Absstract of: CN119009024A
The invention discloses a flow battery test platform, which comprises a flow battery system, a multi-physical field parameter coupling detection system and a data acquisition system, and is characterized in that the flow battery system comprises a flow battery and a visual clamp, and the flow battery comprises an electrode and a liquid storage tank; the visual clamp comprises a diaphragm, two graphite plates and two end plates, and at least one of the two end plates is a transparent end plate; the multi-physical field parameter coupling detection system comprises an optical detection unit, an electrolyte detection unit, a gas detection unit and a battery tester, wherein the optical detection unit is used for acquiring internal image data of the flow battery; the electrolyte detection unit is used for acquiring concentration data of the electrolyte; the gas detection unit is used for acquiring gas concentration data; the battery tester is used for charging and discharging the flow battery; and the data acquisition system is used for acquiring key characteristic data according to the image data, the concentration data of the electrolyte and the concentration data of the gas so as to adjust the running state of the battery.
Absstract of: FR3155096A1
L’invention concerne un ensemble (1) comportant un empilement d’une pluralité de cellules de pile à combustible, comportant chacune une plaque anodique (10) et une plaque cathodique (20) comprenant chacune une face réactive et une face de refroidissement, la face réactive étant munie de reliefs et de creux formant un circuit de réactif comportant une pluralité de premières cavités (51, 52), la face de refroidissement formant un circuit de refroidissement comportant une pluralité de deuxièmes cavités (55), chaque plaque (10, 20) comportant une troisième cavité (53, 54) de réception d’un joint, chaque plaque (10, 20) étant configurée pour que la profondeur moyenne (P1, P2, P3, P4, P5) de toutes les cavités soient égales. Figure d’abrégé : Fig. 2
Absstract of: CN119965312A
本发明公开了一种植物协同微生物发电方法,包括制备膜电极、制备植物材料、电极与植物组织耦合、参比电极连接、电路连接、微生物接种、增强微生物活性和燃料电池启动等步骤,本发明摆脱了对水环境的依赖,使植物发电的运行受环境因素影响大幅减小,功率输出更加稳定,从而提高了发电效率和可靠性。其次,本发明拓展了可耦合植物的种类范围。此外,本发明在膜电极与植物组织之间创新性地引入了微孔滤膜,优化了电极与植物组织的接触和物质交换,有助于提高电极的性能和燃料电池的发电效率。
Absstract of: US2021066728A1
A cell structure includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode, the cathode being in the form of a sheet, the anode being in the form of a sheet, the solid electrolyte layer being in the form of a sheet, the solid electrolyte layer being disposed on the anode, the cathode being disposed on the solid electrolyte layer, the cathode having a resistance Rc, the anode and the solid electrolyte layer having a resistance Ra, the resistance Rc and the resistance Ra satisfying a relationship of Rc/Ra≥0.3, the cathode including a first metal oxide having a perovskite crystal structure, the cathode having a thickness larger than 15 μm and equal to or less than 30 μm.
Absstract of: CN119965307A
本申请涉及一种入堆氧气浓度调控与杂质过滤一体化的燃料电池装置,包括空压机、空气路、氧气浓度调节路、增湿器和燃料电池电堆;所述空压机分别与所述空气路、所述氧气浓度调节路连接;所述增湿器分别与所述空气路、所述氧气浓度调节路、所述燃料电池电堆连接;所述氧气浓度调节路包括依次连接的壳体、真空泵和第一流量阀,所述壳体与所述空压机连接,所述第一流量阀与所述增湿器连接。本申请通过设置独立的氧气浓度调节路,利用简单的压差原理即可实现燃料电池电堆的入堆氧气浓度的可控调节。本申请可调控的氧气浓度为22%~100%,浓度精度控制可达1%,氧气浓度的调整响应时间很短,调控效率高,具有较高的实用性和经济性。
Absstract of: CN119965292A
本发明公开了一种极板和燃料电池,极板上形成有分配区、过桥区和连通孔,极板在厚度方向上的两侧侧面分别为第一侧面和第二侧面,分配区和过桥区分别形成于第一侧面和第二侧面上且沿第一方向排布,连通孔沿极板的厚度方向贯通且连通分配区和过桥区,连通孔在第一方向上位于上游侧的内侧面形成导流面,在由第二侧面朝向第一侧面的方向上,导流面朝向远离过桥区的方向倾斜延伸。根据本发明的极板,可以缩小导流面上游侧的气流进入连通孔内时以及沿导流面流动的气流离开连通孔进入分配区时的偏转角度,从而可以降低过桥区内的气流通过连通孔进入分配区流动过程中的压损,以提升气体的利用率、降低气体的使用成本。
Absstract of: CN119956240A
本申请提供了一种中温组织稳定的不锈钢、燃料电池互联板及制备方法,属于合金领域。该不锈钢包括如下化学成分:Cr:21%~30%,Mo:5.1%~7.5%,Zr:0.05%~0.5%,B:0.015%~0.45%,Nb:0.02%~2%,Si:0.45%~1%,Mn:0.1%~2.5%,C<0.008%,T.O≤0.002%,N≤0.001%以及Fe。室温到工作温度下,合金组织为单一铁素体组织,成品晶粒大小保持4.5级~7级,900℃工作条件下,晶粒等级不增大。从而提高了燃料电池互联板的中温组织稳定性。
Absstract of: CN119957470A
本发明提供了一种氢气循环泵的控制方法、装置及燃料电池系统和车辆,本发明的氢气循环泵的控制方法包括获取氢气循环泵处的环境温度,在环境温度低于预设温度阈值时,获取各电密点下氢气循环泵的运行电流为恒定状态时的最低转速,控制氢气循环泵按照对应的最低转速运行,获取各电密点下,燃料电池系统的电堆不单低时排氮阀的最低开启频率,以及在燃料电池系统运行过程中,当环境温度低于预设温度阈值时,在各电密点下,控制氢气循环泵按照对应的最低转速运行,同时控制排氮阀按照最低开启频率工作。本发明能够满足燃料电池系统功耗、氢耗较低,且系统不单低的要求,有利于提升燃料电池系统工作的稳定性。
Absstract of: CN119965283A
本发明涉及电池技术领域,具体涉及一种锌碘液流电池的正极及其制备方法与液流电池。本发明提供一种锌碘液流电池的正极的制备方法,包括如下步骤,将集流体经过浸渍、酸处理后得到正极,其中,浸渍液包括聚苯胺和有机溶剂。本发明将集流体浸渍在聚苯胺和有机溶剂形成浸渍液中,利用聚苯胺通过其带有的正电荷在静电作用下吸附碘离子和多碘离子,实现对碘的束缚,避免多碘离子进入电解液,实现较高的库伦效率。另外,除了碘离子自身发生的氧化还原反应之外,聚苯胺也会发生氧化还原反应,为系统提供额外的容量,实现形成的电池的单位面积容量、库伦效率以及能量效率的提高。
Absstract of: CN119956239A
本发明提供了一种抗氢脆性能优异的不锈钢、互联板及制备方法,属于合金领域。该不锈钢包括如下化学成分:Cr:20%~30%,Al:0.6%~5.0%,Mo:3%~5%,Nb:1%~6.0%,稀土元素:0.001%~1.0%,C<0.05%,T.O≤0.002%以及Fe。通过精确控制不锈钢中的化学成分,特别是Al、Mo、Nb以及稀土元素的含量和比例,形成了稳定且弥散的Laves相。这些Laves相作为不可逆氢陷阱,能够吸附氢原子并抑制氢扩散,从而显著降低合金在受载荷过程中的平均氢浓度,抑制合金的氢脆倾向。同时,稀土元素的加入不仅产生了原子点阵畸变,还强化了晶界,进一步提高了中高温力学性能,并改善了表层氧化膜与基体的粘结性,增强了抗氧化性。
Absstract of: CN119965314A
本发明属于液流电池技术领域,公开一种高稳定铁基燃料电池及其运行方法,其中,电池包括负极电解液储罐、燃料电池电堆和正极电解液储罐;负极电解液储罐的出液口与燃料电池电堆的负电解液进口连通,负极电解液储罐的进液口与燃料电池电堆的负电解液出口连通;正极电解液储罐的出液口与燃料电池电堆的正电解液进口连通,正极电解液储罐的进液口与燃料电池电堆的正电解液出口连通;负极电解液储罐内设置有支撑层和铁源层,铁源层设置在支撑层的上方,正极电解液储罐内设置有催化层,正极电解液储罐上设置有氧气进口和纯水注入口。本发明的电池实现铁基燃料电池的高放电功率和放电容量、高电池性能、长时间高稳定性、低成本、无污染运行。
Absstract of: WO2024094870A1
The invention provides an electrical apparatus, the electrical apparatus comprising: at least first and second components, and an interface between the first and second components, wherein the apparatus further comprises: (a) a coating of ta-C at the interface to seal the interface against ingress and/or egress of fluids, or (b) a gasket at the interface, wherein the gasket comprises a coating of ta-C to seal the interface against ingress and/or egress of fluids The invention further provides a method of making an electrical apparatus.
Absstract of: CN119965290A
本发明提供了一种复合微孔层浆料、气体扩散层、膜电极组件和制备方法、燃料电池。该复合微孔层浆料包括:含量为1wt%~50wt%的PtRu/C催化剂、含量为1wt%~60wt%的碳材料、含量为3wt%~50wt%的粘结剂和20wt%~90wt%的溶剂。上述复合微孔层浆料将PtRu/C催化剂与碳材料和粘结剂进行复合,可以在气体扩散层或者催化剂层上进行涂布形成的微孔层,该微孔层不仅能够有效提高催化层的催化能力和传质效率,而且能够显著提升了膜电极的抗CO的毒化能力。而且避免了传统PtRu/C催化剂中Ru溶出对质子交换膜的影响,提高了膜电极组件的综合性能。
Absstract of: CN119965291A
本发明涉及氢燃料电池技术领域,具体为与氢燃料电池双极板相适配的多孔通道散热结构,包括:密封外框和双极板本体,所述密封外框的内部与双极板本体的外壁固定连接,所述双极板本体包括阳极单板和阴极单板,所述双极板本体顶部的外壁开设有工作气体进孔;有益效果为:通过对冷却液的搅动,进一步增加了乙二醇与冷却液的均匀混合,同时,通过搅动冷却液还可以增加其流动速度和湍流度,有助于冷却液更快地带走热量,避免了冷却液在冷却槽内部流动的缓慢,相应地通过旋转叶的设置增加了冷却液的流速,从而提高了冷却液带动双极板本体上热量的效果,再通过旋转叶具有剪切的作用力,还可以破碎掉乙二醇产生的气泡,将其转化为较小的气泡。
Absstract of: CN119956247A
本申请提供了一种抑制Cr挥发的铁铬合金、燃料电池互联板及制备方法,属于合金领域。该铁铬合金包括如下化学成分:Cr:13%~22.5%,Cu:0.7%~4.0%,Zr:0.3%~1.0%,B:0.015%~0.45%,Ni:1.0%~1.2%,Mo:1%~3%,W:0.1%~3%,C+N≤0.010%,T.O≤0.002%,Si:0.15%~0.3%,Mn:0.1%~0.8%,Al:0.15%~0.4%以及Fe。本申请合理设计铁铬合金的化学成分,采用Fe基合金,设计高Cr高Cu低Ni成分体系,达到抗氧化性能优异的同时具有优异的抑制Cr挥发的效果。
Absstract of: CN119956243A
本申请公开一种导电性能优异的不锈钢及制备方法、互联板及制备方法,解决现有技术中不锈钢在燃料电池工作过程中导电性差,抗氧化能力差的技术问题。本申请提供的不锈钢化学成分包括:Cr:13%~30%,Be:0.002%~3.0%,Zr:0.05~0.5%,Sr:0.05%~1.0%,C<0.05%,T.O≤20ppm。本申请提供的不锈钢在作为燃料电池互联板工作过程中导电性好,提高了燃料电池互联板的使用寿命。
Absstract of: CN119965366A
本发明提供了一种燃料电池启动装置、方法及车辆,所述装置包括:蓄电池、低压空压机、高压空压机、加热元件、动力电池、以及电堆;所述蓄电池为所述低压空压机的供电电源;所述动力电池为所述高压空压机的供电电源;所述电堆为所述加热元件提供电能,所述加热元件用于对所述动力电池加热;所述低压空压机的第一端与所述高压空压机的第一端相连;所述低压空压机的第二端与所述电堆之间存在开关可调的第一气体传输通道;所述高压空压机的第二端与所述电堆之间存在开关可调的第二气体传输通道。本申请提供的燃料电池启动装置能够实现低温环境下,燃料电池车辆的正常启动运行。
Absstract of: CN119965309A
一种有机液相电对催化的新型醇类燃料电池装置及其运行方法,属于燃料电池领域。装置包括光催化反应槽、氧还原反应槽和燃料电池电极反应室,通过有机液相电对催化剂的循环再生实现高效能量转化。光催化反应槽中,有机电对A在光照下氧化醇类并自身还原,然后输送至燃料电池阳极。氧还原反应槽中,有机电对B被硝酸氧化,生成氧化态电对B和NO,并输送至燃料电池阴极。燃料电池中,还原态电对A在阳极氧化,氧化态电对B在阴极还原,通过质子交换膜传导H+完成电能输出。本发明采用低成本有机催化剂替代贵金属,结合阳极光化学‑电化学耦合催化和阴极化学‑电化学耦合机制,显著提升醇类燃料电池功率和寿命,为清洁能源技术提供可持续解决方案。
Absstract of: CN119965921A
本发明涉及能源管理技术领域,提供一种微电网混合储能优化方法、系统、设备、产品及介质,包括:确定上层约束条件;确定供能单元和系统损耗成本,从而构建最小成本约束量,根据最小成本约束量计算额定功率和额定容量,并搭建微电网储能系统;通过额定功率和额定容量得到运行参数,确定微电网储能系统的下层约束条件;获取微电网储能系统的系统工作状态以计算系统偏差值,正常状态下,计算惩罚系数并得到第一系统偏差值;极端状态下,构建最小时间函数并得到第二系统偏差值;构建运行目标函数,对运行目标函数求解,得到储能系统运行参数以控制微电网储能系统的运行。本发明提升了微电网储能系统的运作效率。
Absstract of: CN119965297A
本发明提出一种大功率燃料电池氢气系统及控制方法,大功率燃料电池包含多个电堆组,各所述电堆组并联实现供电,所述电堆组均包含多个电堆单元,各个所述电堆单元逐一串联,氢气系统根据不同工况调节各堆之间的氢气分配;采用氢循环泵与引射器并联的氢循环方式,可满足大功率燃料电池不同工况下的氢循环量需求;控制方法采用带前馈的PID进气控制策略和氢循环控制策略,所述进气控制策略可以实现对电堆工况动态变化时的快速响应,更快速有效地对氢气流量和压力进行控制,所述氢循环控制策略可以满足不同负载工况下的氢气流量需求;本发明提高了燃料电池系统的可靠性和稳定性,能够提升大功率燃料电池系统的工作效率和使用寿命。
Absstract of: CN119964874A
本发明属于先进材料技术,涉及一种质子导体及其制备方法。本发明公开了新的中低温钙钛矿型质子导体,是一种钡基钙钛矿型质子导体,具体为BaN1‑xMxO3‑δ,其中N为五价金属包括Nb5+,Ta5+中的一种或几种;M为三价金属包括Al3+,Ga3+,In3+,Sc3+,Y3+,Sm3+,Eu3+,Gd3+,Dy3+,Ho3+,Er3+,Tm3+,Yb3+,Lu3+中的一种或几种;0.5
Absstract of: CN119955144A
本发明属于碱性阴离子交换膜技术领域,公开了一种可控自交联型聚苯并咪唑类阴离子交换膜、制备方法及应用。本发明提供了用于合成自交联型聚苯并咪唑聚合物的制备方法及其引发交联的方法,使用该方法制备的交联材料相比于传统的聚苯并咪唑交联材料具有更好的可控性,能够按照需求更加精准的调控交联程度,制备出交联更加均匀的聚合物材料。除此之外,引入自交联单体后,可继续利用NH结构进行材料改性,具有很好的官能团容忍度,有助于对材料进行进一步的改性来微观调控膜的性能。最终制得的膜具有较好的尺寸稳定性和离子传导率,可用于碱性电解水以及燃料电池中。
Absstract of: CN119137772A
A method for producing a stack-shaped energy cell having a plurality of separators and a plurality of electrodes, i.e. Alternately arranged anodes and cathodes, arranged between the separators, at least one electrode being fixed to at least one of the separators by means of an adhesive connection, and a particularly precise adhesive connection is provided. Wherein an adhesive for the at least one adhesive connection is applied in an intaglio printing method.
Absstract of: CN119137175A
Described herein are branched and hyperbranched anionic phenylene polymers produced by controlled incorporation of anionic substituents. Also described herein are uses of these branched ionomer polymers. The branched ionomer polymers are prepared by a convenient and well-controlled method that allows for tuning the performance of catalyst ink formulations, ionomer polymer membranes, and other applications. These branched ionomer polymers are useful in water purification, fuel cells and battery products.
Absstract of: CN222851459U
本申请涉及一种水下燃料电池供氢系统。系统包括:主供氢件,主供氢件用于通过铝水制氢提供氢气;辅助供氢件,辅助供氢件用于在主供氢件反应过程中提供平衡压力的氢气;氢气供电件,氢气供电件用于获取氢气反应生成电能进行供电操作;产物处理件,产物处理件用于对氢气供电件产生的产物进行监测并处理;循环件,循环件用于将氢气供电件产生的产物进行回收循环操作。减少燃料电池UUV同时携带大规格的储氢瓶和储氧瓶带来的安全风险;铝基材料作为相对安全的储氢材料,在装填加注更方便;燃料电池运行过程中的产物水得到有效回收利用,避免了携带氢瓶氧瓶燃料电池UUV在不需要水的前提下还必须携带一个储水箱的问题。
Absstract of: CN222851457U
本实用新型公开了散热装置技术领域的一种氢燃料电池散热装置,该装置包括上水室和下水室,上水室和下水室之间设有散热芯体,散热芯体包括芯壳,芯壳一侧为进风侧,芯壳另一侧为出风侧,芯壳内设有散热管组和高压风扇;散热管组包括散热管和散热带,散热管呈蛇形布置,散热管内装有冷却液,散热管上端接通上水室,上水室设有冷却液入口,散热管下端接通下水室,下水室设有冷却液出口;高压风扇设有驱动其角度偏转的偏转组件,偏转组件包括四个液压缸,四个液压缸分别布置在高压风扇的上端、下端、左端和右端,液压缸的缸筒固定在芯壳上,液压缸的活塞杆连接高压风扇的扇框。本实用新型的优点是提高散热效率。
Absstract of: CN222851463U
本申请涉及燃料电池制造领域,具体涉及一种用于电堆封装的箱体装置,包括:板体,包括开孔结构,其中所述开孔结构与电堆的流体通道相适配;箱壳,与所述板体密封连接,用于封装所述电堆;保持架,与所述板体相连接,用于紧固所述电堆,以保持所述电堆的压装状态;其中,所述保持架包括调节件,所述调节件朝向所述电堆的层叠体的方向的伸出长度可调,且所述调节件适于抵接于所述层叠体的端部。因此,本申请至少具备封装过程简单,集成度高,适用性强等优点。
Absstract of: CN222851462U
本实用新型公开了一种燃料电池电源,属于新能源应用领域。包括箱体、固定支架、储氢装置和燃料电池;固定支架包括设置在箱体内部、且与箱体底壁之间留有预定间隙的支撑板,以及垂直于支撑板、将箱体分割成两腔体的隔板;储氢装置采用可分离方式安装在位于固定支架的一侧;燃料电池固定安装在隔板另一侧和支撑板上,且燃料电池与储氢装置管路连接。本实用新型通过将燃料电池、储氢装置以及其他电器元件集成在固定支架上,形成一个集成化程度较高的组件结构,从而提高燃料电池电源的紧凑性,有效减小燃料电池电源整体体积,满足多种场景下小空间的安装要求。
Absstract of: WO2024068595A1
An anion exchange membrane obtainable by curing a curable composition comprising: (a) a monomer (a) of Formula (I) AR1-(CH2)n-N+(RaRb)-(CH2)n-AR2,X. wherein: each n independently has a value of 1 or 2; (i) Ra and Rb are each independently an optionally substituted C1-3-alkyl group or an optionally substituted C2-3-alkenyl group; or (ii) Ra and Rb, together with the positively charged nitrogen atom to which they are attached, form an optionally substituted 5- or 6-membered ring; or (iii) one of Ra and Rb is an optionally substituted C1-3-alkyl group or an optionally substituted C2-3-alkenyl group and the other of Ra and Rb, together with the group of formula AR1 - (CH2)n - N+, forms an optionally substituted 5- or 6-membered ring; or (iv) Ra, together with the group of formula AR1 - (CH2)n - N+, forms an optionally substituted 5- or 6-membered ring, and Rb, together with the group of formula N+- (CH2)n - AR2, forms an optionally substituted 5- or 6-membered ring; X- is an anion; and AR1 and AR2 each independently comprise aromatic groups; wherein: (I) at least one of AR1 and AR2 comprises a curable ethylenically unsaturated group; (II) the monomer (a) of Formula (I) comprises at least two curable ethylenically unsaturated groups; and (III) the molar fraction of component (a) in relation to all curable components of the curable composition is at least 0.90.
Absstract of: CN119956251A
本申请提供了一种加工性能良好的超级铁素体不锈钢及制备方法和应用,属于合金领域。该超级铁素体不锈钢包括如下化学成分:Cr:23%~30%,Mo:4%~6%,Zr:0.4%~1%,B:0.015%~0.4%,Nb:1.0%~4%,Ti:0.05%~3%,Ni:0.2%~1%,Ru:0.05%~1%,C<0.008%,T.O≤0.002%,N≤0.001%,Si:0.15%~0.3%,Mn:0.1%~0.8%,Al:0.15%~0.4%以及Fe。通过化学成分的合理配比,从而提高超级铁素体不锈钢的加工性能。
Absstract of: WO2024083797A1
According to the invention, the technology disclosed relates to a fuel-cell assembly (5) for a motor vehicle, comprising a plurality of electrode plates (10) which together form a fuel-cell stack (15), and one or more bus bars (40, 45) which, when installed, are arranged below the fuel-cell stack (15). According to the invention, the technology disclosed also relates to an associated drive device (1) for a motor vehicle, and to an associated motor vehicle.
Absstract of: CN222851455U
本实用新型的实施例提供了一种双极板密封圈铺装设备,涉及燃料电池技术领域。双极板密封圈铺装设备包括铺装平台、下铺装模块、第一驱动装置和上铺装模块,下铺装模块包括第一顶出结构和第一放置板,第一顶出结构设置于铺装平台,第一放置板设置于第一顶出结构,且开设有第一安装槽;第一驱动装置设置于铺装平台,上铺装模块包括第二顶出结构和第二放置板,第二顶出结构设置于第一驱动装置,第二放置板设置于第二顶出结构,且开设有第二安装槽;第一顶出结构用于将第一密封圈从第一安装槽顶出,并与双极板的一侧粘接,第二顶出结构用于将第二密封圈从第二安装槽顶出,并与双极板的另一侧粘接。其能够提高铺装效率和精度,并提升粘接强度。
Absstract of: CN222851456U
本实用新型公开了一种叉车燃料电池热管理系统,包括燃料电池电堆,所述燃料电池电堆分别与固态储氢模块和电子节温器连接,所述电子节温器分别与冷却水泵和散热器连接,所述散热器与冷却水泵相连,所述冷却水泵通过管道与对燃料电池电堆加热的加热器连接,所述加热器与固态储氢模块相连。本实用新型结构简单,采用加热器加热快速提高启动初期燃料电池电堆温度,缩短燃料电池从启动到额定功率输出的响应时间,提高响应速度;采用固态金属储氢系统,可以吸收一部分电堆发出的热量,减小热管理系统中散热风扇功率,减小噪声。
Absstract of: CN222851454U
本申请公开了一种金属双极板流道结构,包括板体,设置有活性区以及气体分配区,其中所述气体分配区沿第一方向设置于所述活性区的两端;气体流道包括M条流道脊,M取整数,M≥1,M条所述流道脊均沿第二方向相互间隔设置,任一所述流道脊与其左右两侧的所述流道脊的间隔距离相等,相邻两个所述流道脊之间形成用于气体流通的凹槽;多个凸台沿设置于所述流道脊上,金属双极板通过在活性区的气体流道里设置多个凸台,其中凸台设置在气体流道的流道脊上,在阳极金属双极板与阴极金属双极板重叠时能够增加两板与膜电极之间的接触面积,从而提高电子传导的效率。本申请还公开了金属双极板及燃料电池。
Absstract of: CN222851458U
本申请公开了一种气体加湿装置,包括:加湿容器,加湿容器适于通过第一管路与气体供给装置连通,且适于通过第二管路与燃料电池连通;喷淋模块包括:驱动件,驱动件与加湿容器连通以形成喷淋循环回路;补液模块包括:第一温控组件,加湿容器、第一温控组件用于与液体供给装置连接形成液体供给流路,第一温控组件用于调控液体供给流路的液体温度。由此,通过使补液模块包括第一温控组件,可以通过第一温控组件调控液体供给流路的液体温度,以使供给至加湿容器的液体的温度与加湿容器内原有的液体的温度一致,从而可以降低补水时加湿容器内的液体温度波动的幅度,可以使气体露点温度稳定,有利于提高燃料电池的使用寿命或提高燃料电池测试的准确度。
Absstract of: CN222851460U
本实用新型的一种高效高能量密度燃料电池电堆系统,包括反应罐、水箱、冷凝装置和电堆,所述反应罐的进口通过泵、管道与水箱的出口连接,反应罐的出口通过管道、第一压力传感器与冷凝装置的进口连接,冷凝装置的出水口通过管道、第一电磁阀与水箱的第一进口连接,冷凝装置的出气口通过管道与电堆连接,电堆的出口通过管道、第三电磁阀与水箱的第二进口连接。本实用新型将冷凝装置的水循环重新进入水箱作为反应物,电堆阳极的水循环进入水箱作为反应物,通过回收利用水和回收水过程热能循环利用,减少初始水的添加量和系统的整体能量损失,提高系统的能量密度。
Absstract of: CN119965306A
本公开涉及一种液流电池储能系统故障定位方法、系统、设备及介质。定位方法包括:获取各个绝缘电阻测点检测到的绝缘电阻值;通过绝缘电阻值确定系统异常,并确定在各个电路开关中需要切断的多个检测电路开关;切断各个检测电路开关,将液流电池储能系统分为多个互不连接的单元;重新获取各个单元中绝缘电阻测点检测到的绝缘电阻值,根据各个重新获取的绝缘电阻值与预设标准电阻值的比较结果确定故障位置。本方案通过设置绝缘电阻测点和电路开关,并在检测到绝缘电阻异常时,利用历史数据与划分测量的方法,该方法能够迅速而准确地定位到液流电池储能系统中的故障位置,从而大大提高了故障排查与修复的效率,确保了系统的稳定运行。
Absstract of: CN119965295A
本发明公开了一种无人机用氢能燃料电池系统、长续航氢能无人机及控制方法,该氢能燃料电池系统包括:燃料电池电堆、供氢模块、供空气模块、供氧模块、供气温控模块、锂电池、DC‑DC转换器以及电池管理控制模块。本发明通过利用构建的目标温度优化数据表能够根据空气温度快速获取对应的优化目标温度,然后控制电热器将供气加热至到达优化目标温度后输送至燃料电池电堆,能够获得相对最高的能量收益,从而可以提高燃料电池的整体效率,增加无人机的续航时间;本发明能依据飞行高度智能增大空气供应速率使得供给的氧气始终能够满足燃料电池电堆的需求,从而能够保证燃料电池效率,减少燃料电池中氢气的损失。
Absstract of: CN119951228A
本发明公开了一种甲醇燃料电池尾气气液分离器,涉及燃料电池技术领域,该甲醇燃料电池尾气气液分离器,包括壳体,所述壳体的内部设置有对甲醇燃料电池尾气进行气液分离的分液系统,所述壳体的表面设置有对干燥剂进行更换的输送机构,所述壳体的表面设置有对排出气体中水分进行二次分离的进料机构,通过输送机构与进料机构的配合使用,通过输送机构将装置内部饱和干燥剂处理,再通过进料机构向装置内部自动投放干燥剂,实现自动化处理和投放干燥剂可以减少人工干预,提高处理效率,使操作更加高效和快速,并且自动化操作减少了人工接触干燥剂和其他化学物质的机会,降低了潜在的安全风险。
Absstract of: CN119965310A
本发明属于燃料电池技术领域,公开了一种高温质子交换膜及其制备方法和应用。本发明将1‑甲基咪唑与3‑氯丙基三乙氧基硅烷混合进行反应,得到1‑甲基‑3‑(三乙氧基硅基)丙基咪唑氯;然后与二氧化钛的悬浮液混合进行改性,再将改性二氧化钛、聚苯并咪唑粉末、溶剂混合,在基板上进行浇注,得到高温质子交换膜。本发明采用浇注法制备无机颗粒与聚苯并咪唑的复合膜,使得磷酸转移通道增加,多孔纳米颗粒更大程度的储存磷酸,进而提升酸掺杂水平。利用离子液体对无机纳米颗粒进行改性,提高与聚苯并咪唑的相容,可以有效提升质子交换膜的机械性能和开路电压等性能。
Absstract of: CN222841704U
本实用新型公开了一种气液分离装置、消声器总成、燃料电池系统和车辆,所述气液分离装置包括:气液分离器,所述气液分离器内形成有气液分离腔和储水腔,所述储水腔位于所述气液分离腔的下方且与所述气液分离腔连通,所述气液分离器内还形成有围绕所述储水腔分布的加热腔;供气流路,所述供气流路中设有空压机,所述供气流路中流经所述空压机压缩后的气体适于选择性地流向所述加热腔内。根据本实用新型的气液分离装置,可以保证储水腔中分离的液态水持续排出,有效避免因低温造成液态水结冰堵塞储水腔问题的发生。
Absstract of: CN222851461U
本实用新型公开了一种燃料电池系统用尾气排放装置,涉及尾气排放技术领域。本实用新型包括支撑杆和设置在支撑杆上的固定机构和配置机构。本实用新型通过设置固定机构,使用时,当需要对氢气浓度检测装置进行安装时,可将装置放入排气管内,然后,转动转盘,转盘将带动螺纹杆转动,同时,螺纹杆在转动时,将带动其上的圆形转块进行移动,且圆形转块在移动过程中,会转动配合四角固定环一,从而使得四角固定环一能转动地带动其上的多个连接杆一与两个四角固定环二上转动连接的多个连接杆二相配合,进而使得多个连接杆一和多个连接杆二上的固定杆能向四周扩展,以此可适配不同型号的排气管,从而提高其实用性和灵活性。
Absstract of: CN119965296A
本发明公开了MW级燃料电池热电联供制冷散热系统,包括燃料电池热电联供系统,燃料电池热电联供系统的一侧连接有进氢气进口、空气进口和冷却水进口,燃料电池热电联供系统的底部设置有冷却水出口和阴极出水口,冷却水进口和冷却水出口之间通过冷却水管连接,冷却水管位于燃料电池热电联供系统中;冷却水出口和阴极出水口与三通阀的进口端连接,三通阀的第一出口端与用户端连接,三通阀的第二出端口与蓄水箱的进水口连接,蓄水箱的出水口与余热制冷装置的进水口连接,余热制冷装置的出水口分别与水帘散热装置、箱式喷雾散热装置和算力中心连接。本发明实现了MW级质子交换膜燃料电池热电联供系统的高效热管理与水资源循环利用。
Absstract of: CN119965313A
一种水系铁铕液流电池及电解液的制备方法,属于电池领域。正极电解液包含铁盐、螯合剂、支持电解质、辅助电解质、无氧去离子水。负极电解液包含铕盐、螯合剂、支持电解质、辅助电解质、无氧去离子水;所选螯合剂为亚氨基二琥珀酸、琥珀酸、N,N'‑乙二胺二琥珀酸、天冬氨酸、氨基三乙酸,乙二胺四乙酸、二乙烯三胺五乙酸、反式‑1.2‑环己二胺四乙酸、1,3‑丙二胺四乙酸、N‑(2‑羟乙基)乙二胺‑N,N',N'‑三乙酸、亚氨基二乙酸或其衍生化学品至少一种。该铁铕液流电池可在中性条件下使用,成本低,制备简单,切实保障电力系统稳定输出,也可以充当新能源汽车电源系统,通过更换电解液,实现瞬间再次充电。
Absstract of: CN119965303A
本公开提供一种氢燃料电池排水排氮控制系统及控制方法,该控制系统包括:燃料电池系统控制单元FCU、排水阀、排氮阀以及氢气入堆压力传感器,其中,氢气入堆压力传感器用于采集当前氢气入堆压力并发送至燃料电池系统控制单元FCU;燃料电池系统控制单元FCU用于在采集到当前氢气入堆压力之后,交替控制排水阀和排氮阀打开,并在当前氢气入堆压力的波动大于阈值时,控制排水阀和排氮阀关闭。本公开根据氢气入堆压力交替控制排水阀和排氮阀的打开,避免了因排水阀和排氮阀同时打开而导致的氢气压力波动较大,并在当氢气压力的波动过大时,控制排水阀和排氮阀关闭,从而保证了燃料电池系统的稳定。
Absstract of: US2025145754A1
A hydrocarbon-based ionomer for a membrane-electrode assembly includes a block copolymer. The block copolymer includes a triblock copolymer that is represented by A1n1-Bm-A2n2. A1 is a first hydrophobic domain, B is a hydrophilic domain, A2 is a second hydrophobic domain, n1 and n2 each is an integer greater than or equal to 100 and less than or equal to 4,000, and m is an integer greater than or equal to 100 and less than or equal to 8,000.
Absstract of: CN119009024A
The invention discloses a flow battery test platform, which comprises a flow battery system, a multi-physical field parameter coupling detection system and a data acquisition system, and is characterized in that the flow battery system comprises a flow battery and a visual clamp, and the flow battery comprises an electrode and a liquid storage tank; the visual clamp comprises a diaphragm, two graphite plates and two end plates, and at least one of the two end plates is a transparent end plate; the multi-physical field parameter coupling detection system comprises an optical detection unit, an electrolyte detection unit, a gas detection unit and a battery tester, wherein the optical detection unit is used for acquiring internal image data of the flow battery; the electrolyte detection unit is used for acquiring concentration data of the electrolyte; the gas detection unit is used for acquiring gas concentration data; the battery tester is used for charging and discharging the flow battery; and the data acquisition system is used for acquiring key characteristic data according to the image data, the concentration data of the electrolyte and the concentration data of the gas so as to adjust the running state of the battery.
Absstract of: CN119965300A
本发明涉及燃料电池控制技术领域,公开一种燃料电池系统的控制方法,包括:步骤1、建立燃料电池系统的动态模型,定义系统的状态变量为氢气浓度、氧气浓度、膜水分含量和堆温度,控制输入为氢气供给速率、氧气供给速率和冷却水流速,通过状态变量与控制输入间的关系描述燃料电池系统的动态行为;步骤2、基于步骤1建立的动态模型定义燃料电池系统的性能目标。通过动态反馈增益矩阵的引入,在深度学习模型输出的基础上,根据状态变量与参考状态变量间的偏差动态修正控制输入,实现控制策略对燃料电池系统实时状态的自适应调节,得到提高动态负载条件下控制输入的实时性和精确性的效果。
Absstract of: CN119965293A
本申请公开了一种极板、燃料电池和车辆。其中,极板包括:板本体和分隔条,分隔条设于板本体的表面,分隔条至少设置有两个,两分隔条之间形成曲线延伸的流道,每一流道包括扩张段和收紧段,扩张段的横截面积大于收紧段的横截面积,收紧段和扩张段在流道的延伸方向上间隔设置,以在流道的延伸方向形成压差。本申请的技术方案能够有效的排散掉传输通道中留存的水分,保证传输通道畅通,使化学反应持续进行。
Absstract of: CN119965298A
本申请实施例涉及一种燃料电池膜增湿器,涉及燃料电池技术领域,包括增湿主体和第一盖板,增湿主体包括多个可拆卸连接的增湿单元;增湿单元设有干气进气通道、干气出气通道、湿气进气通道和湿气出气通道;膜组件包括连通湿气进气通道和湿气出气通道的中空纤维膜管以及连通湿气进气通道和湿气出气通道的膜束框;多个增湿单元的干气进气通道、干气出气通道、湿气进气通道和湿气出气通道一一对应且连通;第一盖板将增湿主体各个通道暴露于对应侧的开口封闭。本申请能够调节增湿主体中增湿单元的数量,满足不同功率段燃料电池系统的湿度需求,兼容性更高;且可以单独对增湿单元进行更换,延长了产品的使用寿命,也避免了材料的浪费,降低了成本。
Absstract of: CN119965294A
本发明提供了一种换热器、固体氧化物燃料电池和空气预热方法,属于固体氧化物燃料电池领域。包括导气腔、换热单元和冷流股出气管,导气腔包括冷流股进气腔和热流股出气腔。换热单元设置于内壳体腔室内,包括平行间隔布置且相互连接的第一冷流腔和第二冷流腔。在间隔方向上,第二冷流腔的外轮廓小于第一冷流腔的外轮廓,换热单元依次堆叠设置有多个且依次连接,位于一侧的第一冷流腔与冷流股进气腔的出口连接,且中部设置有热流股流动孔,另一侧的第二冷流腔与冷流股出气管连通,冷流股出气管的另一端穿设于导气腔外部,且设置有冷流股出气孔。采用该换热器能够实现换热器以及整个固体氧化物燃料电池的小型化和轻量化,提高集成性和适配性。
Absstract of: CN119965304A
本发明提供了一种燃料电池系统及燃料电池系统的燃料电池堆的检漏方法,本发明所述的燃料电池系统包括燃料电池堆、供氢装置、供氧装置,以及控制装置,其中,控制装置包括控制模块、获取模块以及确定模块;控制模块控制供氢装置向燃料电池堆供给氢气,且控制供氧装置向燃料电池堆供给空气,并使燃料电池堆建立开路电压;获取模块获取燃料电池堆在停止工作后,燃料电池堆中各单片电池的电压及各单片电池电压的下降速度;确定模块确定电压为零或电压下降速度大于预设速度阈值的单片电池存在泄漏。本发明所述的电池系统,能够快速检测燃料电池堆中的各单片电池是否存在泄漏,减少工作量,对快速分析燃料电池系统的故障问题很有帮助。
Absstract of: CN119953167A
本发明公开了一种氢燃料汽车液冷装置和氢堆循环冷却系统,属于氢燃料汽车技术领域。氢燃料汽车液冷装置包括液冷散热器,液冷散热器的底部固定有风扇组件,液冷散热器包括矩形框梁,矩形框梁内壁两端设有进水分流仓和出水汇流仓,进水分流仓和出水汇流仓之间连通有多根散热管,进水分流仓上设有散热器进水管,出水汇流仓上设有散热器出水管。氢堆循环冷却系统包括互相连通的膨胀水箱、氢堆冷却模块和的氢燃料汽车液冷装置,膨胀水箱将冷却液输送至氢堆冷却模块,氢堆进水管上设有循环水泵,氢堆出水管和氢堆进水管分别与散热器进水管和散热器出水管连通形成液冷循环系统。本发明解决了氢燃料汽车散热量需求大的问题。
Absstract of: CN119965305A
本公开提出了燃料电池电堆的故障识别方法和系统。该方法包括:步骤S1:测量各个单电池的上侧双极板与下侧双极板之间的电势差,并测量所述上端板和所述下端板之间的电堆总电压Vtotal;步骤S2:计算测量的各个单电池的上侧双极板与下侧双极板之间的电势差的总和SUM=ΔVa+ΔVb+…+ΔVj,并进一步计算所述电堆总电压Vtotal与所述总和SUM之间的差值ΔV=Vtotal-SUM;以及步骤S3:将所述差值ΔV与参考值ΔVref进行比较,并根据比较结果判断所述燃料电池电堆是否发生故障。根据本公开的燃料电池电堆的故障识别方法和系统仅需单个电压巡检仪即可达成故障识别目的,简化了结构并节省了成本。
Absstract of: CN119956436A
在金属连接体基体表面制备Co3O4‑MnCo2O4复合尖晶石涂层的方法,属于表面涂层技术领域,解决MnCo2O4单层尖晶石涂层电阻率较高的技术问题,包括以下步骤:S1、采用溶胶‑凝胶工艺制备锰钴尖晶石粉体材料;S2、采用电解沉积工艺在基体的表面制备Co3O4层;S3、以锰钴尖晶石粉体材料作为原材料,采用电泳沉积工艺进一步沉积锰钴尖晶石涂层;S4、将步骤S3制得的金属连接体坯料干燥后进行烧结处理,制得Co3O4‑MnCo2O4复合尖晶石涂层改性的金属连接体。本发明制备方法成本低、工艺简单,复合尖晶石涂层可以有效改善金属连接体的抗氧化性能以及导电性能,并具有较好的阻止Cr挥发的能力。
Absstract of: CN119965299A
本发明公开了一种跨介质质子交换膜燃料电池大尺寸流场板设计方法,所建立的模型由三维计和一维计算域组成,三维计算域包括双极板、气体通道、气体扩散层以及阳极和阴极中的扩展层,扩展层起到连接阴阳极的作用。微孔层、催化层和质子交换膜简化为一维计算域,由分属于阴阳极的内部面节点构成。本发明具有更高的计算效率,并且考虑质子交换膜燃料电池内发生的传质传热、电化学反应、膜水平衡等过程,能够对活化面积超过300cm2的大尺寸跨介质工作燃料电池进行准确仿真。通过改变燃料电池流场板结构参数,得知流道沟脊比、流场横纵比和流场精细程度等对电池性能、传质特性和水热管理的影响。从而可设计出最优的跨介质燃料电池流场板结构。
Absstract of: CN119956248A
本申请提供了一种中高温强度优异的铁铬合金、互联板及制备方法,属于铁铬合金领域。该铁铬合金包括如下化学成分:Cr:12%~30%,Cu:0.5%~3.5%,Ni:1.0%~1.2%,W:1%~3%,C+N≤0.015%,Y:0.05%~0.3%,Th:0.001%~0.005%,T.O≤0.002%,Si≤0.2%,Mn:0.1%~0.8%,Al≤0.2%以及Fe。通过设计合理的合金元素添加及配比,在合金中加入元素Y,抵消了高Cr可能带来的对塑性的影响。采用了Th沉淀强化,通过协同Y元素的添加,弥散Th的氧化物,提高中高温力学性能。合理调整Y、Cu、W元素比例,促进Cu、W元素在合金中的弥散强化作用。从而提高了合金材料的中高温强度性能。
Absstract of: CN119965308A
本申请公开了一种电池膜材料及其制备方法与应用,属于液流电池用离子传导膜领域。所述电池膜材料,包括依次叠加的A层膜、B层膜、C层膜;所述A层膜、B层膜、C层膜表面含有离子交换基团;相邻膜层表面的离子交换基团所带电荷相反。该电池膜材料通过层与层之间建立相互作用,降低层间接触电阻,使其在液流电池中具有优异的离子选择性及离子传导率,得到最佳的电池性能。
Absstract of: US2025145039A1
A computer system for controlling a fuel cell system during a vehicle stop of a vehicle is described. The computer system has processing circuitry configured to obtain a stop duration of the vehicle stop; calculate a storage capacity of a vehicle battery of the vehicle as a difference between a current state of charge of the vehicle battery and a target state of charge of the vehicle battery at the end of the stop duration; calculate a battery charging energy for the vehicle battery based on the storage capacity; determine a maximum feasible fuel cell power output of the fuel cell system for charging the vehicle battery using the battery charging energy; and control a charging mode of the fuel cell system based on the maximum feasible fuel cell power.
