Resumen de: CN121426109A
本发明涉及锂离子电池负极材料技术领域,具体涉及一种同时改善安全性和倍率性能的硅碳复合负极材料的制备方法,包括以下步骤:间苯二酚,强心酚,甲醛水溶液和异丙醇加入到反应容器中,加入碱性催化剂和磺化剂,反应后得到半固态树脂;半固态树脂转移至固化反应器,进行固化,之后破碎、过筛,超声条件下浸渍于过渡金属盐溶液中,干燥,预氧化、热解碳化,得到热解碳;热解碳进行活化造孔得到多孔碳,多孔碳进行气相硅沉积和碳包覆得到产品硅碳复合负极材料。本发明通过上述制备方法可以同时改善硅碳复合负极的安全性和倍率性能。
Resumen de: CN121426083A
本发明公开了一种一种高活性的氮掺杂硬碳负极材料及其制备方法,获得了高的比容量,解决了现有硬碳首次库伦效率不高的难题,制备的产品导电性好、活性高,用作锂离子电池容量高、所获得材料主要有以下特点:①比容量高,190~260mAh/g;③首次库伦效率>80%。
Resumen de: CN121426189A
本发明属于电化学储能材料与制备方法技术领域,公开了一种放射状石墨烯/磁性金属氧化物/硬碳复合材料及其制备方法和应用,用以解决现有硬碳负极材料电化学性能差的技术问题。通过对钛酸四丁酯热解、刻蚀与热处理得到富含介孔的硬碳材料,再通过金属盐吸附与焦耳热冲击在介孔内原位生成尺寸小于10 nm的磁性金属化合物纳米颗粒,之后通过化学气相沉积的方法在硬碳材料表面生长放射状石墨烯,从而得到放射状石墨烯/磁性金属氧化物/硬碳复合材料。本发明的制备方法兼顾创新性、可重复性与工业放大可能,有效克服了传统硬碳基负极材料电荷传输效率低下的难题。
Resumen de: CN121426097A
本发明涉及一种含磷纳米碳点材料及其制备方法与应用,该含磷纳米碳点材料的制备方法包括以下步骤:先合成磷源(R)‑2,3‑二羟基丙基膦酸,之后将(R)‑2,3‑二羟基丙基膦酸与柠檬酸钠、尿素混合进行水热反应,最后经透析处理得到所述含磷纳米碳点材料。所述含磷纳米碳点材料能有效抑制铜绿假单胞菌、金黄色葡萄球菌、肺炎克雷伯菌等菌株的生长,具有显著的抑菌作用。因此该含磷纳米碳点材料可用于制备抗菌药物。另外,本发明提供的含磷纳米碳点材料的制备方法操作简便、成本低廉,能够实现含磷纳米碳点材料的高效制备。
Resumen de: US20260023317A1
Provided is a carbon sheet for pellicle that includes a bundle composed of a plurality of carbon nanotubes, and a ratio (P/D) of porosity P to linear density D (in grams per kilometer g/km) is within a range of 0.2 to 10. Also provided is a pellicle that includes the carbon sheet and a pellicle frame configured to support it. The carbon sheet is free-standing and exhibits excellent transmittance with respect to ultraviolet rays, including extreme ultraviolet radiation. Further provided is a method for manufacturing the carbon sheet, which includes forming the bundle of carbon nanotubes by reacting a source material under controlled conditions. This method enables the formation of a carbon sheet that maintains mechanical stability while achieving high ultraviolet transmittance, suitable for use in photolithography processes.
Resumen de: WO2026022841A1
The present invention discloses a radial mixing system (100) and method (800) designed to enhance carbon conversion and selectively synthesize semiconducting single-walled carbon nanotube (SWCNT) fibers via floating catalyst chemical vapor deposition (FC-CVD). A mixed solution of a carbon source, catalyst precursor, and promotor in specified atomic ratios, is prepared. This solution is vaporized in a preheater (106) and the resulting vapors are introduced into a reactor (102) maintained at predefined temperatures. A fan (104), rotating at a defined RPM, facilitates mixing in the evaporation and re-nucleation zones. The process yields cylindrical SWCNT aerogels (108) in the re-nucleation zone, which exit the reactor via carrier gas flow. Subsequent condensation in a water bath unit (112) converts the aerogels into SWCNT fibers (114), collected efficiently on a rotating roller (120).
