Absstract of: CN119486932A
A floating foundation for an offshore wind turbine, the floating foundation having a tower defining a vertical direction, the floating foundation comprising at least three vertical sections and at least two horizontal sections wherein the vertical sections and the horizontal sections are tubular members, the tubular members are arranged in an alternating manner and connected together by interpenetrating pipe joints, and wherein one of the vertical sections is arranged to receive a tower.
Absstract of: WO2023246993A1
A method and a system (1) for controlling transfer of a suspended load (2) between an offshore wind turbine (3) and a floating vessel (4) are disclosed. Movements, relative to the floating vessel (4), of a load (2) suspended in a hoisting mechanism (6, 15) and/or of a hooking part (9) of the hoisting mechanism (6, 15), are detected. A position and/or inclination of a landing platform (8) arranged on the floating vessel (4) is adjusted, based on the detected movements, in order to compensate for relative movements between the floating vessel (4) and the suspended load (2) and/or the hooking part (9), thereby synchronizing movements of the landing platform (4) to movements of the suspended load (2) and/or the hooking part (9), while moving the suspended load (2) and/or the hooking part (9) towards the adjustable landing platform (8).
Absstract of: US2025129766A1
The present invention relates to a device for the support and foundation of a wind turbine tower. Said device comprises a main body (1) made at least partially of concrete. It also comprises a transition part (2) attached to the main body (1) and a plurality of installation elements (3) located on the main body. The transition part (2) comprises a housing (4) for installing a wind turbine tower, and each installation element (3) comprises a through hole (5) for installing an anchoring tendon.
Absstract of: US2025129767A1
A floating type offshore wind structure having improved structural strength and reduced weight, including a floating body having buoyancy in the seat; and a wind power generation unit fixed to the floating body, wherein the floating body includes a plurality of columns disposed at the vertex positions of a triangle, respectively, and a plurality of pontoon units disposed in the form of a triangle, so as to connect the plurality of columns, the wind power generation unit is placed at any one of the plurality of columns, each of the plurality of columns includes a first side in contact with a first pontoon unit which is any one of the plurality of pontoon units, and a second side in contact with a second pontoon unit which is another one of the plurality of pontoon units, and each of the first side and the second side is a planar surface.
Absstract of: WO2025083515A1
A strut application station (210) is suitable for applying struts (25) to a collar (170) of a large floater (10), in particular for wind turbines. The station comprises a working region (500), support means suitable for supporting the collar (170), constraining means suitable for forcing the collar (170) to rotate in order to obtain a circular shape, and actuating means suitable for rotating the collar (170) about the vertical axis (V). Picking means are also provided for picking up a strut (25) and positioning it close to a predefined target position of the inner side surface of the collar. Lastly, positioning means are provided for positioning the strut in the target position against the inner side surface of the collar, and spot-welding means for performing spot-welding of the strut in the target position of the inner side surface of the collar.
Absstract of: US2025128796A1
A floating column spoiler structure, a floating column and a floating wind turbine are provided. The floating column spoiler structure includes multiple spoiler plates and lifting and unfolding assemblies connecting each of the spoiler plates and a column. Each of the lifting and unfolding assemblies includes a first connecting rod, a second connecting rod, a first gear and a second gear; a first end of the first connecting rod is rotatably connected with a first end of the second connecting rod, and each of the spoiler plates is arranged at the first end of the first connecting rod and the first end of the second connecting rod; a second end of the first connecting rod is rotatably connected with the first gear, and a second end of the second connecting rod is rotatably connected with the second gear.
Absstract of: US2025128795A1
The present invention includes a plurality of legs arranged in a spaced-apart manner; and a connecting bar connected to each pair of legs; further including a cover member arranged to partially wrap around an outer surface of at least one of the legs, wherein when towing is performed at sea, a flow of seawater is guided to an outer side of the leg through contact with the cover member, suppressing the flow of seawater between each pair of legs and thereby reducing resistance caused by the seawater.