Absstract of: FR3154931A1
Procédé pour l’extraction et l’utilisation de l’oxygène d’un milieu aqueux La présente invention concerne un procédé d’extraction de l’oxygène d’un milieu aqueux, comprenant les étapes suivantes : - fourniture d’une membrane (18) d’extraction, perméable à l’oxygène ; puis - mise en contact, avec une première face (20) de la membrane, d’un premier milieu aqueux (14) contenant de l’oxygène (12) ; - mise en contact, avec une deuxième face (22) de la membrane, d’un deuxième milieu aqueux (16) comprenant un composé support (30) ; - diffusion de l’oxygène du premier milieu aqueux vers le deuxième milieu aqueux à travers la membrane (18) ; et formation d’un composé complexe (32) par liaison de l’oxygène (12) avec le composé support (30). Le composé support (30) est une molécule organique choisie parmi une globine d’Annélides, un protomère de globine d’Annélides et une hémoglobine extracellulaire d’Annélides. Figure pour l'abrégé : Figure 1
Absstract of: FR3155095A1
Un procédé de fabrication d’une plaque bipolaire destinée à être montée dans un dispositif électrochimique, le procédé comprenant une étape de superposition (E2), selon un axe d’empilement (A), d’un premier film de démoulage (4), d’un élément fibreux (Q) comprenant au moins un film de renfort carbone non tissé (2) et du polymère thermoplastique (31), et d’un deuxième film de démoulage (4), afin de former un empilement (1) ; une étape de mise sous pression de l’empilement (1) dans le système (S) de compression ; et, précédemment à l’étape de superposition (E2), une étape d’ajout (E1) de particules électriquement conductrices (91) au film de renfort carbone non tissé (2) et/ou au polymère thermoplastique (31) de l’élément fibreux (Q). Figure de l’abrégé : Figure 13
Absstract of: CN119954991A
本发明公开了一种具有大位阻基团的高透氧离聚物及其制备方法和应用,属于燃料电池技术领域。本发明制备方法包括如下步骤:(1)溶液环境中,全氟磺酰氟类树脂与氨基苯磺酸类化合物在缚酸剂作用下进行亲核取代反应,反应结束后回收得到离聚物;(2)离聚物于强碱溶液中进行洗涤,过滤得到产物;(3)对产物进行质子化处理,完成后回收得到具有大位阻基团的高透氧离聚物。该方法具有工艺便捷、后处理方便、可批量制备并适用于工业生产的优势。具有大位阻基团的高透氧离聚物用于质子交换膜燃料电池,优化了峰值功率密度并改善了传质性能,尤其是在大电流密度区,表现出优异的电池输出性能,具有广阔的应用前景。
Absstract of: DE102024202828A1
Ein System zur Erzeugung von Wasserstoff und zur Speicherung von Kohlendioxid hat eine erhöhte Verarbeitungskapazität von Kohlendioxid. Das System umfasst eine Metall-Kohlendioxid-Batterie mit einer Anode, einer Kathode und einer zwischen der Anode und der Kathode positionierten Ionenaustauschmembran, eine erste Zufuhreinheit, die derart eingerichtet ist, dass sie der Anode einen ersten Elektrolyten bereitstellt, eine zweite Zufuhreinheit, die derart eingerichtet ist, dass sie der Kathode einen zweiten Elektrolyten bereitstellt, der Wasserstoffionen und eine wässrige Lösung mit Alkalibicarbonat umfasst, eine Trenneinheit, eine Elektrolyt-Zirkulationseinheit, die sich an einem hinteren Ende der Trenneinheit befindet, eine Auflösungseinheit, die sich an einem hinteren Ende der Elektrolyt-Zirkulationseinheit befindet, und eine Kohlendioxid-Reinigungseinheit.
Absstract of: DE102024132181A1
Die vorliegende Erfindung betrifft ein Verfahren für eine Erkennung einer Temperaturänderung in einem Brennstoffzellensystem (100) mit wenigstens einem Brennstoffzellenstapel (110) und einer Turbovorrichtung (140) mit einem Kompressor (142) zur Zufuhr von Zuluft (ZL) zu einer Luftseite (120) des Brennstoffzellenstapels (110) und einer Turbine (144) zur Abfuhr von Abluft (AL) von der Luftseite (120) des Brennstoffzellenstapels (110), wobei die folgenden Schritte vorgesehen sind:- Erfassen einer von der Turbovorrichtung (140) aufgenommenen Ist-Turboleistung (ITL) der Turbovorrichtung (140),- Vergleich der bestimmten aufgenommen Ist-Turboleistung (ITL) mit einer Soll-Turboleistung (STL),- Ausgeben eines Temperatursignals (TS) in Abhängigkeit des Ergebnisses des Vergleichs zwischen Ist-Turboleistung (ITL) und Soll-Turboleistung (STL).
Absstract of: DE102023211010A1
Ein Brennstoffzellensystem (2), insbesondere zum Bereitstellen von elektrischer Energie zum Antreiben eines Elektromotors (5) in einem Kraftfahrzeug (1), hat wenigstens eine Brennstoffzelle (4); einen Zuluftpfad (6), der dazu ausgebildet ist, der wenigstens einen Brennstoffzelle (4) Luft aus der Umgebung zuzuführen; einen Abluftpfad (8), der dazu ausgebildet ist, einen Abluftstrom (14) aus der wenigstens einen Brennstoffzelle (4) abzuführen; einen Abluft-Rückführungspfad (10), der dazu ausgebildet ist, einen Rückluftstrom (19), der von dem Abluftstrom (14) abgezweigt ist, in den Zuluftpfad (6) zurückzuführen; und eine Abzweigvorrichtung (12), die dazu ausgebildet ist, einen Teilluftstrom aus dem Abluftstrom (14) abzuzweigen und als Rückluftstrom (19) in den Abluft-Rückführungspfad (10) zurückzuführen. Die Abzweigvorrichtung (12) ist dazu ausgebildet, wenigstens einen Schwerkrafteffekt nutzen, um den Teilluftstrom aus dem Abluftstrom (14) so abzuzweigen, dass der Teilluftstrom keinen signifikanten Anteil an flüssigem Wasser mitführt.
Absstract of: DE102023210845A1
Die vorgestellte Erfindung betrifft einen Luftkompressor (100) zum Fördern von Luft, wobei der Luftkompressor (100) umfasst:- einen Stator (101),- eine Kühlvorrichtung (103) und- eine den Stator (101) umgebende Hülle (105), wobei die Kühlvorrichtung (103) umfasst:- einen Grundkörper (107) und- eine Anzahl auf einer Oberfläche des Grundkörpers (107) ausgebildeter Luftleitelemente (109)wobei die Kühlvorrichtung (103) einen Wickelkopf (111) des Stators in einem Bereich zwischen dem Wickelkopf (111) und der Hülle (105) zumindest stirnseitig überlagert,wobei die Hülle (105) eine Anzahl Hüllenaufnahmen (113, 115) aufweist, durch die die Kühlvorrichtung mit der Hülle mechanisch gekoppelt ist,wobei der Stator eine Anzahl Statoraufnahmen (117, 119) aufweist, durch die die Kühlvorrichtung mit dem Stator (101) mechanisch gekoppelt ist, und wobei die Hülle (105) mit den Luftleitelementen (109) und dem Grundkörper (107) einen Luftleitpfad bildet, der dazu konfiguriert ist, einen Luftmassenstrom entlang des Stators (101) zu führen.
Absstract of: DE102023210996A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Luftsystems (1) zur Versorgung mindestens eines Brennstoffzellenstapels (2) mit Luft, umfassend einen Zuluftpfad (3) und ein in den Zuluftpfad (3) integriertes Luftförder- und Luftverdichtungssystem (4) mit mehreren in Reihe geschalteten Welle-Rotor-Einheiten (5), deren Wellen (6) über Gaslager (7, 8) drehbar gelagert sind, wobei die Gaslager (7, 8) mindestens einer Welle-Rotor-Einheit (5) mit Luft aus dem Zuluftpfad (3) temperiert, insbesondere gekühlt, werden. Erfindungsgemäß wird die Luft zur Temperierung der Gaslager (7, 8) stromabwärts der in der Reihe letzten Welle-Rotor-Einheit (5) aus dem Zuluftpfad (3) in einen Luftpfad (12) abgezweigt, über den Luftpfad (12) den Gaslagern (7, 8) zugeführt und anschließend zwischen zwei Welle-Rotor-Einheiten (5) wieder in den Zuluftpfad (3) eingeleitet.Die Erfindung betrifft ferner ein Luftsystem (1) sowie ein Brennstoffzellensystem (20) mit einem erfindungsgemäßen Luftsystem (1).
Absstract of: DE102023211053A1
Die Erfindung bezieht sich auf eine elektrochemische Zelle (10) mit einer Membran-Elektroden-Einheit (4) und zwei Bipolarplatten (7). Die Membran-Elektroden-Einheit (4) ist zwischen den beiden Bipolarplatten (7) angeordnet. An der Bipolarplatte (7) ist eine Dichtsicke (71) ausgebildet.Die Membran-Elektroden-Einheit (4) umfasst eine Membran (2), zwei Elektroden (1, 3), einen Rahmen (15) und ein Verbindungselement (17). Der Rahmen (15) weist einen Ausschnitt (18) für eine aktive Fläche (18) der Membran-Elektroden-Einheit (4) auf. Der Rahmen (15) ist mittels des Verbindungselements (17) mit der Membran (2) und/oder mit der ersten Elektrode (1) und/oder mit der zweiten Elektrode (3) verklebt. Der Rahmen (15) umfasst nur eine Folie (151). Die Folie ist (151) mittels des Verbindungselements (17) mit der Dichtsicke (71) verklebt.
Absstract of: DE102023130521A1
Die hier offenbarte Technologie betrifft erfindungsgemäß einen Brennstoffzellenstapel (10), aufweisend mehrere Brennstoffzellen (11) und ein Gehäuse (12) mit einem Lagervolumen (13), wobei die Brennstoffzellen (11) in einer Stapelrichtung (002) gestapelt und im Lagervolumen (13) positioniert sind und wobei die Brennstoffzellen (11) jeweils schräg zur Stapelrichtung (20) positioniert sind. Die Technologie betrifft ferner ein Gehäuse (12) für den Brennstoffzellenstapel (10) und ein Fahrzeug (100) mit dem Brennstoffzellenstapel (10).
Absstract of: DE102023210858A1
Die Erfindung geht aus von einem Verfahren zu einer Bearbeitung eines Substrats für eine elektrochemische Zelle (16a) mittels einer Bearbeitungsvorrichtung (10a), welche eine Bearbeitungseinheit (12a), insbesondere Laserbohreinheit, umfasst, wobei in zumindest einem Bearbeitungsschritt (46a) mittels der Bearbeitungseinheit (12a) zumindest eine Ausnehmung, insbesondere Durchgangsausnehmung (14a), in das Substrat für eine elektrochemische Zelle (16a) eigebracht wird, wobei in dem zumindest einen Bearbeitungsschritt (46a) eine Bearbeitung des Substrats (16a) mittels der Bearbeitungseinheit (12a) erfolgt.Es wird vorgeschlagen, dass in zumindest einem Vorbereitungsschritt (48a) das Substrat (16a) in eine Mehrzahl von Teilflächen (18a) unterteilt wird, wobei in dem zumindest einen Bearbeitungsschritt (46a) eine sequentielle Bearbeitung anhand der Teilflächen (18a) erfolgt.
Absstract of: DE102023130522A1
Die hier offenbarte Technologie betrifft erfindungsgemäß ein Brennstoffzellensystem (10) für ein Fahrzeug (100), aufweisend einen Haupt-Brennstoffzellenstapel (12), der wenigstens einen Haupt-Prozessfluidkanal (17) umfasst, der sich in einer Stapelrichtung (18) durch den Haupt-Brennstoffzellenstapel (12) erstreckt, wenigstens einen Zusatz-Brennstoffzellenstapel (13), der wenigstens einem Zusatz-Prozessfluidkanal (19) umfasst, der sich in der Stapelrichtung (18) durch den Zusatz-Brennstoffzellenstapel (13) erstreckt, eine Kontrolleinheit (14) zum Kontrollieren eines Prozessfluidmassenstroms durch den wenigstens einen Haupt-Prozessfluidkanal (17) und den wenigstens einen Zusatz-Prozessfluidkanal (19) und ein Stapelgehäuse (16), wobei der Haupt-Brennstoffzellenstapel (12), der wenigstens eine Zusatz-Brennstoffzellenstapel (13) und die Kontrolleinheit (14) wenigstens teilweise im Stapelgehäuse (16) positioniert sind. Die Technologie betrifft ferner ein Fahrzeug (100) mit dem Brennstoffzellensystem (10).
Absstract of: DE102023130584A1
Gemäß verschiedenen Ausführungsformen erfolgt ein Verwenden einer Blattstruktur (10) zum Bilden eines Separators (106) einer elektrischen Zelle (100a, 100b).
Absstract of: DE102023210862A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Luftsystems (1) mit einem Zuluftpfad (2), über den mindestens einem Brennstoffzellenstapel (3) Luft zugeführt wird, und einem Abluftpfad (4), über den die aus dem mindestens einen Brennstoffzellenstapel (3) austretende Luft abgeführt wird, wobei die Luft im Zuluftpfad (2) mit Hilfe eines Luftverdichtungssystems (5), das mindestens eine Verdichtungsstufe (5.1, 5.2) sowie mindestens eine in den Abluftpfad (4) integrierte Turbine (6) als Antrieb umfasst, verdichtet wird und wobei die verdichtete Luft nach der mindestens einen Verdichtungsstufe (5.1, 5.2) oder zwischen zwei Verdichtungsstufen (5.1, 5.2) unter Verwendung eines Gas-Gas-Wärmeübertragers (7) mit Luft aus dem Abluftpfad (4) stromabwärts der mindestens einen Turbine (6) gekühlt wird.Die Erfindung betrifft ferner ein Luftsystem (1) sowie ein Brennstoffzellensystem (17) mit einem erfindungsgemäßen Luftsystem (1).
Absstract of: DE102024122821A1
Ein kohlenwasserstoffbasiertes Ionomer für eine Membran-Elektroden-Anordnung enthält ein Blockcopolymer. Das Blockcopolymer enthält ein Triblockcopolymer das durch A1n1-Bm-A2n2dargestellt ist. A1 ist eine erste hydrophobe Domäne, B ist eine hydrophile Domäne, A2 ist eine zweite hydrophobe Domäne, n1 und n2 sind jeweils eine ganze Zahl größer als oder gleich 100 und weniger als oder gleich 4.000 und m ist eine ganze Zahl größer als oder gleich 100 und weniger als oder gleich 8.000.
Absstract of: DE102023210915A1
Es wird ein teilautonomes elektrochemisches Modul (10a; 10b) für ein elektrochemisches System (12a; 12b) vorgeschlagen, mit zumindest zwei elektrochemischen Zelleneinheiten (16a, 18a, 20a; 16b, 18b, 20b) zu einer elektrochemischen Umwandlung zumindest eines Prozessfluids (22a), mit zumindest einer Verteilereinheit (14a; 14b) zu einer Versorgung der elektrochemischen Zelleneinheiten (16a, 18a, 20a; 16b, 18b, 20b) mit dem zumindest einen Prozessfluid (22a), wobei die Verteilereinheit (14a; 14b) zumindest eine Fluidschnittstelle (24a; 24b) zu einem, insbesondere reversiblen, Anschluss der Verteilereinheit (14a; 14b) an eine Fluidversorgungseinheit (26a) des elektrochemischen Systems (12a; 12b) umfasst, und mit zumindest einer lokalen Steuer- oder Regeleinheit (28a; 28b) zu einer dezentralen Einstellung eines modulspezifischen Betriebspunkts der elektrochemischen Zelleneinheiten (16a, 18a, 20a; 16b, 18b, 20b).
Absstract of: DE102023130938A1
Die Erfindung betrifft ein Verfahren zur Temperierung einer Hochtemperaturbatterie (3) in einer elektrischen Energieerzeugungseinrichtung (1) mit der Hochtemperaturbatterie (3), einem Brennstoffzellensystem (2), einem Wasserstofftanksystem (7), einem Metallhydridspeicher (6) in wärmeleitender Verbindung mit der Hochtemperaturbatterie (3) und zumindest einer Fluidverbindung (10) zwischen dem Wasserstofftanksystem (7) und dem Metallhydridspeicher (6), in welcher wenigstens eine Ventileinrichtung (11) in der Art gesteuert oder geregelt wird, dass die Temperatur der Hochtemperaturbatterie (3) in einem gewünschten Temperaturfenster gehalten wird. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass die Temperatur unabhängig vom Betrieb der elektrischen Energieerzeugungseinrichtung (1) in dem gewünschten Temperaturfenster gehalten wird. Das Verfahren lässt sich insbesondere bei der Erzeugung von elektrischer Antriebsleistung für ein Fahrzeug, insbesondere ein Nutzfahrzeug, bevorzugt ein Flottenfahrzeug mit kurzen Stillstandszeiten, verwenden.
Absstract of: DE102023211051A1
Verfahren zum Herstellen einer Membran-Elektroden-Einheit (1) für eine elektrochemische Zelle (100) mit folgenden Verfahrensschritten:• Bereitstellen einer mit Elektroden (3, 4) beschichteten Membran (2),• Bereitstellen einer ersten Folie (11) und einer zweiten Folie (12), wobei beide Folien (11, 12) je einen Ausschnitt für den aktiven Bereich (35) der elektrochemischen Zelle (100) aufweisen, wobei mindestens eine der beiden Folien (11, 12) mit einem Klebemittel (13) versehen ist,• Einlaminieren der mit Elektroden (3, 4) beschichteten Membran (2) zwischen den beiden Folien (11, 12), wobei in einem Verklebebereich (23) die beiden Folien (11, 12) mittels des Klebemittels (13) direkt miteinander verklebt sind, so dass die beiden Folien (11, 12) eine Rahmenstruktur (10) für die Membran-Elektroden-Einheit (1) ausbilden,• Ausstanzen zumindest eines Medienanschlusses (30) aus der Rahmenstruktur (10) und gleichzeitiges Verschmelzen der beiden Folien (11, 12) in einem Verbindungsbereich (15) über zumindest einen teilweisen Umfang (33) des Medienanschlusses (30).
Absstract of: DE102023210846A1
Die Erfindung geht aus von einem Verfahren zu einem Betrieb einer Bearbeitungsvorrichtung (10a; 10b; 10c; 10d) mit zumindest einer Bearbeitungseinheit (12a; 12b; 12c; 12d), insbesondere Laserbohreinheit, wobei in zumindest einem Bearbeitungsschritt (20a; 20b; 20c; 20d) mittels der Bearbeitungseinheit (12a; 12b; 12c; 12d) zumindest eine Durchgangsausnehmung (14a; 14b; 14c; 14d) mittels eines Laserimpulses (22a; 22b; 22c; 22d) in das Substrat für eine elektrochemische Zelle (16a; 16b; 16c; 16d) eingebracht wird.Es wird vorgeschlagen, dass in dem zumindest einen Bearbeitungsschritt (20a; 20b; 20c; 20d) mittels der Bearbeitungseinheit (12a; 12b; 12c; 12d) zur Erzeugung einer einzelnen Durchgangsausnehmung (14a; 14b; 14c; 14d) zumindest ein weiterer Laserimpuls (24a; 24b; 24c; 24d) erzeugt wird, wobei der zumindest eine weitere Laserimpuls (24a; 24b; 24c; 24d), zu einer Bearbeitung mittels der Bearbeitungseinheit (12a; 12b; 12c; 12d), zumindest im Wesentlichen teilweise zeitlich überschneidend mit dem ersten Laserimpuls (22a; 22b; 22c; 22d) eingesetzt wird.
Absstract of: DE102023211042A1
Die Erfindung bezieht sich auf eine Membran-Elektroden-Einheit (4) für eine Anordnung elektrochemischer Zellen (10). Die Membran-Elektroden-Einheit (4) umfasst eine Membran (2), zwei Elektroden (1, 3), insbesondere eine erste Elektrode (1) und eine zweite Elektrode (3), einen Rahmen (15) und ein Verbindungselement (17) umfasst. Der Rahmen (15) weist einen Ausschnitt (18) für eine aktive Fläche (18) der Membran-Elektroden-Einheit (4) auf. Der Rahmen (15) ist mittels des Verbindungselements (17) mit der Membran (2) und/oder mit der ersten Elektrode (1) und/oder mit der zweiten Elektrode (3) verklebt. Der Rahmen (15) umfasst nur eine Folie (151). Der Rahmen (15) weist eine Verstärkungsschicht (170) auf.
Absstract of: DE102023210995A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Luftsystems (1) zur Versorgung mindestens eines Brennstoffzellenstapels (2) mit Luft, umfassend einen Zuluftpfad (3) und ein in den Zuluftpfad (3) integriertes Luftförder- und Luftverdichtungssystem (4) mit mehreren in Reihe geschalteten Welle-Rotor-Einheiten (5), deren Wellen (6) über Gaslager (7, 8) drehbar gelagert sind, ferner umfassend einen Abluftpfad (9) zum Abführen der aus dem Brennstoffzellenstapel (2) austretenden Luft sowie mindestens eine in den Abluftpfad (9) integrierte Drosseleinrichtung, vorzugsweise in Form einer Turbine (10) und/oder eines Druckregelventils. Erfindungsgemäß werden die Gaslager (7, 8) mit Luft temperiert, die- stromabwärts der in der Reihe letzten Welle-Rotor-Einheit (5) aus dem Zuluftpfad (3) oder- stromaufwärts der mindestens einer Drosseleinrichtung aus dem Abluftpfad (9)abgezweigt und in umgekehrter Reihenfolge den Gaslagern (7, 8) der Welle-Rotor-Einheiten (5) zugeführt wird, so dass zuerst die Gaslager (7, 8) der in Reihe letzten Welle-Rotor-Einheit (5) und anschließend die Gaslager (7, 8) der mindestens einen weiteren Welle-Rotor-Einheit (5) mit der Luft temperiert werden.Die Erfindung betrifft ferner ein Luftsystem (1) sowie ein Brennstoffzellensystem (20) mit einem erfindungsgemäßen Luftsystem (1).
Absstract of: DE102024132688A1
Die Erfindung betrifft ein Elektrochemisches System mit wenigstens einer elektrochemischen Zelle (12), welche eine Anodenhalbzelle (20) und eine Kathodenhalbzelle (21) aufweist, die durch eine protonenleitende Zellenmembran (22) voneinander getrennt sind, wobei die Kathodenhalbzelle (20) und/oder die Anodenhalbzelle (21) einen Zelleneinlass (25, 27) für einen ersten gasförmigen Reaktanten und einen Zellenauslass (26, 28) für ein Reaktionsabgas aufweist, einem Membranbefeuchter (43), der einen Strömungsweg (62) für den gasförmigen Reaktanten und einen Strömungsweg (61) für ein fluides Medium definiert, zwischen denen zumindest in einem Teilabschnitt eine Befeuchtermembran (44) angeordnet ist, die mit einer ersten Membranfläche (65a) das fluide Medium und mit einer zweiten Membranfläche (65b) den gasförmigen Reaktanten kontaktiert, wobei das elektochemische System dadurch gekennzeichnet ist, dass es einen Wasserfilmerzeuger (42, 49, 75) umfasst, der so konfiguriert ist, dass beim Einsatz des Wasserfilmerzeugers flüssiges Wasser (66) als kontinuierliche dünne Schicht auf der ersten Membranfläche (65a) der Befeuchtermembran (44) abgeschieden wird. Die Erfindung betrifft auch ein Fahrzeug mit einem Elektroantrieb, das ein derartiges elektrochemisches System umfasst, sowie ein Verfahren zum Betreiben eines derartigen elektrochemischen Systems.
Absstract of: DE102024132178A1
Die vorliegende Erfindung betrifft eine Elektrische Turbovorrichtung (400) für einen Kathodenabschnitt (130) eines Brennstoffzellenstapels (110) eines Brennstoffzellensystems (100), aufweisend einen Kompressorabschnitt (410) mit einem Kompressor (412) und einen Turbinenabschnitt (420) mit einer Turbine (422), wobei der Kompressor (412) und die Turbine (422) miteinander drehmomentübertragend über einen elektrischen Antrieb (450) verbunden sind, wobei stromabwärts des Kompressors (412) und stromaufwärts der Turbine (422) ein integrierter Bypassabschnitt (430) den Kompressorabschnitt (410) und den Turbinenabschnitt (420) miteinander fluidkommunizierend verbindet, wobei wenigstens ein Kontrollventil (440) vorgesehen ist für eine Kontrolle des Kathodenbypass-Massenstroms (KBM) durch den Bypassabschnitt (430) und des Stapel-Massenstroms (SBM) aus dem Kompressorabschnitt (410) zum Brennstoffzellenstapel (110).
Absstract of: DE102023130618A1
Um eine Bipolarplattenanordnung für eine elektrochemische Einheit bereitzustellen, durch die eine optimierte Zufuhr und/oder Abfuhr eines fluiden Mediums zu und/oder von einer Membran-Elektroden-Einheit erreicht ist, wird vorgeschlagen, dass wenigstens zwei in einem Stapel angeordnete Bipolarplatten vorgesehen sind, durch die eine Vielzahl Strömungskanäle für ein fluides Medium gebildet sind, wobei die Strömungskanäle zumindest bereichsweise durch Stege begrenzt sind, und die Stege in der Weise ausgebildet sind, dass die wenigstens zwei benachbarten Bipolarplatten zumindest abschnittsweise über die Stege zueinander abgestützt sind, und dass eine Gasdiffusionsschicht vorgesehen ist, die zwischen den wenigstens zwei Bipolarplatten angeordnet ist, wobei die Gasdiffusionsschicht wenigstens einen Abschnitt umfasst, der eine von einer Basisdicke der Gasdiffusionsschicht abweichende Dicke aufweist, und an Oberseiten der Stege wenigstens eine Vertiefung zum Aufnehmen des von der Basisdicke abweichenden Abschnitts der Gasdiffusionsschicht vorgesehen ist.
Absstract of: DE102023210861A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems (1) mit mindestens zwei Brennstoffzellenstapeln (2), die über getrennte Zuluftpfade (3), in die jeweils mindestens ein Luftverdichteraggregat (4) mit jeweils mindestens einer über Gaslager (5, 6) gelagerten Welle-Rotor-Einheit (7) integriert ist, mit verdichteter Luft versorgt werden, wobei die Gaslager (5, 6) von mindestens zwei parallel geschalteten Welle-Rotor-Einheiten (7) mit verdichteter Luft temperiert, insbesondere gekühlt, werden, die aus einem ersten Zuluftpfad (3) in einen Luftpfad (8) abgezweigt, über den Luftpfad (8) den zu temperierenden, insbesondere den zu kühlenden, Gaslagern (5, 6) zugeführt und anschließend in einen weiteren Zuluftpfad (3) stromabwärts einer in den weiteren Zuluftpfad (3) integrierten Welle-Rotor-Einheit (7) eingeleitet wird.Die Erfindung betrifft ferner ein Brennstoffzellensystem (1), das zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Absstract of: WO2025096516A1
A bipolar flow field plate assembly comprising first and second flow field plates, the first flow field plate comprising a seal groove around a perimeter and a depressed seal portion within the seal groove for retaining an adhesive; the second flow field plate comprising a raised portion around a perimeter which protrudes from the second flow field plate, cooperates with the depressed seal portion of the first flow field plate, and contacts at least a portion of the adhesive therein. At least one of the depressed seal portion and the raised portion comprises a depressed spill portion adjacent thereto, the depressed spill portion fluidly connected to the depressed seal portion for receiving excess adhesive. A cross-sectional width and depth of the depressed seal portion is greater than a cross-sectional width and height of the first depressed spill portion so the raised portion and the depressed seal portion are physically separated.
Absstract of: WO2025093875A1
An electrochemical device comprising at least two insulating layers each having at least one component provided on or in the insulating layer; each insulating layer comprising a first conductive through via, in electrical connection with a first conductive through via of the other insulating layer, the electrical connection between the first conductive through vias providing a first conductive bus through the insulating layers; each insulating layer further comprising a second conductive through via, in electrical connection with a second conductive through via of the other insulating layer, the electrical connection between the second conductive through vias providing a second conductive bus through the insulating layers; wherein a component located on or in one insulating layer is connected to the first conductive bus and a component located on or in the other insulating layer is connected to the second conductive bus.
Absstract of: WO2025093662A1
The aim of the invention is to provide an end plate (100) for a cell stack (10) of a redox flow battery (1), said end plate having a higher degree of mechanical and chemical resistance than the known prior art. This is achieved in that a press component (A) is provided for pressing half cells (2a, 2b) stacked in the cell stack (10) of the redox flow battery (1) against each other, and at least one channel component (B) is provided which forms at least one flow channel (K) for supplying or discharging electrolyte liquid (15a, 15b) into or out of the cell stack (10) of the redox flow battery (1), wherein the press component (A) contacts the channel component (B) outside of the flow channel (K) in order to fix the channel component (B) against the press component (A), the channel component (B) is made of an acid-resistant channel plastic, and the press component (A) is made of a press plastic which differs from the channel plastic, said press plastic having a modulus of elasticity of at least 7500 MPa.
Absstract of: WO2025093516A1
The invention relates to a method for processing a substrate for an electrochemical cell (16a) by means of a processing device (10a) which comprises a processing unit (12a), in particular a laser drilling unit, wherein in at least one processing step (46a), at least one recess, in particular a through-opening (14a) for an electrochemical cell (16a) is introduced into the substrate by means of the processing unit (12a), and in the at least one processing step (46a), the substrate (16a) is processed by means of the processing unit (12a). In at least one pre-processing step (48a), the substrate (16a) is divided into a plurality of sub-surfaces (18a), and in the at least one processing step (46a), a sequential processing is carried out on the sub-surfaces (18a).
Absstract of: WO2025093517A1
The invention relates to a method for processing a substrate for an electrochemical cell (10) by means of a processing device (12) which comprises a processing unit (14), in particular a laser drilling unit, and a cooling unit (16), wherein in at least one processing step (18), thermal energy is transferred into the substrate for an electrochemical cell (10) by means of the processing unit (14), and in at least one cooling step (20) the substrate for an electrochemical cell (10) is cooled after being processed. According to the invention, in the at least one cooling step (20), parts of the substrate for an electrochemical cell (10) are cooled by means of the cooling unit (16).
Absstract of: WO2025093515A1
The invention relates to a method (10) for producing an electrochemical cell device (12), in particular a half-cell, wherein in at least one step, a metal support (14) of the electrochemical cell device (12) is provided, said metal support having at least one recess (16), and in at least one step, at least one functional layer (18, 20, 22, 24) of the electrochemical cell device (12) is applied onto the metal support (14). According to the invention, in at least one step, the at least one functional layer (18, 20, 22) is arranged on the metal support (14) in an open state of the at least one recess (16).
Absstract of: WO2025093976A1
An electric battery unit (1 ) comprises an array of battery cells (2) immersed in a temperature-regulating fluid within a container (4). The container (4) includes an inlet opening (5A) for the temperature-regulating fluid, communicating with an inlet collector chamber (5), arranged below the array of battery cells (2). The container (4) further comprises an outlet opening (6) for the temperature-regulating fluid, communicating with an outlet collector chamber (6), arranged above the array of battery cells (2). The inlet collector chamber (5) and the outlet collector chamber (6) communicate with each other through a plurality of external passages (7) on the outside of the battery cells (2), formed between one battery cell (2) and another, and also through a plurality of internal passages (8), each formed through the body of a respective battery cell (2), within the battery cell (2). In one example, all internal passages (8) and/or all external passages (7) include respective restricted sections (R) configured and sized to create a given pressure drop in the flow of the temperature-regulating fluid through the restricted section (R).
Absstract of: WO2025093561A1
The invention relates to a semi-autonomous electrochemical module (10a; 10b) for an electrochemical system (12a; 12b), having at least two electrochemical cell units (16a, 18a, 20a; 16b, 18b, 20b) for electrochemically converting at least one process fluid (22a), having at least one distributor unit (14a; 14b) for supplying the electrochemical cell units (16a, 18a, 20a; 16b, 18b, 20b) with the at least one process fluid (22a), wherein the distributor unit (14a; 14b) comprises at least one fluid interface (24a; 24b) for more particularly reversible connection of the distributor unit (14a; 14b) to a fluid supply unit (26a) of the electrochemical system (12a; 12b), and having at least one local open- or closed-loop control unit (28a; 28b) for decentrally setting a module-specific operating point of the electrochemical cell units (16a, 18a, 20a; 16b, 18b, 20b).
Absstract of: US2025149608A1
A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes adding heat to (or removing heat from) a salinity gradient generator configured to generate a more concentrated and a less concentrated saline solution. The method further includes drawing the more concentrated saline solution and the less concentrated saline solution from the salinity gradient generator and feeding the more concentrated saline solution and the less concentrated saline solution into a power generator. Feeding the saline solutions into the power generator causes the power generator to receive the saline solutions and generate power by performing a controlled mixing of the more concentrated saline solution and the less concentrated saline solution. The method further includes drawing, from the power generator, a combined saline solution comprising the mixed saline solutions and feeding the combined saline solution to the salinity gradient generator.
Absstract of: US2025149605A1
A leak diagnosis system for a humidifier of a fuel cell system includes a fuel cell stack including a cathode and an anode, an air supply system including at least one of an air compressor, an air cutoff valve, and an air pressure control valve, a hydrogen supply system including at least one of a hydrogen supply valve and a hydrogen purge valve, a humidifier that humidifies air flowing into the cathode, and a controller that maintains airtightness of the cathode, purges hydrogen on a side of the anode, and then releases the airtightness of the cathode to diagnose whether a leak has occurred in the humidifier.
Absstract of: US2025149607A1
A system for generating electricity with reduced or negative carbon emissions includes a power plant section having an electricity generating unit that includes a solid oxide fuel cell (SOFC) system. The SOFC system includes a SOFC fuel cell reactor and a combustor with an energy exchange path. The combustor is coupled to the fuel cell reactor to combust unutilized fuel. The system also includes a direct air capture (DAC) section having a carbon dioxide (CO2) adsorption device having a CO2 adsorbent material and a ventilator electrically coupled to the electric generator for flowing ambient air through the CO2 adsorption device in a carbon capture mode. The CO2 adsorption device is coupled to and in energy communication with the energy exchange path for releasing adsorbed CO2 in a carbon release mode.
Absstract of: US2025149609A1
A fuel cell comprising a stack of a plurality of cells sandwiched between a first clamping plate and a second clamping plate, the plurality having a first cell at a first end and a last cell at a second end, the stack having a distributor plate and an interface plate interposed between the first clamping plate and the distributor plate, the interface plate having an outer face facing the first clamping plate and an inner face, the interface plate comprising a first dispensing opening, a first section of which opens onto the outer face and a second section of which opens onto the inner face, the first section and the second section having distinct shapes.
Absstract of: JP2025071651A
【課題】燃料電池のエジェクタの内部で生成する水が、燃料電池に侵入するのを抑制又は回避する技術を提供する。【解決手段】エジェクタ10は、駆動ガスである燃料ガスの入口12と、燃料電池のオフガスの吸引口14と、燃料ガスとオフガスとを混合し、混合ガスを吐出する吐出口を有するディフューザ20と、を備える。混合ガスの非吐出時に、ディフューザ20内の水が吐出口28から吸引口14に向かって移動するのを促進する移動促進機構を備えるようにする。【選択図】図1
Absstract of: WO2025091077A1
The present invention provides an apparatus for cooling individual sources of heat disposed at locations on one or more printed circuit board (PCB) assemblies. The apparatus includes a bladder having a plurality of apertures positioned to substantially align with and provide an independent air stream to the location of each individual source of heat, thereby providing targeted forced convection cooling to each individual heat source. The apparatus further includes a source of forced air directed to inflate the bladder and thereby create a flow of air into the bladder that egresses through the plurality of apertures. The bladder has overall dimensions such that when fastened in an arrangement that substantially aligns the apertures with heat sources, the bladder, once inflated, extends over the one or more PCB assemblies in which the heat sources are located and causes substantially uniform air temperature and flow of air egressing through individual apertures.
Absstract of: WO2025091744A1
Disclosed in the present invention are a heat sink for a fuel cell, a fuel cell cooling system, and a control method for the fuel cell cooling system. The heat sink for a fuel cell comprises a fuel cell heat sink assembly and a bladeless fan mounted on one side of the fuel cell heat sink assembly, air blown by the bladeless fan being used for air cooling a heat sink, wherein the bladeless fan comprises a gas flow jetting device and a gas inlet, the gas flow jetting device being provided with a flow guide chamber therein, an outlet slit being formed at an inner side wall of the gas flow jetting device, and the gas inlet being in communication with the flow guide chamber and being used for connection with an external gas source which is exhaust gas discharged from a fuel cell stack module. In the present invention, the exhaust gas discharged from the fuel cell stack module is used, and a base, an electric motor, and a fan wheel structure of a conventional bladeless fan are eliminated, achieving a simplified structure, a small size, and low manufacturing costs, and the exhaust gas discharged from the fuel cell stack module is fully utilized, saving on electric energy and reducing energy consumption.
Absstract of: WO2025094906A1
Problem To provide: an electrochemical cell that exhibits high bonding strength between metallic members while a warp of the metallic members is inhibited ; an electrochemical cell stack; and manufacturing methods for the same. Solution The present invention comprises: a cell body 20 that is formed by laminating an air electrode, an electrolyte layer, and a fuel electrode; a first metallic member 18 that is bonded to the cell body 20; a second metallic member 17 that is laminated at and bonded by welding to a prescribed position of the first metallic member 18 in the lamination direction of the cell body 20 with respect to the first metallic member 18; and a third metallic member 16 that is laminated at and bonded by welding to a surface of the second metallic member 17 opposite from the surface bonded to the first metallic member 18 at a prescribed second position of the second metallic member 17 in the lamination direction of the cell body 20 with respect to the second metallic member 17. The parts bonded by welding are defined as welded parts 30. At least a portion of the penetration direction of the welded parts 30 is inclined with respect to the lamination direction of the cell body 20.
Absstract of: WO2025094488A1
Provided is a carbon fiber sheet that tends to have stable electoconductivity and planar direction strength, and that is suitable for constituting fuel cell members including fuel cell separators and the like. An embodiment of the present invention is a carbon fiber sheet containing carbon fibers and electroconductive particles. The carbon fiber sheet has a basis weight coefficient of variation of 0.10 or less, as calculated by the following measurement method. (Measurement Method) Test pieces of 40 mm × 40 mm are sampled at 20 random locations of the carbon fiber sheet. The mass of each test piece is measured and the basis weight is calculated. The average value and the standard deviation of the basis weight of the test pieces are determined with n = 20, and the basis weight coefficient of variation is calculated by dividing the standard deviation by the average value.
Absstract of: WO2025094487A1
This fuel cell system comprises: a fuel cell; a battery to be charged with power generated by the fuel cell; and an inverter or motor that is driven by receiving supply of power from the fuel cell and/or the battery. In the fuel cell system, current of the fuel cell depends on the voltage of the battery, and the timing for driving the inverter or the motor is adjusted in accordance with the state of the battery.
Absstract of: WO2025094486A1
Provided is a fuel cell system having a fuel cell and a battery that is connected to the fuel cell and that charges with power generated by the fuel cell, the fuel cell system being a system in which the current of the fuel cell depends on the voltage of the battery, wherein: a control to start power generation in the fuel cell is performed when the SOC of the battery becomes equal to or less than an SOC lower limit value; and the SOC lower limit value is changed in accordance with the current of the fuel cell or in accordance with the deterioration state of the battery.
Absstract of: WO2025094472A1
This hydrogen tank device comprises: a plate-shaped frame body formed in a rectangular shape when viewed from one side in a first direction; and a plurality of hydrogen tanks extending in the longitudinal direction of the frame body and attached to the frame body in parallel with each other. The frame body has, on one side in the first direction, an attachment surface attached to a frame of the construction machine.
Absstract of: WO2025094505A1
A redox flow battery cell of the present disclosure is provided with an electrode and a separation membrane. The electrode is provided with a fiber aggregate including a plurality of carbon fibers. The plurality of carbon fibers include soft carbon fibers having a tensile elastic modulus of 200 GPa or less. The soft carbon fibers include first soft carbon fibers. There are a plurality of folds provided to the surface of the first soft carbon fibers. The plurality of carbon fibers in the electrode, when not compressed, have a first orientation tensor of 0.1 to 0.5. The first orientation tensor is an orientation tensor indicating a state of orientation of the plurality of carbon fibers, and represents the extent to which the plurality of carbon fibers are oriented in the thickness direction of electrode. A ratio L1/L2 of a length L1 to length L2 in the first soft carbon fibers is over 1. The length L1 is the perimeter of a cross-section of the first soft carbon fibers. The length L2 is the circumference of an imaginary rectangle circumscribed around the cross-section of the first soft carbon fibers.
Absstract of: WO2025094471A1
This excavator includes: a rotating body that includes a cabin in which a driver's seat is disposed and that is rotatably provided to a traveling device; a hydrogen tank that disposed in the rotating body; a fuel cell that generates power by consuming hydrogen in the hydrogen tank; and a filling-use receptacle that is provided to the rotating body, that includes a filling port at a distal end, and that is connected to the hydrogen tank. The filling port is disposed, with respect to the rotating body, at a position higher than the bottom surface of the rotating body and lower than a seat surface of the driver's seat.
Absstract of: WO2025094470A1
This excavator is provided with a revolving body that is rotatably provided on a traveling device, and comprises: a hydrogen tank that stores hydrogen; a fuel cell that generates power by consuming the hydrogen in the hydrogen tank; and an electric pump device that is driven by electric power generated by the fuel cell and discharges hydraulic fluid. The hydrogen tank and the electric pump device are housed in a housing space inside the revolving body, and the fuel cell is provided in the revolving body and is separated from the housing space.
Absstract of: WO2025095296A1
A solid oxide cell stack fastening apparatus, in which downward pressure applied to the solid oxide cell stack is uniform throughout, includes a housing which accommodates a solid oxide cell stack and includes a first coupling part on one side thereof, and a first block which includes a second coupling part and an elastic member in contact with the solid oxide cell stack. The first coupling part and the second coupling part each have screw threads coupled to each other.
Absstract of: WO2025095015A1
This electrochemical cell comprises a metal plate and an element section. The element section has a flat plate shape and is disposed on the metal plate. The element section has a solid electrolyte layer, a first electrode, and a second electrode. The solid electrolyte layer has a first surface located on a metal plate side, and a second surface on the opposite side to the first surface. The first electrode faces the first surface. The second electrode faces the second surface. When viewed in plan from a second electrode side, the solid electrolyte layer has a central part with an area centroid, and an edge part. When the distance from the metal plate to the second surface at the area centroid is L0 and the distance from the metal plate to the second surface at the edge part is L1, the solid electrolyte layer has a portion where L1 is smaller than L0.
Absstract of: WO2025094957A1
This fuel battery device has a pair of first housings and a fuel processing unit. The first housings accommodate fuel battery cell stacks. The fuel processing unit heats a raw fuel supplied to the fuel battery cell stacks. The pair of first housings are symmetrically arranged such that the fuel battery cell stacks inside the first housings face each other across the fuel processing unit.
Absstract of: WO2025094956A1
This electrochemical cell comprises a solid electrolyte layer and a first electrode. The first electrode includes a first dopant and CeO2. The first electrode has a first portion and a second portion located between the first portion and the solid electrolyte layer. In the second portion, the ratio of the concentration of the first dopant to the total concentration of the first dopant and Ce is larger than that in the first portion.
Absstract of: US2025143616A1
Provided is a bioelectrode having excellent mechanical and chemical durability as well as excellent air permeability and flexibility, and specifically, the bioelectrode includes: a nanofiber elastic mesh sheet including a polymer nanofiber formed by electrospinning; a first metal nanowire network which is embedded on the nanofiber elastic mesh sheet, but is at least partially exposed to the outside; and an uneven layer resulting from a second metal which is placed on the first metal nanowire network exposed to the outside.
Absstract of: US2025145466A1
Methods for stabilizing laser-induced graphene (LIG) through composite formation and compositions thereof. Using infiltration methods and/or lamination methods, LIG composites (LIGCs) with physical properties can be engineered on various substrate materials. The physical properties include surface properties, such as superhydrophobicity and antibiofouling; the LIGCs are also useful in antibacterial applications, Joule-heating applications, and as resistive memory device substrates. Further, methods for fabricating and using LIG for flexible and embeddable gas sensors.
Absstract of: US2025145039A1
A computer system for controlling a fuel cell system during a vehicle stop of a vehicle is described. The computer system has processing circuitry configured to obtain a stop duration of the vehicle stop; calculate a storage capacity of a vehicle battery of the vehicle as a difference between a current state of charge of the vehicle battery and a target state of charge of the vehicle battery at the end of the stop duration; calculate a battery charging energy for the vehicle battery based on the storage capacity; determine a maximum feasible fuel cell power output of the fuel cell system for charging the vehicle battery using the battery charging energy; and control a charging mode of the fuel cell system based on the maximum feasible fuel cell power.
Absstract of: US2025144614A1
To provide an anion exchange resin which has an anion exchange group having high alkali resistance and in which a main chain structure is not affected even if the anion exchange group decomposes. The anion exchange resin according to the present invention is characterized by having an imidazolium group as an anion exchange group in a side chain.