Resumen de: WO2026020402A1
The present invention provides a black phosphorus/carbon nanotube composite material, a preparation method therefor, and a use thereof. The preparation method comprises the following steps: (S101) preparing a black phosphorus nanosheet solution by means of a stepwise centrifugation-assisted liquid-phase exfoliation method; (S102) preparing a carbon nanotube solution by means of a liquid-phase exfoliation method; and (S103) preparing a black phosphorus/carbon nanotube composite material by means of a hydrothermal method, wherein the black phosphorus/carbon nanotube composite material prepared by means of a chemical synthesis method comprises black phosphorus and single-walled carbon nanotubes which are closely attached to each other, a three-dimensional network constructed by the carbon nanotubes well covers the surface of black phosphorus nanosheets, and the surfaces of the carbon nanotubes are filled with active electrons, so that a more sensitive detection result can be acquired, the Raman detection limit can be reduced, and the black phosphorus/carbon nanotube composite material is suitable for the detection of urinary tract bacteria.
Resumen de: US20260028229A1
The present invention relates to a carbon nanotube dispersion to which an auxiliary dispersant containing polyethylene glycol, polystyrene, and a cellulose-based component is applied, and a method for preparing the same, and the carbon nanotube dispersion of the present invention has excellent viscosity stability during room-temperature and high-temperature storage.
Resumen de: EP4685109A1
The present invention discloses a plasma modification preparation method of a silicon-carbon composite material, and a silicon-carbon composite material and a use thereof. The preparation method includes at least operation steps of: S10). placing aminated porous carbon in a deposition chamber, introducing a silane gas into the deposition chamber, and depositing nano-silicon in the aminated porous carbon, to obtain a silicon-carbon precursor material; S20). transferring the silicon-carbon precursor material to a plasma method modification chamber, introducing a halogen gas in a plasma manner, and depositing generated halide ions on a surface of the silicon-carbon precursor material, to obtain a silicon-carbon precursor material coated with halogenated carbon; and S30). stopping introducing the halogen gas, and introducing a carbon source gas in the plasma manner, to obtain the silicon-carbon composite material. The obtained silicon-carbon composite material has a stable core-shell structure, which can significantly alleviate silicon expansion problems and significantly improve cycle performance of a battery to which the silicon-carbon composite material is applied. In addition, the present application has a simple process, the silicon-carbon material is modified according to a plasma method, and the silicon-carbon composite material is easily prepared in batches and is easily industrialized on a scale.
Resumen de: EP4685839A1
Disclosed is a method and a system for chemical vapor deposition. A collection valve between a reactor and a collection chamber and a purge valve between the collection valve and the collection chamber is open while a bypass valve for the collection chamber is open for purging debris from between the collection valve and the bypass valve through the bypass valve. Thereafter, the purge valve is closed and the collection valve open for directing the deposition product from the reactor to the collection chamber for treatment.
Resumen de: CN121002657A
A method of manufacturing a thermal interface film, the method comprising: providing a stack (100) (200) of graphene-based films (101); pressing the stack of graphene-based films (202) between a first mold (102, 402) and a second mold (104, 404) to form a compressed film (106) wherein at least one of the first and second molds has a profiled surface; infiltrating (204) a polymer (108) in the compressed membrane, forming an infiltrated membrane (110); curing (206) the permeated membrane (110); and cutting the cured and permeated membrane (208) in a direction perpendicular to the plane of the graphene-based membrane to form a graphene-enhanced thermal interface pad (116).
Resumen de: WO2024157274A1
The invention provides a reaction apparatus arrangement for generation of single wall carbon nanotubes, the arrangement includes an injector tube having a broad end and a narrow end, an injector and an inner tube. The injector includes a first end, a means for circulation of gas formed on the walls of the injector, a hollow chamber for the reaction to occur and a second end. The first end of the injector is configured to receive the narrow end of the injector tube. The diameter of the inner tube is lesser than the diameter of the second end of the injector to allow thermal expansion of the inner tube into the hollow chamber of the injector. The hollow chamber of the injector is configured for mixing of the stream of CO maintained at temperature of 850°C to 1200°C and the stream of CO along with the catalyst maintained at a temperature ranging from 6°C to 100°C and generating single wall carbon nanotubes.
