Resumen de: US2025129300A1
A gas-oil separation plant (GOSP) system includes a crude inlet line extending to a separation vessel where a sour gas stream may be separated from an inlet fluid stream. The GOSP system provides an H2S membrane system where the sour gas stream may be directed for separation of H2S and an electrolyzer where H2 may be separated from the H2S. The GOSP system also includes a combustion gas turbine where an exhaust containing CO2 is produced and a CO2 membrane system where the CO2 may be separated from the exhaust. The H2 and CO2 may be combined and reacted in a Sabatier reactor to produce CH4 and H2O. The CH4 may be used to fuel the combustion gas turbine and the H2O may be directed to a steam head for use in other processes. Additionally, a sweetened gas stream having the H2S removed may be exported by the GOSP system.
Resumen de: US2025129762A1
A system and method by which energy from ocean waves is converted into hydrogen, and that hydrogen is used to manifest electrical and mechanical energies by an energy consuming device. A portion of the generated electrical power is communicated to water electrolyzers which produce oxygen and hydrogen from water as gases. At least a portion of the generated hydrogen gas is transferred to a transportation ship via a hose-carrying, remotely operated (or otherwise unmanned) vehicle, and subsequently transferred to an energy-consuming module or infrastructur, where a portion of the hydrogen is consumed in order to manifest a generation of electrical energy, a mechanical motion, and/or a chemical reaction.
Resumen de: AU2023359368A1
Electrolyser (1) for production of hydrogen gas and comprising a stack of bipolar electrodes (9) sandwiching ion-transporting membranes (2) between each two of the bipolar electrodes (9). Each bipolar electrode comprises two metal plates (9A, 9B) welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates (9A, 9B) are embossed with a major vertical channel (10A, 10B) and minor channels (11A, 11B) in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates (9A, 9B) so as to also provide coolant channels (11B) in a herringbone pattern inside the coolant compartment.
Resumen de: AU2023391802A1
The present invention pertains to an ammonia decomposing catalyst and a method for producing same. More specifically, the present invention pertains to: an ammonia decomposing catalyst containing an MgAl
Resumen de: AU2025202458A1
A device (1) for performing electrolysis of water is disclosed. The device comprising: a semiconductor structure (10) comprising a surface (11) and an electron guiding layer (12) below said surface (11), the electron guiding layer (12) of the semiconductor structure (10) being configured to guide electron movement in a plane parallel to the surface (11), the electron guiding layer (12) of the semiconductor structure (10) comprising an InGaN quantum well (14) or a heterojunction (18), the heterojunction (18) being a junction between AIN material and GaN material or between AIGaN material and GaN material; at least one metal cathode (20) arranged on the surface (11) of the semiconductor structure (10); and at least one photoanode (30) arranged on the surface (11) of the semiconductor structure (10), wherein the at least one photoanode (30) comprises a plurality of quantum dots (32) of InxGa(1-x)N material, wherein 0.4 x 1. Also a system comprising such device is disclosed. Figure for publication: Fig. 1 30 20 30 20 40 )-12, 16 Fig.1 Fig.2
Resumen de: AU2023352489A1
A water electrolysis apparatus (100) includes: an electrolytic cell (20) for electrolyzing water; a circulation pump (27) that is installed in a water circulation line (23) for supplying water from an oxygen gas-liquid separator (22) to the electrolytic cell (20); an inverter (50) that supplies power to the circulation pump (27); and a control unit (60) that controls the inverter (50) to change the circulating water flow rate of the water circulation line (23).
Resumen de: WO2025081215A1
A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: WO2025081550A1
The present invention relates to the field of photoelectrochemical water splitting for hydrogen production. Disclosed is a silver bismuth sulfide (AgBiS2)-based composite photocathode used for photoelectrochemical water splitting for hydrogen production and a preparation method therefor. The composite photocathode structurally comprises a molybdenum-plated conductive substrate located at the bottom, an AgBiS2 light absorption layer located above the conductive substrate, a CdS buffer layer located above the light absorption layer, a TiO2 protective layer located above the buffer layer, and a Pt hydrogen evolution cocatalyst layer located above the protective layer. The preparation method therefor comprises the following steps: using a spray pyrolysis method to spray on a molybdenum-plated substrate an AgBiS2 layer; then, using a chemical bath deposition method to deposit on the AgBiS2 layer a CdS layer; then, using an atomic layer deposition method to deposit on the CdS layer a TiO2 layer; and finally, using a photo-assisted electrodeposition method to deposit on the TiO2 layer a layer of Pt nanoparticles. The AgBiS2-based photocathode disclosed in the present invention can implement at certain bias voltages efficient and stable photoelectrochemical water splitting for hydrogen production, and the preparation method therefor is simple and low-cost.