Absstract of: US2025144613A1
Compositions and cation exchange membranes having low brittleness, low ER, good pH stability and good PS obtainable by curing a composition comprising: (a) a first crosslinking agent comprising an anionic group and at least two polymerisable groups; (b) a second crosslinking agent comprising at least 5 vinyl groups and being free from ionic groups; and (c) a third crosslinking agent comprising 2, 3 or 4 polymerisable groups and being free from ionic groups.
Absstract of: US2025146622A1
Hydrogen refueling station, hydrogen-powered vehicle, and hydrogen refueling system are provided. The hydrogen refueling system comprises a decomposition device, a transfer device, a storage device, and a recombination device; wherein the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to deliver the hydrogen into the storage device and to discharge the oxygen into an environment; the storage device is configured to store the hydrogen delivered from the transfer device; the recombination device is configured to receive the hydrogen from the storage device and the oxygen from the environment, the hydrogen and oxygen reacting in the recombination device to produce an electric current. The hydrogen refueling system adopts real-time hydrogen production and refueling, thereby eliminating the need to construct large hydrogen storage tanks, and the need for the long-distance transportation of the hydrogen.
Absstract of: US2025145769A1
The present disclosure features a crosslinked arylimidazolium polymer membrane, the method of making, and uses thereof. The disclosed crosslinked arylimidazolium polymer membrane yields desirable mechanical properties, and can be incorporated into an electrochemical device such as a fuel cell, an electrolyzer, a redox flow battery, or another electrochemical device.
Absstract of: US2025145772A1
A novel cross-linked copolymer is disclosed. The novel cross-linked copolymer can be preferably used as an anion exchange membrane (AEM) material for fuel cells because of its excellent mechanical properties, excellent stability against hydroxide ions, and high ion conductivity and hydration.
Absstract of: US2025146145A1
A catalyst that has a high electrolytic activity and a high CO2 reduction reaction rate and a method of producing the same, a cathode, an ion exchange membrane-electrode assembly, and a solid electrolyte electrolysis apparatus are provided. The catalyst includes a metal ion selected from the group consisting of a copper ion, a nickel ion, an iron ion, a cobalt ion, a zinc ion, a manganese ion, a molybdenum ion, and an aluminum ion, a nitrogen-containing compound, and a carrier containing carbon having a primary particle diameter of 5 to 200 nm, the metal ion is coordinated to the nitrogen atom on the nitrogen-containing compound, the catalyst has a content of the metal ion coordinated to the nitrogen atom of 0.7% by mass or more, and the catalyst has a particle diameter of 10 nm to 50 μm.
Absstract of: US2025146141A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Absstract of: US2025145836A1
A water-repelling agent for an electroconductive article surface, including a compound that contains an aromatic ring, an adsorption group which is bonded to the aromatic ring and is an amino group, a phosphonic acid group, an acid anhydride group, a thiol group, or an acid chloride group, and a linear or branched alkyl group or a linear or branched fluorinated alkyl group bonded to the aromatic ring
Absstract of: US2025146154A1
A system and method for producing hydrogen wherein the system comprises at least one electrolyzer adapted to be located within a subterranean formation, at least one electrical supply cable having a length selected to extend from the at least one electrolyzer to a ground surface power supply, at least one supply tubing string having a length selected to extend from the at least one electrolyzer to a water supply at the ground surface and at least one collection tubing string having a length selected to extend from the at least one electrolyzer to a collection location at the ground surface. The method comprises providing a well from a surface to an underground formation, locating at least one electrolyzer in the well, supplying the at least one electrolyzer with supply electricity, supplying the at least one electrolyzer with supply water, producing hydrogen gas at the electrolyzer and collecting and transporting the produced hydrogen gas to the surface.
Absstract of: US2025145762A1
The present disclosure relates to compositions, composite materials, and a method of forming electrodes for carbon oxide electrolysis using composite materials. The composite materials may include a first polymeric structure and a second polymeric structure, in which at least one of these structures includes an ionizable moiety or an ionic moiety. At least one of the polymeric structures includes a linking moiety. In some instances, both the first and second structures include an ionizable or ionic moiety. The present disclosure also relates to composite material that includes a crosslinked polymer networks with the first and second polymer structures according to formulas (I and II), or salt thereof.
Absstract of: US2025145754A1
A hydrocarbon-based ionomer for a membrane-electrode assembly includes a block copolymer. The block copolymer includes a triblock copolymer that is represented by A1n1-Bm-A2n2. A1 is a first hydrophobic domain, B is a hydrophilic domain, A2 is a second hydrophobic domain, n1 and n2 each is an integer greater than or equal to 100 and less than or equal to 4,000, and m is an integer greater than or equal to 100 and less than or equal to 8,000.
Absstract of: US2025149603A1
Disclosed is a method of controlling the operation of a fuel cell triple cogeneration system configured to supply power and cooling heat to a data center, the method including detecting change in a power load or a cooling heat load of the data center and adjusting electrical energy and cooling capacity of the fuel cell triple cogeneration system.
Absstract of: US2025146897A1
A rubber product capable of easily and accurately detecting the presence or absence of leakage and a position of the leakage is provided. A rubber product includes a gas chromic material that changes a color thereof reversibly or changes an electric resistance value thereof, due to oxidation-reduction reaction. The rubber product is a sealing member (sealing product 10) for sealing a gap between two members, wherein the sealing member includes a gas chromic material that changes a color thereof reversibly or changes an electric resistance value thereof, due to oxidation-reduction reaction, and has a ring shape.
Absstract of: US2025149600A1
A mixed metal oxide catalyst, particularly Pt and Ru containing oxide catalysts, based catalysts for polymer electrolyte membrane (PEM) fuel cells, water electrolysis, regenerative fuel cells (RFC) or oxygen generating electrodes in various electrolysis applications.
Absstract of: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Absstract of: US2025149892A1
An electrical power apparatus for coupling between an electrical power supply and one or more electrical power loads includes: a plurality of dynamically dispatchable electrical energy storage components providing at least one of dynamically dispatchable energy storage thereto and energy retrieval therefrom; and a controller to dynamically control the operation of the one or more dynamically dispatchable energy storage components in order to dynamically match the electrical power supply to the one or more loads by dynamically storing energy in one or more of the dynamically dispatchable electrical energy storage components when the available electric power exceeds that required by the one or more loads, and/or dynamically supplying electrical energy from one or more of the dynamically dispatchable electrical energy storage components when the available electric power is less than that required by the one or more loads.
Absstract of: US2025149604A1
A device for ascertaining an estimated value of the mass flow of an oxidizing agent into an electrochemical energy converter is provided, the oxidizing agent mass flow being produced by an oxidizing agent conveyor. The device is designed to detect temperature and pressure measurement values on an oxidizing agent path to the energy converter using temperature and pressure sensors. The oxidizing agent conveyor is arranged on the oxidizing agent path. The device is additionally designed to ascertain an estimated value of the oxidizing agent mass flow conveyed by the oxidizing agent conveyor, in particular an estimated value of the oxidizing agent mass flow flowing into the energy converter, on the basis of the temperature and pressure measurement values using a base estimation model.
Absstract of: US2025149606A1
A multi-module fuel cell system capable of preventing backflow of purged hydrogen may include a plurality of fuel cell modules each including an air compressor, an air inlet valve, an air outlet valve, and a fuel cell stack, a discharge pipe interconnecting air outlet portions of the plurality of fuel cell modules to allow at least one of air or hydrogen discharged from the plurality of fuel cell modules to flow therethrough, and a controller configured to determine whether at least one of the plurality of fuel cell modules requires hydrogen purge, to calculate a purge pressure of a fuel cell module requiring hydrogen purge, and to calculate an air discharge pressure of a remaining fuel cell modules based on the calculated purge pressure.
Absstract of: US2025149610A1
A cell column includes vertically aligned stacks containing electrochemical cells separated by interconnects, fuel manifolds disposed between the stacks, a termination manifold disposed above an uppermost one of the stacks, and an inlet conduit and an outlet conduit fluidly connected to the fuel manifolds and the termination manifold. The termination manifold is an electrical terminal of the cell column, and includes a fuel channel configured provide fuel to the uppermost one of the stacks.
Absstract of: WO2025093487A1
The invention relates to an electrochemical device comprising a stack of multiple electrochemical units which follow one another along a stacking direction, wherein each electrochemical unit comprises a bipolar plate provided with at least one voltage tapping point. In order to provide such an electrochemical device, whose stack of electrochemical units can be electrically contacted in a safe, reliable and robust manner for continuous measurement of the electric potentials of the bipolar plates of the stack, and which is simply constructed, each bipolar plate has at least a first voltage tapping point of a first type and a first voltage tapping point of a second type, and the first voltage tapping point of a first type and the first voltage tapping point of the second type are formed and arranged on the bipolar plate such that they are not symmetrical to each other with respect to a rotation by 180° about an axis of symmetry of the bipolar plate which is parallel to the stacking direction, and, in the stack, the first voltage tapping points of the first type of a plurality of bipolar plates lie one over the other along the stacking direction in a first row and the first voltage tapping points of the second type of a plurality of bipolar plates lie one over the other along the stacking direction in a second row, the first row and the second row of voltage tapping points being mutually adjacent.
Absstract of: WO2025093714A1
The present invention relates to porous catalyst layers comprising a metal nanoparticle loaded porous carbon structure, wherein the porous carbon structure is assembled from porous spherical carbon particles with a particle size dispersity (Ð) of 1.2 or less, and with a templated pore size with a templated pore size dispersity (Ð') of 1.2 or less. The invention further relates to the method of production of such porous catalyst layer, electrodes obtained from such porous catalyst layers and their use in fuel cells or electrolysers.
Absstract of: WO2025093573A2
In order to improve a fuel cell device, which comprises at least one fuel cell unit located in the housing and a conduit system having at least one conduit device for a fuel medium and a conduit device for an oxidation medium, an ejector insert located in the conduit system and having an ejector element is arranged in the interior of the housing.
Absstract of: WO2025093391A1
The invention relates to a method for optimizing an operating strategy for operating a fuel cell system (100) having at least one or more fuel cell stacks (101), which operating strategy uses exhaust-gas recirculation (EGR) in at least one cathode system (10) of the fuel cell system (100), the method comprising: - carrying out optimization (P1) during ongoing operation (BB) of the fuel cell system (100), wherein, in the course of the optimization, operation (BB) of the fuel cell system (100) with exhaust-gas recirculation (EGR) is compared with operation (BB) of the fuel cell system (100) without exhaust-gas recirculation (EGR), and/or - carrying out a defined test (P2), wherein, in the course of the defined test (P2), operation (BB) of the fuel cell system (100) with exhaust-gas recirculation (EGR) is compared with operation (BB) of the fuel cell system (100) without exhaust-gas recirculation (EGR), and - optimizing (Opt) operating parameters (BP) and/or switchover operations (U) with exhaust-gas recirculation (EGR) or without exhaust-gas recirculation (EGR) depending on the optimization (P1) and/or the defined test (P2).
Absstract of: WO2025093374A1
The invention relates to an air compressor (100) for conveying air, said air compressor (100) comprising: - a stator (101), - a cooling device (103), and - a cladding (105) which surrounds the stator (101), said cooling device (103) comprising: - a main part (107) and - a number of air-guiding elements (109) formed on the surface of the main part (107), wherein the cooling device (103) overlaps with a winding head (111) of the stator at least at the end face in a region between the winding head (111) and the cladding (105), and the cladding (105) has a number of cladding receiving areas (113, 115), by means of which the cooling device is mechanically coupled to the cladding. The stator has a number of stator receiving areas (117, 119), by means of which the cooling device is mechanically coupled to the stator (101), and the cladding (105), together with the air guiding elements (109) and the main part (107), forms an air guiding path which is configured so as to guide an air mass flow along the stator (101).
Absstract of: WO2025093365A1
The invention relates to a method (10a; 10b) for operating a fuel cell device (12a) which is connected to a power network, wherein in at least one method step, the provision of electric current by the fuel cell device (12a) is adjusted in the event of a temporary drop in voltage of the power network. It is proposed that a fluid supply (14a) of the fuel cell device (12a) during the temporary drop in voltage of the power network is at least partially maintained.
Absstract of: WO2025096128A1
A computing device may include a substrate. A computing device may include a processing unit supported by the substrate. A computing device may include an optical transmitter supported by the substrate and in electrical communication with the processing unit.
Absstract of: WO2025093132A1
The invention relates to an electrochemical cell assembly (10), comprising a base plate, an end plate (26), a stack (12) comprising a plurality of cell units (14) stacked upon one another, said stack (12) being arranged between said base plate and said end plate, and an electrically conductive power transmission device (38) comprising a connector (40) that is located on a side of the end plate that is facing away from the stack, the power transmission device spanning the end plate and being electrically connected to the stack, wherein the power transmission device is attached to the end plate by a fastening device (42) at a portion of the power transmission device that is located between an electrical connection to the stack and the connector.
Absstract of: WO2025093133A1
The invention relates to an electrochemical cell assembly, comprising a stack of cell units, wherein each cell unit has a periphery and a central portion surrounded by the periphery, the periphery has a first flange portion (90-1) and an opposite second flange portion (90-2), the flange portions of adjacent cell units overlie one another and are separated by a gap (88-1, 88-2), wherein between two adjacent cell units, there is provided a fluid flow path comprising an inner flow path between the central portions of adjacent cell units and an outer flow through said gaps, and a flow restriction device (112) comprising at least one flow restriction member (114-1, 114-2), said flow restriction device being configured to reduce or prevent fluid flow along the outer flow path.
Absstract of: WO2025093131A1
The present disclosure relates to a computer system (100) for controlling energy or power utilization from a powertrain system (12) of a vehicle (10) having a battery system (14), a fuel cell system (16) and one or more electric machines (18) connected to the battery system (14) and the fuel cell system (16), the computer system (100) comprising processing circuitry (102) configured to: determine transport mission characteristics for an upcoming transport mission for the vehicle (10) based on transport mission data containing at least gross combined weight (GCW) of the vehicle (10), topology data of an intended route for the transport mission and vehicle speed under the transport mission; determine a power demand for performing the transport mission based on the determined transport mission characteristics; based on the determined transport mission characteristics and determined power demand, generate a vehicle usage profile for a number of power split ratio settings between the battery system (14) and the fuel cell system (16), wherein the vehicle usage profile is defined by points on the pareto front between fuel consumption of the fuel cell system (16) and a battery ageing parameter of the battery system (14); determine an allowable battery ageing factor of the battery system (14); identify, on the determined pareto front, a battery ageing penalty value that provides a desirable power split ratio between the battery system (14) and the fuel cell system (16) for performing
Absstract of: WO2025093123A1
The invention relates to methods for preparing a material to be used as gasket (30) in electrochemical cell assemblies, said methods comprising providing a vermiculite material (300) and performing a preconditioning treatment (102) on said vermiculite material (300), said preconditioning treatment (102) comprising a pressing process and either or both of a humidity control process and a prebaking process. The invention also relates to the use of such a gasket in an electrochemical cell assembly as well as to a method for preparing an electrochemical cell assembly.
Absstract of: WO2025093262A1
The invention relates to a method (100) for operating a system (200) for converting energy. The method (100) according to the invention has the steps of operating (101) an energy converter (205) of the system (200) by removing liquid hydrogen from at least one hydrogen tank (203) of a hydrogen tank system (201) for storing hydrogen, determining (103) an expected switch-off time of the energy converter (205), and operating (105) the energy converter (205) by removing gaseous hydrogen from the at least one hydrogen tank (203) starting from a changeover time prior to the expected switch-off time in order to evaporate liquid hydrogen collected in an evaporator (217) of the hydrogen tank system.
Absstract of: WO2025093251A1
An energy production and storage system comprises a power input connection (10) for a renewable energy source (2); an electrolysis device (16) for electrolysis of water to produce oxygen, hydrogen, and heat; an electrical energy storage device (14); a two-way grid connection (12) coupled to an external electrical grid (4); and a controller (8). The controller (8) is configured to: (i) receive information relating to: actual or potential energy production from the renewable energy source (2), the amount of stored energy in the electrical energy storage device (14), and balancing requirements for the external electrical grid (4); (ii) use the energy from the renewable energy source (2) to power the electrolysis device (16) and/or for storage in the energy storage device (14); and (iii) based on the received information, operate the energy production and storage system as a balancing service provider by either: drawing power from the grid (4) to supply the electrolysis device (16), or supplying power to the grid (4) from the electrical energy storage device (14), thereby acting as a switch to aid in balancing for the external electrical grid (4).
Absstract of: WO2025093190A1
The aim of the invention is to improve the internal sealing tightness in the half-cells (2a, 2b) of an individual cell (2) and between adjacent individual cells (2) in a cell stack (10) of a redox flow battery (1) and to reduce the possibility of potential leakage paths of electrolyte liquids (15a, 15b) while simultaneously reducing the manufacturing complexity for an individual cell (2) and a cell stack (10). This is achieved in that a web (50) is provided in the frame (5a, 5b) for a half-cell (2a, 2b) of a cell stack (10) of a redox flow battery (1), said web dividing the at least one flow channel (44a, 44b) into two flow channel branches; each of the flow channel branches separated by the web (50) is connected to a respective opening (49a, 49b) which passes through the frame (5a, 5b); and the web (50) is arranged in the region of the openings (49a, 49b), wherein a first end of each opening (49a, 49b) is connected to the respective flow channel branch of the at least one flow channel (44a, 44b) at the first end face (43), and the opposite second end of each opening (49a, 49b) opens out into the frame (5a, 5b) in the direction of the recess (6a, 6b) at a distance to the peripheral surface (48) of the depression (40) and is connected to the recess (6a, 6b) in the frame (5a, 5b), said web (50) extending on the first end face (43) at least between the region of the openings (49a, 49b) and the peripheral surface (48) of the depression (40).
Absstract of: DE102023130899A1
Die Erfindung betrifft einen Wasserabscheider (100) zur Durchführung von Gas und Abscheidung von Wasser aus Dampf-Anteilen des Gases einer Gasströmung (10) im Wasserabscheider, aufweisend :- ein Wasserabscheidergehäuse (110) mit einer einen Innenraum umgebenden Wandung, und- im Innenraum (2) ein Prallelement (120) und/oder eine Strömungsleitwand (150.1, 150.2) zur Anströmung mit Gas (13) angeordnet ist, und- in dem Innenraum eine Anordnung einer oder mehrerer Wände der Wandung (113) und des Prallelements (120) derart zur Ausbildung eines Strömungsweges (1) gestaltet ist, dass der Strömungsweg (1) vom Gaseinlass zum Gasauslass dem Gas (13) wenigstens eine erste Umlenkung (U1) mit einem ersten Umlenkungswinkel (φ1) und eine zweite Umlenkung (U2) mit einem zweiten Umlenkungswinkel (φ2) vorgibt, wobei der erste und zweite Umlenkungswinkel (φ1, φ2) größer oder gleich 90° ist, und- der Gasauslass (112) an einer Deckenwand oder an einer Seitenwand der Wandung ausgebildet ist,- der Flüssigkeitsauslass (114) an einer Bodenwand (113.2) der Wandung ausgebildet ist. Erfindungsgemäß ist vorgesehen, dass- der Gaseinlass (111) an einer Bodenwand (113.2) oder Seitenwand (113.3) der Wandung (113) ausgebildet ist, wobei ein Einlassniveau (N1) des Gaseinlasses (111) unter dem Auslassniveau (N2) des Gasauslasses (112) liegt, derart dass in einer Betriebsanordnung des Wasserabscheiders der Strömungsweg (1) insgesamt vom Einlassniveau zum Auslassniveau gegen die Schwerkraft (G)
Absstract of: DE102023130524A1
Die hier offenbarte Technologie betrifft erfindungsgemäß einen Brennstoffzellenstapel (11) für ein Brennstoffzellensystem, aufweisend: mehrere Brennstoffzellen (18), die in einer Stapelrichtung (16) übereinander positioniert sind, einen Versorgungskanal (12) zum Führen eines Prozessfluids (13a, 13b) zu den Brennstoffzellen (18), wobei sich der Versorgungskanal (12) in der Stapelrichtung (16) durch den Brennstoffzellenstapel (11) erstreckt und eine gekrümmte Innenkontur (17) aufweist, eine Führungsstruktur (30) zum Führen des Prozessfluids (13b) innerhalb des Versorgungskanals (12), wobei die Führungsstruktur (30) eine Führungsfläche (31) zum Führen des Prozessfluids (13b) und eine gekrümmte Positionierungskontur (32) aufweist und wobei die Positionierungskontur (32) komplementär zur Innenkontur (17) ausgestaltet ist. Die Erfindung betrifft ferner eine Führungsstruktur (30) für den Brennstoffzellenstapel (11), ein Fahrzeug (100) mit dem Brennstoffzellenstapel (11) sowie ein Verfahren zum Herstellen der Führungsstruktur (30).
Absstract of: DE102023130616A1
Um eine Bipolarplatte für eine elektrochemische Einheit bereitzustellen, durch die eine optimierte Zufuhr und/oder Abfuhr eines fluiden Mediums zu und/oder von einer Membran-Elektroden-Einheit sowie eine optimierte Kühlung der Membran-Elektroden-Einheiten erreicht ist, wird vorgeschlagen, dass diese einen ersten Plattenkörper umfasst, an dem mehrere Strömungskanäle ausgebildet sind, die durch Stege zueinander begrenzt sind und wenigstens ein erstes Strömungsfeld für ein erstes fluides Medium bilden, und wenigstens einen zweiten Plattenkörper an dem mehrere Strömungskanäle ausgebildet sind, die durch Stege zueinander begrenzt sind und wenigstens ein zweites Strömungsfeld für ein zweites fluides Medium bilden, wobei die am zweiten Plattenkörper ausgebildeten Strömungskanäle jeweils in einem korrespondierenden der Stege am ersten Plattenkörper aufgenommen sind und zwischen einem Kanalgrund wenigstens eines am zweiten Plattenkörper ausgebildeten Strömungskanals und einem Stegboden des am ersten Plattenkörper ausgebildeten korrespondierenden Steges ein Strömungsbereich für ein drittes fluides Medium gebildet ist.
Absstract of: WO2025093172A1
The invention relates to a method for operating an air system (1) with a feed air path (2), via which air is fed to at least one fuel cell stack (3), and an exhaust air path (4), via which the air exiting from the at least one fuel cell stack (3) is discharged, wherein the air in the feed air path (2) is compressed with the aid of an air compression system (5) which comprises at least one compression stage (5.1, 5.2) and at least one turbine (6) integrated as drive into the exhaust air path (4), and wherein the compressed air is cooled downstream of the at least one compression stage (5.1, 5.2) or between two compression stages (5.1, 5.2) using a gas-gas heat exchanger (7) with air from the exhaust air path (4) downstream of the at least one turbine (6). The invention further relates to an air system (1) and to a fuel cell system (17) having an air system (1) according to the invention.
Absstract of: DE102025001049A1
Die Erfindung betrifft einen elektrischen Energiespeicher (4), insbesondere für ein Fahrzeug, mit einer Mehrzahl elektrisch verschalteter, zu einem Zellstapel (2) angeordneter Einzelzellen (6) und mit einer Druckvorrichtung (10) zur gezielten Druckausübung auf den Zellstapel (2), wobei die Druckvorrichtung (10) zumindest eine Druckplatte (14), die an einem Ende des Zellstapels (2) flächig anliegt, und einen längenverstellbaren Druckstempel (12) umfasst, der an der Druckplatte (14) an einer zellstapelabgewandten Plattenoberfläche (18) anliegt oder angreift.
Absstract of: DE102023130610A1
Um eine Bipolarplattenanordnung für eine elektrochemische Einheit bereitzustellen, durch die eine optimierte Zufuhr und/oder Abfuhr eines fluiden Mediums zu und/oder von einer Membran-Elektroden-Einheit erreicht ist, wird vorgeschlagen, dass wenigstens zwei in einem Stapel angeordnete Bipolarplatten vorgesehen sind, durch die eine Vielzahl Strömungskanäle für ein fluides Medium gebildet sind, wobei Strömungskanäle zumindest bereichsweise durch Stege begrenzt sind, und die Stege in der Weise ausgebildet sind, dass die Strömungskanäle in einer Strömungsrichtung abwechselnd Erweiterungsbereiche und Verschmälerungsbereiche aufweisen, wobei die Erweiterungsbereiche und/oder Verschmälerungsbereiche der einen Bipolarplatte und die Erweiterungsbereiche und/oder Verschmälerungsbereiche der benachbarten Bipolarplatte entlang der Strömungsrichtung der Strömungskanäle jeweils versetzt zueinander angeordnet sind und/oder entlang der Strömungsrichtung der Strömungskanäle eine voneinander abweichende Erstreckungslänge und/oder Erstreckungsbreite aufweisen.
Absstract of: DE102023210848A1
Die Erfindung geht aus von einem Verfahren zu einer Bearbeitung eines Substrats für eine elektrochemische Zelle (10), mittels einer Bearbeitungsvorrichtung (12), welche eine Bearbeitungseinheit (14), insbesondere Laserbohreinheit, und eine Kühleinheit (16) umfasst, wobei in zumindest einem Bearbeitungsschritt (18) mittels der Bearbeitungseinheit (14) eine thermische Energie in das Substrat für eine elektrochemische Zelle (10) überführt wird und in zumindest einem Kühlschritt (20) das Substrat für eine elektrochemische Zelle (10) nach einer Bearbeitung gekühlt wird.Es wird vorgeschlagen, dass in dem zumindest einen Kühlschritt (20) mittels der Kühleinheit (16) eine abschnittsweise Kühlung des Substrats für eine elektrochemische Zelle (10) durchgeführt wird.
Absstract of: DE102023136399A1
Ein Brennstoffzellensystem, z. B. eines Kraftfahrzeugs, umfasst einen Brennstoffzellenstapel mit Brennstoffzellen und sich nicht wiederholenden Hardwarekomponenten, wobei letztere nass- und trockenseitige Einheiten umfassen. Die Zellen befinden sich zwischen den Endgeräten. Die trockenseitige Einheit umfasst eine Endplatte und eine Druckplattenanordnung, die die Zellen gleichmäßig gegen die Anschlussplatte drückt, sowie eine von einer Dichtungsplatte umgebene Anschlussplatte. Ein Isolatorrahmen, der neben der Druckplattenanordnung angeordnet ist, steht mit dem Isolatorrahmen über eine reibschlüssige Grenzfläche in Eingriff, die durch O-Ring-Kompressionsdichtungen bereitgestellt wird, die jeweils einen mit der Anschlussplatte und der Dichtungsplatte verbundenen Stift und eine mit dem Isolatorrahmen verbundene Tasche aufweisen. Der Stift und die Tasche von mindestens einer der Kompressionsdichtungen definieren zusammen einen Fluiddurchgang. Zwischen der Endplatte und dem Isolatorrahmen können eine oder mehrere Unterlegplatten angeordnet sein.
Absstract of: DE102023210849A1
Es wird ein Verfahren zu einer Qualitätsmessung von zumindest einer Durchgangsausnehmung (18) in einem Substratblech für eine elektrochemische Zelle (20) mittels einer Qualitätsmessvorrichtung (10), mit zumindest einem Pumpenelement (12), welches dazu eingerichtet ist, einen Startwert zu erzeugen, mit zumindest einem Messelement (14), welches in zumindest einem Messschritt (16) einen Endwert erfasst, wobei der Endwert einen Einflussfaktor der zumindest einen Durchgangsausnehmung (18) in dem Substratblech für eine elektrochemische Zelle (20) auf den Startwert wiedergibt, und mit zumindest einem ersten Kammerelement (22) und zumindest einem zweiten Kammerelement (24), welche das Substratblech für eine elektrochemische Zelle (20) in zwei Richtungen einschließen, wobei in zumindest einem Bewertungsschritt (46) die Qualität der Durchgangsausnehmung (18) mittels eines Referenzwerts ermittelt wird, wobei der Referenzwert mit dem durch das Messelement (14) ermittelten Endwert korreliert wird., vorgeschlagen..
Absstract of: EP4550490A2
A cell column includes vertically aligned stacks containing electrochemical cells separated by interconnects, fuel manifolds disposed between the stacks, a termination manifold disposed above an uppermost one of the stacks, and an inlet conduit and an outlet conduit fluidly connected to the fuel manifolds and the termination manifold. The termination manifold is an electrical terminal of the cell column, and includes a fuel channel configured provide fuel to the uppermost one of the stacks.
Absstract of: CN119256415A
Bipolar plate (1) intended for use in an electrochemical cell stack and consisting of two half-plates (2, 3) seated one on the other, the bipolar plate having: three ports (5, 6, 7) arranged adjacent to one another; an effective field (9); and a distribution field (8) connecting the ports (5, 6, 7) to the effective field (9) and designed to conduct three different fluids between the ports (5, 6, 7) and the effective field (9), in which a flow space for one of the fluids is formed between the half-plates (2, 3) and flow spaces for the other two fluids are formed on the outer sides of the half-plates (2, 3). The distribution field (8) comprises four flow fields (10, 12, 14, 16) of flat design, in particular each having the basic shape of a triangle:-a coolant flow field (10) leading to the central port (6); -two two-medium flow fields (12, 14), each adjoining the coolant flow field (10) at one end and leading at the other end to one of the two outer ports (5, 7), and each being designed for the coolant to flow together with the working medium as the other fluid in layers parallel to each other; -a three-medium flow field (16) adjoining the two two-medium flow fields (10), leading to the effective field (9), and designed for the coolant to flow together with the working medium as another fluid in three layers parallel to one another. Here, the half-plates (2, 3) are structured by an embossing structure (4), which is designed in the form of a point, i.e. An island, in each of the
Absstract of: EP4550487A1
A solid oxide fuel cell according to the present invention is provided with: a first electrode structure; an electrolyte layer that is superposed on the first electrode structure; and a second electrode structure that is superposed on the electrolyte layer. The first electrode structure comprises a first porous metal support layer and a first electrode layer. With respect to this solid oxide fuel cell, the first electrode structure is provided with: a filled part; and a first dam which is positioned outside the filled part when viewed along the stacking direction, while being densified so as to prevent the leakage of a filler to the outside of the filled part.
Absstract of: GB2635186A
An electrochemical device has at least two insulating layers 162, 164, 166, 168 each having a first conductive through via 170, in electrical connection with a first conductive through via of the other insulating layer. The electrical connection between the first conductive through vias provides a first conductive bus (46, Figure 4) through the insulating layers. Each insulating layer also has a second conductive through via, in electrical connection with a second conductive through via of the other insulating layer. The electrical connection between the second conductive through vias provides a second conductive bus through the insulating layers. A component 162A located on or in one insulating layer is connected to the first conductive bus and a component 164A located on or in the other insulating layer is connected to the second conductive bus. A further electrochemical device has a plurality of insulating layers, each having conductive through vias which are aligned with one another and in series electrical contact to form a conductive bus through the layers so that in use an electrical continuity measurement can be made. The conductive bus can be used to measure a characteristic of the electrochemical device, such as a cell voltage.
Absstract of: EP4550486A1
The present invention relates to a hydrogen injection module, intended for circulating a hydrogen flow rate in a supply circuit for fuel cells, comprising a main housing formed by a tubular body defining a longitudinal axis (L), said main housing being provided with an inlet and an outlet, between which and following a forward flow direction there is a particle filter member, a first safety shut-off solenoid valve and a second flow rate-regulating solenoid valve spaced apart from each other and housed in corresponding bores made in the main housing that run perpendicular to the longitudinal axis of the main housing, the first and second solenoid valves being in fluid communication with each other through a first passage channel having an angle of inclination with respect to the longitudinal axis (L) of the main housing, such that an inlet end of the first passage channel, which corresponds to the flow outlet point of the first solenoid valve, is located at a level below the outlet end of the first passage channel, which corresponds to the flow inlet point to the second solenoid valve.
Absstract of: EP4550481A1
The present invention relates to porous catalyst layers comprising a metal nanoparticle loaded porous carbon structure, wherein the porous carbon structure is assembled from porous spherical carbon particles with a particle size dispersity (Ð) of 1.2 or less, and with a templated pore size with a templated pore size dispersity (Ð') of 1.2 or less. The invention further relates to the method of production of such porous catalyst layer, electrodes obtained from such porous catalyst layers and their use in fuel cells or electrolysers.
Absstract of: EP4550485A1
The present disclosure relates to a fuel cell system (110, 210) and a method for operating a fuel cell system in connection with start-up of the fuel cell system. The fuel cell system comprises:- an anode volume (124, 224) and a cathode volume (122, 222),- a fluid flow assembly (111, 211) comprising a plurality of fluid conduits and a fluid flow control device (113a, 113b, 213a, 213b), wherein a recirculation circuit (112, 212) is formed when a fluid connection between the anode volume and the cathode volume is enabled,- a hydrogen gas supply device (130, 230), and- a recirculation device (140, 240),the method comprising:- controlling the hydrogen gas supply device to supply the hydrogen gas,- regulating the fluid flow control device such that the anode volume is fluidly connected to the cathode volume,- controlling the recirculation device to recirculate the gas mixture in the fluid recirculation circuit such that the supplied hydrogen gas undergoes reaction with the residual oxygen during the recirculation.
Absstract of: EP4550489A1
It is disclosed a green container microbial fuel cell (100) which integrates an electrochemical system, in particular a microbial fuel cell module (3), suitable to be installed in surfaces of infrastructures such as building roofs and walls, in which plants can grow to absorb water and provide thermal isolation and capable of producing electricity by oxidizing organic matter dissolved in water. It comprises a vessel (13) and the microbial fuel cell module (1) attached to the bottom of the vessel (13). This module (1) houses a microbial fuel cell (3) that has a planar configuration and comprises an anode (4) inoculated with electroactive microorganisms in contact with water containing organic matter, such as polluted water, an ionic exchange membrane (5) and an air cathode (6) in contact with ambient air. A vessel (13) with a closed side panel (14) holds substrate (15) in place, where plants can grow.
Absstract of: EP4550484A2
Es ist ein Verfahren (100) und ein System (10) zum Starten einer Brennstoffzelle bei Temperaturen unter 0° Celsius mit einem Zwei-Phasen-Kühlsystem angegeben, wobei das Zwei-Phasen-Kühlsystem eine Pumpe (20) zum Fördern eines im Zwei-Phasen-Kühlsystem vorliegenden Kühlmittels aufweist, wobei das Kühlmittel im Zwei-Phasen-Kühlsystem zumindest teilweise in einer Gasphase vorliegt, aufweisend die folgenden Schritte:Starten (102) der Brennstoffzelle (12),Aktivieren (104) der Pumpe (20) nach einem definierten Zeitraum, wobei während des definierten Zeitraums das Kühlmittel im Wesentlichen in der Gasphase innerhalb der Brennstoffzelle (12) vorliegt.
Absstract of: EP4550483A1
The invention is related to a sealing device (10) for sealing a fuel cell (100) of a fuel cell stack of a fuel cell system, comprising a seal (30) for sealing a membrane electrode assembly (104) of the fuel cell (100) against a bipolar plate (102) of the fuel cell (100), and at least one limiter (20) for limiting a compression of the seal (30), wherein the at least one limiter (20) has a first limiter surface side (22) capable of contacting the bipolar plate (102), a second limiter surface side (24) capable of contacting the membrane electrode assembly (104) and a limiter lateral side (26), wherein the seal (30) has a first seal surface side (32) for sealing against the bipolar plate (102), a second seal surface side (34) for sealing against the membrane electrode assembly (104) and a seal lateral side (36), and wherein at least a part of the limiter lateral side (26) is mechanically connected to at least a part of the seal lateral side (36).
Absstract of: WO2025045577A1
The present invention is related to a composite ion-exchange membrane and to a method of manufacturing said membrane. In particular, the non-porous ion-exchange membrane integrates an ion conductive polymer for application in alkaline water electrolysis application.
Absstract of: WO2024031115A2
The invention relates to a utility vehicle (11) comprising a chassis (14), a fuel cell (26) and a fuel cell cooling system (12), wherein the fuel cell cooling system (12) comprises: a coolant circuit (30) connected to the fuel cell (26) for guiding a coolant; a pump (32) for circulating the coolant; a heat exchanger (36) that is thermally connected to the chassis (14); a bypass line (38) that can be switched via a multi-port bypass valve (38) for bypassing the heat exchanger (36); and a control unit for switching the multi-port bypass valve (38).
Absstract of: WO2024020614A1
The invention relates to a fuel cell system (50) comprising a fuel cell stack (40) and a flow assembly (30) for supplying a media flow (1) to the fuel cell stack (40). The flow assembly (30) has a flow section (10) which is fluidically connected to the fuel cell stack (40), and the flow assembly (30) additionally has a flow insert (20) which is arranged in the flow section (10), extends in a main direction of extent along the flow section (10), and has a flow inlet (24) for admitting the media flow (1) and at least one flow opening (22) that is formed on the flow insert (20) side (21) facing away from the fuel cell stack (40).
Absstract of: AU2023300562A1
Bipolar plates (1) adapted for use in an electrolyser cell stack (4) and wherein each plate comprises a plate midplane (2) whereby the plate (1) comprises spaced apart uniform spacers (7) extending in opposed directions from the midplane (2). All spacers (7) are arranged along concentric circles (8) in the midplane (2) with spacers (7) alternatingly protruding in opposite directions relative to the midplane (2) along each concentric circle (8) and an even number of spacers (7) are provided in each circumferential circle (8), apart from an innermost circle (9) which comprises a single spacer (7).
Absstract of: CN119317736A
An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
Absstract of: WO2024003169A1
The invention relates to a fuel cell system (1) comprising an expansion machine (2) with a high-pressure side (3a) and a low-pressure side (3b) for performing mechanical work, and comprising multiple fuel cells (4) stacked on top of one another, which communicate fluidically with the high-pressure side of the expansion machine (2) via a gas path (5), such that, during operation of the fuel cell system (1), exhaust gas discharged from the fuel cells (4) into the gas path (5) and containing water drives the expansion machine (2). The fuel cell system (1) comprises a water separator (6) arranged in the gas path (5) for separating water from the exhaust gas, and a valve unit (7) arranged between the water separator (6) and the high-pressure side (3a) of the expansion machine (2) for adjusting an amount of exhaust gas to be supplied to the expansion machine (2). The fuel cell system (1) also comprises a bypass gas path (8) through which the exhaust gas can flow, which branches off from the gas path (5) between the fuel cells (4) and the water separator (6) and fluidically communicates with the low-pressure side (3b) of the expansion machine (2), such that exhaust gas can bypass the expansion machine (2) via the bypass gas path (8). In addition, a bypass valve unit (9) is arranged in the bypass gas path (8) for adjusting the amount of exhaust gas flowing through the bypass gas path (8).
Absstract of: WO2024003127A1
The invention relates to a system for providing energy, comprising: - a system for providing gaseous hydrogen, comprising: - a first container (4) for providing a solid metal borohydride, - a reactor (10) for releasing hydrogen gas from the metal borohydride, - a second container (9) for receiving the spent metal borohydride, and - a load in which the hydrogen gas is oxidized, thereby releasing energy, wherein a transport device is provided downstream of the first container (4), said transport device being used to remove the metal borohydride from the first container (4) and to supply same to the reactor (10), and the reactor (10) has: - a water feed (6) for humidifying the metal borohydride; - a device for providing a catalyst; - and a removal device (7) for removing hydrogen gas.
Absstract of: CN119452486A
The invention relates to a device and a method for determining a state (100) in a stack of fuel cells or electrolytic cells or in a fuel cell or electrolytic cell, in which at least one membrane electrode unit and plates are provided, between which in each case one membrane electrode unit is arranged, the inlet of the process medium from the periphery and the outlet of the process product into the periphery as well as the electrical input and output variables are modeled by means of a first model (102), the segments of the plate are modeled by means of a second model (104), and the membrane electrode unit or the segments of the membrane electrode unit are modeled by means of a third model (106), wherein the first model (102) and the second model (104) are coupled by means of at least one coupling variable (108, 110), the second model (104) and the third model (106) are coupled in sections by means of at least one coupling variable (112, 114), at least one input variable of the first model (102) is specified, the state (100) is determined by means of the at least one input variable, the first model (102), the second model (104) and the third model (106).
Absstract of: WO2024002789A1
The present invention refers to a process for preparing a graphitized nanoporous carbon, the so-obtained carbon particles and the use thereof as highly stable support for electrochemical processes.
Absstract of: WO2024002643A1
The present invention relates to a manufacturing method for manufacturing a single bipolar plate (200). The manufacturing method comprises: unrolling a material film (100) from a roll (101); and passing the material film (100) through a pair of rollers (107), wherein a movement of the material film (100) in the direction of passage to the pair of rollers (107) is braked in front of the pair of rollers (107) in order to tension the material film (100), and wherein a three-dimensional contour is moulded into the material film (100) by the pair of rollers (107), said contour extending both linearly and in a curved manner on all three spatial axes, and wherein the contour comprises a flow field (201), the flow field channels of which extend transversely to the direction of passage of the material film (100).
Absstract of: CN119452171A
The invention relates to a side channel compressor (1) for a fuel cell system (31) for conveying and/or compressing a gaseous medium, in particular hydrogen, comprising: a housing (3) and a drive (6); a compressor chamber (30) which extends in the housing (3) about an axis of rotation (4) and which has at least one circumferential side channel (19, 21); the invention relates to a side-channel compressor (1) having a housing (3), a rotor chamber (44) in the housing (3), and a compressor wheel (2) in the rotor chamber, which compressor wheel is rotatably arranged about the axis of rotation (4) and is driven by means of the drive (6), the side-channel compressor (1) having at least one bearing (27, 47) on a cylindrical bearing tongue (12), and wherein the corresponding bearing (27, 47) is arranged in the rotor chamber (44). 47) has a bearing outer ring (24), a bearing inner ring (22) and a bearing inner chamber (40) which is sealed from the rotor chamber (44) by means of at least one sealing element (26). According to the invention, the bearing inner chamber (40) can be separated from the rotor chamber (44) by a sealing element (26) in such a way that either a frictional seal or a contactless seal can be established between the bearing inner ring (22) and the sealing element (26) depending on the operating state of the side channel compressor (1). The present application also relates to a fuel cell system (31) having the side channel compressor (1) of the present application.
Absstract of: WO2024002713A1
The present invention relates to a method for producing a carbon coating on a metal substrate, the metal substrate being chosen from the group consisting of stainless steel, carbon steel, galvanised steel, copper and aluminium, which method comprises the steps of: - depositing onto the metal substrate at least one thin intermediate metal layer having a thickness of less than 100 nm; - depositing a conductive carbon outer layer having a dry final thickness of between 1 and 50 µm, obtained by the sol-gel method; the nature of the metal substrate, of the intermediate layer and of the outer layer, as well as the thicknesses thereof, being chosen so as to obtain an interfacial contact resistance (ICR) of the coated substrate of less than 10 mΩ.cm2, at a compaction force of 100 Ncm-2.
Absstract of: US2025118781A1
Provided herein generally are methods of accounting for hydrogen (H2) in a natural gas (NG) stream, i.e., a NG/H2 blend, from a public NG utility to residential and/or business facility fuel cell (FC) systems, where the NG/H2 blend powers the FC systems and the volume of NG/H2 blend supplied to each FC systems is measured. Such measurements along with other data of the operation of the FC system, such as the volume of NG/H2 blend or an increased volume of NG, can be reported or transmitted to the public NG utility for each residential and/or business facility FC system supplied with the NG/H2 blend, where a reduced carbon footprint can be determined for the use of the NG/H2 blend by the FC system(s).
Absstract of: WO2024068598A1
An anion exchange membrane obtainable by curing a curable composition comprising: (a) a monomer (a) of Formula (I) wherein: each n independently has a value of 1 or 2; (i) Ra and Rb are each independently an optionally substituted C1-3-alkyl group or an optionally substituted C2-3-alkenyl group; or (ii) Ra and Rb, together with the positively charged nitrogen atom to which they are attached, form an optionally substituted 5- or 6-membered ring; or (iii) one of Ra and Rb is an optionally substituted C1-3-alkyl group or an optionally substituted C2-3-alkenyl group and the other of Ra and Rb, together with the group of formula AR1 - (CH2)n - N+, forms an optionally substituted 5- or 6-membered ring; or (iv) Ra, together with the group of formula AR1 - (CH2)n - N+, forms an optionally substituted 5- or 6-membered ring, and Rb, together with the group of formula N+- (CH2)n - AR2, forms an optionally substituted 5- or 6-membered ring; X- is an anion; and AR1 and AR2 each independently comprise aromatic groups; wherein: (I) at least one of AR1 and AR2 comprises a curable ethylenically unsaturated group; (II) the monomer (a) of Formula (I) comprises at least two curable ethylenically unsaturated groups; and (III) the ion exchange capacity (IEC) of the anion exchange membrane is below 1.65 meq/g dry membrane.
