Absstract of: AU2024263112A1
The present invention relates to an electrode and in particular to an electrode suitable for gas evolution comprising a metal substrate and a catalytic coating. Such electrode can be used as an anode for the development of oxygen in electrolytic processes such as, for example, in the alkaline electrolysis of water.
Absstract of: EP4635599A1
An method (100-600) for producing hydrogen is proposed, comprising providing a first gas (1) containing hydrogen, oxygen and water, said providing the first gas (1) comprising an electrolytic conversion of water; providing a second gas (5) containing hydrogen, oxygen and water, said providing the second gas (5) comprising a condensative removal of water from the first gas (1) or a part thereof; and providing a third gas (10) containing hydrogen, said providing the third gas (10) comprising an adsorptive removal of water and a catalytic removal of oxygen from the second gas (5) or a part thereof using a adsorptive and catalytic treatment arrangement (110) comprising treatment vessels (A, B), wherein each of the treatment vessels (A, B) comprises, in a first direction from a first opening to a second opening, a first adsorption layer (211), a catalytic layer (212) and a second adsorption layer (213), wherein each of the treatment vessels (A, B) is alternatingly operated in a treatment mode and a regeneration mode, wherein, in the treatment mode, the second gas (5) or a part thereof is passed in the first direction through the treatment vessels (A, B), wherein, in the treatment mode, the first adsorption layer (211) and the second adsorption layer (213) are used for said adsorptive removal of water and the catalytic layer (212) is used for said catalytic removal of oxygen, wherein, in the regeneration mode, the treatment vessels (A, B) are heated using a heating gas (5a, 10a) wh
Absstract of: WO2024126749A1
There is provided a multi-layered proton exchange membrane for water electrolysis, comprising: at least two recombination catalyst layers, each of the at least two recombination catalyst layers comprising a recombination catalyst and a first ion exchange material, wherein at least two recombination catalyst layers are separated by a region devoid of or substantially devoid of a recombination catalyst, and at least two reinforcing layers, each of the at least two reinforcing layers comprising a microporous polymer structure and a second ion exchange material which is at least partially imbibed within the microporous polymer structure.
Absstract of: EP4635623A1
The present invention relates to an ammonia decomposition catalyst and a method for producing same and, more specifically, to an ammonia decomposition catalyst containing alumina (Al<sub>2</sub>O<sub>3</sub>), cerium (Ce), lanthanum (La), ruthenium (Ru), and potassium (K), and a method for producing the ammonia decomposition catalyst.
Absstract of: EP4636058A2
A system (100) comprising a first chamber (108) configured to contain liquid water (115) and to receive a hydrocarbon combustion exhaust stream (104) comprising water and carbon dioxide; a heat exchanger (120) positioned in the first chamber and configured to convey methanation reaction products (144) through the first chamber to transfer heat from the methanation reaction products to the liquid water; and an electrolysis system (124) configured to subject the heated liquid water to electrolysis to generate hydrogen and oxygen, the electrolysis system comprising an anode (124) and a cathode (126) each received in the chamber.
Absstract of: EP4636131A2
An electrolysis device includes: an electrolysis cell; a cathode supply flow path; an anode supply flow path; a cathode discharge flow path; an anode discharge flow path; a cathode flow rate regulator to adjust a flow rate A of a cathode supply fluid; an anode flow rate regulator to adjust a flow rate B of a anode supply fluid; a first flowmeter to measure a flow rate C of a cathode discharge fluid; a second flowmeter to measure a flow rate D of a anode discharge fluid; and a control device to estimate a Faraday efficiency according to a relational expression for approximating the Faraday efficiency to a function including the C and D, and control the cathode flow rate regulator according to the estimated Faraday efficiency to control the A.
Absstract of: CN120092333A
A method of recycling a spent catalyst coated membrane, wherein the spent catalyst coated membrane comprises: a membrane comprising a membrane ionomer; a first catalyst layer disposed on one side of the membrane, the first catalyst layer comprising a first catalyst and a first catalyst layer ionomer; and a second catalyst layer disposed on opposite sides of the membrane, the second catalyst layer comprising a second catalyst and a second catalyst layer ionomer. The method is configured to recover the first catalyst layer ionomer and the second catalyst layer ionomer in addition to the catalyst materials and the membrane ionomer.