Resumen de: WO2025084937A1
A method of producing a gas via electrolysis of water, the method comprising: performing electrolysis of water within one or more electrolysis cells (52) to produce a mixture comprising a liquid and one of hydrogen and oxygen; and separating, within a separator (53), the mixture into a gas and a liquid, wherein the separator operates at a higher pressure than the pressure at which the one or more electrolysis cells operate.
Resumen de: AU2023260588A1
A separator for alkaline electrolysis (1) comprising a porous support (10), a first porous layer (20b) provided on one side of the porous support and a second porous layer (30b) provided on the other side of the porous support, wherein the first and the second porous layer are partially impregnated into the porous support and each have an overlay thickness d1 and d2 respectively, said overlay thickness being defined as the part of each porous layer which is not impregnated into the porous support, characterized in that a) d1 is smaller than the overlay thickness of the second porous layer (d2), and b) d1 is at least 20 µm.
Resumen de: GB2634787A
A method and associated apparatus 50 for the production of gas via electrolysis of water. The method comprises: performing electrolysis of water within one or more electrolysis cells (figure 1,2), to produce a mixture comprising a liquid and at least one of hydrogen and oxygen. The gas(es) and liquid are separated, where the separator 53 operates at a higher pressure than the pressure at which the one or more electrolysis cells operate. An additional pressurising step 55 can be performed on the gaseous mixture before separation. The gas output from the separator may be supplied to a compressor. A energy harvesting device may be provided as a part of a depressuring system 56.
Resumen de: WO2023242385A1
The invention relates to a method for producing hydrogen with adjustment of the power of a compressor according to the rate of production of an electrolyser, said method comprising the following steps: - a) electrolysing using an electrolyser producing hydrogen at a flow rate of between 0.5 and 5 standard m3/h at an outlet pressure of between 1 and 50 bar; - b) compressing the hydrogen using an electrochemical compressor. The method also comprises a step of correcting the power supply current of the electrochemical compressor with respect to a target pressure value.
Resumen de: MX2024009525A
The present disclosure provides methods and apparatuses of producing hydrogen. The methods comprise: (a) contacting a plastic with a catalyst and a gas feed; and (b) applying a microwave at a first temperature. The apparatuses comprise: a reactor for mixing plastic with a catalyst to form a mixture; an inlet for introducing a gas feed; a microwave generator; an optional temperature sensor; and an outlet configured to exhaust the product hydrogen formed in the reactor.
Resumen de: EP4542815A2
An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub-system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: AU2023293861A1
The invention relates to an electrolysis system (21) comprising: at least one electrolysis cell (01); and a cathode-side water circuit (07) having a hydrogen separator (05); and an anode-side water circuit (06) having an oxygen separator (04); and an equalisation connection (22) which leads, coming from a cathode-side water connection (15), to the anode-side water circuit (06) via a pump (13) and an ion exchanger (12) via a node point (23) and an operating line (24); and an idle line (25) which (25) branches off upstream of the control line (24) and leads to the cathode-side gas connection (17).
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: EP4541451A1
This dehumidification apparatus is for dehumidifying a hydrogen gas that is produced by a hydrogen production device, the dehumidification apparatus comprising: a dehumidifier that includes an adsorption tower, inside of which there is provided an adsorbent that is capable of adsorbing moisture contained in the hydrogen gas; an inlet line for introducing the hydrogen gas from the hydrogen production device into the dehumidifier; an inlet valve that is provided to the inlet line; an outlet line for discharging the hydrogen gas that is dehumidified by the dehumidifier out from the dehumidifier; an outlet valve that is provided to the outlet line; and a control device that is configured to adjust the opening degree of the inlet valve and the opening degree of the outlet valve on the basis of the pressure within the adsorption tower during activation of the dehumidification apparatus.
