Absstract of: WO2025246031A1
A metal oxide nanotube array structure catalyst, and a preparation method therefor and a use thereof. The preparation method comprises the following steps: cleaning and polishing a metal sheet; immersing the polished metal sheet as an anode in an electrolyte solution to construct an electrochemical system and carrying out an anodic oxidation reaction to obtain a microporous template having a nanotube structure; immersing the microporous template into a metal salt sol for impregnation; taking out the impregnated microporous template, rinsing the surface of the impregnated microporous template with deionized water, then drying the impregnated microporous template, and calcining the impregnated microporous template at a high temperature to convert the metal salt sol into a metal oxide; and dissolving the microporous template with a dissolution solution to obtain the metal oxide nanotube array structure catalyst.
Absstract of: WO2025246138A1
A water electrolysis membrane electrode, and a preparation method therefor and a water electrolyser applying same. The water electrolysis membrane electrode comprises a cathode gas diffusion layer, a cathode catalytic layer, an anion exchange membrane, a hydrophobic anode catalytic layer and an anode gas diffusion layer. Raw materials for preparing the hydrophobic anode catalytic layer comprise an anode catalyst, a hydrophobic material and an anode ionomer, wherein calculated by mass, the ratio of the anode catalyst: the hydrophobic material: the anode ionomer is 10:1-3:1-3. The porosity of the hydrophobic anode catalytic layer is 10-40%.
Absstract of: US2025320419A1
Systems and methods for producing green hydrogen from a source material (e.g., biowaste) are contemplated. The source material is at least partially dehydrated to produce a dried intermediate and recovered water. The dried intermediate is pyrolyzed to produce syngas and a char. The recovered water is electrolyzed to produce oxygen and green hydrogen.
Absstract of: AU2025203497A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y
Absstract of: AU2024296614A1
A hydrogen production device for producing a hydrogen rich gas from ammonia comprising a first chamber comprising an inner wall and an outer wall defining an internal volume, wherein the first chamber contains an ammonia decomposition catalyst disposed between the inner wall and the outer wall, the first chamber having one or more ammonia gas inlets and one or more raw cracked gas outlets, wherein said one or more ammonia gas inlets and one or more raw cracked gas outlets are arranged such that the ammonia flows through the first chamber from the one or more ammonia gas inlets to the one or more raw cracked gas outlets and contacts the ammonia decomposition catalyst; and one or more heat sources for heating the ammonia decomposition catalyst; wherein the first chamber has one or more fins, said one or more fins disposed between the inner wall and the outer wall of the first chamber, wherein the first chamber has an internal surface area, wherein the internal volume is between 10 ml and 100 litres and wherein the ratio of the internal surface area in mm2 to the internal volume in mm3 is between approximately 1:2 and 1:6.
Absstract of: AU2025200173A1
A water electrolysis cell according to an embodiment includes: an anode electrode including an anode catalyst layer in which anode catalyst sheets are stacked via a gap, each anode catalyst sheet containing iridium oxide and being in the form of a nanosheet; a cathode electrode including a cathode catalyst layer in which cathode catalyst sheets are stacked via a gap, each cathode catalyst sheet containing platinum and being in the form of a nanosheet; and an electrolyte membrane containing a hydrocarbon-based material, placed between the anode electrode and the cathode electrode. A water electrolysis cell according to an embodiment includes: an anode electrode including an anode catalyst layer in 5 which anode catalyst sheets are stacked via a gap, each anode catalyst sheet containing iridium oxide and being in the form of a nanosheet; a cathode electrode including a cathode catalyst layer in which cathode catalyst sheets are stacked via a gap, each cathode catalyst sheet containing platinum and being in the form 10 of a nanosheet; and an electrolyte membrane containing a hydrocarbon-based material, placed between the anode electrode and the cathode electrode. an a n a n d t h e c a t h o d e e l e c t r o d e 36a 36b 36a34a 34b 34a 3/33/3 35 34 36 37 36a 34a 36b 34b 34a 36a an a n b b a a
Absstract of: AU2024296183A1
The invention provides a device for producing hydrogen gas and a process therefor. It also provides a system for generating electrical energy from hydrogen gas. More particularly, the invention provides a device for producing hydrogen comprising an ammonia cracker having one or more raw cracked gas outlets in fluid communication with a common raw cracked gas flow conduit, one or more gas separators in fluid communication with the ammonia cracker via the common raw cracked gas flow conduit, and in fluid communication with a common partially purified cracked gas flow conduit; one or more filter assemblies, each having a first container having one or more walls, one or more partially purified cracked gas inlets and one or more purified cracked gas outlets, wherein the one or more partially purified cracked gas inlets are in fluid communication with the one or more gas separators via the common partially purified cracked gas flow conduit, the first container containing a single mass of adsorbent comprising silica gel, wherein the one or more partially purified cracked gas inlets and one or more purified cracked gas outlets are arranged such that a partially purified cracked gas flows through the single mass of adsorbent in use.