Absstract of: AU2024291100A1
The invention relates to an energy supply system (20) for coupling to a wind turbine (30) used in island mode, wherein the wind turbine (30) is configured to operate an electrolysis system (11) for producing green hydrogen using wind energy, wherein the energy supply system (20) has a solar energy source (21), comprising a photovoltaic module (22) and/or a solar thermal collector (23), which is configured to supply the electrolysis system (21), in particular an enclosure (12) and water-conducting lines of electrolysis units of the electrolysis system (11), with thermal energy in the event of the absence of wind energy. The invention also relates to a corresponding method for supplying solar energy to a wind turbine (30) used in island mode.
Absstract of: US2025320616A1
A differential pressure electrolysis device is equipped with a resin frame member bonded to a peripheral edge portion of an electrolyte membrane. A first member is interposed between a first separator and the resin frame member, and a second member is interposed between the resin frame member and a second separator. The differential pressure electrolysis device is equipped with a positioning member. The positioning member positions the resin frame member relative to the first member or the second member. However, the positioning member permits the resin frame member to move along a surface direction.
Absstract of: WO2025214668A1
A method for producing hydrogen gas from non-purified water via sulphur depolarized electrolysis (SDE), said method comprises the steps of providing at least one electrochemical cell (2), which comprises at least one positive electrode (A) and at least one negative electrode (C), separated by a proton conductive membrane (3), non-purified water supply means (S1) configured to supply non-purified water to the cathode, sulphur dioxide supply means (S2) configured to supply sulphur dioxide to the anode, electrical connecting means (4) configured to connect the anode (A) and the cathode (C) to an external power source (P), supplying non-purified water to the cathode, supplying sulphur dioxide to the anode, applying a voltage of at least 0.45 V and up to 1.37 V to the electrodes (A, C) to cause an electrolysis reaction that produces hydrogen gas at the cathode and sulphuric acid at the anode, removing produced hydrogen gas from the cathode and produced sulphuric acid from the anode.
Absstract of: US2025323299A1
The methane generation system according to the present disclosure includes a methane generation unit including an electrolysis device that electrolyzes water to obtain hydrogen and a methane reactor that obtains a fuel gas containing methane by a methanation reaction using the hydrogen; a reformer that reforms the fuel gas to obtain a reformed gas; a fuel cell that generates electricity by a reaction of obtaining a product gas from the reformed gas and an oxygen-containing gas; a recovery device that separates a recovery gas containing carbon dioxide from return fluid which is a pail of the product gas; and a circulation path through which the recovery gas is guided to the methane generation unit.
Absstract of: WO2025215217A1
A method for the production of one or more of carbon dioxide, carbon monoxide, carbon and hydrogen from a gas comprising carbon dioxide and preferably water, in particular from air, comprising the following steps: in a first step, the gas comprising carbon dioxide is brought into contact with sodium hydroxide, preferably a sodium hydroxide solution, to absorb carbon dioxide and to form sodium carbonate, in particular sodium carbonate with water of crystallization; in a second step, the sodium carbonate is reacted with zinc oxide, in particular with a surplus of zinc oxide, for releasing one or more of carbon dioxide, carbon monoxide and, if water is present, hydrogen. An apparatus for carrying out a method for providing one or more of carbon dioxide, carbon monoxide, carbon and hydrogen from a gas comprising carbon dioxide and preferably water, in particular from atmospheric air, comprising an absorber that is configured for performing the first step and a decomposition unit that is configured for performing the second step.