Absstract of: CN119943996A
本发明公开了一种燃料电池的排水方法、装置及存储介质,燃料电池的排水方法包括步骤:获取燃料电池的累计输出电能设定值及累计输出电能实际值;当累计输出电能实际值达到累计输出电能设定值时,控制燃料电池的汽水分离器的排水阀开启;获取排水阀的预设开启时长及实际开启时长;当排水阀的实际开启时长达到预设开启时长时,控制排水阀关闭。本方案通过燃料电池的累计输出电能判断汽水分离器中积水的水位,不需要液位开关监测水位,不会受到燃料电池倾斜摇摆及颠簸的外部影响,减少误动作,且排水阀的开闭时间能够完全由控制单元的软件进行决策,可靠性高,同时结构简单。
Absstract of: CN119944010A
本发明公开了一种基于可恢复故障规避与ESN联合的燃料电池寿命预测方法。具体步骤包括:首先,提取HI的特征值,使用K平均算法进行聚类并生成状态标签,采用TimeGAN进行数据增强,由真实数据和生成的数据训练K邻近算法模型,用训练好的模型为输入的燃料电池HI生成状态标签;其次,定制可恢复故障规避策略,训练ESN在定制策略指导下进行预测;最后,根据预测结果计算退化趋势及其置信区间和剩余使用寿命。本发明提高了识别的准确性和鲁棒性,能够准确识别出可恢复故障的出现。相对准确率中位数提升超19%,对称平均绝对百分比误差降低超11%。
Absstract of: AU2024287263A1
A mesh is constituted of a framework including a plurality of supporting pillar portions and a plurality of node portions. Each of the plurality of node portions 5 connects two or more supporting pillar portions of the plurality of supporting pillar portions. The framework consists of a framework main body and an inner portion surrounded by the framework main body. The framework main body consists essentially of nickel or a nickel alloy.
Absstract of: CN119943981A
一种具有三相界面结构的Pt/SnO2@PC直接二甲醚燃料电池阳极催化剂的制备方法,涉及一种直接二甲醚燃料电池阳极催化剂的制备方法。为了解决现有的直接二甲醚燃料电池采用的Pt基阳极催化剂受毒化作用影响催化活性较低的问题。本发明采用葡萄糖碳化法制备了以SnO2为核、多孔碳为壳的新型多孔碳包二氧化锡SnO2@PC纳米结构载体,然后在SnO2@PC纳米结构载体上沉积Pt纳米颗粒,成功制备了具有三相界面结构的Pt/SnO2@PC催化剂。三相界面结构有利于降低毒性中间体对Pt的毒化作用,提高催化剂性能,使得二甲醚电催化活性和稳定性显著提高,从而延长了DDFC的续航时间以及使用寿命,且催化剂显示出最高的活性和稳定性。
Absstract of: CN119928012A
本发明涉及PEN薄膜加工技术领域,具体为一种氢能源燃料电池PEN薄膜冲切设备及冲切方法,包括底座,所述底座的上表面固定连接有支撑板,所述底座的上表面固定连接有冲切台,所述支撑板的背面固定连接有驱动机构,所述支撑板的表面转动连接有支撑与导向结构,所述支撑与导向结构的侧边固定连接有动力传动机构,所述支撑与导向结构一侧的下端固定连接有提升运输冲切机构。本发明中,通过卡齿转动时带动空心杆转动,空心杆转动时带动活塞杆沿着循环斜槽,在空心杆的内部向上滑动,而活塞杆在气腔内无法转动,活塞杆上升时,通过气管向气腔内吸气,同时将PEN薄膜吸附在冲切盘的下表面,这样能够保证PEN薄膜的完好状态,并且能够防止PEN薄膜掉落。
Absstract of: CN119944006A
本发明公开了一种基于PEMFC辅助电热耦合的S0FC快速启动方法,包括以下步骤:启动PEMFC电堆,使其具备发电能力;通过PEMFC电堆的电能输出及尾气排放,对SOFC电堆进行加热处理;在SOFC电堆达到600~650℃后,启动SOFC电堆进行发电。本发明结合了电加热和燃烧换热的优点,实现了电堆内部外部共同加热,具有加热速率快、电堆温度梯度小、燃料利用率高、能效高、保护电堆结构等特点,切实提高了电堆升温速率。
Absstract of: CN119928578A
本发明涉及氢安全技术领域,具体而言,涉及一种燃料电池汽车氢安全的评估方法和设备。该方法包括:收集燃料电池汽车的原始数据;构建包括多种氢安全评估指标的体系;根据所述原始数据和氢安全评估指标,计算当前燃料电池汽车的氢安全等级;根据所述氢安全等级确定所述燃料电池汽车的主动安全干预措施,并对所述主动安全干预措施进行评价。本发明能够有效地提高燃料电池汽车的氢安全水平,保障燃料电池汽车的安全运行。
Absstract of: CN119944022A
本公开提供一种电堆及电堆系统,所述电堆具有阳极端板和阴极端板,所述阳极端板包括:第一进气通道,贯穿设置于所述阳极端板,配置为向电堆内部输送第一气体;第一排气通道,贯穿设置于所述阳极端板,配置为将未完全反应的所述第一气体排出;通径,配置为将所述第一排气通道内至少部分的所述第一气体输送至所述第一进气通道。本公开提供的电堆及电堆系统中,通径的设置使第一气体在输送至电堆过程中的管路形成三通管路,通过以上装置,可实现在电堆运行过程中的氢气循环及回收。提升了燃料电池的能量利用率,同时提升了电堆系统运行的稳定性。
Absstract of: CN119943985A
本发明涉及燃料电池技术,旨在提供一种具有多尺度导电网络且易于热塑成型的复合双极板。提供一种具有多尺度导电网络且易于热塑成型的复合双极板,其特征在于,该复合双极板是由粉体状的聚丙烯、石墨和导电炭黑,与离子液体通过原料预混、熔融挤出、压延和热压成型制备获得。本发明提出在双极板的制备过程中采用离子液体,通过有效增强熔体流动性实现高效复合;结合熔融挤出成型工艺,可以实现复合双极板的连续生产,降低生产成本;通过石墨和导电炭黑的复配以及导电离子液体的使用,可实现三维固体导电网络+液体导电层的新型导电结构,使用离子液体可实现传统增塑剂无法实现的导电增强效果;产品结构更致密、均匀,具有优异的可重复加工性能。
Absstract of: CN119944176A
本发明涉及一种集成金属燃料电池,属于新能源电池领域。集成金属燃料电池由金属空气电池和氢空气电池组成。其中,金属空气电池结构主要包括金属负极,金属空气电池电解液室,金属空气电池空气正极;氢空气电池结构主要包括氢气收集装置、氢空气电池负极、氢空气电池电解液室、氢空气电池空气正极。正负极壳将氢气收集室、电解液室囊括在内部,且是绝缘材料,能够避免短路,防止电解液和氢气泄露。在电池测试中,该集成金属燃料电池展现出高工作电压和高稳定性,实现了氢气的再利用。本发明通过副产品价值化和资源循环利用解决了单项电池技术的局限性,在电动运输,海洋勘探和电网规模的能源储存方面具有巨大的应用潜力,符合全球绿色能源和去碳化的目标。
Absstract of: CN119943971A
本发明公开了一种从碳纤维到碳纸的连续制备方法,包括碳纤维分散、碳纤维脱水成型、碳毡施胶、碳毡固化和碳毡的高温处理。本发明将碳毡和碳纸两个生产过程整合为一个连续的生产过程,该过程中的原料为碳纤维,成品为碳纸,利用烘干热压装置一次完成碳毡的烘干热压,减少了半成品的烘干次数,降低了成本;碳毡在烘干之后直接进行热压操作,省去了碳毡的收卷、运输过程,避免了碳毡在运输和存放过程中吸水导致的碳毡强度降低。本发明将碳毡的施胶和浸渍过程整合在一起,避免了碳毡在上胶烘干后放置和运输过程中的吸水导致材料的浪费,避免了无水乙醇的使用,降低了成本,简化了碳纸制备的过程,同时对环境友好。
Absstract of: WO2024075217A1
A stationary fuel cell system comprising: two power generation modules provided with a fuel cell stack, and an auxiliary equipment structure including auxiliary equipment that transfers gas to and from the fuel cell stack; a piping module provided with an intake pipe through which air supplied to the power generation module flows, and an exhaust pipe through which air exhausted from the power generation module flows; and an electrical equipment module provided with a main power line that is connected to a branch power line drawn out from the fuel cell stack and that sends power generated by the power generation module to an external power converter, wherein the two power generation modules are arranged overlapping vertically, the piping module and the main power line are placed between the two power generation modules arranged overlapping, the intake pipe and the exhaust pipe are arranged side by side, and the main power line is placed aligned with the intake pipe and the exhaust pipe at a position facing the exhaust pipe and sandwiching the intake pipe.
Absstract of: CN119944012A
本申请涉及一种燃料电池电堆的制氢单元、冷热电联产系统及方法,所述制氢单元包括铝水制氢部分,包括铝水反应器和固气分离器;所述铝水反应器用于铝水反应制氢;所述固气分离器与铝水反应器连接,用于分离氢气;脱氢部分,包括脱氢反应器和气液分离器;所述脱氢反应器用于全氢化有机液态储氢材料进行脱氢反应制氢;所述气液分离器与脱氢反应器连接,用于分离氢气;所述铝水反应器制氢的热量供给至脱氢反应器进行脱氢;第一混合器,分别与固气分离器、气液分离器连接,用于混合铝水制氢部分制备的氢气和脱氢部分制备的氢气;所述第一混合器连接至燃料电池电堆。本发明能够提高热量的利用效率。
Absstract of: CN119944021A
本发明公开了一种燃料电池的电池堆组件,电池堆组件包括:电池堆主体;第一压板和第二压板沿第一方向相对且间隔开;拉杆组件包括固定座、弹性件和拉杆,固定座位于第一压板和第二压板之间,拉杆的一端固设于第二压板,拉杆的另一端伸入固定座,弹性件压缩在固定座和拉杆之间以驱动拉杆沿第一方向朝向第一压板移动。通过第一压板、第二压板和拉杆组件配合,拉杆组件内弹性件的弹力可以驱动拉杆带动第二压板朝向第一压板移动,有利于电池堆主体保持合适的压缩,自动补偿电池堆主体因老化造成的压缩损失,使电池堆主体的压缩载荷和刚度保持在合理的范围内,进而提高燃料电池的密封性和导电性。
Absstract of: CN119944019A
本发明公开了一种具有封闭端的多孔管式甲醇固体氧化物燃料电池,所述燃料电池为管式固体氧化物燃料电池(SOFC)电池堆,所述管式SOFC电池堆内包含多个管式SOFC单电池;沿燃料在内管内的移动方向,所述管式SOFC单电池内管的底端开口,顶端封闭,内管管壁设有多段封闭区和多段开孔区,多段封闭区和多段开孔区依次交替排布。本发明管式SOFC单电池的内管结构能够有效提高甲醇在固体氧化物燃料电池阳极表面的分布均匀性,从而有效克服由于甲醇在固体氧化物燃料电池阳极表面分布不均匀导致的积碳严重问题。
Absstract of: WO2024068321A1
The present invention relates to a regeneration method (100) for regenerating a contaminated fuel cell stack (201). The regeneration method (100) comprises: - passing (101) reconditioning agent into the fuel cell stack (201), - rinsing (103) the reconditioning reagent from the fuel cell stack (201), the reconditioning reagent containing mobile anions or a mobile-anion precursor.
Absstract of: CN119943978A
本发明提供了一种燃料电池催化剂及其制备方法和应用。燃料电池催化剂包括碳载体和活性成分PtM,M包含Ni、Cu、Mo、Co、Ir中的至少3种金属元素。本发明的催化剂中,PtM是一种新型的铂基八面体结构,其中,Pt基八面体合金材料因其特异性暴露(111)晶面,因而催化剂具有较高的催化活性和抗毒化性能,且基于多元素的协同作用调控了催化剂的电子性质,显示出了优异的结构稳定性,减弱了Pt与中间物种的相互作用,提高了催化剂的抗毒性能,本发明提供的催化剂具有较低的生产成本,较高的催化活性以及优异的稳定性。
Absstract of: CN119944014A
本发明涉及发电设备技术领域,具体公开了一种氨燃料SOFC发电系统,包括:燃料供应及处理子系统,用于提供氨燃料并对氨燃料进行预热和裂解;空气供应子系统,用于提供空气并对空气进行预热;燃烧供热子系统,作为燃料燃烧的场所及向燃料供应及处理子系统和空气供应子系统供热;SOFC电堆子系统,作为发生电化学反应的场所;和电能转换子系统,用于将SOFC电堆子系统中产生的电流进行电源类型转换及储存。该系统所用燃料原材料是氨燃料,无需其他甲烷辅助气体,也不是氨水,无需氨水汽化的步骤,节约能耗,整个发电系统结构简单,发电效率高,原材料的利用率高。
Absstract of: WO2024070025A1
Problem To provide a connector that can be engaged with an engagement portion provided in a fuel cell and that is easily secured to the engagement portion. Solution This connector 1 is detachable from a fuel cell 3, the fuel cell comprising a plurality of plates 9 arranged at intervals in a predetermined stacking direction and each plate 9 having a receiving recess 11, and each receiving recess of the plates being provided with an engagement portion 21, the connector comprising a housing 25 that can be inserted into the receiving recesses of the plurality of plates, a terminal member 27 held by the housing and electrically connected to a plate when the housing is inserted into a receiving recess, a lever 31 that can be inserted into the housing, and a lock member 29 that engages with the engagement portion by rotating about an axis extending in the stacking direction in response to a pressing force being applied by insertion of the lever.
Absstract of: WO2024061781A1
The invention relates to a diagnostic method (100) for diagnosing the state of an electrochemical cell (301) of an electrochemical energy converter (300). The diagnostic method (100) has the steps of: - ascertaining (101) the curve (201) of electric properties of the electrochemical cell over time, - determining (103) data packets (205, 209) which can be analyzed, - aggregating (105) at least one region (207, 211) of each data packet (205, 209) which can be analyzed in order to form an aggregated curve, - determining (107) the slope for at least one region of the aggregated curve, - assigning (109) a characteristic to the slope according to a specified assignment scheme in order to quantify the state of the electrochemical cell, and - outputting (111) the characteristic on an output unit, wherein a data packet (205, 209) which can be analyzed comprises a plurality of data points with values which differ from one another maximally by a specified threshold at least for a specified duration.
Absstract of: CN119943988A
本发明公开了一种基于燃料电池的换热装置及系统,该方案设置有一级换热模块、燃烧器和二级换热模块;一级换热模块的热侧输入端与电堆的尾气输出端连接,一级换热模块的热侧输出端与燃烧器的输入端连接,燃烧器的输出端与二级换热模块的热侧输入端连接,二级换热模块的冷侧输出端与电堆的输入端连接;通过在燃烧器和电堆的尾气输出端间设置一级换热模块,降低进入燃烧器的电堆尾气温度,进而降低燃烧器燃烧时和输出尾气的温度,降低燃烧器和换热模块的耐热要求,降低实现成本;设计一级换热模块和二级换热模块,减少燃烧器输出的尾气分配数量,降低设计难度;本发明实施例可广泛应用于燃料电池技术领域。
Absstract of: CN119944002A
本发明提供一种燃料电池冷启动控制方法及相关设备,涉及燃料电池控制技术领域。燃料电池系统包括第一开关阀,方法包括:检测温控阀的开度;在温控阀的开度等于零时,控制第一开关阀截止,其中,第一开关阀设置在燃料电池系统中的温控阀和散热器之间。根据上述技术方案,在温控阀与散热器出口之间设置第一开关阀,并且根据温控阀的开度控制第一开关阀的状态,可以有效防止冷启动过程中的大小循环之间的连通,杜绝温控阀内漏的风险,避免散热器出口的冷却液加入小循环,导致小循环中加热器加热的冷却液的容积增大,从而延长加热时间,影响燃料电池的冷启动速度。
Absstract of: CN119943989A
本申请公开了一种热量自平衡的燃料电池发电系统及方法,涉及燃料电池发电技术领域。一种热量自平衡的燃料电池发电系统,包括依次连接的富氢氢油储罐、脱氢反应器和贫氢氢油储罐,还包括均温器、SOFC电堆和尾气处理装置,所述脱氢反应器的氢气端与所述均温器连接,所述均温器与所述SOFC电堆连接,所述SOFC电堆与所述尾气处理装置连接,所述脱氢反应器的空气端与所述尾气处理装置连接,所述尾气处理装置的废气端分别与所述均温器和所述脱氢反应器连接。本申请的系统不仅提高了能源利用效率,同时解决了LOHC在用氢端落地应用的热能需求问题。
Absstract of: CN119943966A
本发明公开了一种双极板及其制造方法,指一种应用在一燃油电池中的双极板,该双极板包含有一金属基板及两个硅胶密封层;该金属基板具有一第一表面及一第二表面,其上设置有至少一通道。两个该硅胶密封层分别利用一次射出成型方式直接形成在该第一表面与该第二表面上,并在每一个该硅胶密封层的一侧形成至少一个连接块,从而实现自动化生产,以降低该双极板的生产成本。
Absstract of: CN119943986A
本发明提供了一种金属石墨复合双极板及其制备方法,其解决了现有技术存在制造过程复杂、整体刚性不足等技术问题;双极板设有石墨层、中间层和基层,双极板从上到下依次冶金连接设有石墨层、中间层、基层,其中,石墨层为柔性石墨纸,中间层为铜镍复层箔,铜镍复层箔自上而下依次为铜板、镍板,基层为钛薄板;双极板的制备方法包括:S1.将柔性石墨纸进行预处理,S2.将铜板、镍板、钛薄板表面清洁处理;S3.将步骤S1完成预处理的柔性石墨纸、以及步骤S2完成表面清洁处理的铜板、镍板、钛薄板从上到下叠放模压成型,保持合模并加热到800~850℃,合模压力为5~10MPa,保压一段时间后,得到金属石墨复合双极板;可广泛应用于燃料电池双极板精密制造技术领域。
Absstract of: CN119928674A
本发明的实施例提供了一种燃料电池汽车风扇控制方法、装置、电子设备及存储介质,涉及燃料电池汽车技术领域。该方法应用于控制器,所述控制器与散热器、风扇以及多个温度传感器通信连接。该方法包括:确定电堆产热量,并基于各所述温度传感器,分别获取环境温度、散热器出口温度。根据所述电堆产热量、所述环境温度以及所述散热器出口温度确定散热总需求量。基于所述散热总需求量确定目标风扇占空比,根据所述目标风扇占空比控制所述风扇的运行状态。本发明可以更加合理地通过风扇对车辆进行散热。
Absstract of: CN119944023A
本发明公开了支路供气的燃料电池和燃料电池控制方法,支路供气的燃料电池包括:外部进气管道,外部进气管道用于引入燃气和氧气;电堆,与外部进气管道可插拔连接,电堆用于将燃料和氧气进行化学反应后输出电能;外部出气管道,外部出气管道与电堆可插拔连接,外部出气管道用于将电堆进行化学反应后产生的废气排出;控制电路,与电堆连接,控制电路用于在接收到电压控制信号时,调节电堆的输出电压至目标电压值;控制电路还用于在检测到电堆的电压异常时,调节电堆的输出电压至预设电压值。本发明解决了燃料电池的电堆出现异常情况时无法准确进行电路控制和气道控制的问题。
Absstract of: CN119943970A
本发明属于燃料电池催化剂技术领域,具体涉及一种可用于燃料电池的高耐久性Fe‑N‑C催化剂及其制备方法和应用。本发明的制备方法包括下述步骤:(1)将氧化铁纳米颗粒、六水合硝酸锌、聚乙烯吡咯烷酮(PVP)以及2‑甲基咪唑依次溶解在甲醇溶液中,加热处理,冷却、固液分离收集固体并干燥,得到Fe2O3@ZIF‑8前驱体;(2)对所述Fe2O3@ZIF‑8前驱体进行煅烧,得到Fe‑N‑C中间体;(3)将所述Fe‑N‑C中间体与氯化铵混合得到混合物,对所述混合物进行热处理,即得所述可用于燃料电池的高耐久性Fe‑N‑C催化剂。本发明的方法有助于提高Fe‑N‑C催化剂的活性和稳定性。
Absstract of: CN119944016A
本发明公开了一种平板式SOFC半电池及全电池的制备方法,涉及固体氧化物燃料电池技术领域,本发明所提供的平板式SOFC半电池及全电池的制备方法既可以解决承烧板在排胶、烧结阶段造成的电解质层划伤、压痕等问题,又可以使烧结产量翻倍,提高生产效率,适合规模化生产平整、完好的SOFC半电池和SOFC全电池。
Absstract of: CN119943992A
本发明公开了一种高活性材料水解制氢可再生燃料电池无人机混合动力系统,涉及混合动力与长航时无人机技术领域,解决了无人机动力源未同时兼顾高能量密度和高功率密度的问题。本发明固体水解反应器和质子交换膜燃料电池的阳极进口连通,阳极出口和气液分离器一连通;气液分离器一的气体出口经循环气泵和阳极进口连通,液体出口、循环水泵和固体水解反应器依次连通;质子交换膜燃料电池的阴极出口和气液分离器二连通;气液分离器二的气体出口和大气连通,液体出口和循环水泵连通;无人机负载分别和质子交换膜燃料电池以及锂电池连接。本发明采用更为灵活的固体水解制氢方式,燃料电池与锂电池经过能量管理系统协同工作,实现无人机长航时的运行。
Absstract of: CN119944005A
本发明提供了一种燃料电池车辆启动热管理控制方法、设备及车辆,该方法在冷却液温度低于第一温度阈值且环境温度低于第二温度阈值时,控制车辆暖风循环回路中的加热器按照第一加热功率对暖风循环水进行加热,并控制车辆暖风循环回路中的第一水泵按照预设转速将已加热的暖风循环水循环至氢气循环泵对应的管路中;当冷却液温度大于第三温度阈值时,控制加热器按照第二加热功率对暖风循环水进行加热;当冷却液温度大于第四温度阈值时,控制加热器停止对暖风循环水进行加热;该方法可在车辆启动之前,利用车辆暖风循环回路中的热量对氢气循环泵进行加热,从而降低了氢气循环泵的加热时长,提高在极寒环境下的车辆启动成功率。
Absstract of: CN119944007A
本发明提供了一种燃料电池的电堆吹扫方法及燃料电池吹扫系统。本发明的燃料电池的电堆吹扫方法包括:在燃料电池的发动机系统接收到关机指令后,控制燃料电池吹扫系统进入吹扫阶段;在吹扫阶段中,对燃料电池的电堆进行设定吹扫次数的压差吹扫;其中,压差吹扫包括:在关闭电堆的出气管路的状态下,控制燃料电池吹扫系统的空压机向电堆中充气;当充气达到第一设定时长或设定目标压力时,开启出气管路,以排放电堆内的气体。本发明的燃料电池的电堆吹扫方法,通过对电堆进行保压的压差吹扫,使电堆内的气流保压到第一设定时长或者设定目标压力时才排放气体,可更好地带走电堆内的水份,有利于改善燃料电池系统在关机时对电堆的吹扫除水效果。
Absstract of: CN119943997A
一种直接甲醇(乙醇)燃料电池催化剂中毒和甲醇渗透问题解决方法直接甲醇(乙醇)燃料电池属于质子交换膜燃料电池(PEMFC)中之一类,目前,现有的直接甲醇(乙醇)燃料电池正极铂电极一氧化碳中毒问题和质子交换膜甲醇(乙醇)渗透是一个无法解决的问题,直接影响了直接甲醇电池的推广使用。我们采用的解决方法是:(1)直接甲醇燃料电池工作一段时间将甲醇燃料和氧气的输入口对调一下,并在负极充入双氧水等强氧化剂,强氧化剂使中毒的电极经过强氧化剂氧化恢复催化剂功能,通过氧气进一步氧化进一步恢复催化剂功能,其中包括电池电流输出整流桥,甲醇燃料交换三通电磁阀,氧气交换三通电磁阀,甲醇燃料交换三通电池阀和氧气交换三通电磁阀由PLC或单片机控制;(2)在两个电极的中间加上两片质子交换膜,两个质子交换膜中间用分子筛膜填充,这样就可以防止甲醇(乙醇)渗透。
Absstract of: US2025140884A1
A fuel cell system and a method for operating a fuel cell system in connection with start-up of the fuel cell system is described. The fuel cell system comprises an anode volume and a cathode volume, a fluid flow assembly comprising a plurality of fluid conduits and a fluid flow control device, wherein a recirculation circuit is formed when a fluid connection between the anode volume and the cathode volume is enabled a hydrogen gas supply device, and a recirculation device. The method comprising controlling the hydrogen gas supply device to supply the hydrogen gas, regulating the fluid flow control device such that the anode volume is fluidly connected to the cathode volume, controlling the recirculation device to recirculate the gas mixture in the fluid recirculation circuit such that the supplied hydrogen gas undergoes reaction with the residual oxygen during the recirculation.
Absstract of: CN222838863U
本实用新型提供了一种氢燃料电池电堆测试装置,包括固定组件,用于限位放置待测试电堆;导向组件,安装在所述固定组件上,用于为探针组件的直线运动提供运行轨道;所述探针组件,与所述导向组件连接。本实用新型结构简单,操作方便,通过导向组件和探针组件的设计可以实现所有探针的同步插入,节省了探针由人工逐个插入的时间,提高了探针的安装效率,从而可以提高电堆测试的整体效率。
Absstract of: CN119944015A
本发明公开了一种适用于燃料电池的氢气供给系统,涉及氢气供给技术领域,包括有供气设备和控制器,所述供气设备包括有制氢组件、储氧罐、储氢罐、分配组件和多组发电设备,所述制氢组件分别与储氧罐和储氢罐连接,所述储氧罐和储氢罐分别与分配组件连接,所述分配组件分别与多组发电设备连接,从而该装置在使用时,通过制氢组件能够将氢气制备出来,以便供给给发电设备,以便发电设备能够稳定发电,而该装置的制氢组件在使用时,则能够根据所产生的氧气和氢气的含量,自行去补充制氢组件内的酸性介质,以便电解制氢的时候,能够更好的进行电解,以便发电设备能够充足的产生电能,进而使整个发电站能够一直产生稳定的电能。
Absstract of: WO2024023506A1
A flow battery includes a first conductive plate and a second conductive plate. Each of the first and second conductive plates has an undulating surface formed with a first plurality of undulations which extend along a first axis of the conductive plate, and a second plurality of undulations which extend along a second, perpendicular axis of the conductive plate. The first and second conductive plates are arranged to form a first cell of the flow battery in which the respective undulating surfaces of the first and second conductive plates provide a cathode and a corresponding anode of the first cell, and define opposing walls of an electrolyte flow channel between the first and second conductive plates.
Absstract of: CN119943994A
本发明属于氢燃料电池车辆技术领域,公开了氢燃料电池进气过滤装置及车辆及车辆。其中包括壳体,壳体内安装有滤芯组件,滤芯组件两侧分别安装有进气管和排气管,壳体内设置有安装腔,滤芯组件安装在安装腔内,滤芯组件包括至少两组过滤件,过滤件可拆卸安装在安装腔内;壳体包括第一对接壳和第二对接壳,第一对接壳和第二对接壳相互插接,第一对接壳内设置有安装腔,第一对接壳上安装有进气管,第二对接壳体上安装有排气管;解决现有技术下氢燃料电池车辆阴极进气空滤器无法进行替换,在面对不同工作环境的空气时,导致燃料电池性能下降的问题。
Absstract of: CN119944003A
本发明涉及一种固体氧化物燃料电池系统的协同控制方法。该方法通过双自抗扰控制器(ADRC)协同控制调节输出控制量,并采用牛顿‑拉夫逊智能优化算法进行控制器优化,确保在满足外部功率需求的同时,维持电池工作温度在高效运行范围内。通过反馈温度及功率目标值与实际值的误差,实现功率稳定输出与温度优化控制。结果表明,SOFC工作温度的控制的稳定时间约为10s,最大超调量控制在1%以内,稳态误差控制在0.01%以内,在功率干扰下能在约2s快速稳定到目标值;功率跟踪的稳定时间约35s,超调量和稳态误差均控制在0.1%范围内,在SOFC工作温度干扰下能在约20s快速稳定到目标值,实现功率精准跟踪。
Absstract of: CN119929165A
本发明公开了一种新型布局飞机的氢能源动力系统,涉及新能源技术领域,包括氢燃料电池堆、氢气存储与供应模块、空气供应模块和动力输出与控制模块,本发明中高压氢气存储罐中的高压氢气通过供气阀组的氢气流量控制阀进行精确控制,然后输送到氢燃料电池堆中,高效空气压缩机能够将外界空气压缩后送入氢燃料电池堆,在氢燃料电池堆中,氢气与氧气发生电化学反应,产生电能和水。空气中的其余气体和水直接朝后排出,产生的电能通过驱动动力输出与控制模块和飞机内的电气设备工作,驱动动力输出与控制模块为飞机提供动力。通过优化氢气存储与供应、氢燃料电池堆的功率输出控制的使用,实现了飞机动力系统的高效、安全和环保。
Absstract of: CN222838862U
本实用新型提供一种燃料电池及其低温吹扫系统,包括:空气管路、氢气管路、排水管路、氢气压力传感器、氢气循环泵、空压机、空气压力传感器、散热模组、电堆、电堆电压传感器和电堆电流传感器、控制器,通过增加散热模组,使得燃料电池在合适的温度范围内工作和吹扫,提高电池内部的反应速率,避免过高的温度对电池造成的损害,并改变空气和氢气的进堆压力和流量,快速将电堆和辅助部件中的液态水吹出系统,并降低系统内部湿度,防止电堆内部和辅助部件低温储存中出现的结冰现象,保证电堆和系统的正常启动。
Absstract of: CN222838860U
本实用新型提供了一种液流电池用复合罐,涉及液流电池技术领域,罐本体包括内胆层和外壳层,内胆层与电解液相接触且采用塑料覆布板,外壳层采用FRP复合材料,内胆层与外壳层之间设有与两者相粘接的树脂连接层,外壳层的外表面设有树脂防护层。
Absstract of: CN222838861U
本实用新型提供一种模块化固态储氢发电系统,所述模块化固态储氢发电系统包括固态储氢模块、燃料电池发电模块和总控制模块,其中,所述固态储氢模块能够为所述燃料电池发电模块提供氢气,所述燃料电池发电模块将氢气转换为电能对外供电;所述总控制模块与所述固态储氢模块和所述燃料电池发电模块均连接;所述模块化固态储氢发电系统内具有用于通风散热的通道。燃料电池发电模块和固态储氢模块均为独立式的模块化结构,克服并解决了燃料电池发电模块运行稳定性不佳的问题,集成化程度高,可以实现及时、精准有效控制;能精准的对发生氢气泄露的情况进行检测,并合理有效的对工作状态进行控制。
Absstract of: CN119943972A
本申请具体公开了一种多孔电极‑双极板一体化结构及其制备方法、液流电池,所述方法包括:S100、将树脂、石墨和碳纳米管加入乙醇溶液中,得到第一混合物料;S200、将第一混合物料烘干打碎,得到第一粉末,然后将造孔剂与第一粉末干混均匀,得到第二混合物料;S300、将第二混合物料预压,得到多孔电极材料;S400、将树脂材料和石墨材料干混均匀,得到第二粉末,然后在多孔电极材料上铺一层第二粉末层并再次预压,得到多孔电极‑双极板一体化材料;S500、对多孔电极‑双极板一体化材料进行后处理,即得到多孔电极‑双极板一体化结构。本申请降低了电极与双极板之间的接触电阻,进而提高了能量效率。
Absstract of: CN119943990A
本发明公开了一种基于逆流交换原理的燃料电池用热管理装置。该装置内包含由若干换热板组成的换热系统,用于实现待进入燃料电池电堆的第一循环水与从电堆流出的第二循环水之间的热交换,以提高和维持燃料电池本身的工作温度,加快电池冷启动效率。所述换热板内部具有羽毛状分布通道,包括主干通道、若干斜向通道和两个外缘通道,主干通道位于换热板的长中轴线上,两个外缘通道与主干通道平行且分布在主干通道的两侧,通过所述若干斜向通道将流入所述主干通道的一部分液体分流至外缘通道中,最终汇流至所述主干通道的下游。本发明通过羽毛状分布通道的设计,显著提高所述换热板的热传导效率,实现了更高效的燃料电池温度管理。
Absstract of: CN119943993A
本发明公开了一种应用于浅海的便携式燃料电池补给系统,包括补气单元、排水单元以及燃料电池电堆,其中,补气单元包括燃料气瓶,燃料气瓶的出气口依次连接有第一控制阀和连接件,燃料气瓶经由连接件与排水单元可拆卸式连接,燃料电池电堆与排水单元相连接,排水单元用于将经由燃料气瓶输出的燃料气体输送至燃料电池电堆,且排水单元还用于将更换燃料气瓶时引入的海水排出。解决现有技术中在海水中更换燃料气瓶时,海水会进入到管道内,难以将管道内的海水排出的问题。
Absstract of: CN118980961A
The invention discloses a method for detecting the health state of a flow battery, which determines the health state of the flow battery through attribute image data of a porous electrode of the flow battery and concentration data of an electrolyte in the charge and discharge process of the flow battery, and can realize real-time dynamic monitoring of the internal microstructure and the reaction process of the battery. The actual working state of the battery can be reflected more accurately, the health state of the flow battery can be determined more accurately, and guidance is provided for optimizing the electrode structure.
Absstract of: CN119930710A
本发明公开了一种酰胺化二茂铁衍生物及其制备方法和应用,属于水系有机液流电池技术领域。针对二茂铁类电解质储能稳定性能受限的情况,本方法通过在二茂铁的茂环上引入桥连的水溶性p‑π酰胺结构基团,并调节碳链的长度,以优化分子电子效应,抑制分子的分解反应,从而制备出荷电状态结构稳定的二茂铁类电解液。
Absstract of: CN119933831A
本发明涉及绿色发电领域,公开一种提高固体有机物发电转化效率及降低碳排放的方法,含包含以下步骤:步骤S1、固体有机废物燃烧步骤S2、高温燃料电池发电步骤S3、热能蒸汽发电步骤S4、二次蒸汽发电步骤S5、尾气排放步骤S6、供电;本发明通过两个发电系统相互作用产生电能,提高发电转化效率、降低发电碳排放,综合发电效率为45~70%,综合碳减排量可下降30~100%;并通过变电系统,可直接输送给电网或向用电客户直接出售,副产的低压低温蒸汽或热水,既可以循环使用,也可以供应给周围需要的用户或需要的装置。
Absstract of: CN119932613A
本发明涉及电极材料技术领域,具体公开一种草酸钴铁/泡沫镍复合材料及其制备方法和应用。本发明通过简单的共沉淀法在泡沫镍基底负载纳米花状草酸钴铁(CoFeC2O4)。通过成分和形貌的协同作用,使肼氧化反应能以更低的过电位启动,加快反应动力学进程,同时对阴极析氢反应也起到促进作用,协同提升整个电解水制氢体系的效率;且草酸钴铁自身化学性质相对稳定,能长时间维持自身结构与催化性能;除此之外,原料钴、铁储量丰富,成本远低于贵金属催化剂,且制备工艺简易,室温即可实现材料的制备,利于工业化大规模生产,在肼氧化辅助电解水制氢领域展现出巨大的应用潜力,有望推动氢能产业的高效、可持续发展。
Absstract of: CN119944008A
本发明公开了一种氢燃料电池系统湿度控制方法,包括:S1、建立预测模型;S2、获取第二数据信息;S3、计算第一差值、第二差值和第三差值;S4、以第一差值、第二差值和第三差值为目标,调整氢燃料电池系统的当前状态参数;S5、燃料电池控制器持续监测每次动态加减载过程中的单电池电压离均差值与HFR值,直至第一差值、第二差值和第三差值达到设定范围。本发明的氢燃料电池系统湿度控制方法,可以提高电堆提升质子交换膜可靠性和耐久性。本发明还公开了一种实施氢燃料电池系统湿度控制方法的控制系统、燃料电池系统和计算机可读存储介质。
Absstract of: CN119944001A
本发明公开了一种液流电池温度控制装置、方法及液流电池。液流电池包括电堆和储液罐,储液罐内存储有电解液;装置包括加热模块、温度检测模块和控制模块;加热模块位于在储液罐内,且加热模块与控制模块通信连接,加热模块用于对储液罐内的电解液进行加热;温度检测模块设置在储液罐内,并与控制模块通信连接;温度检测模块用于检测储液罐内多个预设位置的温度,并反馈至控制模块;控制模块用于根据储液罐内多个预设位置的温度控制加热模块工作。本发明可以提高对液流电池的加热效率,并能够解决电解液加热不均匀的问题,且成本较低。
Absstract of: CN119932598A
本发明涉及一种波动电源下固体氧化物电解池稳定制氢装置及方法,包括:波动电源、第一电堆、热化学模块和第二电堆,其中,第一电堆的燃料电极进气口与第一气体输出端相连,第一电堆的供电端与波动电源相连,第一电堆的燃料电极出口与热化学模块的进口相连,第一电堆在当前输入电压大于第一预设电压时,基于第一气体输出端的第一输出气体生成第一气体产物;热化学模块基于第一气体产物进行吸氢吸热反应,得到第二气体产物。第二电堆基于第二气体输出端的第二输出气体和第二气体产物电解生成满足预设浓度的氢气。由此,解决了在波动电源条件下对系统的热管理和气体组分平衡管理不足的问题,提高了系统运行效率,降低了系统搭建的复杂度。
Absstract of: CN119944004A
本发明公开一种氢燃料电池气‑电协调控制和水含量约束管理方法,属于燃料电池技术领域,包括:分析不同负载工况、不同供气流量和压力对膜水含量的影响,建立跨膜传输水质量流量方程;考虑空气回路和DC‑DC变换器之间的非线性耦合关系,构建燃料电池气‑电回路动态模型;针对耦合系统呈现出的不同时间尺度上的动态响应特性,基于非线性反步方法,设计控制指令,完成氢燃料电池气‑电耦合回路的协调控制;最后,围绕膜水含量的波动影响系统寿命的问题,引入参考调节算法,实时修正参考信号,实现膜水含量的安全约束管理。本发明能够降低负载快速变化对燃料电池系统的电压和膜水含量的影响,提升系统的运行稳定性与安全性。
Absstract of: CN119943973A
本发明公开了一种燃料电池柔性石墨双极板粘合工装、装置及粘合方法,粘合工装包括:夹板、囊体和固定组件,两块夹板相对间隔布置,其中第一夹板形成有加注通道;囊体具有弹性并与第一夹板固定连接,加注通道与囊体连通;固定组件与两块夹板可拆卸连接。粘合装置包括多个粘合工装。粘合方法包括如下步骤:S1、在石墨极板上涂粘合剂,将两块石墨极板分别与两块夹板连接;S2、将两块石墨极板相对粘合,并通过固定组件固定夹板;S3、通过加注通道向囊体内加注流体,以压紧两块石墨极板。与现有技术相比,本发明在两块夹板之间设置囊体,通过向囊体内加注流体来压紧两块石墨极板,囊体可以使石墨极板各个部位受力一致,保证了粘合效果。
Absstract of: CN119944013A
本发明公开了一种沼渣热解化学链重整原位清洁发电方法及装置,系统包含预处理单元、热解气化单元、化学链重整发电装置、燃烧器及尾气收集装置。沼渣经固液分离含水率降至20%~30%,风干至10%以下进行热解气化,生成热解气进入分区式反应炉膛,上部为热解气区,下部为载氧体阳极。阳极采用Ni/nYSZ复合基体支撑,集成Bi2O3陶瓷电解质层与FeCo2O4基阴极,载氧体为复合钙钛矿催化剂LaxA1‑xFeyB1‑yO3。外部电加热启动后,燃烧器回收尾气热量维持反应,尾气经分离获得H2O循环利用及CO2资源化处理,外电路系统实现发电与监测。该装置通过化学链重整同步完成发电与气体转化,兼具耐高温稳定性与多级资源回收功能,显著提升沼渣能源转化效率并降低碳排放。
Absstract of: CN119944018A
本申请涉及一种电解液添加剂、电解液及其制备方法和应用。所述添加剂包括胺类化合物和叔醇类化合物;所述胺类化合物和所述叔醇类化合物的质量比为10:(3~5)。该电解液添加剂能够显著促进Zn(002)型晶体的产生,有效地抑制负极的析氢副反应(HER),提高负极电解液的可逆性,从而提升电池的能量效率,并有效提高电池的容量保持率。
Absstract of: CN119943984A
本发明涉及一种高电流密度的液流双极板流道结构,其由双极板基板、阴极流道板和阳极流道板组成;所述双极板基板分阴极面和阳极面,并设置有阳极进口、阳极出口、阴极出口;所述阴极/阳极流道板均由2n(n=1,2,3……)块分流道板组成,所述2n块分流道板两侧均设有直通流道,所述2n块分流道板在组成阴极/阳极流道板时各分流道板流道错位相接且在接缝处呈中心对称;所述阴极流道板置于双极板基板阴极面,阳极流道板置于双极板基板阳极面,阴极/阳极流道板的流道分别平行于双极板基板阴/阳极面的进、出口方向且固定在双极板基板表面。本发明在不改变进、出口压差情况下增加了电解液流量,减小极化内阻,均化温度分布,提高电化学转化效率。
Absstract of: CN119944000A
本申请提供一种用于控制液流电池的方法、系统、电子设备及存储介质,通过获取至少一个温度传感器的至少一个温度值,响应于该至少一个温度值满足第一条件,打开液流电池的循环泵以驱动液流电池的储液罐内的电解液进行循环;响应于至少一个温度值满足第二条件,打开液流电池的阀门和循环泵以驱动电解液在液流电池的电堆和储液罐之间进行循环,从而通过电解液循环的方式优化液流电池的加热策略,以降低电解液的温度梯度,进而提升电解液的寿命。
Absstract of: CN119943995A
本发明提出了一种用于eVTOL的氢燃料电池阴极进气口,属于氢燃料电池技术领域,其包括:若干个挡板,可绕着进气管路转动以调节进气口的大小,其后端均铰接于进气管路的前端,相邻挡板之间铰接进气活叶;进气管路,可绕着铰链转动以调节进气口的方向,其后端通过铰链与固定管路的前端铰接,其朝向eVTOL的端面敞开并贴合eVTOL的外壳;固定管路,其朝向eVTOL的端面敞开并固定于eVTOL的外壳;及两个可折叠机构,位于铰链的两侧并连接进气管路和固定管路。本发明的进气口大小和气流方向均可调节,使得在飞行环境下氢燃料电池可有效将化学能转换为电能。
Absstract of: AU2023380022A1
A method of recycling a fluorinated polymer from a membrane comprising the fluorinated polymer, the fluorinated polymer comprising a fluorinated polymer backbone chain and a plurality of groups represented by formula -SO
Absstract of: WO2024068601A1
An anion exchange membrane obtainable by curing a curable composition comprising: (a) a monomer (a) of Formula (I) AR1 - (CH2)n - N+(RaRb) - L - N+(RcRd) - (CH2)n - AR2, 2X- Formula (I) wherein: wherein n, L, Ra, Rb, Rc and Rd and X- are as defined in claim 1; and AR1 and AR2 each independently comprise an aromatic group; wherein: (I) at least one of AR1 and AR2 comprises a curable ethylenically unsaturated group; (II) the monomer (a) of Formula (I) comprises at least two curable ethylenically unsaturated groups; and (III) the molar fraction of component (a) in relation to all curable components of the curable composition is at least 0.90.
Absstract of: US2025140877A1
A fuel cell system, e.g., of a motor vehicle, includes a fuel cell stack having fuel cells and non-repeating hardware components, the latter including wet and dry end units. The cells are positioned between the end units. The dry end unit includes an end plate and a compression plate assembly that uniformly compresses the cells against the end plate, and a terminal plate surrounded by a seal plate. An insulator frame disposed adjacent to the compression plate assembly is engaged with the insulator frame via a frictional interface provided by o-ring compression seals having a respective post connected to the terminal plate and the seal plate, and a pocket connected to the insulator frame. The post and pocket of at least one of the compression seals together define a fluid passage. One or more shim plates may be disposed between the end plate and insulator frame.
