Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 458 results.
LastUpdate Updated on 24/01/2026 [06:58:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Results 25 to 50 of 458 nextPage  

电池堆叠件的板状元件和电池堆叠件

Publication No.:  CN121368647A 20/01/2026
Applicant: 
舍弗勒技术股份两合公司
CN_121368647_PA

Absstract of: WO2025051333A1

The invention relates to a plate-like element (10) of a cell stack (2) of an electrochemical system (1), having a first plate side (26), a second plate side (27), a plurality of openings (13, 21, 22, 23, 23') and a first structure (14) for forming a flow field for coolant and several further structures (14') for forming distributors for operating media on the first plate side (26). The structure (14) comprises a coolant conducting structure (15, 16) through which a first coolant path (15) and a second coolant path (16) arranged mirror-symmetrically thereto are formed, each of which have, starting from one of the openings (21), an elongate inflow portion (17), a centre portion (18) which starts from the inflow portion (17), fans out and describes at least one meandering bend (19), and an elongate outflow portion (20) which adjoins the centre potion (18) and is narrower than the centre portion (18). A longitudinal axis (30) of the inflow portion (17) of the first coolant path (15) matches a longitudinal axis (30) of the outflow portion (20) of the second coolant path (16), and a longitudinal axis (30') of the inflow portion (17) of the second coolant path (16) matches a longitudinal axis (30') of the outflow portion (20) of the first coolant path (15). The invention also relates to a cell stack (2) comprising a plurality of such plate-like elements (10) which are parallel to one another.

水素製造のためのアンモニア分解

Publication No.:  JP2026501474A 15/01/2026
Applicant: 
カサーレエスア
JP_2026501474_PA

Absstract of: CN120476092A

The invention relates to a method for producing hydrogen from ammonia, comprising: ammonia cleavage in which the ammonia is decomposed into hydrogen and nitrogen, the ammonia cleavage being carried out in a sequence of cleavage steps (13, 36, 17, 20), and a final cleavage stream (21) being obtained after the final cleavage step (20), the final ammonia cracking step (20) is carried out in an adiabatic manner and/or after the final cracking step, the final cracking stream (21) is quenched by direct mixing with water or steam.

SYSTEMS AND METHODS FOR HARNESSING THERMAL GRADIENT ENERGY

Publication No.:  US20260018642A1 15/01/2026
Applicant: 
NANA RAHUL S [US]
FERIA RAFAEL A [US]
Nana Rahul S,
Feria Rafael A
US_20260018642_PA

Absstract of: US20260018642A1

A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes adding heat to (or removing heat from) a salinity gradient generator configured to generate a more concentrated and a less concentrated saline solution. The method further includes drawing the more concentrated saline solution and the less concentrated saline solution from the salinity gradient generator and feeding the more concentrated saline solution and the less concentrated saline solution into a power generator. Feeding the saline solutions into the power generator causes the power generator to receive the saline solutions and generate power by performing a controlled mixing of the more concentrated saline solution and the less concentrated saline solution. The method further includes drawing, from the power generator, a combined saline solution comprising the mixed saline solutions and feeding the combined saline solution to the salinity gradient generator.

SYSTEM AND METHOD FOR PRODUCING PRESSURIZED HYDROGEN FROM A SOLID OXIDE ELECTROLYSER CONNECTED TO AN ELECTROCHEMICAL HYDROGEN COMPRESSOR

Publication No.:  WO2026013331A1 15/01/2026
Applicant: 
TEKNOLOGIAN TUTKIMUSKESKUS VTT OY [FI]
TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
WO_2026013331_PA

Absstract of: WO2026013331A1

The invention relates to a system and method for producing pressurized hydrogen from a solid oxide electrolyser connected to an electrochemical hydrogen compressor The system comprises a solid oxide electrolyser (SOEC) (1), which is configured to generate hydrogen; an electrochemical hydrogen compressor (EHC) (2), which is configured to pressurize said hydrogen generated by said SOEC; and a first recovery circuit, which is configured to recover water exiting the cathode (2c) of the EHC (2) by providing a return path through the EHC (2) to the cathode (1C) of the SOEC (1) for consumption. An optional second recovery circuit is configured to recover heat from at least one output flow (4, 5) of the SOEC (1) to a heat exchanger (15), which is configured to heat said return path (4, 18) at the cathode (1C) of said solid oxide electrolyser (1).