Absstract of: WO2025084451A2
The present invention relates to a wind power tower apparatus for a large-capacity floating wind power generator and a wind power generator construction method using same, and in particular, to a wind power tower apparatus and a wind power generator construction method using same, wherein the wind power tower apparatus enables easier work because installation and maintenance of the wind power generator can be carried out on a floating body itself through rails and a transport plate which are provided to be vertically moved between a plurality of towers. The wind power tower apparatus for a large-capacity floating wind power generator, according to an embodiment of the present invention, comprises a floating body which floats on the sea and is provided to support a structure installed on the upper portion thereof; a plurality of towers which are fixed at the center of the top of the floating body at certain distances from each other; a wind power generator which is fixed to the upper ends of the towers and is provided to generate electricity using wind power; and jacking equipment comprising rails respectively formed on the side surfaces of the plurality of towers and a transport plate which has a plate shape and is provided to transport an object while vertically moving along the rails among the plurality of towers.
Absstract of: WO2025084503A1
The present invention relates to an offshore floating body that is easily towed, the offshore floating body comprising: a plurality of legs disposed at intervals from one another; connection bars connected between any one of the legs and another leg; and a cover member arranged to partially surround at least one outer surface of a leg, wherein when towing is performed at sea, the flow of seawater is guided to the outside of the legs by contact with the cover member and thus the flow of seawater between any one of the legs and another leg is suppressed, reducing the resistance caused by seawater.
Absstract of: US2024217830A1
A method and system for the offshore production of fuel includes an offshore marine platform on which is mounted an ammonia production unit. The ammonia production unit may produce ammonia utilizing raw materials sourced adjacent the marine platform, including seawater and electricity from offshore wind turbines. The produced ammonia may be subsequently liquified and transported away from the marine platform, or conveyed to a remote location via a seabed pipeline. A portion of the hydrogen produced as part of the ammonia production process may be utilized to operate onboard combustion turbines that can in turn drive electric generators onboard the marine platform to produce electricity.
Absstract of: WO2023244156A1
An installation arrangement comprising an elongated first floating structure having a first winch and a second winch spaced apart in a longitudinal direction; an elongated second floating structure having a first winch and a second winch spaced apart in the longitudinal direction; a joining structure attached to the first floating structure and the second floating structure, and holding the first floating structure and the second floating structure with an elongated open space therebetween; and the lower part of the wind turbine to be installed arranged in the elongated open space between the first floating structure and the second floating structure, wherein the bottom portion of the lower part of the wind turbine is releasably joined to each of the first winch and the second winch of the first floating structure and the first winch and the second winch of the second floating structure by respective winch lines.
Absstract of: US2025123103A1
A method and system for prediction of wave properties include collecting time-series data streams from one or more wave measurement devices and processing the data to identify data parameters to establish boundary conditions of a numerical model. The numerical model may be used to compute a predicted wave field of time-series data for a variety of wave properties at a target location.
Absstract of: WO2023244607A1
Delivery of a high volume of floating systems for wind turbines can involve the standard design of sections, such as "tubes" or "cans," comprising a rolled plate and ring stiffeners. The delivery can then involve the transportation of the sections in blocks to an assembly site that is closer to the planned installation point. The sections are used to manufacture semi-submersibles at the assembly site using a barge with cranes. The delivery can then involve the transportation of each of the semi-submersibles to a platform, such as a standard jack-up vessel or a crane jacket, near which the semi-submersible is temporarily attached to allow the installation of the Tower, the nacelle, and blades. Finally, the delivery involves the transportation of the completed wind turbine to the planned installation point, where it can be attached to a pile driven into the seafloor or moored during use.
Absstract of: WO2025074123A1
The invention provides a disconnectable mooring system for a floating offshore structure. The system may comprise: a buoy comprising a connector which enables connection and disconnection of the buoy from the floating structure. The system has a disconnected configuration in which the buoy is not connected to the floating structure and the buoy at least partially supports a dynamic riser conduit above the seabed. The system has a connected configuration in which the buoy is connected to the floating structure; and wherein the system is configured to enable pull-in of the buoy to the connected configuration and pull-in of the dynamic riser to a connection position. Aspects of the invention include related pull-in sequences, independent through connection of first and second dynamic riser conduits, and conductive coupling of a dynamic riser conduit to a floating structure. Further aspects of the invention include related rapid / emergency disconnect systems and methods, use a clump weight in an installation sequence, connection structures and buoy configurations, and rope connectors.