Absstract of: WO2024075214A1
Provided is a stationary fuel cell system in which two power generation modules are layered and disposed in the vertical direction, said power generation modules each being provided with an auxiliary machine structure that includes an auxiliary machine for exchanging gas with a fuel cell stack, a first fuel cell stack that is connected to one surface of the auxiliary machine structure in the vertical direction, and a second fuel cell stack that is connected to the other surface of the auxiliary machine structure in the vertical direction and that has a smaller dimension in the vertical direction than the first fuel cell stack, wherein: the second fuel cell stack of the upper-side power generation module is connected to the lower surface of the auxiliary machine structure of the upper-side power generation module; and the second fuel cell stack of the lower-side power generation module is connected to the upper surface of the auxiliary machine structure of the lower-side power generation module.
Absstract of: CN119944009A
本申请涉及用于燃料电池系统的控制方法、装置和机器可读存储介质,方法包括:检测到多个电池单元中的至少一个电池单元的电压等于或低于第一电压阈值或DCDC转换器出现故障;断开至少一个第一开关;使得阳极循环单元保持运行;以及在第一时段期间,使得阴极供气管路和阴极排气管路保持连通、旁通管路保持截断、第一净化管路在每单位时间内以第一时间比例连通、以及第二净化管路在每单位时间内以第二时间比例连通;以及在第二时段期间,使得阴极供气管路和阴极排气管路保持截断、旁通管路保持连通、第一净化管路在每单位时间内以小于第一时间比例的第三时间比例连通、以及第二净化管路在每单位时间内以小于第二时间比例的第四时间比例连通。
Absstract of: CN119933854A
本发明公开的生物质SOFC‑GT耦合可再生能源驱动绿色氢能制备系统和方法,系统包括电解制氢系统、风光发电系统和生物质发电系统;风光发电系统提供电能;生物质发电系统包括燃料供应模块、燃料电池发电模块、燃烧器模块、涡轮发电模块及换热模块;燃料供应模块用于向燃料电池发电模块提供生物质燃料,燃料电池发电模块反应产生的电能提供给电解制氢系统,燃料电池发电模块反应产生尾气在燃烧器模块内与空气混合燃烧,驱动涡轮发电系统工作产生电能,换热模块用于将阳极尾气、阴极尾气及燃烧器模块产生的废气,与燃料电池发电模块及燃烧器模块的进料进行换热。本制备系统和方法具有能源转换效率高,氢气纯度高,系统能耗全部来源于可再生能源的优势。
Absstract of: CN119944017A
本发明公开了一种氧化铈基隔离层及其制备方法和应用,属于电池技术领域。本技术方案以Ce‑M合金为靶材,采用磁控溅射工艺在固体氧化物燃料电池半电池的电解质层表面制备氧化铈基隔离层,然后将阴极印刷在氧化铈基隔离层表面,待阴极浆料干燥后进行共烧得到单电池,改进了金属磁控溅射技术路线,通过在溅射腔体中同时通入一定量氧气实现反应磁控溅射,通过优化溅射过程中的电流、氧气流量、偏压等工艺参数,优化溅射后薄膜和LSCF电极的处理温度,有效获得致密氧化铈基隔离层,进一步提高SOC的性能和长期稳定性。
Absstract of: CN119929743A
本申请提供一种能源供给系统和能源供给站,能源供给系统包括:能量输入单元、天然气制氢单元以及能量转换单元;能量输入单元分别与天然气制氢单元以及能量转换单元连接,天然气制氢单元与能量转换单元连接;天然气制氢单元用于接收能量输入单元传输的天然气,将能量输入单元传输的天然气转换成氢能后供给输出;能量转换单元用于在第一能量转换模式下,接收天然气制氢单元传输的氢能,将接收的氢能转换成电能后输出;或,在第二能量转换模式下,接收能量输入单元传输的电能,将能量输入单元传输的电能转换成化学能后输出,从而提高能源利用率,达到节约资源的效果。
Absstract of: CN119943987A
本发明公开一种实现流场分配区的双极板结构及PEM燃料电池。所提供的极板包括氢气流场、空气流场以及冷却水流场,在各流场的进出口区域均设有流场分配区,形成流体在流场分配区结构干预下的流动路径。将双极板流场进气分配区分为三部分,分别是进气区、过渡区以及分配区。进气区流道垂直于大通道边缘且流道长度逐渐增大,过渡区流道与其相邻密封槽内槽保持平行。分配区内含一分多流道,其中的脊背经过规律性布局。氢/空气电化学活性区内脊背宽度设计大于流道的宽度。本发明提供的双极板分配区设计能够解决因气体分配不均产生的局部热点问题,并实现极板面积利用率最大化,防止板子因为长期的应力集中而出现破损,提高燃料电池的使用寿命。
Absstract of: CN119943991A
本发明公开了一种燃料电池热电联供控制系统及作业机械,控制系统包括电堆热交换装置、燃料加热装置、蓄热装置和控制装置,控制装置被配置为:在燃料电堆正常启动且满足蓄热条件的情况下,控制选择电堆热交换装置的电堆热交换流道与蓄热装置的蓄热过液流道进行导通并构成蓄热工作回路;在燃料电堆冷启动的情况下,控制选择燃料加热装置的燃料加热流道与蓄热装置的蓄热过液流道进行导通并构成供热工作回路,从而可将多余的产热收集于蓄热装置中,并在冷启动时蓄热装置能够加热固态燃料存储装置中的固态燃料,相较于现有技术取消了散热器和电加热器,通过蓄热装置可将燃料电堆的反应余热高效利用,起到节约能源的作用。
Absstract of: AU2023342927A1
An electrochemical cell is disclosed having a porous metal support, a gas transport layer on the porous metal support, and an electrode layer on the gas transport layer. The gas transport layer is electrically conductive and has an open pore structure comprising a pore volume fraction of 20% by volume or higher and wherein the electrode layer has a pore volume fraction lower than the pore volume fraction of the gas transport layer. Also disclosed is a stack of such electrochemical cells and a method of producing such an electrochemical cell.
Absstract of: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Absstract of: CN119936681A
本发明公开了一种固体氧化物燃料电池热电联供系统故障预测方法,属于固体氧化物燃料电池技术领域。该方法包括步骤:根据固体燃料电池热电联供系统结构组成建立各部件的有限元子模型,并集成形成固体燃料电池热电联供系统,根据正常运行工况对该系统进行模拟得到正常工况下的输出参数;然后再建立故障模型,模拟后得到系统在不同故障下的输出参数,将正常工况下的输出参数与不同故障工况下的输出参数进行对比,分析发生故障后系统产生的变化;最后针对实际系统的输出参数预测该系统是否发生故障以及故障类型。本发明利用仿真模拟方法模拟SOFC系统在发生不同故障后的相关特性,能够根据实际系统的输出参数预测是否发生故障及故障类型。
Absstract of: CN119943983A
本发明涉及燃料电池技术领域,公开了一种燃料电池引电装置及燃料电池模组,该燃料电池引电装置用于与燃料电池模组的集电部件连接,包括柔性导线、引电杆、固定组件,所述集电部件与所述柔性导线均设于燃料电池模组的壳体内,所述柔性导线的一端与所述集电部件连接,另一端与所述引电杆连接,所述壳体上开设有与所述引电杆对应的通孔,所述引电杆的另一端贯穿所述通孔,且延伸至所述壳体外,所述引电杆外套设有可拆卸的固定组件,所述固定组件用于将所述引电杆与所述壳体固定,并封闭所述通孔。本发明的有益效果:利于调整引电杆与集电部件之间的位置,同时,提高引电杆与壳体之间的密封效果。
Absstract of: CN119944011A
本申请公开一种高原“四低”条件下的燃料电池健康诊断方法、装置及介质,涉及质子交换膜燃料电池领域,所述方法包括:基于纳米传感器,从而实时采集燃料电池的电压、电流、环境温度、湿度、氧气浓度等关键参数;利用BIRCH聚类法、多模态融合法、GCN模型法对各类数据进行处理,得到动态特征、高原环境特征和静态特征;根据所述动态特征信息,将动态特征提取至汉克尔矩阵场;根据所述高原环境特征和静态特征信息,将高原环境特征和静态特征分别提取至共生矩阵场;根据所述汉克尔矩阵场和共生矩阵场,特征标准化及张量化至三维空间;根据所述特征三维空间,利用样本熵法融合多层感知器得到高原地区燃料电池诊断结果。本申请保障了燃料电池系统的安全运行。
Absstract of: CN119930957A
本发明属于阴离子交换膜技术领域,公开了一种三氟乙酰哌嗪改性聚芳基哌啶膜及其制备方法和在中性有机液流电池中的应用。本发明采用胺酯交换反应制备得三氟乙酰哌嗪单体,并将三氟乙酰哌嗪与N‑甲基‑4‑哌啶酮和对三联苯进行三单体共聚,得到含三氟乙酰哌嗪结构的聚芳基哌啶聚合物主链,再进行季铵化反应,得到季铵化聚合物,铸膜,制备得到三氟乙酰哌嗪改性聚芳基哌啶膜,应用在中性有机液流电池中表现出十分优异的电池性能,相比于未加入三氟乙酰哌嗪改性的二单体离子交换膜的电池性能有大幅提升,且具有较高的容量保持率,其能量效率远优于AMVN等常用商业膜。
Absstract of: CN119943965A
本发明具体涉及一种提高耐铬性的燃料电池阴极材料、制备方法及应用,属于固体氧化物燃料电池领域。大型SOFC电堆通常采用含铬合金作为金属互连材料,对阴极具有一定的毒性,本发明采用元素氟对SrCo0.9Ta0.1O3‑δ材料的O位进行部分取代制成SrCo0.9Ta0.1O3‑δFx(SCTFx,x=0.05~0.2)材料,提升中温固体氧化物电池阴极的耐铬性。另外,上述阴极材料的制备工艺简单,性能优越,具有良好的工业化前景。
Absstract of: CN119943999A
本发明提供一种燃料电池系统中的电堆活化方法、装置及燃料电池系统,其中方法,包括:在燃料电池系统停机的初始状态下,由电堆的阴极输入端输入空气,并对电堆输入预设温度的冷却液;电堆的阳极输出端连接的排放开关单元以预设频率开启;获取所述电堆的各单体电压的平均电压,当所述平均电压下降至预设电压时,将所述电堆恢复至所述初始状态;重新启动燃料电池系统,将电堆拉载至目标电密点,稳定运行第一时间后完成活化。本发明提供的技术方案,无需外接设备,减少系统零部件的拆装,提高了活化效率,降低拆装带来的系统运行的安全隐患。
Absstract of: CN119913539A
本发明公开了一种基于太阳能转化的绿氢生产与热电联供设备,涉及能源利用技术领域,包括柜体,所述柜体的一侧设有太阳能电池板,所述柜体的内部固定连接有用于对循环水进行电解的电解罐,通过输送高热量的化学反应水进入到离子树脂交换器内部,不仅能够将化学反应水的离子进行去除,使化学反应水得到净化后再次进入到电解罐内部,从而对水进行循环电解,而且还能在输送的过程中,包裹住整个第一冷却水管,对即将进入到热交换器内部的高温水进行保温,有效防止了高温水在通过第一冷却水管时,高温水的热量发生损失,从而导致后续高温水与水箱内部抽取的水换热效率降低的现象发生,达到了能源利用率高的效果。
Absstract of: SA523442668B1
Hydrogen purification devices and their components are disclosed. In some embodiments, the devices may include at least one foil-microscreen assembly disposed between and secured to first and second end frames. The at least one foil-microscreen assembly may include at least one hydrogen-selective membrane and at least one microscreen structure including a non-porous planar sheet having a plurality of apertures forming a plurality of fluid passages. The planar sheet may include generally opposed planar surfaces configured to provide support to the permeate side. The plurality of fluid passages may extend between the opposed surfaces. The at least one hydrogen-selective membrane may be metallurgically bonded to the at least one microscreen structure. Fig 1.
Absstract of: CN119920932A
本发明涉及一种基于Topsis的燃料电池电压一致性分类预测方法,方法包括:S1、获取燃料电池电压数据,划分单电池性能后,得到划分后的燃料电池电压数据;S2、划分后的燃料电池电压数据输入基于GRU的多个燃料电池电压预测模型,到多个电池性能预测结果;S3、得到混淆矩阵,计算电池性能预测结果的差电池的F1分数和加权准确率,得到决策矩阵;S4、应用TOPSIS法,基于接近度对各个电池性能预测结果进行筛选,得到最优电池性能预测结果,选择最优电池性能预测结果对应的燃料电池电压预测模型进行实际的电池电压性能预测。与现有技术相比,本发明具有提高燃料电池数据预测模型的预测结果准确性等优点。
Absstract of: CN118980961A
The invention discloses a method for detecting the health state of a flow battery, which determines the health state of the flow battery through attribute image data of a porous electrode of the flow battery and concentration data of an electrolyte in the charge and discharge process of the flow battery, and can realize real-time dynamic monitoring of the internal microstructure and the reaction process of the battery. The actual working state of the battery can be reflected more accurately, the health state of the flow battery can be determined more accurately, and guidance is provided for optimizing the electrode structure.
Absstract of: CN119920934A
本发明的实施例提供了一种燃料电池热管理控制方法、装置、电子设备及存储介质,涉及新能源汽车技术领域。该方法包括:基于各温度传感器分别实时获取多个温度参数,基于轮速传感器实时获取车辆车速。确定电池系统产热量,根据电池系统产热量、各温度参数以及预设温度阈值,确定各散热设备对应的总需求散热量。针对每个总需求散热量,基于总需求散热量以及车辆车速确定对应的目标需求散热量。根据各目标需求散热量分别控制对应的散热设备对燃料电池系统散热。本发明可以使燃料电池堆中的热量能够快速释放,进而提高热管理系统的散热效果。
Absstract of: CN119920925A
本发明提供了一种燃料电池电堆结构及燃料电池系统,包括:膜电极组件,第一双极板,位于膜电极组件的第一侧;第二双极板,位于膜电极组件的第二侧;第一双极板和第二双极板上均设置有加热通道;加热通道的进口与燃料电池电堆冷却水出口连通,加热通道的出口用于连接外部水源。本发明使用燃料电池电堆出口的水对第一双极板和第二双极板进行逆向加热,随着热量的消耗,可以呈现入口温度高,出口温度低的情况,正好与燃料电池电堆的温度达到一致的效果,确保燃料电池电堆两端的膜电极组件可以工作在高温且有温差梯度工作条件。
Absstract of: AU2023330021A1
Systems and methods are provided for rebalancing cells in a redox flow battery. In one example, a rebalancing cell system includes a first rebalancing cell in series fluidic communication with a second rebalancing cell and a hydrogen source, the first rebalancing cell includes a first electrode assembly stack with hydrogen flow paths extending therethrough and having a higher pressure than an electrolyte in the first electrode assembly stack. Further, the second rebalancing cell includes a second electrode assembly stack with hydrogen flow paths that extend therethrough and have a higher pressure than an electrolyte in the second electrode assembly stack.
Absstract of: CN119917810A
本发明公开了一种基于VMD‑IASO‑BiLSTM的质子交换膜燃料电池剩余使用寿命预测方法,包括以下步骤:1)建立PEMFC的原始数据集,对原始数据进行小波硬阈值(WHT)去除噪声信号;2)对去噪数据利用变分模态分解(VMD)进行模态分解,利用正态分布筛选干净信号,重构新的电压信号;3)分别引入Tent混沌映射、高斯变异策略和双曲正切策略改进原子搜索优化算法(ASO)构造IASO;4)用IASO对双向长短期记忆网络(BiLSTM)的权重和偏置进行优化迭代,利用均方误差(MSE)找出最优权重和偏置参数进行预测;本文证实了该方法的可行性以及优越性,可以大幅提升模型的迭代速度,减少训练时间,并提高准确率。
Absstract of: FR3154869A1
Procédé de fabrication d’un réacteur électrochimique à oxyde solide, comportant les étapes suivantes : - produire une pluralité de bandes périphériques (26) ; - pratiquer des ouvertures traversantes de jointage dans chaque bande périphérique (26) ; - former un support isolant électrique par l’assemblage sur une première plaque d’interconnexion (6) de plusieurs desdites bandes périphériques (26) ; - réaliser un empilement alterné de cellules électrochimiques (5) et de plaques d’interconnexion (6) ; - presser ledit empilement alterné suivant la direction d’empilement, et le porter à une température de fusion d’un joint fusible, de sorte que le joint fusible s’étende dans les ouvertures traversantes de jointage du support isolant électrique, et forme un joint d’étanchéité reliant deux plaques d’interconnexion (6) à travers ces ouvertures traversantes de jointage. Figure pour l’abrégé : Fig.4
Absstract of: FR3154866A1
Procédé de fabrication d’un réacteur électrochimique à oxyde solide, comportant les étapes suivantes : - réaliser un support isolant électrique (1) percé d’ouvertures traversantes (2) ; - déposer au moins un cordon de joint fusible (15) sur un élément sélectionné parmi le groupe constitué des plaques d’interconnexion (6) et du support isolant électrique (1) ; - réaliser une opération de durcissement du cordon de joint fusible (15) ; - comprimer le cordon de joint fusible (15) suivant la direction d’empilement, et le déformer plastiquement ; - presser un empilement alterné, et le porter à une température de fusion du cordon de joint fusible (15), de sorte que le cordon de joint fusible (15) s’étende dans les ouvertures traversantes (2) du support isolant électrique (1), et forme un joint d’étanchéité reliant deux plaques d’interconnexion (6) à travers ces ouvertures traversantes (2). Figure pour l’abrégé : Fig.9
Absstract of: FR3154867A1
Procédé de fabrication d’un réacteur électrochimique à oxyde solide, comportant les étapes suivantes : - réalisation d’un support isolant électrique (1) percé d’ouvertures traversantes (2) ; - déposer un premier lit de joint fusible (20) sur une plaque d’interconnexion (6) et y disposer le support isolant électrique (1) ; - déposer un cordon interstitiel de joint fusible (21) dans les ouvertures traversantes (2) ; - disposer sur le support isolant électrique (1) un deuxième lit de joint fusible (22) ; - réaliser et presser un empilement alterné et le porter à une température de fusion du joint fusible, de sorte à fusionner le premier lit de joint fusible (20), le cordon interstitiel de joint fusible (21), et le deuxième lit de joint fusible (22), le joint fusible formant un joint d’étanchéité s’étendant dans les ouvertures traversantes (2) du support isolant électrique (1) et reliant deux plaques d’interconnexion (6) à travers les ouvertures traversantes (2). Figure pour l’abrégé : Fig.10
Absstract of: FR3154868A1
Procédé de fabrication d’une couche catalytique (6) pour un assemblage membrane-électrode (200) de piles à combustible à membrane échangeuse de protons (100), l’assemblage membrane-électrode (200) comportant une membrane électrolytique (3), deux couches de diffusion des gaz (7) de part et d’autre de la membrane électrolytique (3) et deux couches catalytiques (6) disposées aux interfaces entre les couches de diffusion des gaz (7) et la membrane électrolytique (3), le procédé de fabrication d’une couche catalytique (6) comprenant les étapes suivantes : a) préparation d’une encre catalytique (8) comportant : la préparation d’une suspension comprenant de l’eau ionisée, un alcool, et un catalyseur à base de nanoparticules de Pt sur un support carboné graphitique, les nanoparticules présentant une taille moyenne supérieure à 30 Å, l’addition d’un matériau ionomère, b) dépôt de l’encre catalytique (8) sur au moins une surface de la membrane électrolytique (3) et/ou sur au moins une couche de diffusion de gaz (7), de sorte à obtenir une couche catalytique (6). Figure pour l’abrégé : Figure 1
Absstract of: CN119911917A
本发明公开了一种白钨矿短流程制备杂多酸的方法及其液流电池应用,制备方法包括:S1、将白钨矿和硅酸钠按W、Si摩尔比(1~3):1经水浸、酸解,然后进行固液分离除去不溶物;S2、浸出液中加入沉淀剂使硅钨杂多酸形成硅钨酸盐沉淀,实现对Keggin构型硅钨杂多酸的盐析‑沉淀提纯;S3、将步骤S2所得硅钨酸盐沉淀再溶解,经过酸化、萃取、重结晶提纯,得到电池级纯度的Keggin构型硅钨杂多酸。本发明创新性的提供了一种白钨矿原位分解,同时直接短流程制备液流电池用杂多酸电解液的方法,既实现了钨资源的清洁高效利用,又为杂多酸液流电池电解液的短流程制备提供了新的技术途径,并显著降低了液流电池电解液的生产周期和成本。
Absstract of: CN119920933A
本发明提供一种制氢‑燃料电池集成式供能系统、移动式用电设备,所述集成式供能系统包括燃料电池、制氢单元和控制器,所述制氢单元用以向所述燃料电池提供氢气,其至少包括:制氢仓、制氢燃料棒、输水管道和输气管道,所述输水管道的输出端和所述输气管道的输入端分别连接所述制氢仓;所述制氢燃料棒滑动构置于所述制氢仓内,其浸液深度可调;所述控制器用以调控所述燃料电池和/或所述制氢单元的运行状态,所述运行状态至少包括所述制氢燃料棒的浸液深度。本发明提供的集成式供能系统原料成本低、响应迅速、低温环境下启动或运行平稳,集成度高、功能齐全、搭载便捷,可供移动式用电设备搭载。
Absstract of: CN119911135A
本发明涉及能源动力技术领域,具体涉及一种基于固态氢池的车辆动力系统、乘用车及控制方法。车辆动力系统包括动力驱动模块、燃料电池模块、固态氢池模块、散热模块以及整车控制模块。燃料电池模块包括电池堆单元、氢气进排单元、空气进排单元以及尾排单元,电池堆单元与动力驱动模块电连接。固态氢池模块包括固态储氢单元、供水单元以及释氢缓冲单元。散热模块分别与电池堆单元和固态储氢单元对接,整车控制模块分别与动力驱动模块、燃料电池模块以及固态氢池模块通讯连接。乘用车包括车辆动力系统。本发明利用基于固态氢池模块的燃料电池模块,对动力驱动模块的稳定供电,进而为乘用车提供动力,以满足乘用车的续航需求。
Absstract of: CN119920926A
本公开涉及排气循环系统、排气循环方法、燃料电池系统及车辆。该系统包括燃料电池电堆、第一循环回路以及及第二循环回路,其中燃料电池电堆包括电堆入口端和电堆出口端。第一循环回路包括第一管路、一级压缩机和二级压缩机,其中从电堆出口端输出的废气的第一部分经由第一管路、一级压缩机、二级压缩机回流到电堆入口端。第二循环回路包括第二管路和二级压缩机,其中从电堆出口端输出的废气的第二部分经由第二管路、二级压缩机回流到电堆入口端。本公开实施例所提供的方案通过在两级增压系统中引入两个不同的废气循环回路,能够有效利用从电堆出口端排出的废气能量,从而提高废气利用率。
Absstract of: WO2024061495A1
The invention refers to a Gas filter system (10) comprising - a housing (12) with a sealing projection (52) and a housing groove (50); - an outer filter element (20) having a first filter medium (22) and a first end cap (24); and - an inner filter element (30) having a second filter medium (32) and a third end cap (34); wherein the first end cap (24) has a first axial end cap projection (42) and the third end cap (34) has a second axial end cap projection (44), both end cap projections (42, 44) being arranged in the housing groove (50); said first and second end cap projections (42, 44) forming a common groove (46) into which the sealing projection (52) protrudes for sealing abutment against the first and third end cap (24, 34) at the common groove (46). The invention also relates to the use of an outer filter element (20) and/or an inner filter element (30) in such a gas filter system (10).
Absstract of: CN119920930A
本发明提供了一种燃料电池系统的运行控制方法,包括:初始化所述燃料电池系统的参数,接收外部系统功率变更请求,燃料电池系统控制器根据所述功率变更请求得到第一需求电流,将所述第一需求电流设置为所述目标电流;所述燃料电池系统控制器响应所述请求,执行控制操作,以实现燃料电池系统既能具有高效的功率响应速率,又能提高燃料电池系统的稳定性。本发明还示例性地公开了一种燃料电池系统的运行控制装置及存储介质。
Absstract of: CN119917811A
本发明公开了一种基于改进HHO的质子交换膜燃料电池剩余使用寿命预测方法,包括以下步骤:1)建立PEMFC原始数据集,采用小波自适应阈值(WAD)进行数据去噪处理;2)使用指数平滑法(ES)对数据进行平滑处理进行二次去噪;3)构造基于改进的Logistics混沌映射、反正切递减策略优化的哈里斯鹰算法(HHO)模型以提升优化性能;4)利用改进的HHO来优化长短期记忆网络(LSTM)的权重和偏置项,利用均方误差(MSE)找出最优权重和偏置参数进行预测;5)对预测结果使用自注意力机制(Self‑Attention)进行二次预测得到最终的预测结果。本文证实了该方法的可行性以及优越性,可以大幅提升模型的迭代速度,减少训练时间,并且大幅提高准确率。
Absstract of: CN119920939A
本发明公开了可插拔式燃料电池,可插拔式燃料电池:多个单电池,多个单电池的上表面和下表面依次串联连接形成电堆,多个单电池用于连接外部用电器件;外部气道,与多个单电池可插拔连接,外部气道用于引入燃料和氧气并输出至多个单电池,多个单电池用于将燃料和氧气进行化学反应,并将化学反应产生的化学能转化为电能后为外部用电器供电;保护电路,与多个单电池连接,保护电路用于在检测到任一个单电池的电压异常时,将电压异常的单电池短路,并且断开电压异常的单电池与外部气道的通路,进一步可以方便地对失效的单电池进行置换。本发明解决了多个单电池形成电堆的燃料电池的安全性和可靠性低的问题。
Absstract of: CN119909618A
本发明提供了一种生物质‑绿氢双驱多元能源转化系统及运行方式,涉及生物质能和绿氢转化利用的技术领域,包括生物质转化单元、LNG综合换热单元、制氢单元、甲醇合成单元和燃料电池发电单元;制氢单元用于电解水生产绿氢;生物质转化单元利用绿氢将生物质转化为合成气和/或生物柴油和/或生物航煤;燃料电池发电单元利用合成气和绿氢进行发电和产生余热;LNG综合换热单元位于生物质转化单元和制氢单元之间,利用LNG的冷能进行换热以提高系统能效;甲醇合成单元利用合成气和水蒸汽重整的LNG反应生成甲醇。本发明实现了生物质和绿氢的深度整合与高效转化,促进了多元化能源产品的产出与价值延伸,提升了综合效益与可持续发展潜力。
Absstract of: CN119920929A
本发明公开一种燃料电池系统故障降功率运行的控制方法与装置。装置包括电堆、氢气路、空气路和水路;所述氢气路包括氮气流量计、进氢阀、比例阀、双引射器、安全阀、汽水分离器、排氮阀和排水电磁阀。本发明方法实时的监控燃料电池系统的运行状况,燃料电池系统在运行中出现故障时,按照设定好的拉载速率和故障降功率时对应设定的功率值,降低各零部件的转速和电堆各个腔体的压力,使得燃料电池系统动力平稳降低,从而使系统即使在故障模式下仍然能提供一定的电力,维持系统的基本功能,尤其是在关键应用场景中,保障燃料电池系统的稳定性,但故障恢复时,燃料电池系统仍然恢复到正常的功率输出模式。
Absstract of: CN119920923A
本申请属于燃料电池领域,具体涉及一种极板、燃料电池系统及汽车,极板包括阳极板和阴极板,阳极板的正面设置有氢气反应区,氢气反应区包括多个间隔设置的氢气流道;阴极板的正面与阳极板的正面相对设置,阴极板的正面设置有空气反应区,空气反应区包括多个间隔设置的空气流道,阴极板的背面设置有冷却区,冷却区包括多个间隔设置的冷却流道,至少氢气流道、空气流道和冷却流道之一包括多个波纹段,沿氢气、空气或冷却液流经方向,波纹段的长度逐渐缩小。氢气流道、空气流道或冷却流道的波纹段采用沿流向长度逐渐缩小的设计,可改善或消除氢气和空气消耗带来的分布不均匀问题,提高了反应区不同位置电化学反应一致性。
Absstract of: CN119920931A
本发明公开了一种多堆可逆固体氧化物电池系统的电流控制方法和系统,通过根据多堆可逆固体氧化物电池系统的当前运行模式,获取电极数据和YSZ电解质降解程度;将电极数据和YSZ电解质降解程度输入至预设的模糊神经网络中,得到各电堆的电堆相对衰退程度;根据多堆rSOC系统的反应物气体流速,计算各电堆的电堆反应物流量占比;根据所述电堆反应物流量占比和所述电堆相对衰退程度,计算各电堆的电流分配比;根据所述电堆电流分配比,控制所述多堆rSOC系统中各电堆的电流。本发明实施例能够考虑多堆rSOC系统在不同状态下内部反应物流量分配和衰退程度的不一致性。
Absstract of: CN119920936A
本发明属于电力系统调度自动化技术领域,提供了一种“电‑氢‑电”耦合的能源转化系统及其应用方法。本发明的“电‑氢‑电”耦合的能源转化系统,利用氧气的压力作为燃料电池堆的阴极进气压力,这样就不需要空压机通过压缩空气提供燃料电池堆的阴极进气压力;进而空气进气可以通过普通鼓风装置代替,从而大大降低了辅助系统能耗。这样既实现了空气和氧气的混合来获取富氧空气,提升了氢燃料电池堆的电效率,更重要的是摒弃了空压机的使用,减少了辅助系统能耗,最终提高了“电‑氢‑电”耦合的能源转化系统的整体效率。本发明的“电‑氢‑电”耦合的能源转化系统,相比传统“电‑氢‑电”耦合的能源转化系统,整体效率提高了11.36%。
Absstract of: CN119920938A
本发明属于液流电池领域,具体涉及一种全钒液流电池用离子膜的制备方法,本发明在室温下采用简单的酸质子化预溶胀和离子交换的策略松弛聚苯并咪唑膜的结构,拓宽质子传输通道,提高的聚苯并咪唑膜的离子电导率。采用本发明制备的聚苯并咪唑膜组装的全钒液流电池表现出极佳的电池性能。本方法操作简单,反应环境温和,适用于大规模生产,表现出非常好的应用前景。
Absstract of: CN119920937A
本发明公开了一种液流电池系统的排氢方法及装置。方法包括:响应于外部输入指令,确定液流电池系统的预设工作模式,并控制进入预设工作模式下的排氢策略;获取预设工作模式下的氢浓度;根据氢浓度与预设氢浓度阈值,控制液流电池系统的氢气循环回路中排氢风机与液流电池系统的运行状态。本发明通过提前根据不同预设工作模式制定并实施排氢策略,降低了氢浓度异常升高的风险,通过监测氢浓度与预设氢浓度阈值的关系,能在氢浓度有上升趋势并接近预设氢浓度阈值的过程中,提前做出反应,调整排氢风机运行状态或液流电池系统的运行状态,实现了既能有效避免氢浓度过高带来的安全风险,又能在安全前提下减少排氢风机不必要的功耗。
Absstract of: CN119920921A
本发明公开一种中空多孔碳球限域的PtFeCoNiCu材料的制备方法及其产品和应用,属于碳材料技术领域。包括以下步骤:以中空多孔碳球为载体,以PtFeCoNiCu为前躯体盐,利用硼氢化钠进行第一次还原,再在H2/Ar混合气体中进行第二次还原,得到高熵纳米合金。PtFeCoNiCu在HCS上的负载量为26.1%时ORR性能最优,起始电位为0.855V,相较于单独HCS的起始电位(0.731V)提升了0.124V。
Absstract of: CN119920927A
本公开提供一种用于燃料电池的增湿系统、控制方法以及处理器,包括:增湿单元,用于将湿热的废气与干空气进行干湿交换,并将经过干湿交换后产生的湿空气排出至燃料电池的电堆处;电磁阀,用于控制通过的干空气量;湿度传感器,用于检测经过干湿交换后的空气湿度值;燃料电池控制器,根据燃料电池的运行状态发出控制指令;以及增湿器控制器,接收燃料电池控制器的控制指令并对比湿度传感器检测到的空气湿度值,以调节所述电磁阀的开度。本发明克服了目前燃料电池系统增湿器的单一增湿模式,可根据燃料电池不同的运行状态调节增湿效果,从而提高燃料电池的工作效率。
Absstract of: CN222826434U
本公开的实施例涉及水分离器和燃料电池系统。水分离器包括腔室;腔室内的引导部,包括在第一方向上的第一和第二侧,还包括从多个引导叶片;邻近第一侧的入口,适于使气液混合物进入腔室;气体出口,适于使气体从腔室排出;以及水出口,适于使液体从腔室排出。多个引导叶片中的每个引导叶片包括第一部分和第二部分,第二部分相对于第一部分更邻近第一侧,并且第一部分的朝向第一侧的迎流面与第二部分的第一面在连接部处连接,迎流面在连接部处的第一切面与轴线的第一夹角大于第一面在连接部处的第二切面与轴线的第二夹角。
Absstract of: CN222826431U
本申请公开一种集成式热管理装置,所述装置包括:燃料电池发动机,分别与散热器和换热器连接,用于向所述散热器输出第一高温冷却液;以及用于向所述换热器输出第二高温冷却液;散热器,用于对所述第一高温冷却液进行散热,并向所述燃料电池发动机输出经所述散热后形成的第一低温冷却液;换热器,分别与所述燃料电池发动机和制冷系统连接,用于对来自所述制冷系统的冷媒和所述第二高温冷却液进行换热,并向所述燃料电池发动机输出经所述换热后形成的第二低温冷却液。同时,本申请还公开一种车辆。
Absstract of: CN222826432U
本实用新型涉及燃料电池技术领域,尤其是一种固体氧化物燃料电池堆,包括壳体,所述壳体的顶部设置有顶盖,所述顶盖的顶部设置有锁扣。通过换热管通过软管换热管内部的冷却水流动过程中,导热板吸收的热量会传递到换热管内部的冷却水中,实现水冷散热,启动电机,电机的输出轴带动扇叶转动,一侧的导热管配合电机带动扇叶转动,使得壳体内部的热空气流动到底座的内部,并且沿着两侧的换热管形成的空间流动,与换热管接触使得换热管内部流动冷却水将热量吸收,通过另一侧的导热管进入到壳体内部,实现了对壳体内部的散热,从而提高了对固体氧化物燃料电池堆的散热效率,同时避免了的外部灰尘对内部电池单元体造成影响。
Absstract of: WO2023213968A1
The invention relates to a method for implementing an ammonia-burning fuel-cell system (10), which comprises: a) operating a fuel-cell unit (30); b) recovering a dinitrogen- and dihydrogen-rich anode gas stream (40); c) cooling the anode gas stream (40) and condensing the water present in the anode gas stream (40) to form a cooled gaseous anode stream (44); d) separating the cooled gaseous anode stream (44) into a dinitrogen gas stream (18) and a dinitrogen-depleted anode stream (36); and e) injecting the dinitrogen-depleted anode stream (36) into the fuel cell unit (30) so as to recycle the dinitrogen-depleted anode stream (36) in the fuel cell unit (30).
Absstract of: CN118434583A
A cooling device (1) for a fuel cell vehicle (2), which is provided with a cab (21) and a vehicle frame (22), and which drives a motor (24) for travel using power from a fuel cell (23), is provided with a hydrogen gas storage unit (3) and a heat exchange unit (4). The hydrogen gas storage unit (3) is provided to the outside of the vehicle frame (22) in the vehicle width direction (D2) rearward of the cab (21), and stores hydrogen gas supplied to the fuel cell (23). The heat exchange unit (4) is provided along the hydrogen storage unit (3) on the outside of the hydrogen storage unit (3) in the vehicle width direction (D2), and exchanges heat between outside air and at least a refrigerant (41) that cools the fuel cell (23).
Absstract of: DE102023210719A1
Seitenkanalverdichter (1) für ein Brennstoffzellensystem (2) zur Verdichtung eines gasförmigen Mediums, aufweisend ein Gehäuse mit einem ersten Gehäuseteil (3) und einem zweiten Gehäuseteil (4), wobei das erste Gehäuseteil (3) einen entlang einer Rotationsachse (R) erstreckenden Lagerzapfen (5) mit einem Zapfenwurzelabschnitt (6) sowie einem Zapfenhauptabschnitt (7) aufweist, wobei auf dem Zapfenhauptabschnitt (7) ein Lager-Innenring (8) einer Lagervorrichtung (9) angeordnet ist, wobei eine Verdichterrad-Baugruppe (10) mit einem Verdichterrad (34) innerhalb des Gehäuses auf einem Lager-Außenring (11) der Lagervorrichtung (9) um die Rotationsachse (R) rotierbar angeordnet ist, wobei das erste Gehäuseteil (3) über ein Befestigungselement (28) zumindest mittelbar mit der Lagervorrichtung (9) verspannt ist, wobei an dem Zapfenwurzelabschnitt (6) zwischen einer dem Befestigungselement (28) abgewandten ersten Kontaktfläche (40) des Lager-Innenrings (8) und einer dem Befestigungselement (28) zugewandten zweiten Kontaktfläche (17) des ersten Gehäuseteils (3) eine Wellfeder (18) angeordnet ist.Erfindungsgemäß ist die Wellfeder (18) derart ausgeführt und am und/oder um den Lagerzapfen (5) angeordnet, so dass ihre Wickelrichtung (16) in Richtung einer Drehrichtung (31) der Verdichterrad-Baugruppe (10) im Betrieb des Seitenkanalverdichters (1) entspricht.Die Erfindung betrifft ferner ein Brennstoffzellensystem (2) mit einem erfindungsgemäßen Seitenkanalverdichter (1) un
Absstract of: WO2024061928A2
The invention relates to a system for controlling an electrical device which is thermally coupled to a cooling system, the system comprising at least one temperature input for measuring at least one temperature of a coolant flowing toward and/or away from the electrical device, and/or a temperature of the electrical device, a control signal output, a storage unit which is designed to store and output at least one characteristic variable of the electrical device, and a control unit which is connected to the at least one temperature input, the storage unit and the control signal output, wherein the control unit is designed to determine at least one electrical target variable of the electrical device from one of least one temperature, which is measured at the at least one temperature input, and a dynamic model, which is based on the at least one characteristic variable and signals of measured/calculated variables which take the current operating conditions of the electrical device into consideration, the electrical target variable being required for adjusting a desired curve of the rate of temperature change and/or a desired temperature curve of the coolant and/or of the device, and wherein the control unit is designed to output the at least one determined electrical target variable at the control signal output for controlling the electrical device.
Absstract of: CN119920935A
本发明提供了一种二步法氢燃料电池,包括封闭式的壳体,壳体中部设置有电解质膜,电解质膜的两侧分别设置有氢气反应区和氧气反应区;氢气反应区氢气激发室和氢气反应室,氧气反应区包括氧气激发室和氧气反应室,氢气激发室和所述氧气激发室内部设置有紫外光激发器。本发明还提出了上述氢燃料电池的制备方法,包括催化剂制备、电极板制备、催化剂涂覆、电池组装等步骤。本发明通过紫外光对经过氢气进行激发,使氢原子的电子得以跃迁或处于跃迁的临界点,从而提高氢气的反应活性。另外本发明无需使用复杂的催化剂,使得其整体工作稳定性更强,相应的也提高了使用寿命、降低了成本。
Absstract of: US2025074767A1
A green hydrogen production system, a green power production system, a green hydrogen and green power production system, and methods of implementing the same are provided. Catalyst for hydrogen production is sent to a raw-material mixing unit, mixed with water, and then reacted in a first water splitting unit therein to generate hydrogen gas and oxidized catalyst for hydrogen production. The hydrogen gas is delivered to a hydrogen power generation unit to produce power while the oxidized catalyst for hydrogen production is sent to a photon-plasma decomposition unit for being reduced into the catalyst for hydrogen production and oxygen generated is sent to the hydrogen power generation unit to generate power. Thereby hydrogen, power, and raw materials used in the system are recycled during operation. Therefore, green hydrogen and green power with reasonable price obtained can replace fossil fuels to solve climate change and global warming issues.
Absstract of: US2023111727A1
Provided is a hydrogen supply system that supplies hydrogen. The hydrogen supply system includes: a dehydrogenation reaction unit that subjects a raw material including a hydride to a dehydrogenation reaction to obtain a hydrogen-containing gas; a circulation system that circulates a reaction inactive fluid to the dehydrogenation reaction unit; and a control unit that controls the hydrogen supply system. The control unit circulates the reaction inactive fluid with the circulation system in a case where production of the hydrogen-containing gas in the dehydrogenation reaction unit is stopped.