UTILIZING THE OXYGEN FROM WATER ELECTROLYSIS IN A PARTIAL OXIDATION PROCESS (POX)

Publication No.:  WO2026013106A1 15/01/2026
Applicant: 
BASF SE [DE]
BASF SE
WO_2026013106_A1

Absstract of: WO2026013106A1

A process for producing a synthesis gas mixture comprising hydrogen and carbon monoxide and optionally carbon dioxide by partial oxidation of hydrocarbons or a mixture comprising hydrocarbons comprising: Reacting the hydrocarbons or the mixture comprising hydrocarbons with an oxygen-comprising reactant gas, wherein the oxygen in said oxygen-comprising reactant gas comprises at least 1 ppmv of H2 based on the total volume of the oxygen-comprising reactant gas; a synthesis gas mixture obtainable or obtained by the inventive process; a synthesis gas mixture comprising hydrogen and carbon monoxide and optionally carbon dioxide, wherein the synthesis gas has a δ18O value of < 22 ‰, referred to the international standard VSMOW; and use of an oxygen-comprising reactant gas comprising at least 1 ppmv of H2 based on the total volume of the oxygen-comprising reactant gas for the preparation of a synthesis gas mixture comprising hydrogen and carbon monoxide and optionally carbon dioxide by partial oxidation of hydrocarbons or a mixture comprising hydrocarbons. The present invention further relates to a partial oxidation reactor (POX reactor) comprising a connection for supplying an oxygen-comprising reactant gas comprising at least 1 ppmv of H2 based on the total volume of the oxygen-comprising reactant gas; and a system comprising a partial oxidation reactor (POX reactor) and a water electrolyzer connected by a gas pipe.

SYSTEM AND PROCESS FOR IMPROVING THE ELECTROLYSIS OF SALTWATER

Publication No.:  WO2026013303A1 15/01/2026
Applicant: 
THE UNIV COURT OF THE UNIV OF ABERDEEN [GB]
THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
WO_2026013303_PA

Absstract of: WO2026013303A1

The invention provides a system and process for facilitating the direct electrolysis of saltwater, such as seawater. The system comprises an acid-base flow battery comprising an acid solution outlet, an alkaline solution outlet and a saltwater inlet; and a water electrolyser downstream of the acid-base flow battery for producing hydrogen, comprising a negative electrode and a positive electrode.

APPARATUS FOR GENERATING ELECTRICITY

Publication No.:  US20260018632A1 15/01/2026
Applicant: 
EMISSION FREE GENERATORS INC [US]
EMISSION FREE GENERATORS, INC
US_20260018632_PA

Absstract of: US20260018632A1

A power generation system includes a housing, a lid defining an opening in the housing, and a chamber inside the housing configured to receive a cartridge comprising a powdered fuel mixture. The system also includes a fluid reservoir that stores a fluid configured to react with the powdered fuel mixture to produce hydrogen gas. A processor is configured to control ingress of the fluid from the fluid reservoir to the powdered fuel mixture in the cartridge and control egress of the gas from the cartridge to the gas storage compartment. The system also includes a generator configured to generate electricity from the gas in the gas storage compartment.

SYSTEMS AND METHODS FOR PRODUCING RENEWABLE HYDROGEN

Publication No.:  AU2024303520A1 15/01/2026
Applicant: 
KOLOMA INC
KOLOMA, INC
AU_2024303520_PA

Absstract of: AU2024303520A1

Methods for producing renewable hydrogen and systems related to the same are provided.