Absstract of: US2025373010A1
A system combination having at least two electrolysis systems, a power supply source having a direct voltage output, and a central supply line is provided. The central supply line is connected to the direct voltage output of the power supply source, so that a direct current can be fed into the central supply line and a central DC network designed for high voltage is provided, to which DC network the electrolysis systems are connected by means of the central supply line. The power supply source has, as a power generator, a wind turbine, to which a rectifier having a direct voltage output is connected, the direct voltage output being designed for the high voltage.
Absstract of: US2025368520A1
The invention relates to a system and a method for producing ammonia, including an ammonia reactor which is formed for the generation of ammonia (NH3) from a synthesis gas, where the synthesis gas includes hydrogen (H2) and nitrogen (N2), further including an electrolizer which is formed to generate hydrogen and oxygen from water, where the electrolizer is operated with renewable energies, further including a gas turbine operated with hydrogen, where the exhaust gas of the gas turbine containing nitrogen (N2) is employed for the generation of the synthesis gas.
Absstract of: US2025369130A1
The present disclosure provides a water electrolysis membrane electrode, a method for preparing the water electrolysis membrane electrode, and a water electrolyzer applying the water electrolysis membrane electrode. The water electrolysis membrane electrode includes a cathode gas diffusion layer, a cathode catalytic layer, an anion exchange membrane, a hydrophobic anode catalytic layer, and an anode gas diffusion layer that are stacked in sequence. Raw materials for preparing the hydrophobic anode catalytic layer include an anode catalyst, a hydrophobic material, and an anode ionomer. A mass ratio of the anode catalyst, the hydrophobic material, and the anode ionomer is 10:1-3:1-3. A porosity of the hydrophobic anode catalytic layer is 10%-40%.
Absstract of: US2025369135A1
The present invention relates to an electrode for a hydrogen evolution reaction in an alkaline water electrolysis cell, wherein the electrode comprises: a co-catalyst consisting of a composite containing a Lewis acid-containing material and a metal-organic framework (MOF); and a catalyst surrounded by the co-catalyst. According to the present invention, the water dissociation step of the alkaline hydrogen evolution reaction is promoted, hydrogen gas generated by the hydrogen evolution reaction can easily permeate through the structure, and Nafion is uniformly dispersed by the large pores created by the MOF, thereby implementing the co-catalyst effect across the entire surface while minimizing catalyst poisoning.
Absstract of: US2025369137A1
Oxygen generation systems for use in low-gravity environments include a cell stack with an anode-side phase separator and a cathode-side phase separator fluidly coupled to outlets of the cell stack. An anode-side flow controller and a cathode-side flow controller are arranged downstream from the respective phase separators. A pressure differential is induced upstream of the anode-side flow controller that is greater in pressure than a downstream side thereof. A pressure differential is induced upstream of the cathode-side flow controller that is greater in pressure than a downstream side thereof. An input flow controller is arranged upstream from the stack inlet, the input flow controller configured to cause a pressure differential such that an upstream side of the input flow controller is greater than a downstream side of the input flow controller.
Absstract of: US2025369126A1
Embodiments for an apparatus for producing hydrogen peroxide are provided. The apparatus includes a heat exchanger configured to remove heat from deionized water prior to passing the deionized water through the anode passage of one or more cells. The apparatus is also configured to oxidize the deionized water in the anode passage of the one or more cells. The apparatus also includes a controller configured to control the heat exchanger and a first one or more temperature sensors electrically coupled to the controller. The first one or more temperature sensors are configured to provide a first temperature reading based on a temperature of the one or more cells, wherein the controller is configured to control the heat exchanger to maintain the first temperature reading at or below a first temperature threshold.