Absstract of: JP2025070775A
【課題】高いプロトン伝導度を有するプロトン伝導性材料を提供する。【解決手段】プロトン伝導性材料は、Sn1-xAlxP2O7(xは、0.00以上0.15以下である。)で表される金属リン酸塩によって構成される。プロトン伝導性材料は、31P MAS NMRスペクトルにおいて、85%リン酸水溶液を基準物質としたとき、化学シフトが-60ppm以上-20ppm以下の範囲の第1のピーク面積に対する、化学シフト値が-20ppm以上10ppm以下の範囲の第2のピーク面積のピーク面積比が0.05以上である。【選択図】図1
Absstract of: JP2025070776A
【課題】高いプロトン伝導度を有するプロトン伝導性材料を提供する。【解決手段】プロトン伝導性材料は、Sn1-xAlxP2O7(xは、0.00以上0.15以下である。)で表される金属リン酸塩によって構成される。25℃、50%RHの雰囲気に60分静置したときのプロトン伝導性材料の吸湿率は、2.5%以上4.5%以下である。【選択図】図1
Absstract of: JP2025070678A
【課題】燃料電池の製造時において、セルの反りを効果的に抑制できる技術を提供する。【解決手段】燃料電池の膜-電極-ガス拡散層の接合体と接合体を挟持するように配置された一対のセパレータと熱可塑性樹脂と、を備えるセル前駆体を準備する工程と、対向配置されて前記セル前駆体を加熱可能な第1加熱型及び第2加熱型を用いて前記熱可塑性樹脂を加熱する加熱工程と、対向配置されて前記セル前駆体を冷却可能な第1冷却型及び第2冷却型を用いて前記熱可塑性樹脂を冷却する冷却工程と、を備える。この製造方法では、前記第1加熱型と前記第2加熱型とが前記セル前駆体に接触する接触面のうち少なくとも一部、及び/又は、前記第1冷却型と前記第2冷却型とが前記セル前駆体に接触する接触面のうち少なくとも一部において、温度差を発生させる。【選択図】図1
Absstract of: CN222826435U
本实用新型提供了一种基于氨‑氢转化技术的燃料电池发电系统,包括:液氨罐,具有氨出口;启动装置,启动装置的进口与氨出口连通;第一裂解器,具有第一裂解部和第一加热部,第一裂解部的进口与氨出口连通,第一加热部的进口与启动装置的出口连通;电化学提纯器,电化学提纯器具有阳极进气口、阴极出气口和阳极出气口,阳极进气口与第一裂解部的出口连通,阳极出气口与第一加热部的进口连通;稳压罐,稳压罐的进口与阴极出气口连通;燃料电池,燃料电池的进口与稳压罐的出口连通。通过本申请提供的技术方案,能够解决现有技术中的燃料电池发电系统启动时间较长,进而导致燃料电池发电系统在启动时间内的工作效率较低的问题。
Absstract of: CN222819738U
本实用新型公开了一种热转印装置,包括:转印组件,适于进行转印;第一供料组件,适于提供质子交换膜;第一供料组件包括多个第一输送辊,至少相邻两个第一输送辊之间设置有第一偏调辊,第一偏调辊由第一驱动组件驱动靠近或远离质子交换膜移动,且在移动的过程中始终抵接质子交换膜;第一驱动组件包括第一驱动件和两个第一丝杠;第一驱动件的输出端与两个第一丝杠驱动;两个第一丝杠均垂直于第一偏调辊的长度方向布置,且相对设置于第一偏调辊的两侧;每个第一丝杠通过一个第一螺母座与第一偏调辊连接。解决了现有的转印装置在转印过程中阳极转印膜、阴极转印膜和质子交换膜的位置出现偏差时难以进行调节,导致转印图案不对齐的技术问题。
Absstract of: CN222826428U
本实用新型公开了一种燃料电池膜电极气体扩散层贴合用的装置,包括吸附平台、吸附板和质子交换膜夹板。本实用新型燃料电池膜电极气体扩散层贴合用的装置,通过质子交换膜夹板的设计,质子交换膜夹合固定在上夹板和下夹板之间,两侧喷涂催化层后,将质子交换膜与上夹板和下夹板一起放置到放有吸附板的吸附平台上,定位后,直接进行气体扩散层的贴合,不需要在喷涂催化层后将质子交换膜夹板拆除,节约时间的同时,也避免了拆装过程中可能发生的对质子交换膜的损坏。
Absstract of: CN222826437U
本申请涉及钒液流电池领域,尤其涉及一种液流电池电堆液路分区系统,包括管路系统,管路系统包括若干垫片、穿设于垫片的若干根输液管,输液管上开设有与电堆分区连通的输液孔,每一根输液管均穿设于所有垫片,输液管进液口至输液孔的距离大于最远的两个垫片之间的距离。通过采用上述技术方案,电解液经输液管的进液口进入到输液管中,经过输液孔进入到电堆中,在电堆中反应后,经过另一根输液管的输液孔流回到储液罐中完成循环,输液管加长了电解液的循环通路长度,该循环系统的电阻增大,漏电流减小。
Absstract of: JP2025070635A
【課題】即応性およびコンプレッサが有するベアリングの耐久性が改善された空気抑制制御を有する電気化学電池システムを提供する【解決手段】電気化学電池スタック3を覆うとともに、吸入口12と排出口14とを有するケース10と、ケースに設けられたファン16と、排出口と第1流路21を繋ぐ流路である第3流路23に設けられた第1切換弁31と、排出口と第2流路22を繋ぐ流路である第4流路24に設けられた第2切換弁32と、を備え、電気化学電池スタックの空気抑制制御として、エアコンプレッサの作動を停止するとともに、第1切換弁と第2切換弁を交互に開放または閉鎖する、電気化学電池システム1。【選択図】図1
Absstract of: JP2025070056A
【課題】出力低下を抑えつつ昇圧コンバータの平滑コンデンサの温度を制御できる燃料電池システムを提供する。【解決手段】燃料電池10と、燃料電池10へ供給するカソードガスの供給圧力を制御するECU40と、燃料電池10の電圧を昇圧する昇圧コンバータ20と、昇圧コンバータ20に設けられた平滑コンデンサ25の温度Tcを検出する温度検出手段と、を備え、ECU40は、温度検出手段によって検出された平滑コンデンサ25の温度Tcが予め設定した閾値Tcmを超えた場合に、昇圧コンバータ20の出力等電力線W1上において燃料電池10の電圧が小さくなるようにカソードガスの供給圧力を制御する。【選択図】図7
Absstract of: JP2025070295A
【課題】優れた出力点性能を有する燃料電池用触媒電極及びそれを備える固体高分子形燃料電池を提供する。【解決手段】本発明は、担体及び該担体に担持されている活性種を含む電極触媒と、アイオノマとを含む燃料電池用触媒電極であって、電極触媒の水浸pHが、2.8~3.2であり、活性種とアイオノマの距離が、2.09nm以下である燃料電池用触媒電極に関する。【選択図】図5
Absstract of: CN119920922A
本发明涉及一种硅杂化的微孔季铵框架离子交换膜及其制备方法和水系有机液流电池,属于微孔离子传导膜技术领域。离子交换膜的制备原料包括叔胺型多支化硅氧烷单体,由叔胺型多支化硅氧烷单体通过季铵化合成具有N+中心的多支化前驱体和具有N+中心与N+支链的多支化前驱体,并由多支化前驱体缩聚构建由N+和Si作为延伸点的三维空间网络结构的微孔离子传导膜,含季铵的多元环组成的正电荷三维框架兼具道南效应和离子筛分作用,且框架结构有效降低了膜溶胀增加了尺寸稳定性,此外,季铵支链自组装协同调节离子通道尺寸和荷电性,硅杂化微孔季铵框架离子交换膜实现了离子选择和渗透的平衡,用于中性水系有机液流电池体系表现出良好的电池性能。
Absstract of: CN119920928A
本发明提供一种燃料电池电堆系统及控制方法,属于燃料电池电堆的技术领域。包括电堆发电模块、PLC控制系统、安全系统、氢气/空气供应系统以及部件活化保护系统。部件活化保护系统包括:部件电压冲击活化及吹扫活化。部件活化保护系统包含膜电极部件活化模块、双极板部件活化模块、超级电容器,通过系统控制超级电容器的充放电功能进而实现对电堆的在线活化,提升电堆性能,通过吹扫活化解决电堆内部故障,使电堆性能恢复;本发明还通过充分利用IGBT电路控制系统和PLC系统、安全控制系统之间的协同控制,形成闭环控制系统,监测结果将实时反馈给PLC控制系统,根据部件实际工作状态自动调整工作参数,确保电堆始终在最佳状态下工作。
Absstract of: CN222826430U
本实用新型涉及燃料电池技术领域,公开了燃料电池密封结构,包括外壳,所述外壳的外壁固定连接有端板一,所述端板一的外壁固定连接有插杆,所述插杆的外壁滑动连接有电堆,所述插杆的外壁滑动连接有单电池,所述单电池包括双极板一,所述双极板一的内部固定连接有密封板一,所述密封板一的外壁固定连接有膜电极,所述膜电极的内部固定连接有气体扩散层。本实用新型中,将双极板一与密封板一固定,并与膜电极直接贴合,从而将密封板一夹持在双极板一和膜电极之间,密封板二固定在膜电极和双极板二之间,确保双极板一双极板二的密封效果,这些组件形成单电池,多个单电池组合成电堆,通过插杆的外壁固定端板一的外壳,同时起到密封作用。
Absstract of: CN222826436U
本实用新型提供一种基于固体氧化物燃料电池的便携式电源装置,包括外壳,所述外壳的内部安装SOFC电堆、燃烧室和锂电池,所述燃烧室的内部固定连接重整室,所述重整室的一端内部安装多根钢管,所述钢管的内部安装电热丝,所述钢管与所述电热丝之间填充结晶氧化镁层;所述SOFC电堆与所述燃烧室之间通过连通管连接,所述重整室的表面安装波浪形的传热板,所述燃烧室的内侧壁安装多个球形的燃烧催化剂;本实用新型提供的基于固体氧化物燃料电池的便携式电源装置具有无污染、噪声小且便于携带的优点。
Absstract of: CN222826433U
本实用新型实施例提供一种叉车燃料电池空气系统及电动叉车,属于燃料电池空气系统领域。所述空气系统包括:燃料电池电堆、空气供应部、排气部、分离部、排水部以及操作面板,其中空气供应部与所述燃料电池电堆的一端连接,用于过滤空气,所述空气供应部包括鼓风机,所述鼓风机用于将空气吹入所述燃料电池电堆内;排气部的一端与所述燃料电池电堆的另一端连接;分离部的第一端与所述排气部的另一端连接,所述分离部的第二端用于排出分离出的气体;排水部与所述分离部的第三端连接,所述排水部包括可控阀门;操作面板与所述可控阀门连接,用于控制所述可控阀门的开闭。
Absstract of: CN222825583U
一种可移动式全钒液流电池电堆测试平台,包括测试电堆、机架、接液槽、踏板装置、万向刹车轮、电堆起升装置、防滑条、电堆固定装置、定向轮;所述测试电堆放置在机架上,通过电堆固定装置固定,在测试电堆下方设有电堆起升装置和接液槽,在机架的一侧设有踏板装置,该测试平台还设有万向刹车轮和定向轮。本实用新型所述的可移动电堆测试平台整体加工及安装简单,采用移动测试平台后,减少了叉车在实验室内的使用,在一定程度上避免了一些不必要的风险,在电堆测试过程中,每个循环将堆内电解液排空能够在一定程度上减小自放电,测试完成后通过起升装置能够更好的将电堆内电解液排空,回流到储存桶内,避免了在拆卸过程中电解液外流的情况。
Absstract of: CN222820359U
本实用新型公开了一种膜电极的贴合模具,涉及膜电极加工模具技术领域,包括贴合A面板、贴合B面板和CCM位置模具,所述贴合A面板的外壁固定连接有限位侧板,所述限位侧板的下方设置有限位底板,所述限位底板固定连接在贴合A面板的外壁,所述限位底板顶面与限位侧板侧面之间夹角为90°,所述限位侧板和限位底板之间设置有内外边框A面,本实用新型经过贴合机可快速将内外两个边框内外边框A面和内外边框B面形成边框二合一,配合使用CCM位置模具将CCM阴阳极进行固定,使得本实用新型可以更加精准且快速地放置,并通过贴合机贴合成,再和边框A进行贴合,做到无错位,无白边,高良品率及高生产效率的效果。
Absstract of: CN222826429U
本实用新型为一种具备支撑功能的双极板采集结构,包括金属双极板,所述金属双极板边缘设有限位槽,限位槽中同心设置有限位杆,所述限位杆上套设有若干采集端子,所述采集端子包括两片采集片和一片连接片,两片采集片设于连接片同端且采集片之间留有与金属双极板相匹配的空隙,两片采集片分别与金属双极板的阴阳极板电连接,所述采集片上设有与限位杆相匹配的通孔,所述连接片与集成盒电连接。本实用新型的优点是:采集端子功能多样化,在实现自身的采集功能的同时能够对极板与限位杆接触处进行支撑,避免极板变形,无需在极板上设置额外的结构,减小生产成本。
Absstract of: US2023021049A1
A system for hydrogen generation includes at least one cabinet defining a first volume, a second volume, and a third volume, where the first volume, the second volume and the third volume are fluidically isolated from each other, a water circuit located in the first volume, an electrochemical module including an electrolyzer electrochemical stack located in the second volume, a hydrogen circuit located in the third volume, at least one first fluid connector fluidly connecting the water circuit and the electrolyzer electrochemical stack, and at least one second fluid connector fluidly connecting the electrolyzer electrochemical stack and the hydrogen circuit.
Absstract of: CN119920924A
本发明公开了一种阴极开放式空冷燃料电池双极板组件及燃料电池,涉及燃料电池技术领域。其中,双极板组件包括单层的双极板。双极板包括第一端、第二端和波浪段,第一端和第二端分别连接于波浪段的长度方向的两端。波浪段的阳极侧的波谷为阳极槽,波浪段的阴极侧的波谷为阴极槽,阳极槽和阴极槽均延伸至波浪段的宽度方向的两端。双极板的阳极侧的边缘用于与一腔体密封接触,以使多个阳极槽相互连通。第一端设有用于向腔体内供应氢气的进气口,第二端设有用于排出腔体内气体的出气口。本发明将阳极槽和阴极槽集成在一个板上,减轻了整体重量,降低了模具开发成本和涂层成本,避免了接触热阻和电阻增大的问题,能够保证燃料电池的散热效率及性能。
Absstract of: WO2025089717A1
The present invention relates to: a hollow fiber membrane for a fuel cell membrane humidifier; a method for manufacturing same; and a fuel cell membrane humidifier including same. The hollow fiber membrane is a hollow porous support including an inner surface region and an outer surface region, wherein the inner surface region includes a polymer, and the outer surface region includes a polymer, a crown ether-based compound, and an antioxidant.
Absstract of: WO2025089818A1
Disclosed is a fuel cell stack structure including a manifold. The fuel cell stack structure comprises: a first fuel cell stack; a second fuel cell stack; and a manifold disposed between a first end plate of the first fuel cell stack and a second end plate of the second fuel cell stack.
Absstract of: WO2025089676A1
According to one embodiment of the present invention, by using pellets capable of absorbing microwaves and dissipating heat, the temperature may be increased to 900°C or higher in a short time, and a vapor-phase sintering aid, rapidly diffused from the pellets, may accelerate sintering of a PCEC. Specifically, the sintering temperature is reduced by 500°C or more compared to the conventional process, and the processing time is also shortened from 300 minutes to 5 minutes, thereby mitigating cation segregation phenomena, which occur in the conventional sintering process and improving the performance of the PCEC.
Absstract of: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Absstract of: WO2025089276A1
Provided is a composition for forming a catalyst layer, the composition being capable of forming a catalyst layer of a membrane electrode assembly which is used for a polymer electrolyte fuel cell that is excellent in terms of power generation performance durability. This composition for forming a catalyst layer includes: a fluorine-containing polymer that has a unit including a cyclic ether structure and an ion exchange group; a catalyst; and a solvent. The ion exchange capacity of the fluorine-containing polymer is 1.20 milliequivalent/g dry resin or less. The catalyst includes a carbon carrier and a metal that is supported by the carbon carrier. The ratio of the mass of the fluorine-containing polymer to the mass of the carbon carrier is 0.6 to 1.5.
Absstract of: WO2025089274A1
Provided is a composition for forming a catalyst layer, with which it is possible to form a catalyst layer for a membrane electrode assembly used in a solid polymer fuel cell having excellent power generation performance in a low-humidity environment. The composition for forming a catalyst layer comprises a fluorinated polymer having a unit including a cyclic ether structure and having an ion exchange group, a catalyst, and a solvent, wherein the ion exchange capacity of the fluorinated polymer is 1.3 milliequivalent/g dry resin or more, the catalyst comprises a carbon support material and a metal supported on the carbon support material, and the ratio of the mass of the fluorinated polymer with respect to the mass of the carbon support material is 0.6 to 1.5.
Absstract of: WO2025089273A1
Provided is a catalyst layer forming composition that can form a catalyst layer in which the occurrence of cracks is suppressed. This catalyst layer forming composition comprises: a fluorine-containing polymer having a unit that comprises a cyclic ether structure and having an ion exchange group; a catalyst; and a solvent. The solvent comprises water and an alcohol; the alcohol comprises propanol; the content of the water is 50 mass% or more with respect to the total mass of the solvent; and the content of the propanol is 50 mass% or more with respect to the total mass of the alcohol.
Absstract of: WO2025088659A1
In this system, a steam reforming device steam-reforms methane gas and steam to produce steam-reformed product gas with a 3:1 molar ratio of hydrogen gas to carbon monoxide gas. A distribution device distributes the steam-reformed product gas into a first steam-reformed product gas and a second steam-reformed product gas at a set ratio. A hydrogen separation device separates the second steam-reformed product gas supplied from the distribution device into hydrogen gas and hydrogen-separated gas. In a mixing device, the first steam-reformed product gas is supplied from the distribution device, the hydrogen-separated gas is supplied from the hydrogen separation device, and the gases are mixed to produce synthesis gas. The set ratio for distributing the steam-reformed product gas into the first and second steam-reformed product gases is set so that the molar ratio of hydrogen gas to carbon monoxide gas contained in the synthesis gas produced in the mixing device is approximately 2:1. In a gas turbine cogeneration device, the hydrogen gas separated by the hydrogen separation device is supplied to generate electricity and to generate steam to be supplied to the steam reforming device.
Absstract of: WO2025086961A1
The present invention belongs to the technical field of fuel cells. Provided are a method and apparatus for controlling a circulation volume for an anode, and an electronic device and a fuel cell. The method for controlling a circulation volume for an anode in the present invention can accurately determine the hydrogen circulation volume of an anode, and then realize the regulation of the hydrogen circulation volume of a fuel cell system in combination with an actual hydrogen circulation volume. In the method for controlling a circulation volume for an anode in the present invention, on the basis of the rotation speed of a hydrogen circulating pump, the displacement of the hydrogen circulating pump per revolution, the gas pressure difference between an inlet and an outlet of the hydrogen circulating pump, and the density and viscosity of a circulating gas, an actual gas circulation volume of an anode of a fuel cell stack is determined; then, an accurate actual hydrogen circulation volume of the anode is obtained; and then in combination with a required hydrogen circulation volume of the anode and the current rotation speed of the hydrogen circulating pump, an appropriate adjustment strategy is applied to operating parameters of a target device, so as to realize the regulation of the hydrogen circulation volume of the anode, thus ensuring the safe and stable operation of the fuel cell stack.
Absstract of: WO2025086963A1
The present invention belongs to the technical field of fuel cells. Provided are a method and apparatus for determining a cathode purging time, and an electronic device and a fuel cell. The method comprises: determining an initial moisture content of a proton exchange membrane of a galvanic pile, and then determining the remaining purging time. In the method for determining a cathode purging time in the present invention, a galvanic pile is controlled to stably operate at a relatively small target power value before the galvanic pile is shut down, such that an accurate initial moisture content of a proton exchange membrane before the shutdown of the galvanic pile is obtained on the basis of the operating characteristics of the galvanic pile under a stable operating condition, and an instantaneous moisture loss rate and an instantaneous moisture content of the proton exchange membrane when a cathode is being purged during shutdown are further obtained by combining the initial moisture content with the humidity of a purging gas and the moisture loss characteristics of the proton exchange membrane, and the remaining purging time for the proton exchange membrane to reach an expected target moisture content can further be obtained, so as to provide a more accurate and reliable time basis for cathode purging, thereby ensuring the purging effect and the normal operation of the galvanic pile during the next startup.
Absstract of: WO2025086527A1
Disclosed in the present invention are a fuel cell integrated with a heat pump energy recovery system, and an energy recovery control method. The main features are that: a heat pump system is arranged between a cooling system and an air supply system, and after absorbing waste heat in the cooling system, the heat pump system heats exhaust tail gas discharged by a cell stack module, so as to increase the temperature of exhaust tail gas entering an expander, thereby improving the energy recovery efficiency of the expander. The heat pump system has a simple structure, and an energy recovery strategy is reasonable, thereby greatly simplifying the structure of the energy recovery system of the fuel cell, reducing manufacturing costs, and eliminating the risk of temperature runaway.
Absstract of: WO2025088122A1
An ion exchange membrane adapted for use in an electrochemical cell, and being of an anion exchange membrane and a proton exchange membrane is provided with an insulating frame at its outer periphery, thereby forming a membrane assembly. The frame makes it possible to prevent curling of the edges of the membrane during treatment with a caustic lye or an acid prior to installation in a holder of an electrochemical cell. The invention also relates to an electrochemical cell stack and to a method of handling the membrane.
Absstract of: WO2025087881A1
The invention is based on a method for operating a fuel cell system (10), wherein a temperature of a fuel cell unit (12) of the fuel cell system (10) is regulated by means of an air feed rate in one method step. It is proposed that the air feed rate in at least one operating state is determined at least depending on a rate of change of a target temperature value (22) of the fuel cell unit (12).
Absstract of: WO2025088169A1
The invention relates to a method for manufacturing a solid oxide electrochemical reactor, the method comprising the following steps: - producing a plurality of distinct peripheral strips (26); - making joining through-openings in each peripheral strip (26); - forming an electrically insulating support by assembling, onto a first interconnection plate (6), a plurality of the peripheral strips (26); - producing an alternating stack of electrochemical cells (5) and interconnection plates (6); - pressing the alternating stack in the stacking direction and raising its temperature to the melting point of a fusible joint, such that the fusible joint extends into the joining through-openings of the electrically insulating support, and forms a seal that connects two interconnection plates (6) through these joining through-openings.
Absstract of: WO2025088170A1
The invention relates to a method for manufacturing a solid oxide electrochemical reactor, the method comprising the following steps: - producing an electrically insulating support (1) with through-openings (2) made therethrough; - depositing a first fusible joint bed (20) on an interconnection plate (6) and arranging the electrically insulating support (1) thereon; - depositing a fusible joint interstitial bead (21) in the through-openings (2); - arranging, on the electrically insulating support (1), a second fusible joint bed (22); - producing and pressing an alternating stack and raising the temperature thereof to the melting point of the fusible joint so as to fuse the first fusible joint bed (20), the fusible joint interstitial bead (21) and the second fusible joint bed (22), wherein the fusible joint forms a seal that extends into the through-openings (2) in the electrically insulating support (1) and connects two interconnection plates (6) through the through-openings (2).
Absstract of: WO2025088164A1
The invention relates to a method for manufacturing a solid oxide electrochemical reactor, the method comprising the following steps: - producing an electrically insulating support (1) through which through-openings (2) extend; - depositing at least one fusible joint bead (15) on an element selected from the group consisting of the interconnection plates (6) and the electrically insulating support (1); - carrying out an operation of curing the fusible joint bead (15); compressing the fusible joint bead (15) in the direction of stacking, and plastically deforming it; - pressing an alternating stack and raising the temperature thereof to the melting point of the fusible joint bead (15), such that the fusible joint bead (15) extends into the through-openings (2) in the electrically insulating support (1) and forms a seal connecting two interconnection plates (6) through these through-openings (2).
Absstract of: WO2025087734A1
The invention relates to a device (103) for checking a fuel concentration sensor (323) which is designed to ascertain an estimated value of the concentration of fuel (211) in a gas mixture (403). For a measuring process for ascertaining an estimated value of the fuel concentration, the device (103) is designed to: produce a supply or removal of a target quantity of thermal energy (402, 412) to or from the gas mixture (403); ascertain a measuring process temperature measurement value of the gas mixture (403), using a temperature sensor (404) of the fuel concentration sensor (323), as a result of the supply or removal of the target quantity of thermal energy (402, 412); and ascertain the estimated value of the fuel concentration on the basis of the measuring process temperature measurement value. Additionally, for a testing process for testing the fuel concentration sensor (323), the device (103) is designed to: produce a supply or removal of a test quantity of thermal energy (402, 412) to or from the gas mixture (403), said test quantity deviating from the target quantity of thermal energy (402, 412); ascertain a test process temperature measurement value of the gas mixture (403), using the temperature sensor (404), as a result of the supply or removal of the test quantity of thermal energy (402, 412); and detect an impairment of the fuel concentration sensor (323) on the basis of the test process temperature measurement value of the gas mixture (403).
Absstract of: WO2025087910A1
The invention relates to an electrochemical device (1) comprising: - at least one, preferably a plurality of, electrochemical cell (4) comprising a fuel electrode an oxygen electrode and a membrane, - at least one fluid inlet line (2) leading to the fuel electrode of the at least one electrochemical cell (4), - at least one fluid outlet line (3), exiting the fuel electrode of the at least one electrochemical cell (4), - at least a first co-fluid line leading to the oxygen electrode of the at least one electrochemical cell, - a reformer with an integrated heat exchanger (5) located upstream to the at least one electrochemical cell (4), - at least one hot stream line (6) to provide heat to the fluid inlet line (2), - at least two temperature sensors (T) for detecting the inlet temperature of the at least one fluid and/or for detecting the at least one outlet temperature of the at least one fluid, preferably at a reformer inlet side and/or a reformer outlet side. A first pre-heater (7) is arranged between the reformer (5) and the at least one electrochemical cell (4). The fluid inlet line (2) is in fluid communication with the reformer (5) and/or first preheater (7) and the hot stream line (6) is in fluid communication with reformer (5) and/or the first preheater (7).
Absstract of: WO2025087865A1
The present invention relates to a guard bed reactor for silicon removal, a solid oxide electrode system for producing hydrogen comprising a guard bed reactor for silicon removal, a method of operating the system to produce hydrogen and a use of the guard bed reactor for silicon removal for depleting a stream of steam from volatile silica species.
Absstract of: WO2025087615A1
The invention relates to a method for producing components (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) for an electrochemical cell unit (53) for converting electrochemical energy into electrical energy as a fuel cell unit (1) and/or for converting electrical energy into electrochemical energy as an electrolytic cell unit (49), comprising the steps of: providing blanks (82), introducing the blanks (82) into first stamping tools (86) and/or second stamping tools (87), carrying out a change process in the form of deformation of the blanks (82) to create the components (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) while the blanks (82) are disposed between the first and second stamping tools (86, 87), removing the shaped components (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) from the first stamping tools (86) and from the second stamping tools (87), wherein the change process in the form of deformation of the blanks (82) to create the components (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) while the blanks (82) are disposed between the first and second stamping tools (86, 87) is carried out by means of at least one press (75).
Absstract of: WO2025087597A1
The invention relates to a gas diffusion layer (100) for a fuel cell (101, 303), said gas diffusion layer (100) comprising: - a main part (103, 201, 207), and - a hydrophobic layer (105), wherein the hydrophobic layer (105) overlaps solely with parts of the surface of the main part (103, 201, 207), and one part of the surface of the main part (103, 201, 207) is not overlapped by the hydrophobic layer (105).
Absstract of: WO2025087598A1
The present invention relates to a cell stack (100) for an electrochemical energy converter (300), wherein the cell stack (100) comprises a plurality of cells (101) and a cover (103), wherein the cover (103) comprises a number of electrically insulating films, wherein the cover (103) comes into direct contact with respective cells (101) of the plurality of cells (101), and wherein the cover (103) shields the cell stack (101) in a fluid-tight manner with respect to surroundings.
Absstract of: WO2025087498A1
The invention relates to a process for manufacturing an electrochemical cell (10), comprising a membrane electrode assembly or catalyst coated membrane (1), abbreviated MEA/CCM (1), forming a cathode (2) on the one side and an anode (3) on the other side, a porous transport layer or gas diffusion layer (4, 5), abbreviated PTL/GDL (4, 5), on either side of the MEA/CCM (1) and a frame member (6, 7) on either side of the MEA/CCM (1) enclosing the respective PTL/GDL (4, 5). According to the present invention, at least one PTL/GDL (4, 5) is inserted into the respective frame member (6, 7) under a preload during assembly. The invention further relates to an electrochemical cell (10) and an electrochemical cell stack.
Absstract of: WO2025087592A1
The present invention relates to electromobility components having a color difference ΔE <20 to the L*a*b* coordinates and a color number beginning with "2" of the RAL color chart, containing polymer compositions on the basis of at least one polyamide and a colorant having an average particle size d50, determined according to ISO 13320 by way of laser diffractometry, in the range of 1 to 12 µm, containing 9,9'-oxybis-12H-phthaloperin-12-one, 9,10-oxybis-12H-phthaloperin-12-one and 10,10'-oxybis-12H-phthaloperin-12-one in a ratio of 1 :1 : 0.8 - 1.5 to 1 : 1.5 : 0.8 - 1.5. The invention also relates to the use of a colorant having an average particle size d50, determined according to ISO 13320 in the range of 1 to 12 µm, containing 9,9'-oxybis-12H-phthaloperin-12-one, 9,10-oxybis-12H-phthaloperin-12-one and 10,10'-oxybis-12H-phthaloperin-12-one in a ratio of 1 : 1 : 0.8 - 1.5 to 1 : 1.5 : 0.8 - 1.5 in polymer compositions for producing polyamide-based electromobility components having a color difference ΔE <20 to the L*a*b* coordinates and a color number beginning with "2" of the RAL color chart, in particular in order to reduce colored streaks when producing polyamide-based electromobility components.
Absstract of: WO2025087586A1
The invention relates to a cell (1) for electrolysis, at least having: a layer sequence consisting of a bipolar plate (BPP), at least one cathodic gas diffusion layer (PTLC), a proton exchange membrane (PEM) between catalyst layers (CLC, CLA) or catalyst-coated membrane (CCM), at least one anodic gas diffusion layer (PTLA), which are arranged in a frame (4), wherein there is an integral bond (Con) between the individual layers of at least the BPP, PTLAC(s) and/or PTLBC(s).
Absstract of: US2025135935A1
A charging system includes a work machine. The work machine includes a battery system. The charging system also includes a transport vehicle adapted to transport the work machine. The work machine is positioned on the transport vehicle for transportation thereof. The transport vehicle includes a fuel cell system. The fuel cell system of the transport vehicle provides operating power to the transport vehicle for propelling the transport vehicle. The fuel cell system further provides an electric power supply to the battery system of the work machine for charging the battery system.
Absstract of: US2025137595A1
The present disclosure relates to a hydrogen tank temperature control apparatus, system, and method. An example embodiment of the present disclosure provides a hydrogen tank temperature control apparatus including an air guide between a stack cooling module configured to cool a fuel cell stack and the one or more hydrogen tanks, and a processor configured to control a temperature of the one or more hydrogen tanks by controlling one or more angles of the air guide.
Absstract of: US2025140880A1
A coolant reservoir includes an ion filter, the coolant reservoir includes a main body in which a coolant to cool a fuel cell stack is stored, and the ion filter configured to be selectively connected to a coolant line, through which the coolant flows, to remove ions contained in the coolant when a measured insulation resistance value of a fuel cell system changes.
Absstract of: US2025140877A1
A fuel cell system, e.g., of a motor vehicle, includes a fuel cell stack having fuel cells and non-repeating hardware components, the latter including wet and dry end units. The cells are positioned between the end units. The dry end unit includes an end plate and a compression plate assembly that uniformly compresses the cells against the end plate, and a terminal plate surrounded by a seal plate. An insulator frame disposed adjacent to the compression plate assembly is engaged with the insulator frame via a frictional interface provided by o-ring compression seals having a respective post connected to the terminal plate and the seal plate, and a pocket connected to the insulator frame. The post and pocket of at least one of the compression seals together define a fluid passage. One or more shim plates may be disposed between the end plate and insulator frame.
Absstract of: US2025140878A1
An embodiment unit cell for a fuel cell includes an anode separator, a cathode separator, a frame disposed between the anode separator and the cathode separator, a membrane electrode assembly, and a pair of gas diffusion layers coupled to first and second sides of the membrane electrode assembly, respectively. The frame includes a plurality of films laminated together, a through hole disposed in a central portion of the frame, a manifold hole disposed in an edge portion of the frame, wherein the manifold hole is configured to allow a fluid to flow therethrough, and a slit disposed in a first plurality of the plurality of films, the slit extending from the manifold hole toward the through hole and cut to define a fluid flow path, wherein the membrane electrode assembly and the pair of gas diffusion layers are disposed in the through hole in the frame.
Absstract of: US2025140899A1
A battery includes a cathode compartment, a catholyte solution disposed within the cathode compartment, an anode compartment, an anolyte solution disposed within the anode compartment, a separator disposed between the cathode compartment and the anode compartment, and a flow system configured to provide fluid circulation in the cathode compartment and the anode compartment. The catholyte solution and the anolyte solution have different compositions.
Absstract of: US2025140887A1
An electrode-stacking wheel designed to receive and convey planar electrode elements, includes: a spindle designed for the rotating of the electrode-stacking wheel; a plurality of stacking fingers, which are radial to the spindle and which are arranged circumferentially around the axis of rotation; a plurality of intermediate spaces, which are formed between the respective stacking fingers, each intermediate space being designed to receive at least one of the electrode elements; and an electrode-clamping element formed in each of the intermediate spaces, each electrode-clamping element being designed such that, in the clamping state, the electrode-clamping element applies clamping force to a main surface of one of the electrode elements and presses the electrode element in question against the stacking finger in question by means of the force application.
Absstract of: US2025140884A1
A fuel cell system and a method for operating a fuel cell system in connection with start-up of the fuel cell system is described. The fuel cell system comprises an anode volume and a cathode volume, a fluid flow assembly comprising a plurality of fluid conduits and a fluid flow control device, wherein a recirculation circuit is formed when a fluid connection between the anode volume and the cathode volume is enabled a hydrogen gas supply device, and a recirculation device. The method comprising controlling the hydrogen gas supply device to supply the hydrogen gas, regulating the fluid flow control device such that the anode volume is fluidly connected to the cathode volume, controlling the recirculation device to recirculate the gas mixture in the fluid recirculation circuit such that the supplied hydrogen gas undergoes reaction with the residual oxygen during the recirculation.
Absstract of: US2025140873A1
The present disclosure relates to a gas diffusion layer structure for a unit cell of a fuel cell, the gas diffusion layer structure includes a gas diffusion layer disposed between a catalyst layer and a separator of the unit cell of the fuel cell, in which the gas diffusion layer includes a microporous layer positioned adjacent to the catalyst layer, and a base layer positioned between the microporous layer and the separator, in which the base layer includes: a microporous layer adjacent region disposed adjacent to the microporous layer, and a gas channel adjacent region disposed adjacent to the separator, and in which the gas diffusion layer is pressed so that a solid volume fraction of the gas channel adjacent region and the microporous layer adjacent region increases to a target solid volume fraction.
Absstract of: US2025140882A1
A fuel cell system comprises a first fuel cell stack pair with a first fuel cell stack and a second fuel cell stack, a first compressor arrangement, and a first turbine arrangement, wherein the first compressor arrangement can be coupled to cathode inlets of the fuel cell stack of the first fuel cell stack pair, wherein the first turbine arrangement can be coupled to cathode outlets of the fuel cell stack of the first fuel cell stack pair, wherein the first turbine arrangement comprises a shaft, a first turbine which is connected to the shaft, a second turbine which is connected to the shaft, and a generator which is connected to the shaft, wherein the first compressor arrangement comprises at least one electrically operable compressor, and wherein the generator can be coupled to the at least one electrically operable compressor.
Absstract of: US2025140886A1
The present invention provides an electrochemical cell wherein: a pair of electrodes are connected by the intermediary of a solid electrolyte; and at least one of the electrodes is supported by a metal support. The solid electrolyte is configured as a dense ion conductive layer; at least one of the electrodes is configured as a porous ion conductive layer that has oxygen ion conductivity; and the metal support is configured as a porous electron conductive layer that supports the porous ion conductive layer. In addition, a porous oxidation prevention layer is arranged between the porous ion conductive layer and the porous electron conductive layer; and a catalyst material is loaded such that the porous ion conductive layer, the porous oxidation prevention layer and the porous electron conductive layer are connected.
Absstract of: US2025140883A1
An exhaust liquid treatment assembly for a fuel cell system (FCS). The FCS includes a fuel cell stack and an FCS exhaust pipe fluidly connected to the fuel cell stack and configured to expel an exhaust stream from the FCS. The exhaust liquid treatment assembly includes a liquid tank having a liquid inlet in fluid communication with the FCS exhaust pipe and a liquid outlet. A liquid treatment filter separates the liquid inlet from the liquid outlet and includes a pH controlling material configured to mix with a liquid passing through the liquid treatment filter. A liquid level sensor configured to determine a level of liquid in the liquid tank. A controller is in communication with the liquid level sensor and configured to regulate a level of the liquid within the liquid tank by selectively opening and closing an outlet valve in fluid communication with the liquid outlet.
Absstract of: US2025140876A1
A solid oxide cell includes a solid oxide electrolyte, and a fuel electrode disposed on one side of the solid oxide electrolyte and an air electrode disposed on the other side thereof. The fuel electrode includes alloy oxide particles of nickel (Ni) and a heterogeneous metal alloyable therewith and a solid oxide electrolyte material, and when an atomic percentage (at %) of the heterogeneous metal to all atoms in a center region of the alloy oxide particle is Mcore and an atomic percentage (at %) of the heterogeneous metal to all atoms in a surface region of the alloy particle is Msurface 10×Mcore<Msurface.
Absstract of: US2025140881A1
A tank system for a fuel cell system comprises a tank which extends along a longitudinal axis for receiving gas, in particular hydrogen, comprising an outer circumferential surface which encloses the longitudinal axis along a circumferential direction; a strip-shaped cooling device which is thermally coupled to the tank and comprises at least one Peltier element, wherein the cooling device is arranged on the outer circumferential surface of the tank and extends along the circumferential direction of the tank; and a securing element which encloses the outer circumferential surface of the tank in the circumferential direction and presses the cooling device against the outer circumferential surface of the tank.
Absstract of: US2025140879A1
An embodiment includes a reworkable fuel cell stack in which a first separator and a second separator forming one fuel cell are bonded to a membrane electrode assembly (MEA) by a hot-melt adhesive, the first separator is bonded to a third separator of another fuel cell by a first UV adhesive film, and the second separator is bonded to a fourth separator of yet another fuel cell by a second UV adhesive film, so that, among a plurality of fuel cells, a specific fuel cell that is defective is easily selectively separated from the fuel cell stack, and is easily replaced with a new or replacement fuel cell.
Absstract of: US2025140885A1
The present disclosure provides methods for generating electricity. In embodiments, a method for generating electricity comprises injecting a liquid fuel composition comprising a hydrocarbon and water into a reformer, the reformer under a pressure and at an elevated temperature to convert the liquid fuel composition to a reformate composition via a reforming reaction, the reformate composition comprising hydrogen and methane; and introducing the reformate composition into an anode inlet port of a solid oxide fuel cell in fluid communication with the reformer while introducing oxygen into a cathode inlet port of the solid oxide fuel cell under conditions to convert the reformate composition into an exhaust composition while generating electricity. Systems for carrying out the methods are also provided.
Absstract of: US2025141566A1
A computing device may include a substrate. A computing device may include a processing unit supported by the substrate. A computing device may include an optical transmitter supported by the substrate and in electrical communication with the processing unit.
Absstract of: AU2023372678A1
A solid oxide fuel cell includes an anode, a cathode, an electrolyte including zirconia between the anode and the cathode, and at least one current collector on a surface of the anode opposite the electrolyte and/or a surface of the cathode opposite the electrolyte. The at least one current collector may include a material of M
Absstract of: AU2023366065A1
Abstract A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Absstract of: AU2023365644A1
A fuel cell electrical power generation system is described herein. The system uses a combustor (174) to increase the pressure and temperature of exhaust gases (164) from a fuel cell stack of the system. The combustor (174) uses hydrogen from a hydrogen supply (140) to provide fuel to the combustor (174). The increased temperature/pressure of the exhaust gases (164) post combustion are used to rotate a turbine (168), which in turn rotates a compressor (156) of a turbocharger (154). The compressor (156) compresses incoming air to increase the power output and/or the efficiency of the system. An ebooster (172) can be used in low load conditions, such as during a startup or during at time in which the electrical loading on the fuel cells is relatively low.
Absstract of: WO2025090813A1
The present disclosure relates to compositions, composite materials, and a method of forming electrodes for carbon oxide electrolysis using composite materials. The composite materials may include a first polymeric structure and a second polymeric structure, in which at least one of these structures includes an ionizable moiety or an ionic moiety. At least one of the polymeric structures includes a linking moiety. In some instances, both the first and second structures include an ionizable or ionic moiety. The present disclosure also relates to composite material that includes a crosslinked polymer networks with the first and second polymer structures according to formulas (I and II), or salt thereof.
Absstract of: WO2025088333A1
An interconnect for electrically connecting cells of an electrochemical cell stack is disclosed. The interconnect comprises a first side and a second side; the first side is adapted to face a cell layer comprising an electrochemically active cell region, and a portion of the first side of the interconnect is provided with an electrically insulating layer.
Absstract of: WO2025088334A1
There is provided an apparatus for applying adhesive onto a substrate. The substrate is a component for a fuel cell or an electrolyser. The apparatus comprises: an adhesive dispensing unit comprising a first dispensing nozzle positioned to dispense adhesive in a first fixed locality and a second dispensing nozzle positioned to dispense adhesive in a second fixed locality; and a carrier comprising a substrate receiving area, wherein the carrier is movable in a machine direction so that a first portion of the substrate receiving area can pass through the first fixed locality and a second portion of the substrate receiving area can pass through the second fixed locality. The adhesive dispensing unit is configured to: dispense adhesive via the first dispensing nozzle while the first portion of the substrate receiving area is moving through the first fixed locality, and dispense adhesive via the second dispensing nozzle while the second portion of the substrate receiving area is moving through the second fixed locality. There is also provided a method of applying adhesive and a method of manufacturing a membrane electrode assembly.
Absstract of: US2025135920A1
A high voltage power management module for supplying power to one or more motors for driving a fuel cell electric vehicle. The high voltage power management module comprises an E-Machine interface subsystem for exchanging DC power with an inverter configured to provide AC power to one or more motors for driving a drivetrain of the vehicle. The high voltage power management module further comprises a storage interface subsystem to exchange DC power with an electrical energy store for providing transient power to drive the fuel cell electric vehicle. The high voltage power management module further comprises a fuel cell interface subsystem for receiving DC power from a fuel cell stack of the vehicle configured to directly drive the one or more motors through the E-Machine interface subsystem of the high voltage power management module.
Absstract of: US2025135958A1
A railway vehicle including: a propulsion module, a fuel cell power module, a cooling cycle including at least one heat exchanger for receiving a stream of heated refrigerant from the fuel cell power module and a stream of cooling air, and for producing a stream of cooled refrigerant and a stream of heated air, the fuel cell power module being adapted for receiving the stream of cooled refrigerant and producing the stream of heated refrigerant, a reservoir for collecting residual water from the fuel cell power module, a precooling system for receiving a stream of water from the reservoir and a stream of air and for evaporating part of the stream of water in the stream of air in order to obtain the stream of cooling air.
Absstract of: CN119183617A
The present invention relates to an electrochemical cell assembly (10) comprising a first end plate assembly (12), a stack (14) of battery repeating units (18), and a second end plate assembly (16). The stack is held in a compressed state between the first end plate assembly and the second end plate assembly. The first end plate assembly and/or the second end plate assembly each comprises an end plate (32) and an insulating plate (34) located between the end plate and the stack, in which at least one through-hole (36) is provided in the insulating plate, and in which a sealing insert (40) is provided in the at least one through-hole of the insulating plate, which sealing insert defines a fluid channel (42) in the direction of the stack. The invention also relates to an end plate assembly and a method of manufacturing an electrochemical cell assembly.
Absstract of: US2025135869A1
The invention relates to a vehicle (10), comprising an electrochemical cell (1) and a first coolant circuit (2.1) for cooling said electrochemical cell (1). Furthermore, the vehicle (10) has a second coolant circuit (2.2), fluidically separated from the first coolant circuit (2.1), which is thermally coupled to the first coolant circuit (2.1) via an exchange heat exchanger (WA). The first coolant circuit (2.1) comprises a first heat exchanger (W1) for heat exchange with the vehicle surroundings, and the second coolant circuit (2.2) comprises a second heat exchanger (W2) for heat exchange with the vehicle surroundings, wherein the first heat exchanger (W1), seen in the forward direction of travel (V) of the vehicle (10), is arranged in front of the second heat exchanger (W2). The invention furthermore relates to a method for operating such a vehicle (10).
Absstract of: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Absstract of: US2025134436A1
A bioelectrode having a textile form, and which is flexible, highly versatile, excellent in fastness, and curbs lowering in conductivity due to washing is described along with a method for manufacturing the same, where the bioelectrode has a multilayer structure of a conductor and a fiber base material composed of non-conductive fibers, in which the conductor contains carbon black and a polyurethane resin, the carbon black being dispersed in a particulate form at least on a surface of the conductor, where a ratio of a longest distance to a shortest distance between particles of the carbon black and adjacent particles of the carbon black (longest distance/shortest distance) is 1 to 20 on the surface of the conductor, and the surface of the conductor has a wet rubbing fastness of grade 4 or higher.
Absstract of: US2025136081A1
The disclosure relates in general to a method for operating a hybrid vehicle and to a hybrid vehicle which has a fuel cell and an energy store. A state-of-charge of the energy store of the hybrid vehicle is monitored when the hybrid vehicle is at a standstill. The fuel cell is operated when the hybrid vehicle is at a standstill to charge the energy store, responsive to the state-of-charge of the energy store falling below a first state-of-charge threshold value. Waste heat is generated by the operation of the fuel cell. A vehicle interior of the hybrid vehicle and/or a luggage compartment of the hybrid vehicle is heated using the generated waste heat and/or using an electric heating element for which a first supply current from the energy store is provided.
Absstract of: US2025135921A1
Some embodiments include an appliance energy source supply system for an energy source supply appliance. The appliance energy source supply system can comprise a first thermal control device and a second thermal control device. The appliance energy source supply system can be configured so that a fuel energy source is received by one of the first thermal control device or the second thermal control device before the fuel energy source is made available to a receiver vehicle. Other embodiments of related systems, devices, and methods also are provided.
Absstract of: JP2025069488A
【課題】小型化を図りつつ、好適な湿度に調整された水素を低コストで供給可能とする。【解決手段】下方閉塞部材13が上方閉塞部材14よりも下方に位置するように設置した状態において、外側空間S1が、水素発生装置から酸素Oと共に排出される水W1を酸素Oから分離させて貯水する「第1の分離槽」として機能し、かつ内側空間S2が、水素発生装置から水素ガスGと共に排出される水W2を水素ガスGから分離させて貯水する「第2の分離槽」として機能するように構成されると共に、「第1の分離槽」内の水W1と「第2の分離槽」内の水W2とが内側筒状部材12を介して熱交換可能に構成され、「第1の分離槽」は、貯水した水W1を「原料の水」として水素発生装置に給水する配管5を接続可能に構成され、「第2の分離槽」は、貯水した水W2のなかを水素ガスGが浮上するように構成されている。【選択図】図2
Absstract of: JP2025069776A
【課題】ガラスシール材が流動してシール性が損なわれることを防止する。【解決手段】固体酸化物形燃料電池100は、多孔質の金属支持体2と、金属支持体2に積層された第1電極層3と、第1電極層3に積層された電解質層4と、電解質層4に積層された第2電極層5と、を有する電池セル10と、電池セル10を保持するフレーム6と、を備える。電池セル10の端面8とフレーム6とは、ガラスシール材7で接合されている。フレーム6は、ガラスシール材7と接触する内周フレーム面6bの濡れ性が、ガラスシール材7よりも外側に位置する外周フレーム面6cの濡れ性よりも良い。【選択図】図2
Absstract of: US2025132361A1
The present disclosure discloses a flow battery system, a battery monitoring device for the flow battery system, and an electrode element for the battery monitoring device and a manufacturing method thereof. The battery monitoring device includes a positive end plate, a positive electrode element, a negative end plate, a negative electrode element, electrolyte supply channels, electrolyte discharge channels, a separator, and a voltage measurement unit. The positive electrode element penetrates through the positive end plate and includes an electrode rod and a signal transmission portion that protrudes from an outer surface of the positive end plate. The negative electrode element penetrates through the negative end plate and includes an electrode rod and a signal transmission portion that is projected on an outer surface of the negative end plate. The separator is between the positive end plate and the negative end plate.