ELECTRODE FOR ELECTROLYSIS, LAMINATE, WOUND BODY, ELECTROLYZER, METHOD FOR PRODUCING ELECTROLYZER, METHOD FOR RENEWING ELECTRODE, METHOD FOR RENEWING LAMINATE, AND METHOD FOR PRODUCING WOUND BODY

Publication No.:  US20260015745A1 15/01/2026
Applicant: 
ASAHI KASEI KK [JP]
ASAHI KASEI KABUSHIKI KAISHA
US_20260015745_PA

Absstract of: US20260015745A1

The present invention relates to an electrode for electrolysis, a laminate, a wound body, an electrolyzer, a method for producing an electrolyzer, a method for renewing an electrode, a method for renewing a laminate, and a method for producing a wound body. An electrode for electrolysis according to one aspect of the present invention has a mass per unit area of 48 mg/cm2 or less and a force applied per unit mass-unit area of 0.08 N/mg·cm2 or more.

ELECTROLYSIS SYSTEM

Publication No.:  US20260015742A1 15/01/2026
Applicant: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
US_20260015742_PA

Absstract of: US20260015742A1

The invention relates to an electrolysis system including an electrolysis plant and a power supply source with a direct voltage output and including a central supply line, wherein the central supply line is connected to the direct voltage output of the power supply source such that a direct current can be fed to the central supply line, where a central DC high-performance strand designed for the direct voltage is provided, to which high-performance strand the electrolysis plant is connected via the central supply line, wherein at least the power supply source and the DC high-performance strand are designed as a network insulated from ground. The invention also relates to the use of an insulated DC network in an electrolysis system.

SOLID OXIDE ELECTROLYTIC CELLS USING ZEOLITE-TEMPLATED CARBON (ZTC) AS ELECTROCATALYST

Publication No.:  US20260015741A1 15/01/2026
Applicant: 
SAUDI ARABIAN OIL COMPANY [SA]
Saudi Arabian Oil Company
US_20260015741_PA

Absstract of: US20260015741A1

Solid oxide electrolytic cell assembly (SOEC) and methods for making SOECs are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC). The functionalized ZTC is formed by forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites. In the method, the functionalized ZTC is incorporated into electrodes by forming a mixture of the functionalized ZTC with a calcined solid oxide electrolyte, and calcining the mixture. The method includes forming an electrode assembly, forming the SO electrolytic cell assembly, and coupling the SO electrolytic cell assembly to a heat source.

MEDIATED HYDROGEN ANODE FOR USE IN REDUCTIVE ELECTROSYNTHESIS

Publication No.:  US20260015743A1 15/01/2026
Applicant: 
WISCONSIN ALUMNI RES FOUNDATION [US]
Wisconsin Alumni Research Foundation
US_20260015743_PA

Absstract of: US20260015743A1

An electrosynthetic cell and its use are disclosed. The electrosynthetic cell can be used in a reductive electrosynthesis of one or more desired chemical products from one or more chemical reactants. The electrosynthetic cell comprises a hydrogen anode half-cell and a cathode half-cell. The hydrogen anode half-cell comprises hydrogen (H2), a first liquid phase solution that is in contact with an anode and a heterogeneous redox catalyst capable of catalyzing the oxidation of H2 to H+, and a redox mediator capable of transferring or accepting electrons and/or protons while undergoing reduction or oxidation. The cathode half-cell comprises a second liquid phase solution comprising the one or more chemical reactants that is in contact with a cathode and a reductive synthesis catalyst capable of catalyzing the reductive synthesis of the one or more desired chemical products from the one or more chemical reactants.

SOLID STATE DELIVERY SYSTEM

Publication No.:  US20260015230A1 15/01/2026
Applicant: 
GE AVIATION SYSTEMS LTD [GB]
GE Aviation Systems Limited
US_20260015230_PA

Absstract of: US20260015230A1

A solid state storage system includes a pressure-sealed storage unit defining an interior and having an outlet, an upper manifold and a lower manifold separated by a dividing plane having a set of ports, a set of chambers, and a solid state storage, wherein at least some gas is supplied to the outlet.