Absstract of: US2025115340A1
Systems and methods for assembling, launching, retrieving, and maintaining floating wind foundations including tower, nacelle, and blades with two-way operability are disclosed. The systems include a dock having a lift platform and a first plurality of chain jacks configured to lift and lower the lift platform. The lift platform has a width and length with a span sufficient to receive, lower, and lift a floating wind foundation. The lift platform includes an upper deck and a plurality of box truss girders supporting the upper deck. The box truss girders extend across the span of the width of the lift platform and are of sufficient strength to support a floating wind foundation.
Absstract of: WO2025073873A1
A connecting system (100) for connecting a weathervaning floating offshore support structure (200) of a wind turbine (201) to a pre-laid mooring system (300), the connecting system (100) comprising: - a turret element (1) comprising: a base (2) for being solidly connected to the pre-laid mooring system (300); a support element (3) comprising a switchgear (31) connectable to one or more submarine cables (400) and connectable to receive a power generated by the wind turbine (201); a columnar body (4) extending from the base (2) to the support element (3), and comprising an inner passage (41); and a bearing system (5) configured to rotatably connect the turret element (1) to the weathervaning floating offshore support structure (200); and - a slip-ring connector (6) comprising a first connecting part (61) for receiving the power generated by the wind turbine (201), and a second connecting part (62) cable-connectable to the switchgear (31).
Absstract of: WO2025073810A1
A subsea foundation for anchoring a mooring line comprises a mooring base such as a chain that is simply laid upon the seabed in a straight, curved or looped configuration, hence extending across the seabed substantially parallel to the seabed. The mooring base is then anchored by one or more deadman anchors that are embedded in the seabed soil. For this purpose, one or more links extend through the soil to couple the mooring base to the or each deadman anchor. One or more mooring lines can then be coupled to the mooring base.
Absstract of: US2025116256A1
The disclosure relates to a mud floating type offshore wind turbine system and an installation method thereof. The system includes a plurality of suction anchors, a plurality of gravity anchors, an upper wind turbine, a tower drum and a wind turbine foundation; the fan foundation includes a column body, a first spherical shell, a second spherical shell, a plurality of third spherical shells, first connecting rods, second connecting rods and supporting rods; each of the first spherical shell and the second spherical shell is internally provided with a winch with a plurality of telescopic anchor discs; each suction anchor and each gravity anchor are located beneath the corresponding third spherical shell and located on a side face of the corresponding third spherical shell respectively and used for restraining positions of the upper wind turbine in a vertical direction and a horizontal direction respectively.
Absstract of: WO2025075142A1
An on-water structure 10 is temporarily installed in a sea area having a water depth of 8 m or more and 20 m or less, a plurality of work areas A are provided in a sea area adjacent to the on-water structure 10, and a plurality of sets of assembly components of a wind power generation device 3 are temporarily placed on the on-water structure 10. A self-elevating barge 30B anchored in an arbitrary work area A is used to perform assembly work in which an assembly body 9 is assembled by installing a set of assembly components onto a floating body 2 fixed to a water bottom SB of the work area A. The self-elevating barge 30B is moved from the work area A, in which the assembly work is finished, to another work area A, performs the assembly work with respect to the floating body 2 fixed to the water bottom SB of the work area A, and, in parallel with the assembly work, performs additional work with respect to the assembly body 9 for which the assembly work was finished earlier. As a result, it is possible to efficiently construct a floating offshore wind power generation facility in which the draft of the floating body moored in the installation-target sea area is 20 m or less, without the need to install a mounting base for the floating offshore wind power generation facility on a quay.
Absstract of: US2025091697A1
A semisubmersible offshore support structure for a wind turbine carries an adjustable-ballast reservoir above sea level fillable with water for providing extra load on a part of the support structure. By adjusting the water volume in the adjustable-ballast reservoirs, the wind turbine can be maintained in vertical orientation despite wind pressure. A drain is provided for draining water from the reservoir into the sea by gravity only for emptying the reservoir passively in case of power failure.