Absstract of: JP2025069496A
【課題】反りを簡易に低減できる電気化学セル、セルスタック、ホットモジュール及び水素製造装置を提供する。【解決手段】電気化学セルは、順に燃料極、固体電解質、空気極を含み、燃料極は、順に基板層および機能層を含む固体酸化物形であって、基板層の内部に配置された拘束層を備え、拘束層は、空気極が重なる部分に位置する線状部を複数含む第1部と、空気極が重ならない部分に位置する枠状の第2部と、を含み、線状部の両端は第2部につながり、第1部および第2部の気孔率は、基板層の気孔率よりも小さい。【選択図】図2
Absstract of: WO2025089926A1
One embodiment of the present invention uses an electrolyte having improved material structural stability at a high temperature without an unnecessary change in enthalpy to solve the problem of low sinterability of conventional high-entropy perovskite oxide material-based electrolytes, and can provide a bi-directional proton-conductive fuel cell having improved proton conductivity and electrochemical performance by using said electrolyte.
Absstract of: WO2025089915A1
The present invention relates to a fuel cell system for product management. According to one embodiment, a fuel cell system for product management can be provided, the system comprising: a first fuel tank in which cathode fuel is stored; a second fuel tank in which anode fuel is stored; a fuel cell stack receiving, from the first fuel tank and the second fuel tank, the cathode fuel and the anode fuel, which are reaction gases, thereby generating electric energy; a purge valve for discharging, from the fuel cell stack to the outside, a product resulting from the reaction of the cathode fuel and the anode fuel; and a control unit for controlling opening and closing operations of the purge valve on the basis of the concentration or internal humidity of the reaction gases in the fuel cell stack.
Absstract of: WO2025089766A1
According to an embodiment of the present invention, provided are: an anion exchange membrane comprising a carbazole-based polymer, the polymer having reduced splitting characteristics; and a manufacturing method thereof.
Absstract of: WO2025089846A1
This nanomembrane structure for a thin film-type solid oxide fuel cell has a nanomembrane structure including an electrolyte membrane and an electrode formed on a silicon substrate in a free standing manner, and includes an intermediate support structure formed on at least a portion of the inside of a partition wall forming an outer surface of the nanomembrane. The intermediate support structure according to at least one embodiment of the present invention can form a thinner structure than an existing partition wall structure, thereby reducing the interval between unit cells and substantially increasing the effective area occupied by the cells in the entire area.
Absstract of: WO2025089645A1
The present invention relates to a reinforced composite polymer electrolyte membrane having assured mechanical, structural, and thermal stability.
Absstract of: WO2023247626A1
The invention relates to a device (5) for providing electrical energy by means of a hydrogen carrier medium, the device comprising: a dehydrogenation unit (9), which has a first dehydrogenation reactor (56), for releasing hydrogen gas from the hydrogen carrier medium; a current-generating unit (17), fluidically connected to the dehydrogenation unit (9), for generating electrical current from the released hydrogen gas; an electronics unit (23), electrically connected to the current-generating unit (17), for storing and/or controlling the generated electrical current; and an activation unit (29) for activating the device (5), wherein the activation unit (29) comprises an energy source (27, 28) for heating the first dehydrogenation reactor (56).
Absstract of: WO2023247556A1
The invention relates to a fuel cell (10) which comprises a casing, a stack of electrochemical cells, a stationary end plate and a movable end plate (16) clamping the stack between them, and a guide system (30) for guiding the movable end plate, which guide system limits the movement of the movable end plate perpendicularly to a stacking direction (X). In order to control the positioning of the movable end plate, the guide system comprises at least one compression member (32) exerting a compression force (E32) on the movable end plate in a compression direction (Y), two guide members (36A, 36B) attached to the movable end plate, and two oblique supports (38A, 38B) which are attached to the casing, extend parallel to the stacking direction, and are oblique with respect to the compression direction and with respect to a centring direction (Z). Under the effect of the compression force, the guide members bear against the oblique supports and centre the movable end plate, parallel to the centring direction, with respect to the casing.
Absstract of: CN119403961A
The invention relates to a method for manufacturing a dense composite polymer-ceramic membrane, comprising a step of casting a porous ceramic support layer comprising YSZ and TiO2 flakes followed by a thermocuring and sintering step, the prepared porous ceramic support structure being coated with a TiO2 thin layer in order to alter the pore size distribution of said support structure, and further densifying by using an ion-selective polymer to reduce gas spanning while maintaining sufficiently high conductivity.
Absstract of: DE102023210742A1
Die Erfindung betrifft ein Verfahren zum Optimieren einer Betriebsstrategie zum Betreiben eines Brennstoffzellensystems (100) mit mindestens einem oder mehreren Brennstoffzellenstacks (101), die eine Abgasrückführung (EGR) in mindestens einem Kathodensystem (10) des Brennstoffzellensystems (100) verwendet,aufweisend:- Durchführen einer Optimierung (P1) während eines laufenden Betriebs (BB) des Brennstoffzellensystems (100),wobei beim Durchführen der Optimierung der Betrieb (BB) des Brennstoffzellensystems (100) mit der Abgasrückführung (EGR) und der Betrieb (BB) des Brennstoffzellensystems (100) ohne die Abgasrückführung (EGR) verglichen werden,und/oder- Durchführen eines definierten Tests (P2),wobei beim Durchführen des definierten Tests (P2) der Betrieb (BB) des Brennstoffzellensystems (100) mit der Abgasrückführung (EGR) und der Betrieb (BB) des Brennstoffzellensystems (100) ohne die Abgasrückführung (EGR) verglichen werden,und- Optimieren (Opt) von Betriebsparametern (BP) und/oder Umschaltungen (U) mit der Abgasrückführung (EGR) oder ohne die Abgasrückführung (EGR) in Abhängigkeit von der Optimierung (P1) und/oder von dem definierten Test (P2).
Absstract of: DE102023210659A1
Die vorgestellte Erfindung betrifft einen Zellstapel (100) für einen elektrochemischen Energiewandler (300), wobei der Zellstapel (100) umfasst eine Vielzahl Zellen (101) und eine Hülle (103), wobei die Hülle (103) eine Anzahl elektrisch isolierender Folien umfasst, wobei die Hülle (103) jeweilige Zellen (101) der Vielzahl Zellen (101) direkt kontaktiert, und wobei die Hülle (103) den Zellstapel (101) fluiddicht gegenüber einer Umgebung abschirmt.
Absstract of: DE102023210681A1
Verfahren zur Herstellung von Komponenten (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) für eine elektrochemische Zelleneinheit (53) zur Wandlung elektrochemischer Energie in elektrische Energie als Brennstoffzelleneinheit (1) und/oder zur Wandlung elektrischer Energie in elektrochemische Energie als Elektrolysezelleneinheit (49), mit den Schritten: zur Verfügung stellen von Rohlingen (82), Einführen der Rohlinge (82) in erste Prägewerkzeuge (86) und/oder zweite Prägewerkzeuge (87), Ausführen eines Veränderungsprozesses als Verformen der Rohlinge (82) zu den Komponenten (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) während die Rohlinge (82) zwischen den ersten und zweiten Prägewerkzeugen (86, 87) angeordnet sind, Entfernen der umgeformten Komponenten (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) von den ersten Prägewerkzeugen (86) und von den zweiten Prägewerkzeugen (87), wobei der Veränderungsprozess als Verformen der Rohlinge (82) zu den Komponenten (5, 6, 7, 8, 9, 10, 30, 51, 64, 65) während die Rohlinge (82) zwischen den ersten und zweiten Prägewerkzeugen (86, 87) angeordnet sind mit wenigstens einer Presse (75) ausgeführt wird.
Absstract of: DE102023210617A1
Die vorgestellte Erfindung betrifft ein Betriebsverfahren (100) zum Betreiben eines Brennstoffzellensystems,wobei das Betriebsverfahren (100) umfasst:- Rezirkulieren (101) von Anodengas in einem Anodensubsystem des Brennstoffzellensystems, und- Rezirkulieren (103) von Kathodengas in einem Kathodensubsystem des Brennstoffzellensystems, wobei das Rezirkulieren (101) von Anodengas und das Rezirkulieren (103) von Kathodengas für den Fall ausgeführt wird, dass eine von dem Brennstoffzellensystem angeforderte Leistungsabgabe unter einem vorgegebenen Schwellenwert liegt.
Absstract of: US2025120042A1
A processing unit includes a first die and a second die with a microfluidic volume between the first die and the second die. At least one heat transfer structure couples the first die to the second die and is located in the microfluid volume. An electrochemical fluid is positioned in the microfluidic volume to provide electrochemical energy to at least one of the first die and the second die and receive heat from the first die and the second die.
Absstract of: DE102023210740A1
Die Erfindung geht aus von einem Verfahren (10a; 10b) zum Betrieb einer Brennstoffzellenvorrichtung (12), wobei in zumindest einem Verfahrensschritt elektrische Leistung von zumindest einer Brennstoffzelleneinheit (14, 16, 18) der Brennstoffzellenvorrichtung (12) bereitgestellt wird und wobei in zumindest einem Verfahrensschritt eine Abweichung der bereitgestellten elektrischen Leistung von einer von der Brennstoffzellenvorrichtung (12) ausgegebenen elektrischen Leistung mittels einer elektrischen Energiespeichereinheit (20) der Brennstoffzellenvorrichtung (12) ausgeglichen wird.Es wird vorgeschlagen, dass in zumindest einem Verfahrensschritt die bereitgestellte elektrische Leistung in Abhängigkeit von einem Ladezustand der elektrischen Energiespeichereinheit (20) eingestellt wird.
Absstract of: DE102023210746A1
Die Erfindung geht aus von einem Verfahren (10a; 10b) zum Betrieb einer Brennstoffzellenvorrichtung (12a), welche an ein Stromnetz angeschlossen ist, wobei in zumindest einem Verfahrensschritt eine Bereitstellung von elektrischem Strom durch die Brennstoffzellenvorrichtung (12a) bei einem kurzzeitigen Spannungsabfall des Stromnetzes angepasst wird.Es wird vorgeschlagen, dass eine Fluidversorgung (14a) der Brennstoffzellenvorrichtung (12a) während des kurzfristigen Spannungsabfalls des Stromnetzes zumindest teilweise aufrechterhalten wird.
Absstract of: DE102024204385A1
Die vorgestellte Erfindung betrifft ein Rückflussverhinderer (100, 209) zum Verhindern von Rückfluss aus einem Wasserabscheider (200) in einen Brennstoffzellenstapel (301) eines Brennstoffzellensystems (300), wobei der Rückflussverhinderer (100, 209) eine Hauptleitung (101, 217) und einen Abführbereich (103, 215) umfasst, wobei die Hauptleitung (101, 217) dazu konfiguriert ist, einen Auslass (105) des Brennstoffzellenstapels (301) mit einem in Schwerkraftrichtung höher gelegenen Einlass (107) des Wasserabscheiders (200) fluidleitend zu verbinden, wobei die Hauptleitung (101, 217) einen Fluidleitpfad ausbildet, der dazu konfiguriert ist, sich an der Hauptleitung (101, 217) niederschlagende Wassertropfen zu dem Abführbereich (103, 215) zu leiten, und wobei der Abführbereich (103, 215) dazu konfiguriert ist, aus dem Fluidleitpfad einströmendes Wasser in einen Bereich (109) zu leiten, der in Schwerkraftrichtung tiefer liegt als der Auslass (105) des Brennstoffzellenstapels (301).
Absstract of: DE102023210687A1
Die Erfindung betrifft ein Verfahren zur Herstellung einer Bipolarplatte (1), bei dem zwei umgeformte, insbesondere geprägte, Metallbleche (1.1, 1.2) aufeinandergelegt und mittels mindestens einer Schweißnaht (2) miteinander verbunden werden. Erfindungsgemäß ist vorgesehen, dass beim Setzen der Schweißnaht (2) vor oder mit Erreichen eines Schweißnahtendes- die Schweißrichtung (4) geändert wird und/oder- die Schweißgeschwindigkeit erhöht wird, während gleichzeitig die Leistung des Schweißgeräts reduziert wird.Die Erfindung betrifft ferner eine Bipolarplatte (1).
Absstract of: CN119173644A
A method of recycling a spent catalyst coated membrane material, the membrane material comprising an ionomer, at least one catalyst comprising platinum, palladium and/or ruthenium, and at least one catalyst comprising iridium, the method comprising: (a) treating the spent catalyst coated membrane material with a heated solution comprising an acid and an oxidizing agent, wherein platinum, palladium and/or ruthenium are leached from the spent catalyst coated membrane material into the solution, the solution being separated from the remaining solid components of the spent catalyst coated membrane material; (b) treating the spent catalyst coated membrane material with a solvent to disperse the ionomer membrane and recover a dispersion of ionomers, wherein the dispersion of the ionomers is performed before or after the leaching of the platinum, palladium and/or ruthenium; and (c) treating the spent catalyst coated membrane material to extract iridium.
Absstract of: WO2024003592A1
A degassing system for a vehicle cooling system includes a cooling fluid inlet for receiving cooling fluid from a cooling fluid line of a vehicle cooling system. The degassing system further includes a degassing chamber for degassing the cooling fluid to remove gas from the cooling fluid. Movement of the cooling fluid within the degassing chamber causes the gas to be separated from the cooling fluid. The degassing system further includes a cooling fluid outlet for returning the degassed cooling fluid to the cooling fluid line. The degassing system further includes a gas outlet for venting the removed gas from the degassing chamber.
Absstract of: DE102023210614A1
Die vorgestellte Erfindung betrifft ein Brennstoffzellensystem (100) zum Wandeln von Energie, wobei das Brennstoffzellensystem (100) umfasst:- einen Brennstoffzellenstapel (101), der ein Kathodensubsystem (103) und ein Anodensubsystem (105) umfasst,- ein Luftfördersystem (107),wobei das Luftfördersystem (107) ein erstes Verdichterlaufrad (109) und ein zweites Verdichterlaufrad (111) umfasst,wobei das erste Verdichterlaufrad (109) mit einem ersten Luftleitpfad (113) fluidleitend gekoppelt ist,wobei das zweite Verdichterlaufrad (111) mit einem zweiten Luftleitpfad (115) fluidleitend gekoppelt ist,wobei der erste Luftleitpfad (113) dazu konfiguriert ist, einen ersten Luftmassenstrom von dem ersten Verdichterlaufrad (109) in das Kathodensubsystem (103) zu leiten,wobei der zweite Luftleitpfad (115) dazu konfiguriert ist, einen zweiten Luftmassenstrom von dem zweiten Verdichterlaufrad (111) zu dem Brennstoffzellenstapel (101) zu leiten, um diesen zu entwärmen, undwobei das erste Verdichterlaufrad (109) und das zweite Verdichterlaufrad (111) über eine einzelne gemeinsame Antriebswelle (119) mit einem Antrieb (121) verbunden sind.
Absstract of: DE102023210717A1
Die Erfindung betrifft ein Verfahren zum Ermitteln von Temperaturen (500) eines elektrochemischen Zellenstapels (10, 60) eines Elektrolyseurs eines Elektrolyseuraggregats (51), oder eines Brennstoffzellenaggregats (1), wobei zum Ermitteln von Temperaturen (T) im Zellenstapel (10, 60), temperaturabhängige elektrische Widerstände (R(T)) von Zellstapellagen, insbesondere von Bipolarplatten (100), des Zellenstapels (10, 60) bestimmt werden (501), und aus den bestimmten temperaturabhängigen Widerständen (R(T)) Temperaturen (T) innerhalb des Zellenstapels (10, 60) berechnet werden (502).
Absstract of: DE102023210821A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Luftsystems (1) zur Versorgung mindestens eines Brennstoffzellenstapels (2) mit Luft, umfassend einen Zuluftpfad (3) und ein in den Zuluftpfad (3) integriertes Luftverdichtungssystem (4) mit zwei in Reihe geschalteten, elektromotorisch betriebenen Luftverdichtungsaggregaten (4.1, 4.2), wobei zumindest das nachgeschaltete zweite Luftverdichteraggregat (4.2) ein Verdichterlaufrad (5.1, 5.2) umfasst, das über eine Welle (6.1, 6.2) mit einem Turbinenlaufrad (7.1, 7.2) einer in einem Abluftpfad (8) angeordneten Turbine (9.1, 9.2) gekoppelt ist. Erfindungsgemäß wird zur Limitierung einer auf das zweite Luftverdichteraggregat (4.2) wirkenden Axialkraft unter Beibehaltung des Luftmassenstroms und des Drucks im Zuluftpfad (3) der Zwischendruck zwischen der Turbine (9.2) des zweiten Luftverdichteraggregats (4.2) und einer stromabwärts der Turbine (9.2) in den Abluftpfad (8) integrierten weiteren Drosseleinrichtung (10) in Form einer mit dem ersten Luftverdichteraggregat (4.1) verbundenen weiteren Turbine (9.1) oder in Form eines Druckregelventils verändert, insbesondere angehoben.Die Erfindung betrifft ferner ein Steuergerät zur Ausführung des Verfahrens oder zur Ausführung von Schritten des Verfahrens.
Absstract of: DE102023210732A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Betreiben eines Systems (200) zum Wandeln von Energie.Das vorgestellte Verfahren (100) umfasst das Betreiben (101) eines Energiewandlers (205) des Systems (200) durch Entnahme von flüssigem Wasserstoff aus mindestens einem Wasserstofftank (203) eines Wasserstofftanksystems (201) zum Speichern von Wasserstoff, das Bestimmen (103) eines erwarteten Abschaltzeitpunkts des Energiewandlers (205), das Betreiben (105) des Energiewandlers (205) durch Entnahme von gasförmigem Wasserstoff aus dem mindestens einen Wasserstofftank (203) ab einem Umschaltzeitpunkt vor dem erwarteten Abschaltzeitpunkt, um in einem Verdampfer (217) des Wasserstofftanksystems angesammelten flüssigen Wasserstoff zu verdampfen.
Absstract of: DE102023210605A1
Die vorliegende Erfindung umfasst ein Verfahren (100) zur verbesserten Ansteuerung eines technischen Systems (40) mittels einer technischen Komponente (30), mit folgenden Schritten:- Erfassen (102) von ersten Daten (32) der technischen Komponente (30) durch eine Datensteuereinheit (50), wobei mit den ersten Daten (32) ein charakteristisches Betriebsverhalten der technischen Komponente (30) bestimmt wird;- Übermitteln (104) der ersten Daten (32) über eine erste Schnittstelle (57) an eine erste cloudbasierte Datenverarbeitungseinheit (70);- Erzeugen (106) von zweiten Daten (33) durch ein Aufbereiten der ersten Daten (32) in der ersten cloudbasierten Datenverarbeitungseinheit (70);- Übermitteln (108) der erzeugten zweiten Daten (33) über eine zweite Schnittstelle (75) an eine zweite cloudbasierte Datenverarbeitungseinheit (80);- Verarbeiten (110) der zweiten Daten (33) durch Anwendung eines in der zweiten cloudbasierten Datenverarbeitungseinheit (80) hinterlegten datenbasierten Algorithmus (84), um dritte Daten (34) zu erzeugen;- Übermitteln (112) der erzeugten dritten Daten (34) über eine vierte Schnittstelle (87) an die Datensteuereinheit (50);- zumindest teilweises Ersetzen (114) der voreingestellten ersten Daten (32) der technischen Komponente (30) durch die erzeugten dritten Daten (34), um damit die Ansteuerung des technischen Systems (40) mit der technischen Komponente (30) zu verbessern.
Absstract of: DE102023210583A1
Die Erfindung geht aus von einem Brennstoffzellencluster, insbesondere SOFC Cluster, zur Stromversorgung einer Infrastruktur (12a; 12b; 12c; 12d), insbesondere einer kritischen Infrastruktur, mit mehreren Brennstoffzelleneinheiten (18a, 20a; 18b, 20b; 18c, 20c; 18d, 20d), insbesondere mehreren SOFC-Brennstoffzelleneinheiten, mit einem elektrischen Versorgungsmodul (22a; 22b; 22c; 22d) zur Versorgung der zu versorgenden Infrastruktur (12a; 12b; 12c; 12d) mit elektrischer Energie von den Brennstoffzelleneinheiten (18a, 20a; 18b, 20b; 18c, 20c; 18d, 20d), wobei das elektrische Versorgungsmodul (22a; 22b; 22c; 22d) einen elektrischen Versorgungspfad (24a; 24b; 24c; 24d) aufweist, über den eine elektrische Energie aller Brennstoffzelleneinheiten (18a, 20a; 18b, 20b; 18c, 20c; 18d, 20d) der zu versorgenden Infrastruktur (12a; 12b; 12c; 12d) zuführbar ist.Es wird vorgeschlagen, dass das Versorgungsmodul (22a; 22b; 22c; 22d) einen zweiten elektrischen Versorgungspfad (26a; 26b; 26c; 26d) aufweist, über den eine elektrische Energie aller Brennstoffzelleneinheiten (18a, 20a; 18b, 20b; 18c, 20c; 18d, 20d) der zu versorgenden Infrastruktur (12a; 12b; 12c; 12d) alternativ zu dem ersten Versorgungspfad (24a; 24b; 24c; 24d) zuführbar ist.
Absstract of: DE102023129493A1
Ionenaustauschermembran, die zur Verwendung in einer elektrochemischen Zelle ausgelegt ist und eine von einer Anionenaustauschermembran und einer Protonenaustauschermembran ist, ist an ihrem Außenumfang mit einem isolierenden Rahmen versehen, wodurch eine Membrananordnung gebildet wird. Der Rahmen ermöglicht es, Kräuseln der Ränder der Membran während der Behandlung mit einer Lauge oder einer Säure vor dem Einbau in eine Halterung einer elektrochemischen Zelle zu verhindern. Die Erfindung betrifft auch einen elektrochemischen Zellenstapel und ein Verfahren zur Handhabung der Membran.
Absstract of: DE102024109801A1
Eine Ausführungsform einer Eine Einheitszelle (10) für eine Brennstoffzelle weist auf: einen Anode-Separator (110), einen Kathode-Separator (120), einen Rahmen (200), welcher zwischen dem Anode-Separator (110) und dem Kathode-Separator (120) angeordnet ist, eine Membran-Elektroden-Einrichtung (300) und ein Paar von Gasdiffusionsschichten (400), welche jeweilig zugeordnet mit einer ersten und einer zweiten Seite der Membran-Elektroden-Einrichtung (300) verbunden sind. Der Rahmen (200) weist auf: mehrere Filme (210, 220), welche aneinander laminiert sind, ein Durchgangsloch (TH), welches in einem zentralen Abschnitt des Rahmens (200) angeordnet ist, ein Verteilkanalloch (MH1, MH2), welches in einem Randabschnitt des Rahmens (200) angeordnet ist, wobei das Verteilkanalloch (MH1, MH2, MH3) dazu eingerichtet ist, ein Durchströmen eines Fluids zu erlauben, und einen Schlitz (211, 221), welcher in einer ersten Mehrzahl der mehreren Filme (210, 220) angeordnet ist, wobei sich der Schlitz (211, 221) von dem Verteilkanalloch (MH1, MH2) aus in Richtung zum Durchgangsloch (TH) erstreckt und so geschnitten ist, dass er einen Fluidströmungsweg bildet, wobei die Membran-Elektroden-Einrichtung (300) und das Paar von Gasdiffusionsschichten (400) in dem Durchgangsloch (TH) des Rahmens (200) angeordnet sind.
Absstract of: DE102023210745A1
Die Erfindung geht aus von einem Verfahren (10) zur Herstellung einer elektrochemischen Zellenvorrichtung (12), insbesondere Halbzelle, wobei in zumindest einem Verfahrensschritt ein Metallträger (14) der elektrochemischen Zellenvorrichtung (12) bereitgestellt wird, welcher zumindest eine Ausnehmung (16) aufweist, und wobei in zumindest einem Verfahrensschritt zumindest eine Funktionsschicht (18, 20, 22, 24) der elektrochemischen Zellenvorrichtung (12) auf den Metallträger (14) aufgebracht wird,Es wird vorgeschlagen, dass in zumindest einem Verfahrensschritt die zumindest eine Funktionsschicht (18, 20, 22) in einem offenen Zustand der zumindest einen Ausnehmung (16) an dem Metallträger (14) angeordnet wird.
Absstract of: DE102023210819A1
Die Erfindung betrifft eine Vorrichtung zum Befeuchten eines Gasstroms, vorzugsweise Luft, aufweisend eine semipermeable Membran (1), über die Wasserdampf und Wärme transportierbar sind. Erfindungsgemäß ist die Membran (1) lamellenförmig zu einer Vielzahl von Membranlamellen gefaltet, die in sternförmiger Auffächerung innerhalb eines Gehäuses (2) angeordnet sind. Sie trennen dabei einen in radialer Richtung äußeren Gasraum (3) von einem in radialer Richtung inneren Gasraum (4).Die Erfindung betrifft ferner ein Luftsystem zur Luftversorgung mindestens eines Brennstoffzellenstapels, umfassend eine Vorrichtung nach einem der erfindungsgemäßen Ansprüche, wobei der innere Gasraum (4) einem kalten, trockenen Luftstrom zugeordnet ist und der äußere Gasraum (3) einem warmen, feuchten Luftstrom zugeordnet ist.
Absstract of: DE102023210611A1
Die vorgestellte Erfindung betrifft ein Trocknungsverfahren zum Trocknen eines Brennstoffzellenstapels.Das Trocknungsverfahren (100) umfasst:- Ausblasen (101) eines Kathodensubsystems des Brennstoffzellensystems mit einem vorgegebenen Luftlambdawert, um den Brennstoffzellenstapel zu trocknen,- Einstellen (103) konstanter Betriebsbedingungen des Brennstoffzellenstapels,- Bestimmen (105) einer Kathodendruckdifferenz zwischen einem Kathodeneinlass und einem Kathodenauslass,- Bestimmen (107) einer Anodendruckdifferenz zwischen einem Anodeneinlass und einem Anodenauslass,- Ermitteln (109) eines Kathodenkennwerts anhand eines Gradienten eines Verlaufs der Kathodendruckdifferenz,- Ermitteln (111) eines Anodenkennwerts anhand eines Gradienten eines Verlaufs der Anodendruckdifferenz,- Abgleichen (113) des Kathodenkennwerts mit einem vorgegebenen Kathodenschwellenwert,- Abgleichen (115) des Anodenkennwerts mit einem vorgegebenen Anodenschwellenwert,- Beenden (117) des Ausblasens (101) des Kathodensubsystems für den Fall, dass der Kathodenkennwert unter den Kathodenschwellenwert und/oder der Anodenkennwert unter den Anodenschwellenwert sinkt.
Absstract of: DE102023210597A1
Die Erfindung geht aus von einem Verfahren zu einem Betrieb eines Brennstoffzellensystems (10), wobei in einem Verfahrensschritt eine Temperatur einer Brennstoffzelleneinheit (12) des Brennstoffzellensystems (10) mittels einer Luftzufuhrrate reguliert wird.Es wird vorgeschlagen, dass die Luftzufuhrrate in zumindest einem Betriebszustand zumindest in Abhängigkeit von einer Änderungsrate eines-Temperatur-Sollwerts (22) der Brennstoffzelleneinheit (12) ermittelt wird.
Absstract of: DE102023129903A1
Um eine elektrochemische Vorrichtung, umfassend einen Stapel aus mehreren elektrochemischen Einheiten, die längs einer Stapelrichtung aufeinander folgen, wobei jede elektrochemische Einheit jeweils eine Bipolarplatte umfasst, die mit mindestens einer Spannungsabgriffsstelle versehen ist, zu schaffen, deren Stapel aus elektrochemischen Einheiten für eine kontinuierliche Messung der elektrischen Potentiale der Bipolarplatten des Stapels in sicherer, zuverlässiger und robuster Weise elektrisch kontaktierbar und einfach aufgebaut ist, wird vorgeschlagen, dass jede Bipolarplatte mindestens eine erste Spannungsabgriffsstelle einer ersten Art und eine erste Spannungsabgriffsstelle einer zweiten Art aufweist, wobei die erste Spannungsabgriffsstelle der ersten Art und die erste Spannungsabgriffsstelle der zweiten Art bezüglich einer Rotation um 180° um eine zur Stapelrichtung parallele Symmetrieachse der Bipolarplatte nicht symmetrisch zueinander an der Bipolarplatte ausgebildet und angeordnet sind und wobei in dem Stapel die ersten Spannungsabgriffsstellen der ersten Art mehrerer Bipolarplatten längs der Stapelrichtung in einer ersten Reihe übereinander liegen und die ersten Spannungsabgriffsstellen der zweiten Art mehrerer Bipolarplatten längs der Stapelrichtung in einer zweiten Reihe übereinander liegen, wobei die erste Reihe und die zweite Reihe von Spannungsabgriffsstellen benachbart zueinander angeordnet sind.
Absstract of: DE102023211776A1
Die Erfindung geht aus von einem Verfahren zu einer Abschätzung eines Kraftstoffausnutzungsgrads (FUStk) und eines Sauerstoff-zu-Kohlenstoff-Verhältnisses (ϕOC) eines Brennstoffzellenstacks (12) in einer Brennstoffzellenvorrichtung (10).Es wird vorgeschlagen, dass in zumindest einem Verfahrensschritt (14) der Kraftstoffausnutzungsgrad (FUStk) und ein Sauerstoff-zu-Kohlenstoff-Verhältnis (ϕOC) mittels eines Zustandsraummodells (16) eines Brennstoffzellenpfads (18) der Brennstoffzellenvorrichtung (10) abgeschätzt wird, wobei das Zustandsraummodell (16) mittels eines Kalman-Filter-Algorithmus (20) angepasst wird.
Absstract of: DE102023210744A1
Die Erfindung geht aus von einer Testvorrichtung (10) für eine elektrochemische Zelle (12), insbesondere für eine elektrochemische Hochtemperaturzelle, mit zumindest einer Messeinheit (14) zu einer sehr schnellen Erfassung zumindest eines Testparameters der elektrochemischen Zelle (12) und mit zumindest einem Probehalter (16) zu einer Vorgabe einer definierten Position der elektrochemischen Zelle (12) relativ zu der Messeinheit (14) während der Erfassung des Testparameters.Es wird vorgeschlagen, dass zumindest ein Grundkörper (18, 20) des Probehalters (16) zumindest teilweise, insbesondere zumindest im Wesentlichen vollständig, aus Metall oder Keramik gefertigt ist.
Absstract of: DE102023210730A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Betreiben eines Systems (200) zum Wandeln von Energie, wobei das Verfahren (100) umfasst:- Deaktivieren (101) eines Energiewandlers (205) des Systems (200),- Ermitteln (103) eines Abstelldrucks in mindestens einem Tank (203) eines Tanksystems (201) zum Speichern von Wasserstoff,- Abgleichen (105) des ermittelten Abstelldrucks mit einem Druckschwellenwert,- Aktivieren (107) des Energiewandlers (205) für den Fall, dass der ermittelte Abstelldruck größer oder gleich dem Druckschwellenwert ist, sodass durch den Energiewandler (205) Wasserstoff aus dem mindestens einen Tank (203) verbraucht und in elektrische Energie umgewandelt wird,- Speichern (109) von durch den Energiewandler (205) bereitgestellter elektrischer Energie in einem Energiespeicher (207) des Systems (200).
Absstract of: DE102023210731A1
Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems (1) mit mehreren Brennstoffzellenstapeln (2), die über ein Luftsystem (3) mit Luft versorgt werden, wobei die Luft über einen Zuluftpfad (4) des Luftsystems (3) zugeführt wird, der sich zur Anbindung der einzelnen Brennstoffzellenstapel (2) in mehrere Einzelzuluftpfade (5) verzweigt, und wobei die Luft vor ihrem Eintritt in einen Brennstoffzellenstapel (2) mit Hilfe mindestens eines Luftverdichteraggregats (6, 7) verdichtet wird. Erfindungsgemäß wird die den Brennstoffzellenstapeln (2) zugeführte Luft wahlweise über ein in den Zuluftpfad (4) integriertes zu- und abschaltbares Luftverdichteraggregat (6) und/oder stackindividuell verdichtet wird, wobei zur stackindividuellen Luftverdichtung in den Einzelzuluftpfaden (5) angeordnete Luftverdichteraggregate (7) eingesetzt werden.Die Erfindung betrifft ferner ein Brennstoffzellensystem (1) mit mehreren Brennstoffzellenstapeln (2), das zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahrens betreibbar ist.
Absstract of: KR20250058503A
본 발명은 연료전지용 전기화학 촉매로 단일원자촉매의 제조방법에 관한 것으로, 보다 상세하게는 이산화탄소 활성화 방법(CO2 activation)을 통해 단일 원자 촉매 내부의 탄소 결함을 미세 조절하여 결함 구조 및 전자구조가 최적화함으로써 연료전지 캐소드 극의 산소 환원 반응의 성능을 극대화하도록 한 연료전지용 전기화학 촉매의 제조방법 및 이에 의해 제조된 연료전지용 단일원자촉매에 관한 것이다.
Absstract of: KR20250058602A
본 발명의 일 실시예에 따른 암모니아 분해 장치는, 암모니아가 공급되는 암모니아 공급부, 암모니아가 이동하면서 분해되는 분해 공간, 분해된 암모니아 분해가스가 배출되는 분해가스 배출부, 연료전지의 애노드 배가스가 공급되는 제1 배가스 공급부, 연료전지의 캐소드 배가스가 공급되는 제2 배가스 공급부, 상기 애노드 배가스와 상기 캐소드 배가스가 연소되는 연소 공간, 및 상기 연소 공간에서 연소된 배가스를 이동시키는 배가스 유로를 포함하고, 상기 분해 공간은 상기 연소 공간과 상기 배가스 유로 사이에 위치할 수 있다.
Absstract of: KR20250058601A
본 발명의 일 실시예에 따른 암모니아 분해 장치는 암모니아가 공급되는 암모니아 공급부, 암모니아가 이동하면서 분해되는 분해 공간, 분해된 암모니아 분해가스가 배출되는 분해가스 배출부, 연료전지의 애노드 배가스가 공급되는 제1 배가스 공급부, 연료전지의 캐소드 배가스가 공급되는 제2 배가스 공급부, 상기 애노드 배가스와 상기 캐소드 배가스가 연소되는 연소 공간, 상기 연소 공간에서 연소된 배가스를 배출하는 배가스 배출부, 및 상기 연소 공간에 삽입된 복수의 연소촉매 카트리지를 포함하고, 상기 연소촉매 카트리지는 연소촉매가 코팅된 담지체와 상기 담지체를 지지하는 프레임을 포함할 수 있다.
Absstract of: US2025130132A1
A manifold can include a manifold body including a fluid passage allowing a fluid to flow and a port provided to discharge the fluid from the fluid passage, a pipe inserted into the port of the manifold body, and including a pipe fluid passage connected to the fluid passage when the pipe is inserted into the port, a nut member inserted into the port and coupled to the manifold body while supporting the pipe, and a sealing member provided to receive a sensing dye inside the sealing member and to discharge the sensing dye out of the port through the fluid flowing of the port from the fluid passage or the pipe fluid passage.
Absstract of: CN119111005A
The invention relates to an electrode plate, namely a cathode plate or an anode plate, for a bipolar plate (100), in particular for a fuel cell stack of a fuel cell vehicle, having a plate orientation device (110/120), the invention relates to a method for orienting an electrode plate (101/102) for assembling two electrode plates (102, 101) into a bipolar plate (100) in relation to a second electrode plate (102/101), which corresponds thereto and has a plate orienting device (120/110) thereof, said plate orienting device (110/120) forming, at least in part, a bipolar plate positioning device (105, 105 ') of the bipolar plate (100), and a plate orienting device (105, 105') for orienting the electrode plate (101/102) relative to the second electrode plate (102/101), which corresponds thereto and has the plate orienting device (120/110) thereof, when assembling the two electrode plates (102, 101) into the bipolar plate (100). 110, 120) for stacking the bipolar plate (100) in the fuel cell stack (10). The invention further relates to a method for manufacturing the fuel cell stack (10).
Absstract of: AU2023251599A1
A redox flow battery includes a cell that has first and second electrodes and an ion-exchange layer there between, first and second circulation loops that are fluidly connected with, respectively, the first and second electrodes, first and second electrolyte storage tanks in, respectively, the first and second circulation loops, first and second electrolytes contained in, respectively, the first and second circulation loops, and a Raman spectrometer on at least one of the first or second circulation loops for determining a state-of-charge of at least one of the first or second electrolytes. The Raman spectrometer includes a laser source that is rated to emit a laser of a wavelength of 694 nanometers to 1444 nanometers.
Absstract of: CN118830107A
An apparatus having at least two thermal zones of different temperatures, each thermal zone being thermally isolated from one another. The ambient air flow is used to isolate the two zones. The housing may have a double-walled structure that defines an air conduit between the two walls, above, below, and/or around the sides. A heat release device may be mounted within the housing. In operation, a blower within the housing draws air into an air conduit at the rear of the housing. Inlet air flows around the shell and then enters the heat release device. A cold zone may be located within the housing upstream of the blower, remaining cooled by the ambient air flow. A hot zone may be present downstream of the blower. The third intermediate temperature zone may be located downstream of the blower, upstream of the device. The heat release device may be physically isolated from the cold zone by the blower and an insulating wall on which the blower may be mounted. The ambient air fed to the hot zone may be an oxygen source of the heat release device.
Absstract of: JP2022185195A
To provide a fuel cell ship capable of reducing danger derived from a fuel.SOLUTION: A fuel cell ship that is a fuel cell ship for propelling a hull using power supplied from a fuel cell for generating power by an electrochemical reaction of a fuel includes compartments including an emission source of the fuel, and first detectors which are arranged in the compartments and detect the fuel. When it is detected by the first detectors that concentration of the fuel in the partition is equal to or more a first threshold, power source supply to non- explosion-proof devices in the compartments is stopped.SELECTED DRAWING: Figure 2
Absstract of: US2025129869A1
A manifold may include a pipe, a nut member at an outer circumferential surface of the pipe, and a manifold body including a port having a concave shape extending into the manifold body from an outer surface of the manifold body, wherein a first portion the nut member is inserted into the port, and the manifold body including a locking part protruding on the outer surface and engaging with a second portion of the nut member to prevent the nut member inserted into the port from being rotated and loosened.
Absstract of: JP2025068852A
【課題】燃料ガスと酸化剤ガスとの混合ガスを燃焼させるものにおいて、簡易な構成により燃焼室内でガスを均一に分散させて燃焼性の向上を図る。【解決手段】燃焼器ユニットは、対象物と仕切り壁との間に形成される燃焼室と、第1ガス供給部と、第2ガス供給部と、を備える。第1ガス供給部は、仕切り壁により燃焼室と隔てられると共に仕切り壁を含む内壁により画成される第1空間を有し、燃料ガスおよび酸化剤ガスのうちの一方である第1ガスを第1空間に導入し、導入した第1ガスを仕切り壁に形成された貫通孔から燃焼室に供給する。第2ガス供給部は、所定の隙間を空けて内壁を覆うように設けられた外壁と内壁とにより画成される第2空間を有し、燃料ガスおよび酸化剤ガスのうち他方である第2ガスを第2空間に導入し、導入した第2ガスを対象物と仕切り壁との間の側部から燃焼室に供給する。【選択図】図5
Absstract of: US2024139707A1
Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
Absstract of: TW202341559A
A modular fuel cell subsystem includes multiple rows of modules, where each row comprises a plurality of fuel cell power modules and a power conditioning module containing a DC to AC inverter electrically connected the power modules. In some embodiments, a single gas and water distribution module is fluidly connected to multiple rows of power modules, and a single mini power distribution module is electrically connected to each of the power conditioning module in each row of modules. In some embodiments, each row of modules further includes a fuel processing module located on an opposite side of the plurality of fuel cell power modules from the power conditioning module. Fuel and water connections may enter each row from the side of the row containing the fuel processing module, and electrical connections may enter each row from the side of the row containing the power conditioning module.
Absstract of: US2022178498A1
A power supply 100 is described. The power supply 100 has a first electrical outlet 110 and comprises: optionally a set of hydrogen storage devices 200, including a first hydrogen storage device 200A, a set of heaters 300, including a first heater 300A, a first releasable fluid inlet coupling 410 and/or a first releasable fluid outlet coupling 510; wherein the first hydrogen storage device 200A comprises: a pressure vessel 230A, having a first fluid inlet 210A and a first fluid outlet 220A, comprising therein a thermally conducting network 240A optionally thermally coupled to the first heater 300A, wherein the pressure vessel 230A is arranged to receive therein a hydrogen storage material 250A in thermal contact, at least in part, with the thermally conducting network 240A, wherein the first fluid inlet 210A and/or the first fluid outlet 220A are in fluid communication with the first releasable fluid inlet coupling 410 and/or the first releasable fluid outlet coupling 510, respectively; and preferably, wherein the thermally conducting network 240A has lattice geometry and/or a fractal geometry in two and/or three dimensions.
Absstract of: DE102023210612A1
Die vorgestellte Erfindung betrifft ein Betriebsverfahren (100) zum Betreiben eines Brennstoffzellensystems (200), das ein Strahlpumpenwasserstoffdosierventil (209) und ein Bypasswasserstoffdosierventil (211) umfasst, wobei das Betriebsverfahren (209) umfasst:- Ermitteln (101) einer Wasserstoffkonzentration in einem Anodensubsystem (205) des Brennstoffzellensystems (200),- Ermitteln (103) eines Ist-Lambdawertes anhand der ermittelten Wasserstoffkonzentration,- Bestimmen (105) von Sollwerten für eine Bewegung des Strahlpumpenwasserstoffdosierventils (209) und des Bypasswasserstoffdosierventils (211) anhand einer Abweichung zwischen dem Ist-Lambdawert und einem vorgegebenen Soll-Lambdawert,- Einstellen (107) der Sollwerte an dem Strahlpumpenwasserstoffdosierventil (209) und dem Bypasswasserstoffdosierventil (211), wobei die Sollwerte angepasst werden, wenn sich eine Wasserstoffkonzentration im Anodensubsystem (205) und/oder eine Lastforderung an das Brennstoffzellensystem (200) ändert.
Absstract of: DE102023130128A1
Um eine Brennstoffzellenvorrichtung umfassend zumindest eine in einer Gehäuseeinrichtung angeordnete Brennstoffzelleneinheit und ein zumindest eine Leitungseinrichtung für ein Brennstoffmedium und eine Leitungseinrichtung für ein Oxidationsmedium aufweisendes Leitungssystem zu verbessern, wird vorgeschlagen, dass ein in dem Leitungssystem angeordneter ein Ejektorelement aufweisender Ejektoreinsatz in einem Inneren der Gehäuseeinrichtung angeordnet ist.
Absstract of: DE102023129358A1
Die Offenbarung betrifft generell ein Verfahren (38) zum Betreiben eines Hybridfahrzeugs (10) und ein Hybridfahrzeug (10), das zumindest eine Brennstoffzelle (16) und einen Energiespeicher (14) aufweist. Ein Ladezustand des Energiespeichers (14) des Hybridfahrzeugs (10) wird in einem Stillstand des Hybridfahrzeugs (10) überwacht. Die Brennstoffzelle (16) wird in dem Stillstand des Hybridfahrzeugs (10) zum Laden des Energiespeichers (14) betrieben, zumindest sofern der Ladezustand des Energiespeichers (14) einen ersten Ladezustandsschwellenwert unterschreitet. Durch das Betreiben der Brennstoffzelle (16) wird eine Abwärme verursacht. Ein Fahrzeuginnenraum (24) des Hybridfahrzeugs (10) und/oder ein Laderaum des Hybridfahrzeugs (10) wird mit der verursachten Abwärme und/oder mit einem elektrischen Heizelement (28) geheizt, für das ein erster Versorgungsstrom aus dem Energiespeicher (14) gewährleistet wird.
Absstract of: DE102024107989A1
Kühlmittelbehälter mit Ionenfilter (200), wobei der Kühlmittelbehälter einen Hauptkörper (100) aufweist, in dem ein Kühlmittel zur Kühlung eines Brennstoffzellenstapels gespeichert ist, und der Ionenfilter (200) so konfiguriert ist, dass er selektiv mit einer Kühlmittelleitung (L) verbunden ist, durch die das Kühlmittel fließt, um in dem Kühlmittel enthaltene Ionen zu entfernen, wenn sich ein gemessener Isolationswiderstandswert eines Brennstoffzellensystems ändert.