Resumen de: EP4541943A1
An electrode for electrolysis, including:a conductive substrate; anda catalyst layer disposed on a surface of the conductive substrate,in which at least one of the following conditions (I) and (II) is satisfied:(I) the catalyst layer contains a ruthenium element and an iridium element, and a crystallite size is 50 Å or more and 100 Å or less, the crystallite size being calculated from a peak observed in a 2θ range of 27° or more and 28.5° or less in an XRD spectrum, the XRD spectrum being obtained by subjecting the catalyst layer to X-ray diffraction measurement and(II) the catalyst layer contains (i) a ruthenium element, (ii) an iridium element, and (iii) at least one kind of metal element M selected from the group consisting of W, Zn, Mn, Cu, Co, V, Ga, Ta, Ni, Fe, Mo, Nb and Zr, in the catalyst layer, a molar ratio of the ruthenium element to the iridium element, in terms of ruthenium element/iridium element, is 1.4 or more, and a molar ratio of the metal element M to the ruthenium element, in terms of metal element M/ruthenium element, is 0.06 or more and 3.5 or less.
Resumen de: GB2634845A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: GB2634846A
A hydrogen production facility 10 is described. The hydrogen production facility includes one or more electrolyser stacks 12 to electrolyze water. A hydrogen-aqueous solution mixture 12a and an oxygen-aqueous solution mixture 12b are generated, where the one or more electrolyser stacks comprise a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator 2 comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device 16. The oxygen separator 4 comprises an oxygen gas-liquid separation device and an oxygen coalescing device 18. The hydrogen separator 2 and the oxygen separator 4 can be coupled using a pressure balancing line 24 to prevent or reduce a pressure differential across the plurality of membranes.
Resumen de: EP4541944A1
A proton exchange membrane (10) for water electrolysis comprising a proton exchange substrate (12) coated on one side with a titanium oxide film (14), the titanium oxide film having a thickness (t<sub>14</sub>) equal to or smaller than 100 nm. A method for making a proton exchange membrane for water electrolysis.
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: EP4541945A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H2 ↔ 2H<+> + 2e<->, formula 1. The at least one first electrode comprises at least one redox couple M
Resumen de: WO2023245201A2
A process of dissociating ammonia into a dissociated hydrogen/nitrogen stream in catalyst tubes within a radiant tube furnace and an adiabatic or isothermal unit containing catalyst, along with downstream purification process units to purify the dissociated hydrogen/nitrogen stream into high purity hydrogen product.
Nº publicación: PL446449A1 22/04/2025
Solicitante:
UNIV ZIELONOGORSKI [PL]
UNIWERSYTET ZIELONOG\u00D3RSKI
Resumen de: PL446449A1
Przedmiotem zgłoszenia jest system do wytwarzania wodoru, zwłaszcza na potrzeby gospodarstw domowych, składający się z urządzenia wytwórczego zawierającego szczelny zbiornik z elektrolitem, połączone z nim co najmniej dwa segmenty generatorów (1) do elektrolizy, połączone ze sobą równolegle i zasilane prądem za pomocą źródła prądu połączonego z jednym generatorem (2), gdzie każdy segment generatorów (1) składa się z dwóch zewnętrznych bocznych ścian (3) i co najmniej dwóch generatorów (2) ze wspólną wewnętrzną ścianą (4), zbudowanych z co najmniej pięciu płyt (8), odizolowanych od siebie uszczelkami (9), wyposażonych w przelotowe otwory (5) wykonane w jednej linii z wlotem (6) oraz z wylotem (7), a dwie skrajne płyty (8) każdego generatora (2) stanowią elektrody wyposażone w otwory do podłączenia zasilania prądem oraz z urządzenia zabezpieczającego zawierającego filtr dekompresyjny mokry (23) z bezpiecznikiem (27) połączony z jednej strony z filtrem osuszającym (21), a z długiej strony z mniejszym od niego filtrem dekompresyjnym suchym (25) z bezpiecznikiem (27) wypełnionym wełną tłumieniową, połączonym przez zawór zwrotny ciśnieniowy (34) z filtrem mokrym (35) wypełnionym alkoholem propylowym, połączonym z czujnikiem ciśnieniowym (17) oraz bezpiecznikiem gazowym kierunkowym (36), połączonym z zaworem końcowym (37), zabezpieczonym filtrem tłumiącym (38) z wełną miedzianą.