Absstract of: WO2025215257A1
The invention relates to generating fuel for an internal combustion engine such as a piston engine or a gas turbine. The invention relates to a system, apparatuses and methods for producing hydrogen and for hydrogen fuel enhancement. The invention relates in particular to an electrolyser that comprises an electrolyser housing enclosing an interior space that is adapted for containing a water reservoir. The electrolyser housing comprises a side wall and a top cover and a bottom cover that are tightly connected to the side wall. The electrolyser further comprises a plurality of elongate electrodes that extend from the bottom cover and/or the top cover into the interior space enclosed by the electrolyser housing. The electrodes are electrically isolated from the electrolyser housing and are electrically connected to electric conductors for feeding DC current to the electrodes. The electric connections are configured to connect electrodes acting as cathodes to a negative voltage terminal of a DC electric power source and to connect electrodes acting as anodes to a positive voltage terminal of a DC electric power source.. The invention further relates to a method of producing hydrogen enhanced hydrocarbon fuel comprising the steps of. - producing hydrogen from water by means of an electrolyser - vaporizing hydrocarbon fuel - mixing the hydrogen and the vaporized hydrocarbon fuel - compressing the mixture of hydrogen and the vaporized hydrocarbon fuel, and - ionizing the compressed
Absstract of: US2025323303A1
A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes separating, by a selectively permeable membrane, a first saline solution from a second saline solution, receiving, by the first saline solution and/or the second saline solution, thermal energy from a heat source, and mixing the first saline solution and the second saline solution in a controlled manner, capturing at least some salinity-gradient energy as electrical power as the salinity difference between the first saline solution and the second saline solution decreases. The method further includes transferring, by a heat pump, thermal energy from the first saline solution to the second saline solution, causing the salinity difference between the first saline solution and the second saline solution to increase. The method may include a process of membrane distillation, forward osmosis, evaporation, electrodialysis, and/or salt decomposition for further energy efficiency and power generation.
Absstract of: AU2024268862A1
An apparatus for generating electrical energy is disclosed. The apparatus comprises an electrolytic hydrogen generator configured to receive electricity from at least one renewable electricity generating source and produce hydrogen and oxygen from water. The apparatus also comprises a hydrogen storage unit configured to store hydrogen produced by the electrolytic hydrogen generator and a plurality of hydrogen fuel cells in fluid connection with the hydrogen storage unit and a source of oxygen or air, each hydrogen fuel cell configured to generate electricity from hydrogen supplied from the hydrogen storage unit and oxygen or air supplied from the source of oxygen or air.
Absstract of: AU2024262055A1
A family of catalysts for oxygen evolution reaction (OER) in alkaline condition is disclosed. The catalysts utilize elements which are abundant on earth, leading to lower costs compared to IrCh catalysts. The catalysts can be used in the anode of an anion exchange membrane-based water electrolyzer. The family of new catalysts comprises Ni, Fe, M, B, and O, where M is a metal from Group VIB, Group VIII, and elements 57-71 of the Periodic Table. The catalyst has a layered double hydroxide structure. Methods of making the catalysts are also described.
Absstract of: AU2024240321A1
An electrochemical system includes a counter electrode and a working electrode spaced from the counter electrode. The working electrode includes a substrate, an array of conductive projections supported by the substrate and extending outwardly from the substrate, each conductive projection of the array of conductive projections having a semiconductor composition, and including a surface, the surface including nitrogen, and an oxynitride layer disposed on the surface. The counter electrode and the working electrode are arranged in a two-electrode configuration.
Absstract of: AU2024236667A1
The present disclosure is directed to a geothermal hydrogen production and compression system, wherein the system comprises an impure water intake to receive water from a impure water source, at least one geothermal well having a well inlet to receive the impure water from the impure water intake in to the geothermal well and one or more well outlets adapted to return heated impure water from the geothermal well, one or more well outlets being adapted to direct the heated impure water from the geothermal well through a steam engine providing a mechanical output, a purification plant comprising one or more purification chambers for separating impurities from the heated impure water expelled from the steam engine to produce at least some fresh water, one or more discharge outlets to discharge one or more products of the purification plant wherein the fresh water is directed to an electrolyser for electrolysis to produce hydrogen gas, where the hydrogen gas is passed through a hydrogen compressor coupled to the mechanical output and pressurised in a storage apparatus.