Absstract of: AU2023315806A1
A metal-air battery including: a current collector; a metal electrode including a metal and contacting the current collector; an air electrode on the metal electrode and opposite the current collector; a solid electrolyte between the metal electrode and the air electrode; a discharge product of the metal on the air electrode; wherein the metal-air battery is configured to release the discharge product.
Absstract of: EP4544893A1
A work vehicle includes a fuel cell module including a fuel cell stack, a motor connected to the fuel cell module, a travel device to be driven by the motor, a control device to control the motor, and a positioning system. The control device changes a manner of stopping the motor when a travel stop command is issued during motor operation, depending on whether the position of the work vehicle identified by the positioning system is within a field or not. The control device makes a time from when the travel stop command is issued until the motor stops shorter when the position of the work vehicle is within the field than when the position of the work vehicle is outside the field.
Absstract of: EP4545688A1
An object of the present invention is to provide an electrolyte membrane having a good joining property with a catalyst layer. The present invention mainly relates to an electrolyte membrane including a layer (A) containing a polymer electrolyte, and a layer (B) existing on at least one face of the layer (A), wherein a particle concentration (Y1) in an interface region of the layer (B), on the layer (A) side, is higher than a particle concentration (Y2) in another interface region of the layer (B), on the opposite side to the layer (A). The particle concentration (Y1) and the particle concentration (Y2) are ratios of the mass of particles existing in the interface region to the total mass of solids existing in the interface region.
Absstract of: EP4545687A1
An object of the present invention is to provide an electrolyte membrane having an excellent joining property between an electrolyte membrane and a catalyst layer. The present invention mainly relates to an electrolyte membrane including a layer (A) containing a polymer electrolyte, and a layer (B) on at least one of the faces of the layer (A), wherein porosity (X1) in an interface region of the layer (B), on the layer (A) side, is higher than porosity (X2) in another interface region of the layer (B), on the opposite side to the layer (A).
Absstract of: EP4545597A1
A rubber composition comprising, based on 100 parts by weight of (A) a copolymer rubber polymer comprising at least one of ethylene-butene-non-conjugated diene terpolymer rubber, ethylene-propylene-non-conjugated diene terpolymer rubber, and ethylene-propylene copolymer rubber, 35 to 55 parts by weight of (B) carbon black having an iodine adsorption of 10 to 25 mg/g and a DBP oil absorption of 30 to 140 ml/100 g, 5 to 23 parts by weight of (C) a linear hydrocarbon-based softener having a kinematic viscosity at 40°C of 8 to 500 mm<sup>2</sup>/sec and a pour point of -30°C or less, and 0.5 to 10 parts by weight of (D) an organic peroxide. The rubber composition that gives a vulcanizate having resistance in a wide temperature range from low to high temperatures, and that can sufficiently satisfy functions required as sealing materials when used as a sealing material, for example, a sealing material for fuel cell separators.
Absstract of: EP4546471A1
A catalyst electrode according to an embodiment of the present disclosure includes a metal layer; and a catalyst layer formed on the metal layer, wherein the catalyst layer includes iridium and palladium.
Absstract of: EP4546474A1
A railway vehicle (10) comprising:- a propulsion module (12),- a fuel cell power module (14),- a cooling cycle (18) comprising at least one heat exchanger (34) for receiving a stream of heated refrigerant (36) from the fuel cell power module and a stream of cooling air (30), and for producing a stream of cooled refrigerant (38) and a stream of heated air (40), the fuel cell power module being adapted for receiving the stream of cooled refrigerant and producing the stream of heated refrigerant,- a reservoir (20) for collecting residual water (22) from the fuel cell power module,- a precooling system (24) for receiving a stream of water (26) from the reservoir and a stream of air (28) and for evaporating part of the stream of water in the stream of air in order to obtain the stream of cooling air.
Absstract of: EP4545540A1
The present invention refers to novel cluster compounds particularly suitable for electrochemical applications as well the synthesis and use thereof in redox flow batteries, photocatalysis and medical applications. The cluster compounds of the present invention comprise a charged or non-charged complex as well as an optional plurality of counterions and provide high charge densities in aqueous electrolytes.
Absstract of: EP4545542A1
The present invention refers to novel cluster compounds particularly suitable for electrochemical applications as well the synthesis and use thereof in redox flow batteries, photocatalysis and medical applications. The cluster compounds of the present invention comprise an ion and a plurality of counterions and provide high charge densities in aqueous electrolytes by wherein the ligand of the ion comprises a substituted or unsubstituted linear hydrocarbon chain having three or more carbon atoms linearly bound between at least two of the two or more carboxy groups; a substituted or unsubstituted linear hydrocarbon chain having two carbon atoms between at least two of the two or more carboxy groups and wherein the hydrocarbon chain comprises one or more of an amino group, a further carboxy group, and a sulfate group; or a lactone comprising two or more hydroxy groups.
Absstract of: EP4546473A1
A vehicle fuel cell system assembly (1) comprising- a first fuel cell system (100) comprising a first sensor (110) and a first control unit (120) adapted to control the first fuel cell system (100) based on a value of the first sensor (110),- a second fuel cell system (200) comprising a second sensor (210) and a second control unit (220) adapted to control the second fuel cell system (200) based on a value of the second sensor (210), and- a common supply (50) of coolant, air or fuel to the first and second fuel cell systems (100, 200),wherein the vehicle fuel cell system assembly (1) is configured to perform a sensor plausibility check of the first sensor (110) and the second sensor (210) and use a value of a sensor (110, 210) that has passed the plausibility check instead of a value of a sensor (110, 210) that has not passed the plausibility check.
Absstract of: EP4545832A1
Die Erfindung betrifft ein Transportleitungssystem (10) zum Transport von zumindest zwei Fluiden, das Transportleitungssystem (10) umfassend eine Haupt-Transportleitung (20) zum Transport von einem ersten Fluid und zumindest eine innere Nachrüst-Transportleitung (30) zum Transport von einem zweiten Fluid, wobei die zumindest eine innere Nachrüst-Transportleitung (30) nachträglich innerhalb der Haupt-Transportleitung (20) installiert ist, wobei die zumindest eine innere Nachrüst-Transportleitung (30) zumindest abschnittsweise flexibel ausgestaltet ist und wobei die innere Nachrüst-Transportleitung (30) zumindest eine Zuführschnittstelle (32) zur Zuführung des zweiten Fluides und zumindest eine Abführschnittstelle (34) zur Abführung des zweiten Fluides umfasst. Ferner betrifft die Erfindung ein chemisches Energieumwandlungssystem (100) zur chemischen Umwandlung von Energie mit zumindest einem Transportleitungssystem (10) sowie eine Verwendung des Transportleitungssystems (10) mit einem chemischen Energieumwandlungssystem (100).
Absstract of: EP4546472A1
The invention relates to an electrochemical device (1) comprising:- at least one, preferably a plurality of, electrochemical cell (4) comprising a fuel electrode an oxygen electrode and a membrane,- at least one fluid inlet line (2) leading to the fuel electrode of the at least one electrochemical cell (4),- at least one fluid outlet line (3), exiting the fuel electrode of the at least one electrochemical cell (4),- at least a first co-fluid line leading to the oxygen electrode of the at least one electrochemical cell,- a reformer with an integrated heat exchanger (5) located upstream to the at least one electrochemical cell (4),- at least one hot stream line (6) to provide heat to the fluid inlet line (2),- at least two temperature sensors (T) for detecting the inlet temperature of the at least one fluid and/or for detecting the at least one outlet temperature of the at least one fluid, preferably at a reformer inlet side and/or a reformer outlet side.A first pre-heater (7) is arranged between the reformer (5) and the at least one electrochemical cell (4). The fluid inlet line (2) is in fluid communication with the reformer (5) and/or first preheater (7) and the hot stream line (6) is in fluid communication with reformer (5) and/or the first preheater (7).
Absstract of: EP4546475A1
According to an aspect, a metal-supported fuel cell structure (100) is provided. The fuel cell structure comprises at least a two fuel cell segments (150, 160, 170, 180). Each of the at least two fuel cell segments are arranged neighboring each other. Each of the at least two fuel cell segments comprises an anode (111, 112, 113, 114), a cathode (121, 122, 123, 124), an electrolyte (131, 132, 133, 134) interposed between the corresponding anode and the corresponding cathode, and a metal-support (141, 142, 143, 144). The anodes together build an anode layer (110). The corresponding anodes of neighboring fuel cell segments are electrically isolated from each other. All the cathodes together build a cathode layer (120). The corresponding cathodes of neighboring fuel cell segment (150, 160) are electrically isolated from each other. All the metal-supports together build a mechanically stabilizing metal-support layer (140). The corresponding metal-supports of neighboring fuel cell segment are electrically isolated from each other. The anode layer, the cathode layer and the electrolyte layer are disposed on a surface of the metal-support layer. At least one cathode is electrically interconnected, via at least one electrical interconnector, with at least one anode and/or metal-support of a neighboring fuel cell segment, thereby establishing a serial connection between the at least two fuel cell segments.
Absstract of: WO2024000001A2
The invention relates to an electrochemical device (1) comprising a connection device (2), electrochemical cells (3), more particularly electrolysis or fuel cells, that can be arranged in a row, and an operating means device (4), wherein electrochemical cells (3) are arranged in a row starting from a first connection zone (5) of the connection device (2) and form a first cell stack (8), and wherein electrochemical cells (3) are arranged in a row starting from at least one second connection zone (6) of the connection device (2) and form a second cell stack (10). The connection device (2) has a joint carrier element (11), on which carrier element (11) the first connection zone (5) and the at least one second connection zone (6) are jointly arranged.
Absstract of: CN119213575A
Embodiments described herein relate to electrode and electrochemical cell material recovery. The electrode material is recycled, so that a large amount of cost can be saved, and the cost of quenching chemicals and the cost of the material can be saved. The separation process described herein includes centrifugal separation, settling separation, flocculant separation, froth flotation, hydrocyclone, vibratory screening, air classification, and magnetic separation. In some embodiments, the methods described herein may include any combination of froth flotation, air classification, and magnetic separation. In some embodiments, the electrolyte may be separated from the active and/or conductive material by drying, subcritical or supercritical carbon dioxide extraction, solvent mass extraction (e.g., with a non-aqueous or aqueous solvent), and/or freeze drying. By applying these separation processes, a high-purity primary product can be separated. These products can be reused or sold to a third party. The processes described herein can be extended to large cell production facilities.
Absstract of: WO2024003229A2
An electrochemical stack comprises a plurality of planar electrochemical cells having surfaces bounded by outlines and disposed surface to surface adjacent one another with bipolar plates disposed there-between, and mounted in openings having corresponding outlines in insulating holders, the holders being clamped together between end plates and there being seals between each end plate and the adjacent holder and between confronting regions of adjacent holders. In the claimed design a plurality of stack modules are provided in the holders and between the end plates. The stack modules preferably have the same orientation in space.
Absstract of: WO2023247756A1
The present invention relates to a method for producing an ion exchange membrane comprising the steps of: a. applying an ionic liquid comprising at least one polymerizable and/or crosslinking group at the cation and/or at the anion on a cellulosic substrate, wherein the cation of the ionic liquid is a heterocyclic aromatic comprising at least one nitrogen as heteroatom, and b. polymerizing and/or crosslinking said at least one polymerizable and/or crosslinking groups forming a polymer or copolymer layer on the cellulosic substrate.
Absstract of: WO2024125835A1
The present invention relates to a block copolymer having at least two different polymer blocks, wherein one polymer block is at least predominantly composed of a first, ion-conducting polymer, the ion-conducting polymer having ion-conductive functional groups, and one polymer block is at least predominantly composed of a second, mechanically flexible polymer, the mechanically flexible polymer having a lower glass transition temperature than the ion-conducting polymer. The present invention also relates to a method for producing a block copolymer, to a membrane and to the use of a membrane.
Absstract of: WO2024056256A1
The present invention relates to a method for detecting a malfunction of a valve assembly (15) in a tank system (11) for a fuel cell system (10), the tank system (11) comprising a plurality of fuel tanks (12, 13, 14), a fuel line assembly (15) for conducting fuel from the fuel tanks (12, 13, 14), and a valve assembly (16), there being an outlet valve (17, 18, 19) for each fuel tank (12, 13, 14) for conducting fuel in a controlled manner from the fuel tanks (12, 13, 14) through the fuel line assembly (15), said method comprising the steps: determining a cumulative actual fuel demand since a start of operation of the fuel cell system (10); calculating a reference fuel demand since the start of operation on the basis of a virtual change in a filling state of the fuel tanks (12, 13, 14); performing a comparison between the actual fuel demand and the calculated reference fuel demand; and detecting a malfunction of the valve assembly (16) on the basis of said comparison. The invention also relates to: a tank system (11); and a computer programme product (23) for carrying out the method according to the invention. The invention also relates to a computer-readable storage means (24) on which a computer programme product (23) according to the invention is stored.
Absstract of: CN222813615U
本实用新型公开了一种氢燃料电池气热循环管理装置,涉及氢燃料电池技术领域,包括电堆,电堆的表面全包围卡接有传热包围框,传热包围框的表面焊接有若干个吸热管,若干个所述吸热管的一侧连通有冷却液回收罩,冷却液回收罩的一端连通有排放管,排放管的一端通过去离子器连接有S形能量释放通道,S形能量释放通道的一端连接有冷却液罐。本实用新型通过排放管的一端连接有S形能量释放通道,S形能量释放通道较传统长直形通道能够增加热量的释放面积,同时S形能量释放通道具有的收缩与扩张段,能够使冷却液与S形能量释放通道内壁发生多次碰撞,加快冷却液中热量的释放速度,提升换热效率。
Absstract of: CN119898895A
本发明公开了污水处理领域的一种人工湿地处理黑臭水体的装置,包括:燃料电池组件包括反应容器、反应容器内由上至下的阴极区、阳极区和缓冲区,阴极区包括有催化填料,阳极区包括有氧化填料,缓冲区包括有缓冲填料,氧化填料为复合材料;通水组件与阳极区的连通、用于为阳极区缓慢通入黑臭水体,反应容器上竖向间隔设有若干水平的出水管;集电组件与阳极区、阴极区电性连接;以及一种制作方法;本发明的有益效果为:通过设置聚丁二酸丁二醇酯、氧化锰和二氧化锰制作的复合材料作为燃料电池的阳极填料,能够减少黑臭物质的形成,提升燃料电池对黑臭水体的处理效果。
Absstract of: CN119905624A
本发明涉及一种氢燃料电池电堆模块叠装方法,装置,设备及介质,使用光学检测模块,扫描待叠装电堆模块的边缘,待叠装电堆模块得到待叠装电堆模块内部各组件的装配位置数据;根据所述装配位置数据,得到待叠装电堆的偏差数据和偏差构型;根据所述待叠装电堆的偏差数据、偏差构型和电堆偏差极限包容区间约束,计算待叠装电堆的叠装可行位置区间,从而得到待叠装电堆的优化位置策略,并根据优化位置策略叠装待叠装电堆。当电堆装配平台上的总堆叠层数达到预设目标值,停止叠装,并在数据处理显示模块储存电堆总体的堆叠层数和装配偏差。与现有技术相比,本发明具有精度高、适应性强和效率高等优点。
Absstract of: CN119905608A
本发明公开了一种氢燃料电池金属极板镀层及其制备方法和应用。所述氢燃料电池金属极板镀层的制备方法包括以下步骤:将氢燃料电池金属双极板室温取出后,进行烘烤,之后停止加热自然降温至室温。本发明通过烘烤过程中的高温可以使膜层中的分子或原子重新排列,形成更加紧密的结构;该重新排列可以减少孔隙率,增加膜层的致密度,进而阻止氢燃料电池弱酸性液体及氟离子通过膜层到达金属基材表面致使基材腐蚀。
Absstract of: CN119905602A
本申请涉及一种铂复合催化剂及其制备方法、膜电极组件及燃料电池。铂复合催化剂的制备方法包括以下步骤:提供石墨烯基铂催化剂,石墨烯基铂催化剂包括石墨烯载体以及负载在石墨烯载体表面的第一铂颗粒;以在常温下为液态的有机化合物为碳源,将有机化合物置于第一管式炉中,石墨烯基铂催化剂置于第二管式炉中,第一管式炉与第二管式炉通过石英管连接,在真空条件下,对第一管式炉和第二管式炉分别进行加热,以在石墨烯基铂催化剂中第一铂颗粒的表面沉积石墨烯层,制备石墨烯层包覆的铂催化剂;以铂源为原料,采用溶胶凝胶法,在石墨烯层包覆的铂催化剂中石墨烯层的表面及石墨烯载体的孔隙中负载第二铂颗粒。制得的铂复合催化剂的催化活性较高。
Absstract of: CN119905607A
本发明公开了一种石墨复合双极板制备方法,包括原料均化、预热处理、热压成型、脱模、应力消除、裁剪修边过程,其中原料均化和应力消除过程可显著提升成品率和产品质量,解决了现有技术成品率低、批次稳定性较差等问题;同时,本发明通过引入石墨烯、碳纤维、炭黑、碳纳米管、金属纤维等导电填料,除了起到石墨颗粒间的桥接作用,以打通导电路径、降低接触电阻,从而提高双极板整体的电导率外,还可以提高材料的力学性能,特别是对抗弯强度有较明显的提升作用;此外,本发明工艺简单、调整灵活,特种设备需求较少,设备投资小,适合推广。
Absstract of: CN119905616A
本申请适用于汽车技术领域,提供了一种燃料电池系统的控制方法、装置、车载终端及介质,所述方法包括:获取燃料电池系统的电堆的目标电密点的第一空气压力范围和第一空气流量范围,以及空压机的第二空气压力范围和第二空气流量范围;根据第一空气压力范围、第一空气流量范围、第二空气压力范围以及第二空气流量范围,确定系统的目标空气压力范围和目标空气流量范围;从目标空气压力范围内选取目标空气压力,从目标空气流量范围内选取目标空气流量;根据目标空气压力和目标空气流量,对系统进行控制。与现有技术相比,本方法减少了计算量,提高了控制效率。
Absstract of: CN119899042A
本发明涉及无机非金属材料制备技术领域,具体涉及陶瓷与碳质增强碳基复合双极板材料及其制备方法和应用。其中,陶瓷与碳质增强碳基复合双极板材料的制备方法,包括:将陶瓷增强相、碳质增强相与沥青类化合物作为原材料混匀并进行热缩聚反应,经溶剂抽提、固液分离得到沥青中间相炭微球原位包覆陶瓷与碳质增强相前驱体;对沥青中间相炭微球原位包覆陶瓷与碳质增强相前驱体进行热压成型获取生坯;对生坯进行烧结碳化处理、浸渍处理制得陶瓷与碳质增强碳基复合双极板材料。本发明通过低成本、短流程高效工艺制备得到了具有优异力学性能、导电性能以及耐电化学腐蚀性能的陶瓷与碳质增强碳基复合双极板材料。
Absstract of: CN119900730A
本申请涉及一种旁通流量控制方法、装置、燃料电池空气系统及车辆,涉及电池技术领域,该方法包括:在燃料电池空气系统的空压机处于喘振工况的情况下,基于空压机的喘振控制流量和入堆流量,确定旁通流量请求值;喘振控制流量为空压机安全运行的最小流量阈值;基于旁通流量请求值,确定燃料电池空气系统的旁通阀的开度前馈值;基于开度前馈值,控制旁通阀的开度,以控制燃料电池空气系统的旁通流量,由此,开度前馈值用于根据旁通流量请求值预测旁通阀所需开度,使得旁通阀的开度调整可以快速响应空压机喘振工况的变化。通过开度前馈值可以快速调整旁通流量使得空压机可以快速恢复稳定运行。
Absstract of: WO2024042812A1
Provided is a stainless steel sheet which is for a fuel cell separator and has excellent press workability and Fe ion elution resistance. The stainless steel sheet has a composition containing, in mass%, 18.0-24.0% of Cr and 3.00% or less of Ni, has a steel microstructure containing an austenitic phase and a ferritic phase, the fraction of the austenitic phase being at least 30% and the total fraction of the austenitic phase and the ferritic phase being at least 95%, and has a total elongation of at least 40%.
Absstract of: CN119905619A
本发明提供一种基于高阶全驱的燃料电池进气系统控制方法,涉及燃料电池技术领域,其包括:构建燃料电池进气系统的动力学模型,并获取动力学模型的状态空间模型;基于状态空间模型构建初始高阶全驱模型;在初始高阶全驱模型中加入未知扰动,得到高阶全驱最优控制模型;基于高阶全驱最优控制模型构建控制律,基于控制律控制燃料电池进气系统。本发明采用全驱最优控制框架设计控制律,系统的非线性项抵消,得到线性定常闭环系统,实现对进气系统关键变量的解耦控制。
Absstract of: CN119905613A
本发明提供一种燃料电池系统及在线性能恢复方法,属于燃料电池的技术领域。其中燃料电池系统,包括:电堆发电模块、外部负载、PLC控制系统、氢气供应系统和氧气供应系统,还包括与电堆发电模块电路信号连接的膜电极性能恢复模块、双极板性能恢复模块以及IGBT控制电路,膜电极性能恢复模块、双极板性能恢复模块均与保温蓄热模块电路连接后与PLC系统电路信号连接,IGBT控制电路与PLC系统电路信号连接。本发明充分利用IGBT电路控制系统和PLC系统之间的协同控制,在持续供电的同时实现对电堆内部部件性能进行实时监测和自动调节,在IGBT控制电路与PLC监测到出现性能下降时,通过膜电极性能恢复模块、双极板性能恢复模块可以实现实时在线活化,快速恢复性能。
Absstract of: CN119905621A
一种膜电极及燃料电池,属于燃料电池领域,燃料电池用膜电极,膜电极包括依次叠置的阴极扩散层、阴极催化剂层、质子交换膜、阳极催化剂层和阳极扩散层,膜电极具有沿氢气流动方向依次布置的第一区域以及第二区域,阴极催化剂层在第二区域的接触角大于其在第一区域的接触角;阴极催化剂层在第二区域的接触角大于阴极扩散层的接触角,阴极催化剂层在第一区域的接触角小于阴极扩散层的接触角。通过上述设置,不仅可以提高阴极催化剂层在第二区域的排水,减小第二区域的阴极水向阳极催化剂层的扩散,避免位于第二区域的阳极催化剂层被水淹,同时增加阴极催化剂层在第一区域的保水性,实现整个阴极催化剂层和阳极催化剂层水分布的均匀性。
Absstract of: CN119905614A
本发明涉及燃料电池技术领域,具体提供了基于燃料电池系统的发电功率分配方法、控制器和燃料电池系统。燃料电池系统包括二次电池和N个并联的燃料电池,方法包括:确定燃料电池系统的外部需求功率、系统内部消耗功率和二次电池的实际充放电功率;根据外部需求功率、系统内部消耗功率和实际充放电功率,确定燃料电池系统的总需求功率;根据总需求功率以及目标功率区间,确定需要调用的燃料电池数量M;从N个并联的燃料电池中选取M个燃料电池,并且各自以发电功率P对外进行供电,其中,P的值根据总需求功率和M确定,因此能够实现对燃料电池系统中,各个并联的燃料电池之间进行发电功率的分配。
Absstract of: CN119905606A
本发明提供一种可重新工作的燃料电池堆,其中形成一个燃料电池的第一隔板和第二隔板通过热熔性粘接剂粘合到膜电极组件(MEA),第一隔板通过第一UV粘接剂膜粘合到另一个燃料电池的第三隔板,第二隔板通过第二UV粘接剂膜粘合到又一个燃料电池的第四隔板,使得在多个燃料电池中,有缺陷的特定燃料电池容易地与燃料电池堆选择性地分离,并且容易地由新的或替换的燃料电池替换。
Absstract of: CN119905622A
本发明涉及一种高电导率质子交换膜的制备方法,包括:配置聚合物溶液;向所述聚合物溶液加入季铵化试剂;加入自由基抑制剂,并在室温搅拌,获取铸膜液;将所述铸膜液倒入超平培养皿中,并放入烘箱中烘膜,完成质子交换膜的制备。本发明的有益效果是:本发明采用了添加不同种类自由基抑制剂的方法来提高质子交换膜的吸酸率,从而提高质子交换膜材料中的亲水相区连续性,进而得到了提高质子交换膜材料的电导率的效果,为提高质子交换膜性能提供了新的路径。
Absstract of: WO2024078885A1
The invention relates to a method for the incineration of waste containing fluorine and noble metals in a chamber furnace, the fluorine content of the waste lying in the range of >5 to 70 wt.%, and the noble metal content of the waste lying in the range of 0.1 to 30 wt.%, and the furnace chamber of the chamber furnace being lined with a chromium corundum material comprising ≥80 wt.% alpha-Al2O3, 1 to 20 wt.% Cr2O3 and 0 to 5 wt.% SiO2.
Absstract of: US2024072339A1
A method and a system for integrating renewable power with a natural gas hydrogen production plant are provided. An exemplary method include generating electricity and a reformed hydrogen stream in a solid oxide fuel cell (SOFC) stack, and providing the electricity to an electrolyzer to generate an electrolysis hydrogen stream. A second stream of electricity is generated in a renewable energy facility, when available, and providing the second stream of electricity to the electrolyzer to increase the generation of the electrolysis hydrogen stream.
Absstract of: KR20250057190A
본 발명에서는 기체수소와 산소를 공급받아 반응시켜 전기에너지를 생산하는 연료전지, 액체암모니아를 저장 및 공급하는 연료탱크, 상기 연료탱크로부터 제1연료라인을 통해 공급되는 액체암모니아를 가온하여 기화시켜 제2연료라인을 통해 배출하고, 상기 연료전지의 작동 중 발생하는 열부하를 감소시켜 정상 작동범위 온도로 유지시키기 위한 냉각수를 제1냉매라인을 통해 상기 연료전지로 공급하되 냉각수를 저장하는 쉘이 상기 연료전지와 제2냉매라인으로 연결되고, 상기 쉘에 양단이 상기 제1 및 제2연료라인과 연결된 나선형 열전달 튜브가 내장된 열교환기, 상기 열교환기로부터 상기 제2연료라인을 통해 배출되는 기체암모니아를 흡열반응으로 질소와 수소로 분해하는 반응기, 상기 반응기로부터 배출되는 반응생성물 중의 질소를 흡착하여 제거하는 분리기 및 시스템의 작동과 압력 및 온도를 전반적으로 제어하는 컨트롤 모듈을 포함하는 액체암모니아 기반 파워팩 통합 열관리 시스템을 개시한다.
Absstract of: WO2025084572A1
Disclosed is a liquid hydrogen-based power pack integrated thermal management system comprising: a fuel cell which is supplied with gaseous hydrogen and oxygen and causes a reaction between the gaseous hydrogen and oxygen to generate electric energy; a hydrogen fuel tank which stores and supplies liquid hydrogen; a heat exchanger which heats and vaporizes the liquid hydrogen supplied from the hydrogen fuel tank via a first hydrogen line and supplies the vaporized hydrogen to the fuel cell via a second hydrogen line, and which supplies cooling water for keeping the fuel cell within a normal operating range temperature by reducing, via a first refrigerant line, the heat load on the fuel cell generated during the operation of the fuel cell, wherein a shell storing the cooling water is connected to the fuel cell via a second refrigerant line, and a spiral heat transfer tube connected at both ends to the first and second hydrogen lines is embedded in the shell; and a control module for overall control of the operation, pressure, and temperature of the system.
Absstract of: US2025132359A1
An embodiment of the present disclosure provides a hydrogen purge system and a method for controlling the same, which are capable of maintaining the hydrogen purge amount constant based on differential pressure between an anode and a cathode, regardless of the size of a hydrogen purge flow path of a purge valve, by allowing the opening degree of the purge valve to the hydrogen purge flow path to be adjusted by a current control or PWM control according to a mapping of the differential pressure between the anode and the cathode of a fuel cell stack.
Absstract of: CN119905618A
本发明公开了一种燃料电池阴极湿度控制装置及方法,属于燃料电池技术领域,用于解决如下技术问题:当前燃料电池阴极湿度控制方法在功耗、响应速度、调控全面性等方面均有一定的缺陷,仍难以满足燃料电池系统高效稳定运行的需求。方法包括:通过湿度传感器及电流传感器,分别测量燃料电池电堆的阴极湿度及负载电流;根据阴极湿度及负载电流,确定燃料电池电堆的当前工作模式;其中,当前工作模式为安全模式、瞬态模式及稳态模式中的一种;基于所述当前工作模式调用对应的空气流量确定策略,并获取当前空气流量需求值;根据当前工作模式以及当前空气流量需求值生成控制信号,控制空气压缩机、调节阀以及背压阀执行控制操作。
Absstract of: CN222813613U
本实用新型公开一种空冷燃料电池双极板组件,包括:阳极板、阴极板和位于阳极板、阴极板之间的金属冷却板,阴极板的反应空气入口靠近第一沟槽、第一脊条一侧设置有若干个第一空气引导槽和位于相邻第一空气引导槽之间的第一空气隔离条,所述第一空气隔离条上具有至少一个第三凹陷部;阴极板的反应空气出口靠近第一沟槽、第一脊条一侧设置有若干个第二空气引导槽和位于相邻第二空气引导槽之间的第二空气隔离条,所述第二空气隔离条上具有至少一个第四凹陷部。本实用新型空冷燃料电池双极板组件使得燃料氢气和反应空气进入各自的沟槽流通更加均匀,改善了燃料电池发电效率的均衡性,从而提高了电池整体的发电效率。
Absstract of: CN222813611U
本实用新型涉及柔性石墨双极板领域,尤其涉及一种金属薄板夹心柔性石墨双极板,金属薄板通过粘结胶固定于上柔性石墨极板和下柔性石墨极板之间,并且金属薄板的上、下两侧均固定设置有多个定位件;上柔性石墨极板的底部固定设置有外框和压件,压件位于外框的内侧,并且下柔性石墨极板的顶部固定设置有内框。本实用新型中,通过定位件和定位腔之间的相互卡设,可以在装配时对金属薄板进行定位,并且通过外框、压件、内框和压槽之间的配合设置,可以在装配时提高粘结胶的涂抹粘结面积,从而即可提高上柔性石墨极板、金属薄板和下柔性石墨极板在装配完成后的稳定性。
Absstract of: CN222804901U
本实用新型公开了一种燃料电池车用直通式化学空气滤清器扁平滤芯,包括骨架,骨架包括筒形结构,筒形结构垂直于其轴线的截面呈跑道形,将短轴和筒形结构的轴线所在平面称为短轴平面,短轴平面所截取的筒形结构的截面呈梯形,梯形的一侧底边长于其另一侧底边,以较长的底边所在端为出气端,以较短的底边所在端为进气端;筒形结构上围绕设有滤层,筒形结构的进气端连接有进气端盖,进气端盖与滤层相接的部分为板状封闭部;筒形结构的出气端连接有出气端盖。截面呈跑道形的骨架形成扁平状滤芯并增强了滤芯的结构强度,适合采用含炭无纺布制作扁平状滤芯。滤层采用出气端大于进气端的结构,使脏气腔各处的气体更均匀地通过滤层,进而提高滤芯使用寿命。
Absstract of: CN222813614U
本实用新型公开了一种单体电池、电池堆、燃料电池发动机和车辆,单体电池包括:沿第一方向层叠设置的阳极板和阴极板、膜电极和电加热模块,膜电极层叠设置于阳极板与阴极板之间,电加热模块设于阳极板与阴极板之间。根据本实用新型的单体电池,通过开启电加热模块可以避免单体电池内部结冰,从而可以较好地提升单体电池在低温环境下的冷启动效率以及单体电池在低温环境下使用的安全性。此外,电加热模块可以同时加热阳极板和阴极板,从而可以提升对单体电池整体的加热效率,同时可以减少电加热模块的数量,利于降低单体电池的成本并控制单体电池的尺寸。
Absstract of: CN222813612U
本实用新型公开一种氢能燃料电池堆,包括上端板、下端板和若干个位于上端板、下端板之间且交替堆叠的双极板、膜电极,双极板包括阳极板、阴极板和位于阳极板、阴极板之间的金属冷却板,所述阳极板、阴极板和金属冷却板各自的一端均具有氢气入口、反应空气入口,各自另一端均具有氢气出口、反应空气出口,阳极板设有若干个第一沟槽,相邻第一沟槽之间通过第一脊条分隔;阴极板设有若干个第二沟槽,相邻第二沟槽之间通过第二脊条分隔;第一脊条沿其延伸方向具有至少一个第五凹陷部,所述第二脊条沿其延伸方向具有至少一个第六凹陷部。本实用新型氢能燃料电池堆改善了燃料电池发电效率的均衡性,从而提高了电池整体的发电效率。
Absstract of: CN222813617U
本实用新型公开了一种燃料电池及包括其的车辆。根据本实用新型实施例的燃料电池包括安装座;第一电堆,所述第一电堆安装在所述安装座的第一位置处;以及第二电堆,所述第二电堆安装在所述安装座的第二位置处,其中,所述第一电堆和所述第二电堆串联;所述第一电堆和所述第二电堆分别连接至同一个气体供给装置。根据本实用新型实施例的燃料电池及包括其的车辆,在保证大功率输出的同时,简化了装置的复杂程度,降低了运行维护成本。
Absstract of: CN119905609A
本发明提供一种高比功率阴极闭合式空冷燃料电池电堆,包括依次堆叠的进气端板、集流绝缘板;每若干个单电池组模块之间设置有复合蜂窝冷却翅片,复合蜂窝冷却翅片的左右两侧连接有密封组件;单电池组模块包括由进气端板向出气端板方向依次堆叠的阳极单面板、阳极密封线、膜电极、阴极密封线、双极板、阳极密封线、膜电极、阴极密封线和阴极单面板;双极板和阴极单面板上设置有阴极流场,阴极流场的阴极流道为多级分支流道,阴极流道内设置有若干个横膈膜结构;横膈膜结构沿空气流向方向凸起,横膈膜结构的中部设置有孔洞。本发明采用高散热效率的翅片设计及高效率的水管理流场结构,可以极大的降低电堆的温差,提升电堆的比功率。
Absstract of: CN119905610A
本发明涉及氢燃料电池技术领域,具体是涉及一种具有高效散热结构的大功率氢燃料电池;包括:限位模块,所述限位模块设有多组能够对氢燃料电池进行安装的限位仓和能够供冷却介质分别朝向所述限位仓内导入和导出的导入通道和导出通道;冷却模块,所述冷却模块固定设置于所述限位模块的顶部,且所述冷却模块的输出端与所述导入通道连通,用以朝向导入通道内输入冷却介质;散热模块,所述散热模块嵌入式安装于所述限位模块内,所述散热模块由多组相互拼接的散热架组成;且每个散热架均设有能够供冷却介质导入和导出的导入口和导出口;本发明不仅能够对热能进行有效汇聚且能够根据使用状态进行动态散热。
Absstract of: CN119905617A
本发明公开了一种燃料电池的氢喷系统控制方法、装置和非易失性存储介质。其中,该方法包括:判断燃料电池中的氢喷系统中的氢喷阀门是否处于开启状态;在氢喷系统中的氢喷阀门处于开启状态的情况下,判断燃料电池中的尾排阀是否开启;在尾排阀开启的情况下,获取调整操作对应的开始时间和持续时长;基于开始时间和持续时长,调整氢喷系统中的氢喷阀门开度,并检测氢喷系统中的氢气压力变化率;在氢气压力变化率符合预设阈值的情况下,确定氢喷系统中氢喷阀门对应的目标开度。本发明解决了目前仅考虑尾排阀开启时损失的氢气流量进而调整氢喷系统的开度不够精准的技术问题。
Absstract of: CN119905623A
本发明的属于液流电池技术领域,提供一种液流电池正极电解液及其制备方法和液流电池。所述正极电解液包括以下组分:亚铁氰化铵、亚铁氰化锂、复合添加剂以及支持电解质;所述复合添加剂包括可溶性普鲁士蓝衍生物和/或聚乙烯吡咯烷。本发明利用两种及以上的亚铁氰化物作为硫铁液流电池正极电解液极大增加了正极侧铁活性物质的浓度,利用可溶性普鲁士蓝衍生物和聚乙烯吡咯烷酮作为复合添加剂,一方面能够削弱混合盐和水的氢键作用,减少水团簇,增强电解液的稳定性,另一方面能够减弱电解液中阴阳离子的相互作用,从而破坏大规模结构团簇,两者相互协同共同提高了电池的性能以及长时循环稳定性。
Absstract of: CN119905620A
本发明涉及一种液流电池复合膜‑电极及其制备方法、液流电池,该液流电池复合膜‑电极,包括:表面涂覆有催化涂层的质子交换膜和两个液体扩散层,其中,质子交换膜包括Nafion膜,质子交换膜包括主体部和位于主体部两侧的多个突触部;每一侧的多个突触部沿着主体部呈平行等间隔的一维阵列排布,两侧的多个突触部关于主体部对称设置;两个液体扩散层与质子交换膜中两侧的多个突触部对应贴合。本发明的液流电池复合膜‑电极,将质子交换膜与电极一体化设计形成液流电池膜‑电极,有效增大了电极的反应面积,同时避免了在反应过程中因催化剂团聚而造成催化效率的衰减。
Absstract of: TW202412369A
An electrochemical cell is disclosed having a porous metal support, at least one layer of a first electrode on the porous metal support, a first electron-blocking electrolyte layer of rare earth doped zirconia on the at least one layer of the first electrode, and a second bulk electrolyte layer of rare earth doped ceria on the first electron-blocking electrolyte layer. The first electron-blocking electrolyte layer of rare earth doped zirconia may have a thickness of 0.5 mum or greater, and the second bulk electrolyte layer of rare earth doped ceria may have a thickness of 4 mum or greater.
Absstract of: CN119899032A
本发明公开了一种固体氧化物燃料电池用管状陶瓷支撑体及其制备方法,属于固体氧化燃料电池技术领域。本发明解决了挤出成型法制备管状SOFC支撑体存在坯体受环境温、湿度影响大,坯体易开裂变形、原料消耗量大、剩余坯料二次利用困难等问题。本发明首先制备粉体材料,然后将其与蜡混合形成浆料,或与NiO混合后再与蜡混合形成浆料,将浆料冷却并捏合得到坯料,将坯料在加热下挤出成型,得到坯体,对坯体进行排蜡和烧结,得到管状陶瓷支撑体。本发明提供的制备方法成品率高,受环境温、湿度影响小,原料消耗量小、坯体不易开裂变形、剩余坯料可重复利用,且制备出的管状支撑体致密性和孔隙率适宜、具有一定硬度,适用于工业化生产和应用。
Absstract of: CN119905611A
本发明涉及一种具有离子过滤器的冷却剂储存器,该冷却剂储存器包括:离子过滤器;以及主体,用于冷却燃料电池堆的冷却剂储存在主体中,其中,离子过滤器安装在主体内并被构造成连接至冷却剂流经的冷却剂管线,以在燃料电池系统的测量的绝缘电阻值改变时去除冷却剂中含有的离子。
Absstract of: CN119905612A
本公开涉及用于控制氢气罐的温度的装置、系统和方法。本公开的示例性实施方式提供一种氢气罐温度控制装置,包括:空气引导装置,位于被配置为冷却燃料电池堆的堆冷却模块与一个或多个氢气罐之间;以及处理器,被配置为通过控制空气引导装置的一个或多个角度来控制一个或多个氢气罐的温度。
Absstract of: CN119905615A
实施方式的用于燃料电池的单元电池包括阳极隔板、阴极隔板、设置在阳极隔板和阴极隔板之间的框架、膜电极组件以及分别结合到膜电极组件的第一侧和第二侧的一对气体扩散层。框架包括层叠在一起的多个膜、设置在框架的中心部的通孔、设置在框架的边缘部的歧管孔,其中歧管孔被构造成允许流体流过其中,以及设置在多个膜中的多个第一膜中的狭缝,狭缝从歧管孔向通孔延伸并且被切割形成流体流动路径,其中膜电极组件和一对气体扩散层设置在框架中通孔中。
Absstract of: CN222813616U
本实用新型公开了一种防虹吸浓度差平衡装置、储液罐及全钒液流电池系统,其中,防虹吸浓度差平衡装置包括:用于与储液罐的进液口连接固定的连接管;固定于所述连接管且与所述连接管密封连接的集液罐,所述连接管位于所述集液罐内的部分设有若干气压平衡孔以使虹吸产生的回流液收集在集液罐中;若干设置于所述集液罐底部以将集液罐中收集的回流液重新回流至储液罐内的回流管;以及,连通于所述连接管底部的平衡浓度管,所述平衡浓度管的末端封闭,且在平衡浓度管上设有若干分流孔。本实用新型能够同时实现防虹吸和平衡浓度差的功能,而无需使用价格高昂的排空阀和布水器,显著降低了生产成本,且能够有效提高整体的空间利用率。
Absstract of: JP2025068228A
【課題】保護膜として要求される性能を有するコーティング皮膜によりインターコネクタの表面を保護することにより固体酸化物型電気化学セルスタックおよび固体酸化物型電気化学セルの本来の性能を発揮することができる固体酸化物型電気化学セルスタックおよび固体酸化物型電気化学セルならびにそのようなインターコネクタを提供する。【解決手段】固体酸化物型電気化学セルスタックは、Fe-Cr系合金からなるインターコネクタ(10)と、インターコネクタの表面に設けられたコーティング皮膜(20)とを有し、コーティング皮膜は、インターコネクタの表面に設けられた、高融点金属を含有する拡散バリア層(21)と、拡散バリア層上の、CuおよびAgのうちの少なくとも一種の金属とNi、Mn、FeおよびCoからなる群より選ばれた少なくとも一種の金属とを含有し、Crを実質的に含有しない合金層(22)とを有する。【選択図】図1
Absstract of: DE102023211776A1
Die Erfindung geht aus von einem Verfahren zu einer Abschätzung eines Kraftstoffausnutzungsgrads (FUStk) und eines Sauerstoff-zu-Kohlenstoff-Verhältnisses (ϕOC) eines Brennstoffzellenstacks (12) in einer Brennstoffzellenvorrichtung (10).Es wird vorgeschlagen, dass in zumindest einem Verfahrensschritt (14) der Kraftstoffausnutzungsgrad (FUStk) und ein Sauerstoff-zu-Kohlenstoff-Verhältnis (ϕOC) mittels eines Zustandsraummodells (16) eines Brennstoffzellenpfads (18) der Brennstoffzellenvorrichtung (10) abgeschätzt wird, wobei das Zustandsraummodell (16) mittels eines Kalman-Filter-Algorithmus (20) angepasst wird.
Absstract of: WO2025084540A1
The present invention relates to a catalyst for an oxygen reduction reaction, comprising: a platinum-based alloy; and a carbon shell formed on the surface of the platinum-based alloy, wherein the platinum-based alloy is an alloy containing any one selected from the group consisting of cobalt (Co), rhodium (Rh), rhenium (Re) and tantalum (Ta).
Absstract of: JP2024030848A
To provide a separator material for fuel cells capable of being used for manufacturing a separator for fuel cells which can secure conductivity and improve drainability by a simple step.SOLUTION: A separator material for fuel cells comprises: a composite material that contains a conductive particle and a binder resin; and a soluble resin layer arranged on both surfaces of the composite material.SELECTED DRAWING: Figure 1
Absstract of: KR20250056694A
본 발명은 고분자 전해질 연료전지용 기체확산 접합체, 이를 포함하는 고분자 전해질 연료전지용 막-전극 접합체 및 이의 제조방법에 관한 것으로서, 산소발생반응(Oxygen Evolution Reaction, OER)의 활성이 증대된 수전해용 촉매 및 이의 제조방법에 관한 것이다.
Absstract of: US2025128613A1
In an embodiment, a silencer of a vehicle's exhaust system for a fuel cell system is capable of reducing high-frequency noise and reducing noise generated from a drain, wherein the silencer includes a housing having an inlet and an outlet, a perforated tube located in the housing, the perforated tube having a plurality of through-holes, at least one baffle interposed between the housing and the perforated tube to partition a space between the housing and the perforated tube into a plurality of resonance chambers, and a cover installed in the housing to support the perforated tube and to partition the most downstream resonance chamber.
Nº publicación: KR20250056669A 28/04/2025
Applicant:
엘티소재주식회사
Absstract of: KR20250056669A
본 발명은 유화액, 카본블랙 및 불소수지 분산액이 혼합된 혼합물을 분산시켜 제조되는 전도성 페이스트 조성물을 제공한다.