Absstract of: US2025369139A1
Oxygen generation systems for use in low-gravity environments include a cell stack having an anode and a cathode. An anode-side phase separator and a cathode-side phase separator are each fluidly coupled to outlets of the cell stack. The anode-side phase separator separates a mixture into liquid water and gaseous oxygen and the cathode-side phase separates a mixture int liquid water and gaseous hydrogen. A ducting system is configured to house the cell stack and the cathode-side phase separator, a hydrogen sensor is arranged at an outlet of the ducting system, and a controller is configured to stop oxygen generation at the cell stack when a concentration of hydrogen is detected at or above a threshold level at the hydrogen sensor at the outlet of the ducting system.
Absstract of: US2025369125A1
Methods and systems are disclosed for using industrial waste for the production of hydrogen gas. The method includes examining a pH level of the industrial waste, removing contaminate from the industrial waste, conditioning and concentrating the industrial waste to a proton-rich solution, and using the resulting proton-rich solution as the proton source in a hydrogenase catalyzed hydrogen production system.
Absstract of: US2025369134A1
A liquid-assisted chemical vapor deposition method for preparing hierarchical Ni/NiO@Ru—NC nanotube arrays includes forming Ni/NiO@Ru—NC on surfaces of the NF with single-atom Ru anchored on N-doped carbon (Ru—NC) nanotube and Janus Ni/NiO NPs encapsulated on the tips. The forming Ni/NiO@Ru—NC includes pretreating the NF; creating a CH3CN/RuCl3/Ar atmosphere in the tube furnace to in-situ grow the Ni/NiO@Ru—NC nanotube arrays on the pretreated NF. The bifunctional Ni/NiO@Ru—NC electrocatalyst exhibits overpotentials of 88 m V and 261 m V for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 100 mA cm−2 in alkaline solution, respectively. Meanwhile, the bifunctional Ni/NiO@Ru—NC can stably operate an anion-exchange membrane water electrolysis (AEMWE) system for 50 hours under 500 mA cm−2 at a voltage of 1.95±0.05 V in a 1.0 M KOH solution at room temperature. An overall water-splitting electrolyzer can be efficiently driven by a solar cell.
Absstract of: US2025368585A1
A carbon closed-loop system and process are provided. The carbon closed-loop system and process can be utilized in an industrial operation for producing, for example, a Lower Carbon Aviation Fuel (LCAF). The LCAF is produced by decarbonizing, for example, industrial furnaces and boilers, such as fired heaters, through the carbon closed-loop system and process which integrates renewable energy-driven H2 generation, CO2 capture, and methanation technologies to substantially reduce the carbon footprint of the industrial operation.
Absstract of: US2025368503A1
The disclosure relates to systems and methods for continuous hydrogen production using photocatalysis. Specifically, the disclosure relates to systems and methods for continuous hydrogen production using photocatalysis of water utilizing semiconductor charge carriers immobilized on removable carriers in the presence of a reducing agent such as tertiary amines.
Absstract of: WO2025249989A1
According to exemplary embodiments of the present invention, provided are a hydrogen purification system and a method for purifying hydrogen, the hydrogen purification system comprising: a first reactor configured to produce a metal nitride and a hydrogen-rich gas by reacting a mixed gas containing hydrogen and nitrogen with a metal absorbent; and a second reactor configured to receive the metal nitride from the first reactor and regenerate same into the metal absorbent, wherein the pressure of the first reactor is 1-5 bar.
Absstract of: WO2025249719A1
The present invention relates to an electrode for a hydrogen evolution reaction of an alkaline water electrolysis cell, the electrode being characterized by comprising: a cocatalyst which is a composite comprising a Lewis acid-containing material and a metal-organic framework (MOF); and a catalyst surrounded by the cocatalyst. Therefore, according to the present invention, a water dissociation step of an alkaline hydrogen evolution reaction is promoted, hydrogen gas generated by the hydrogen evolution reaction is easily permeated, and Nafion is evenly dispersed by large pores generated by the MOF, thereby minimizing catalyst poisoning while implementing the effect of the cocatalyst on the entire surface.