GAS PRODUCTION DEVICE AND METHOD

Publication No.:  US20260015229A1 15/01/2026
Applicant: 
ARIEL SCIENT INNOVATIONS LTD [IL]
ARIEL SCIENTIFIC INNOVATIONS LTD
US_20260015229_PA

Absstract of: US20260015229A1

A system including a gas production device including (a) a solid containing compartment configured to contain a solid, (b) at least one fluid channel with an inlet and an outlet comprising an opening along at least a portion of its length, the opening facing the solid, (c) a solution compartment configured to contain a solution, the solution compartment: (1) being in fluid communication with the fluid channel inlet and outlet, (2) located along a fluid pathway in between the fluid channel outlet and inlet, and (3) at least one hydrogen gas outlet, (d) a fluid flow driver in fluid communication with the fluid pathway, and (e) a fluid flow rate regulator connected to the fluid flow driver. Disclosed is also a method for producing a gas (e.g., hydrogen).

CATALYTIC POM PARTICLES

Publication No.:  US20260015744A1 15/01/2026
Applicant: 
KESSLER VADIM [SE]
SEISENBAEVA GULAIM [SE]
KESSLER Vadim,
SEISENBAEVA Gulaim
US_20260015744_PA

Absstract of: US20260015744A1

POM particles are suitable as photocatalytic or electrocatalytic catalyst in the production of hydrogen and a method of producing such POM particles. The POM particles are produced by subjecting a heteropoly acid with the chemical formula HzXY12O40, or a hydrate thereof, to acidic conditions in the presence of a polyvalent cation, wherein z=3 or 4, X is selected from the group consisting of P, Si, Ge, As, Sb and V, and Y is selected from the group consisting of W, Mo and V.

流体の処理プラント

Publication No.:  JP2026004589A 14/01/2026
Applicant: 
三菱重工業株式会社
JP_2026004589_PA

Absstract of: JP2024092034A

To improve thermal efficiency of a treatment plant for raw material fluid.SOLUTION: A treatment plant for raw material fluid comprises a raw material reaction facility 40 for generating reaction gas RG by reacting raw material fluid NH. The raw material reaction facility 40 comprises preheaters 44a and 44b and a reactor 45. The preheaters 44a and 44b are heat exchangers for heating the raw material fluid NH by exchanging heat between a second heat medium and the raw material fluid. The reactor 45 is a heat exchanger for heating and reacting the raw material fluid NH by exchanging heat between a first heat medium different from the second heat medium and the raw material fluid NH heated by the preheaters 44a and 44b.SELECTED DRAWING: Figure 1

電気化学リアクタおよび電気化学リアクタを作動させる方法

Publication No.:  JP2026501340A 14/01/2026
Applicant: 
フラウンホーファー-ゲゼルシャフトツァーフェルデルングデアアンゲヴァンテンフォーシャングアインゲトラーゲナーフェアアイン
JP_2026501340_PA

Absstract of: CN120418995A

The invention relates to an electrochemical reactor (1), in particular a redox flow cell, a fuel cell, an electrolytic cell or an electrosynthesis cell, comprising a stack (Z) consisting of a plurality of cells (2) which are separated from each other by at least one bipolar plate (3) and are stacked in a stacking direction (R), wherein the cells (2) each have two electrodes (5, 6) and a separator (10) arranged between the two electrodes (5, 6), and wherein the at least one bipolar plate (3) is flexible. In order to be able to increase mass transfer and material distribution with low construction and equipment investment and low material load, an oscillator (13) which excites at least one bipolar plate (3) to generate oscillations is integrated in the bipolar plate (3).

A method for shelf-life maximization of cells in an assembled electrolyser cell stack and an electrolyser cell stack.

Publication No.:  DK202430371A1 14/01/2026
Applicant: 
THYSSENKRUPP NUCERA AG & CO KGAA [DE]
thyssenkrupp nucera AG & Co. KGaA
WO_2026003300_PA

Absstract of: DK202430371A1

Initially an assembled electrolyser cell stack comprising at least alternatingly, Electrodes and bipolar plate assemblies and Diaphragms is provided. Stack internal process and flow volumes, namely catholyte flow volume and process chambers and anolyte flow volume and process chambers adjacent to and on each side of every diaphragm are simultaneously partially or completely flooded through each of stack internal catholyte manifold and stack internal anolyte manifold with a liquid alkaline conservation medium and O2 side electrolyte inlet connection, H2 side electrolyte inlet connection, anolyte and oxygen gas exit connection and catholyte and hydrogen gas exit connection are each sealed off adjacent to an electrolyser endplate after partially or completely flooding the mentioned stack internal volumes with the fluid conservation medium.