Absstract of: EP4534399A1
The invention relates to a mooring system comprising a floating platform (1) with a plurality of mooring lines (7) configured to fix or anchor the floating platform (1) to the seabed by means of a bottom section (71) of each mooring line (7), wherein each mooring line (7) also comprises a central section (72) joined to a counterweight (8), wherein tilting arms (2) are joined by means of an articulated joint (3) to a main structure (4) of the floating platform (1), wherein each tilting arm (2) comprises an inner section (21) and an outer section (22), wherein the bottom section (71) and the central section (72) of each mooring line (7) are respectively joined to a terminal end of the outer section (22) and to a terminal end of the inner section (21) of each tilting arm (2).
Absstract of: FR3153592A1
Procédé de ballastage actif et centralisé d’un flotteur semi-submersible pour éolienne offshore et flotteur L’invention concerne un procédé de ballastage actif et centralisé d’un flotteur semi-submersible (2) pour éolienne offshore, le flotteur comprenant au moins quatre colonnes dont une colonne centrale (4) et trois colonnes extérieures (6) raccordées à la colonne centrale par des branches inférieures formant des pontons (8), le procédé comprenant le déplacement contrôlé et centralisé d’un fluide de ballastage entre des compartiments (14) étanches formés à l’intérieur de chaque ponton (8) de façon à pouvoir en modifier l’inclinaison. L’invention concerne également un flotteur semi-submersible pour éolienne offshore à ballastage actif et centralisé. Figure pour l’abrégé : Fig. 1.
Absstract of: FR3153593A1
Procédé de ballastage actif et individualisé d’un flotteur semi-submersible pour éolienne offshore et flotteur L’invention concerne un procédé de ballastage actif et individualisé d’un flotteur semi-submersible (2) pour éolienne offshore, le flotteur comprenant au moins quatre colonnes dont une colonne centrale (4) et trois colonnes extérieures (6) raccordées à la colonne centrale par des branches inférieures formant des pontons (8), le procédé comprenant, pour chaque ponton, le déplacement individualisé et contrôlé d’un fluide de ballastage entre au moins deux compartiments (14, 16) étanches et distincts situés à l’intérieur d’un ensemble formé par le ponton et la colonne extérieure qui lui est associée de façon à pouvoir modifier l’inclinaison du flotteur. L’invention concerne également un flotteur semi-submersible pour éolienne offshore à ballastage actif et individualisé. Figure pour l’abrégé : Fig. 1.
Absstract of: US2025108887A1
The present invention relates to a semi-submersible platform (1) for maritime applications such as wind power, electrical substations or hydrogen generation plants, wherein the semi-submersible platform (1) comprises a base body (2) made of concrete equipped with internal compartments (3) adapted to house ballast water, and three or more buoyancy columns (4) substantially made of concrete, wherein said columns (4) protrude from an upper face of the base body (2) and are arranged at the vertexes of the base body (2), wherein at least one column (4) is internally equipped with respective concentric rings (5, 6), an inner ring (5) and an outer ring (6), joined together by a plurality of radial walls (7) that define anti-flood compartments (8).
Nº publicación: US2025109734A1 03/04/2025
Applicant:
EXMAR OFFSHORE COMPANY [US]
Exmar Offshore Company
Absstract of: US2025109734A1
A floating offshore wind turbine assembly unit useful for assembling or maintaining wind turbines at an offshore location is disclosed. The floating offshore wind turbine assembly unit may include a first vessel spaced a distance apart from a second vessel, and an extended deck coupled to the first vessel and the second vessel. The extended deck is positioned in the distance between the first vessel and the second vessel, and the extended deck is configured as a dry dock disposed or movable to a height above a sea level. In some embodiments, the extended deck or a portion thereof is movably coupled to the first vessel and the second vessel. For example, the extended deck or a portion thereof is movable between a submerged or near sea level position and a position above a sea level.