Absstract of: WO2025249472A1
An electrolysis cell 21 comprises a solid electrolyte layer 211, a fuel electrode layer 213 stacked and arranged on one surface side of the solid electrolyte layer 211, and an air electrode layer 212 stacked and arranged on the other surface side of the solid electrolyte layer 211. The fuel electrode layer 213 includes a functional layer 213a, a support layer 213b positioned on the side farther from the solid electrolyte layer 211 than from the functional layer 213a, and a mutual diffusion layer 213c positioned between the functional layer 213a and the support layer 213b so as to be in contact with both of the functional layer 213a and the support layer 213b. The mutual diffusion layer 213c includes: a first element which is one element constituting the functional layer 213a; and a second element which is one element constituting the support layer 213b and is different from the first element. The thickness of the mutual diffusion layer 213c is 1.1 μm or more and 9.7 μm or less.
Absstract of: WO2025249470A1
An electrolysis cell 21 includes: a solid electrolyte layer 211; a fuel electrode layer 213 stacked and arranged on the rear surface 211A side of the solid electrolyte layer 211; and an air electrode layer 212 stacked and arranged on the front surface 211B side of the solid electrolyte layer 211. A mutual diffusion layer 214 in contact with both the solid electrolyte layer 211 and the fuel electrode layer 213 is formed between the solid electrolyte layer 211 and the fuel electrode layer 213. The mutual diffusion layer 214 includes: a first element which is one element constituting the solid electrolyte layer 211; and a second element which is one element constituting the fuel electrode layer 213 and is different from the first element. The thickness T1 of the mutual diffusion layer 214 falls within the range of 1.5 μm or more and 4.8 μm or less.
Absstract of: WO2025249471A1
An electrolysis cell 21 comprises: a solid electrolyte layer 211 including ion-conductive oxide particles; a fuel electrode layer 213 laminated on the back surface 211A side of the solid electrolyte layer 211; and an air electrode layer 212 laminated on the upper surface 211B side of the solid electrolyte layer 211. The average particle diameter of the ion-conductive oxide particles in the solid electrolyte layer 211 is 0.40-1.24 µm.
Absstract of: WO2025249474A1
An electrolysis cell 21 comprises: a solid electrolyte layer 211 that includes oxide particles containing Zr; a fuel electrode layer 213 that is stacked and arranged on one surface side of the solid electrolyte layer 211 and includes metal particles and oxide particles containing Ce; and an air electrode layer 212 that is stacked and arranged on the other surface side of the solid electrolyte layer 211. A Raman spectrum of Stokes scattered light of each of the solid electrolyte layer 211 and the fuel electrode layer 213 (213a) has a peak in a wave number region of 334 cm-1 or more and 531 cm-1 or less. When the half widths of the peaks of the Raman spectra of the solid electrolyte layer 211 and the fuel electrode layer 213 (213a) in the wave number region are defined as an electrolyte half width and a fuel electrode half width, respectively, the ratio of the electrolyte half width to the fuel electrode half width is 3.5 or more and 5.7 or less.
Nº publicación: WO2025249562A1 04/12/2025
Applicant:
NOK CORP [JP]
\uFF2E\uFF2F\uFF2B\u682A\u5F0F\u4F1A\u793E
Absstract of: WO2025249562A1
A water electrolysis device (5) is provided with gaskets (10). The gaskets (10) are configured to be used in a state where, with respect to one of the gaskets (10), another one of the gaskets (10) is reversed and overlayed. The gaskets (10) seal, in a cell (100), a space (S1) between a separator (101) and an electrolyte membrane (104) of a membrane assembly (103), and a space (S2) between a separator (102) and the electrolyte membrane (104). The gaskets (10) each have: a seal lateral surface (11) and a contact lateral surface (12) which form a pair; a first seal part (3) for sealing the space (S1) or the space (S2); and a second seal part (4) for sealing, on the outer peripheral side of the electrolyte membrane (104), a plurality of flow paths (2) between the separators (101, 102). The first seal part (3) is formed on the seal lateral surface (11) and the contact lateral surface (12), and the second seal part (4) is formed on the seal lateral surface (11) and the contact lateral surface (12).