Resumen de: CN121405072A
本发明公开了一种反应及工程一体化的多壁碳纳米管制备方法,该制备方法包含以下步骤:(1)将板材均匀涂覆氧化铝溶液,将涂覆后的氧化铝薄膜基材进行干燥、高温烧结,使其转化为具备载体功能的基材;(2)配置前驱体溶液,将前驱体溶液喷射在步骤(1)制备得到的具备载体功能的基材上,烘干液膜后进行焙烧处理;(3)将步骤(2)制备得到的基材制成具备特定长度恒温区的反应器;(4)在载气保护下,将反应器升温,通入碳源,反应后得到碳纳米管产品。本发明降低了催化剂堆积密度,明显提高了活性金属层分布的均一性,进而提高了碳纳米管产品纯度,降低了碳纳米管产品缺陷产生。
Resumen de: US2025230049A1
Provided is a method of manufacturing a carbon nano material based on a machine learning model. The method includes obtaining first control information on a process of synthesizing carbon nano material. The method includes obtaining analysis information on the synthesized carbon nano material in real time based on the first control information. The method includes managing the first control information and the analysis information in a database. The method includes training a machine learning model using information managed in the database. The method includes synthesizing the carbon nano material by applying second control information in which the first control information for the process is adjusted based on the trained machine learning model.
Resumen de: CN121405071A
本发明涉及钠离子电池负极材料技术领域,具体涉及一种氮硫共掺杂碳纳米微球及制备方法和应用。制备方法包括:将可溶性铁盐、碳源和咪唑二腈胺盐类离子液体共同溶解于水中,进行水热反应,得到富氮核芯;将富氮核芯和咪唑硫酸氢盐类离子液体混合,得到混合物;将可溶性钴盐负载于混合物表面,并进行热解,得到核壳结构前驱体;在NH3氛围中,将核壳结构前驱体进行热处理,得到具有核壳分区掺杂结构和梯度扩展的层间距的氮硫共掺杂碳纳米微球,解决了现有钠离子电池碳负极层间距不足、掺杂分布随机、结构稳定性差的问题;此外,本发明通过分步热解和双金属催化,克服了现有工艺复杂,不适合规模化制备的缺陷。
Resumen de: CN121405073A
本发明公开了一种原位生长氮掺杂碳纳米管的镍钴双金属磷化物的制备方法及应用,其制备方法包括以下步骤:配置氧化石墨烯分散液;向所述氧化石墨烯分散液中依次加入钴源、镍源、嵌段共聚物、磷源和氮源,混合均匀得到混合溶液;将混合溶液烘干得到前驱体;将前驱体在惰性气氛下退火,即得。本发明通过调控Ni、Co的比例使碳源在石墨烯上原位生长出碳纳米管,其镍钴双金属磷化物纳米颗粒均匀分布在氮掺杂碳材料上形成氮掺杂碳材料包覆磷化物纳米颗粒复合材料,将其作为锂硫电池的改性隔膜材料。本发明制备方法具有反应条件温和、易于放大和调控的优点,所制备的复合材料且具有较高的比表面积,在能源领域尤其是锂硫电池领域得以应用。
Resumen de: CN121405075A
本申请公开了一种碳纳米管、导电浆料、涂碳箔及制备方法,属于导电材料技术领域。该碳纳米管包含聚吡咯改性的碳纳米管或含双性离子基团聚吡咯接枝的碳纳米管,将该碳纳米管与含苯磺酸基团功能化的粘接剂及其他成分混匀形成导电浆料。该导电浆料即使是久置后也不易沉降,该不易沉降的浆料能够均匀的涂布于金属箔表面,形成流平性好的导电碳层,该导电碳层可以显著降低(正负极材料与金属箔之间的)接触电阻,改善导电性。
Resumen de: CN121416442A
提供了负电极活性物质、包括该负电极活性物质的可再充电锂电池和用于制备该负电极活性物质的方法。负电极活性物质包括其中聚集至少两个复合体的聚集体和环绕(例如,围绕)聚集体的涂覆层,复合体均包括硅(Si)和碳(C),其中,复合体均包括包含结晶硅的核、在核上包含非晶硅的第一壳和在第一壳上包含第一非晶碳的第二壳,并且其中,涂覆层包含第二非晶碳。
Resumen de: CN121406151A
本发明公开一种碳纳米管层、光伏玻璃、石蜡/碳纳米管复合物及其制备方法,属于光伏技术领域。该石蜡/碳纳米管复合物的制备方法,包括:将多壁碳纳米管置于混合酸溶液中,之后在60℃~90℃下回流反应得到羧基化碳纳米管;所述混合酸溶液为浓硝酸和浓硫酸的混合酸溶液;将石蜡在高于其相变点的油浴或水浴中加热熔融;将羧基化碳纳米管加入至熔融的石蜡,在超声作用下搅拌得到石蜡/碳纳米管复合物。本发明还提出一种光伏玻璃,从上往下依次包括:导光层、碳纳米管层、发电层和密封层。本发明提出的石蜡/碳纳米管复合物有效提升光伏玻璃的转化效率。
Resumen de: FI20245918A1
Disclosed are a chemical vapor deposition system, a gas curtain module for a gas distribution system of a chemical vapor deposition system, and a method of valve control for such system. The gas distribution system for transferring the deposition product from the reactor to the collection chamber comprises a gas curtain module positioned in the pipeline between the gas flow inlet and the collection valve, wherein the gas curtain module comprises one or more purging gas inlets and is configured to introduce a purging gas into the pipeline at its position.