Catalyst-coated polymer electrolyte membranes and methods for their manufacture

Publication No.:  GB2642535A 14/01/2026
Applicant: 
JOHNSON MATTHEY HYDROGEN TECHNOLOGIES LTD [GB]
Johnson Matthey Hydrogen Technologies Limited
GB_2642535_PA

Absstract of: GB2642535A

A method for the manufacture of catalyst-coated polymer electrolyte membranes (CCMs) for water electrolysis is described. The CCMs may comprise a proton exchange membrane (PEM) or an anion exchange membrane (AEM) with an anode layer and/or a cathode catalyst layer applied to a face of the membrane. The method comprises the steps of forming a polymer electrolyte membrane on a first catalyst layer 2 comprising a platinum-containing catalyst on a carbon support material 1 and a catalyst layer ion-conducting polymer. The catalytic layer 2 may comprise a hydrogen evolution catalyst (HER) and/or an oxygen evolution catalyst (OER). The first catalyst layer 2 has an expected effective platinum surface area in the range of and including 5-200 cm2Pt/cm2 and a carbon content in the range of and including 30-60 wt%.

METHOD FOR PRODUCING A COMPOUND AND APPARATUS FOR PRODUCING A COMPOUND

Publication No.:  EP4677141A1 14/01/2026
Applicant: 
HELANDER HOLDING OY [FI]
Helander Holding Oy
CN_121079452_PA

Absstract of: WO2024184587A1

The invention relates to a method for producing a compound comprising at least one of hydrogen or oxygen. The method comprises providing water and a first substance, producing a mixture comprising the water and bubbles comprising the first substance, decreasing diameter of bubbles comprising the first substance, decomposing a part of the water, and composing a compound at least from the decomposed water and the first substance, and the compound comprising at least one of hydrogen or oxygen. The invention further relates to apparatus for producing a compound comprising at least one of hydrogen or oxygen.

ELECTROCHEMICAL CELL STACK

Publication No.:  EP4677142A1 14/01/2026
Applicant: 
SCHAEFFLER TECHNOLOGIES AG [DE]
Schaeffler Technologies AG & Co. KG
KR_20250154491_PA

Absstract of: CN120659909A

An electrochemical cell stack (1) comprising a plurality of cells (2) separated from one another by bipolar plates (5, 5 '), where each cell (2) is formed by two half-cells (3, 4) between which a membrane (6) surrounded by a support frame (7) is arranged, and where a porous transport layer (10, 11) is present in each half-cell (3, 4). The support frame (7) describes a step shape having two adjacent cross-sectional areas (12, 13), in which the edge (18) of the membrane (6) lies in a step (17) formed by the cross-sectional areas (12, 13) and the porous transport layer (10) of the half-cell (3) extends into the step (17), and in which the porous transport layer (10) of the half-cell (3) extends into the step (17). According to the invention, the support frame (7) comprises at least one sealing arrangement (15) injection molded onto the support frame (7) and comprising an electrically insulating sealing material, according to the invention, the sealing arrangement (15) comprises three sealing regions (19, 20, 21), each having at least one sealing lip (22, 22 '), in particular a first sealing region (19) and a second sealing region (20) and a third sealing region (21), which are assigned to narrower regions of the two cross-sectional regions (12, 13) facing the membrane (6), the first sealing region and the second sealing region each contact exactly one bipolar plate (5, 5 '), and the third sealing region is located on a side of the support frame (7) facing away from the step (17)

THERMOCHEMICAL REACTIONS USING GEOTHERMAL ENERGY

Publication No.:  EP4676875A1 14/01/2026
Applicant: 
ENHANCEDGEO HOLDINGS LLC [US]
EnhancedGEO Holdings, LLC
TW_202436207_A

