (ii) a hydrogen halide (HX) stream; d) reacting the methyl halide (MeX) stream separated in step c) with a solid metal oxide (MO(s)) under reaction conditions effective to produce metal halide (MX) and dimethyl ether (DME); and e) decomposing by means of electrolysis said hydrogen halide (HX) stream separated in step c) under conditions effective to produce a gaseous hydrogen (H2) stream and a stream comprising halogen reactant (X2).
Nº publicación: US2025263349A1 21/08/2025
Applicant:
INFINUIM TECH LLC [US]
INFINIUM TECH LLC [US]
INFINUIM TECHNOLOGY, LLC,
INFINIUM TECHNOLOGY, LLC
Absstract of: US2025263349A1
The invention relates to a process, catalysts, materials for conversion of renewable electricity, air, and water to low or zero carbon fuels and chemicals by the direct capture of carbon dioxide from the atmosphere and the conversion of the carbon dioxide to fuels and chemicals using hydrogen produced by the electrolysis of water.