Absstract of: US2025320803A1
This disclosure describes systems and methods for using electrical stimulation of a rock formation (e.g., a subterranean formation, a subterranean reservoir) to improve, or otherwise enhance, the energy storage capabilities of the rock formation. Many existing rock formations are too impermeable to facilitate energy storage; however, the Inventors have recognized and appreciated that a “geobattery” may be constructed by using electrical stimulation to increase the permeability of a rock formation (e.g., a subterranean formation) such that water (or some other fluid) can be pumped into the rock formation, in particular, a reservoir within the rock formation, and converted into hydrogen to store the energy within the hydrogen.
Absstract of: US2025320615A1
A gas management system includes an anodic chamber, a cathodic chamber, and a membrane assembly configured to remove bubbles from an electrochemical cell to increase hydrogen generation of the electrochemical cell. The membrane assembly includes a first outer layer arranged between the cathodic chamber and the anodic chamber, a second outer layer arranged between the first outer layer and the cathodic chamber, and a spacer layer arranged between the first outer layer and the second outer layer.
Absstract of: US2025320617A1
A water electrolysis cell has: an oxygen generating electrode containing an oxygen generating catalyst; a hydrogen generating electrode containing a hydrogen generating catalyst; and a membrane that separates the oxygen generating electrode and the hydrogen generating electrode, and electrolyzes water to generate oxygen on the oxygen generating electrode and generate hydrogen on the hydrogen generating electrode. A control device controls electric current supply to the water electrolysis cell so that a potential of the oxygen generating electrode is higher than a reduction potential of the oxygen generating catalyst and lower than an oxygen generating potential, and a potential of the hydrogen generating electrode is lower than an oxidation potential of the hydrogen generating catalyst, during an operation stop.
Absstract of: US2025320616A1
A differential pressure electrolysis device is equipped with a resin frame member bonded to a peripheral edge portion of an electrolyte membrane. A first member is interposed between a first separator and the resin frame member, and a second member is interposed between the resin frame member and a second separator. The differential pressure electrolysis device is equipped with a positioning member. The positioning member positions the resin frame member relative to the first member or the second member. However, the positioning member permits the resin frame member to move along a surface direction.
Absstract of: WO2025217599A1
A method can include performing a series of reactions in a closed cycle, the series of reactions consisting of a hydrolysis reaction where a redox reagent is oxidized to a corresponding oxidized redox reagent with water contemporaneously with the production of hydrogen; and a reduction reaction where the oxidized redox reagent is reduced to the redox reagent using a sulfurous reactant contemporaneously with production of sulfur dioxide.
Absstract of: WO2025217582A1
Embodiments of the present disclosure provide for a processing system and methods for carbon capture and emissions reduction associated with industrial processes. The processing system includes an electrolysis plant, a first kiln, a second kiln, and a carbon capture system. The electrolysis plant configured to generate oxygen and hydrogen from a first amount of water. The first kiln is configured to receive the oxygen generated by the electrolysis plant and to produce a second amount of water, a commercial product, and flue gas via an oxy-combustion reaction. The second kiln is configured to receive the hydrogen generated by the electrolysis plant and to produce a third amount of water, the commercial product, and an exhaust gas via a combustion reaction. The carbon capture system is configured to receive flue gas from the first kiln.
Nº publicación: WO2025217322A1 16/10/2025
Applicant:
OMC HYDROGEN INC [US]
OMC HYDROGEN, INC
Absstract of: WO2025217322A1
Various aspects of this disclosure relate to large-scale commercial systems and methods of thermochemical processes to produce green hydrogen or syngas from one or more of a hydrocarbon, H2O, and CO2 via a thermochemical gas splitting reactor system. In some embodiments, the systems and methods include a standalone thermochemical reactor that bypasses the requirement for direct concentrated solar radiation as the source of process heat. In some embodiments, the systems and methods include a well-insulated, refractory-lined steel pressure vessel, in which process gases heated indirectly via radiation can be delivered to facilitate the desired thermochemical reactions in a fluidized bed configuration.