Absstract of: TW202436207A

A first aspect is directed to a method for producing hydrogen by thermochemical splitting of water includes injecting one or more feed streams of water into a reaction chamber. The method further includes using heat from a subterranean heat source to carry out the thermochemical splitting of water to form hydrogen and oxygen in the reaction chamber. The formed products are subsequently removed from the reaction chamber. A second aspect is directed to a reaction system includes a wellbore extending from a surface into a subterranean heat source. The reaction system further includes a reaction chamber configured to be maintained at a reaction temperature using heat from the subterranean heat source. The reaction system further includes one or more inlet conduits. The inlet conduits are configured to provide one or more feed streams to the reaction chamber. The reaction system also includes outlet conduits configured to allow flow of one or more product streams.

METHOD FOR PRODUCING HYDROGEN AND APPARATUS FOR PRODUCING HYDROGEN

Publication No.:  EP4677140A1 14/01/2026
Applicant: 
HELANDER HOLDING OY [FI]
Helander Holding Oy
CN_121039322_PA

Absstract of: WO2024184586A1

The invention relates to a method for producing hydrogen. The method comprises providing water and a gaseous substance, the gaseous substance comprises hydrogen atoms and carbon atoms, producing a mixture comprising the water and bubbles comprising the gaseous substance, decreasing diameter of the bubbles comprising the gaseous substance, and producing gaseous hydrogen by decomposing the gaseous substance in the bubbles having the decreased diameter. The invention further relates to apparatus for producing hydrogen gas.

System and process for improving the electrolysis of saltwater

Publication No.:  GB2642534A 14/01/2026
Applicant: 
THE UNIV COURT OF THE UNIV OF ABERDEEN [GB]
The University Court of the University of Aberdeen
GB_2642534_PA

Absstract of: GB2642534A

A system and process for facilitating the direct electrolysis of saltwater, such as seawater, is described. The system comprises an acid-base flow battery (ABFB) 230 with an acid solution outlet 403, an alkaline solution outlet 402 and a saltwater inlet 401; and a water electrolyser 340 downstream of the ABFB for producing hydrogen 408, the electrolyser comprising a negative electrode and a positive electrode. The ABFB is in fluid communication with the water electrolyser, such that, in use, an alkaline solution from the alkaline solution outlet of the acid-base flow battery passes into a positive electrode channel of the water electrolyser proximal the positive electrode. By coupling a water electrolyser with an upstream acid-base flow battery in this way, the base solution by-product from the ABFB is fed into the positive (anode) channel of the electrolyser. In this way, the pH proximal the positive electrode is increased. As a result, saltwater is subjected to electrolysis without the evolution of chlorine or bromine at the positive electrode. The brine by-product of the process may be subjected to freshwater-saltwater reverse electrodialysis (RED) to convert dilution energy to usable electricity.

System and method for producing pressurized hydrogen from a solid oxide electrolyser connected to an electrochemical hydrogen compressor

Nº publicación: FI20245884A1 13/01/2026

Applicant:

TEKNOLOGIAN TUTKIMUSKESKUS VTT OY [FI]
Teknologian tutkimuskeskus VTT Oy

FI_20245884_PA

Absstract of: FI20245884A1

The invention relates to a system and method for producing pressurized hydrogen from a solid oxide electrolyser connected to an electrochemical hydrogen compressor. The system comprises a solid oxide electrolyser (SOEC) (1), which is configured to generate hydrogen; an electrochemical hydrogen compressor (EHC) (2), which is configured to pressurize said hydrogen generated by said SOEC; and a first recovery circuit, which is configured to recover water exiting the cathode (2c) of the EHC (2) by providing a return path through the EHC (2) to the cathode (1C) of the SOEC (1) for consumption. An optional second recovery circuit is configured to recover heat from at least one output flow (4, 5) of the SOEC (1) to a heat exchanger (15), which is configured to heat said return path (4,18) at the cathode (1C) of said solid oxide electrolyser (1).

traducir