Resumen de: FI20245917A1
Disclosed is a method (800) and a system (100) for chemical vapor deposition. A collection valve (140) between a reactor (110) and a collection chamber (120) and a purge valve (144) between the collection valve and the collection chamber is open while a bypass valve (142) for the collection chamber is open for purging debris (160) from between the collection valve and the bypass valve through the bypass valve. Thereafter, the purge valve is closed and the collection valve open for directing the deposition product from the reactor to the collection chamber for treatment.
Resumen de: CN121376986A
本申请提供一种石墨烯导热膜及其制备方法,包括以下步骤:将纤维素纳米晶与氧化石墨烯料饼、氨水以及去离子水进行混合配置成浆料并涂布成氧化石墨烯膜,将所述氧化石墨烯膜进行预处理、碳化处理、一次石墨化处理、一次压延处理得到石墨烯导热膜,通过在氧化石墨烯浆料中引入纤维素纳米晶,利用其自身的官能团以及刚性棒状结构优势,对氧化石墨烯进行组装有序性和平坦性的提升,其次通过焊接作用抑制膜材的膨胀,减少撕裂缺陷的引入,最后通过原位的缺陷修复,对单原子以及双原子空位进行修补,从而得到高性能高导热的石墨烯导热膜。
Resumen de: CN121376978A
本发明涉及一种室温磷光碳点@非晶氧化铝材料及其制备方法,所述制备方法以下步骤:称取0.5g异丙醇铝,充分研磨后,通过马弗炉煅烧,得到室温磷光碳点@非晶氧化铝材料。其特征是室温磷光碳点@非晶氧化铝材料通过一步煅烧法直接获得的。另外,在室温磷光碳点@非晶氧化铝材料中实现了长寿命磷光和长肉眼可见时间,其磷光寿命达437.2毫秒,关闭紫外灯后肉眼可见青色磷光达6秒。制备所使用的药品均无毒无害且价格低廉,且制备简单所用时间短。制备的室温磷光碳点@非晶氧化铝材料能成功应用于信息加密等领域。
Resumen de: CN121376993A
本申请涉及复合材料技术领域,尤其是涉及一种气泡辅助—液相机械剥离法制备类寡层石墨烯的方法。该方法包括:S1、气泡生成与插层处理:将石墨浆料、发泡剂及分散剂置于反应釜中,在反应温度80℃至100℃下进行反应,反应持续进行直至石墨层间距扩大至预设范围01;S2、破碎与洗涤处理:将步骤一步骤S1得到的石墨浆料置入高剪切洗涤装置中,进行高转速下的破碎和洗涤处理,并通入纯水清洗至电导率探测器测量数值为50us/cm至100us/cm;S3、冷冻干燥处理:将步骤二步骤S2得到的石墨洗涤料置于冷冻干燥机中,通过预冻和升华干燥进行膨胀处理,其中预冻温度为‑70℃至‑90℃。本申请通过多层次实验设计利用气泡膨胀、机械剪切、冷冻干燥协同作用,实现了类寡层石墨烯层数和厚度的可控。
Nº publicación: CN121377011A 23/01/2026
Solicitante:
炭衍科技服务(无锡)有限公司
Resumen de: CN121377011A
本发明公开了一种低膨胀低内阻CVD硅碳复合材料及其制备方法和应用。所述制备方法包括:S1.将氧交联沥青与芳香族硼源混合交联并破碎;S2.将交联颗粒在催化性酸液中分散并碳化;S3.将碳化骨架与活化剂进行一体化碳化‑活化得到多孔碳;S4.在多孔碳上先低温沉积硅,再升温进行硼掺杂;S5.进行碳层包覆得最终产品。本发明通过氧‑硼协同交联与低温两步CVD工艺,在分子层面调控材料结构,制得的硅碳复合材料具有独特的“多孔碳‑硅‑碳包覆层”复合结构,兼具低体积膨胀率(<18%)、低电阻率和高克容量特性,同时展现优异柔韧性,弯曲半径<5.5mm,适用于动力电池、柔性可穿戴设备、超级电容器等多个领域。