Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Electrolytic hydrogen

Resultados 588 results.
LastUpdate Updated on 25/12/2025 [07:00:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
Results 1 to 25 of 588 nextPage  

PART COATED WITH A CARBON-BASED LAYER

Publication No.:  EP4666329A1 24/12/2025
Applicant: 
HYDROMECANIQUE & FROTTEMENT [FR]
HYDROMECANIQUE ET FROTTEMENT
KR_20250163932_PA

Absstract of: CN120858473A

The invention relates to a component comprising a metal substrate and a layer of an amorphous carbon-based material having sp2 hybrid bonds and sp3 hybrid bonds wherein the layer has a first content of sp3 hybrid bonds on the substrate side and a second content of sp3 hybrid bonds on the outer surface side of the layer, the first content being greater than the second content; it is characterized in that the average content of sp3 hybrid bonds within the layer is from 5% to 65%, preferably from 5% to 45%, and in that the content of sp3 hybrid bonds varies continuously within the layer.

ELECTROLYZER AND METHOD FOR DECOUPLED WATER ELECTROLYSIS

Publication No.:  EP4665890A1 24/12/2025
Applicant: 
NE M E SYS S R L [IT]
NE.M.E.SYS. S.r.l
WO_2024166004_PA

Absstract of: WO2024166004A1

Electrolytic cell (10) for the decoupled electrolysis of water comprising a first electrode (11), for the production of hydrogen (H2) and oxygen (O2), alternatively; a second electrode (12); an alkaline aqueous solution (13) in which the first electrode and the second electrode are immersed; polarity reversal means operatively connected to both the first electrode and the second electrode; the first electrode and the second electrode are polarized in the opposite way to each other in all operating conditions; the second electrode (12) comprises porous conductive carbon.

CATALYST AND PROCESS

Publication No.:  EP4665889A1 24/12/2025
Applicant: 
JOHNSON MATTHEY HYDROGEN TECHNOLOGIES LTD [GB]
Johnson Matthey Hydrogen Technologies Limited
WO_2024170902_A1

Absstract of: WO2024170902A1

An oxygen evolution catalyst material is provided, the catalyst material comprising iridium oxide (IrOx) and a potassium iridate crystalline phase. The potassium iridate crystalline phase provides a reflection in the x-ray diffraction (XRD) pattern of the catalyst material at 20 = 13° and offers high oxygen evolution catalyst activity.

ELECTROLYSER UNIT COMPRISING A PLURALITY OF INDIVIDUAL ELECTROLYSER STACKS AND METHOD FOR CONNECTING ELECTROLYSER STACKS TO FORM UNITS

Publication No.:  EP4665894A1 24/12/2025
Applicant: 
GREEN HYDROGEN SYSTEMS AS [DK]
Green Hydrogen Systems A/S
CN_121175454_PA

Absstract of: AU2024221020A1

The invention comprises a method for connecting a pair of electrolyser stacks with electrolyte, electric current and gas drain piping. Accordingly, each pair of stacks of the electrolyser: - through interconnection endplates are supplied with alkaline electrolyte at elevated pressure by common electrolyte supply pipes and further, - through the interconnection endplate drain off oxygen gas containing electrolyte, and hydrogen gas containing electrolyte, to common gas separation vessels for oxygen and hydrogen respectively, - pull first electrically interconnected current injection electrodes adjacent to interconnection endplates to zero electrical potential through a zero potential conductor, and - supply second current injection electrodes placed adjacent to distal endplates with electric current at potentials equally higher and lower respectively than the zero potential at the first electrodes.

METHOD OF PRODUCING GREEN HYDROGEN FROM PYRITE RECOVERED FROM MINE WASTE

Publication No.:  EP4665700A1 24/12/2025
Applicant: 
H2 SPHERE GMBH [DE]
H2-SPHERE GmbH
WO_2024170774_PA

Absstract of: WO2024170774A1

The present invention relates to a method of producing green hydrogen and associated products from pyrite separated from mine waste (e.g., disposed tailings or active tailings streams) in an energetically self-sustained process. This is achieved by a method according to the present invention comprising the following steps: (a) separation and enrichment of a mine waste material comprising pyrite to obtain a pyrite concentrate, (b) oxidation of the pyrite concentrate to obtain SO2 gas; (c) separation of the SO2 gas; (d) utilization of SO2 gas from step (c) to generate H2 gas and H2SO4 via a SO2-depolarized electrolyzer (SDE) process or a sulfur-iodine-cycle (S-I-cycle) process.

ELECTROLYZER

Publication No.:  EP4667621A1 24/12/2025
Applicant: 
INDOX ENERGY SYSTEMS S L [ES]
Indox Energy Systems, S.L
EP_4667621_PA

Absstract of: EP4667621A1

The present application relates to an electrolyzer. The electrolyzer comprises a plurality of cells (1) defining a cell stack (1), each cell (1) comprising first and second cavities, channels (2) for input of a liquid electrolyte into each cavity of each cell (1); output channels (31, 32) for output of hydrogen from the first cavities; and outlet channels (31, 32) for oxygen output from the second cavities, wherein each cell (1) defines a first half (A) and a second half (B), wherein the inlet channels (2) are located in the first half (A) and the outlet channels (31, 32) are located in the second half (B). This arrangement of the input and output channels improves the efficiency of the cells both individually and collectively, and reduces corrosion effects normally generated by hot spots.

HYDROGEN GENERATION VIA HIGH FLUID VELOCITY ELECTROLYSIS AND GAS SEPARATION

Publication No.:  EP4665891A2 24/12/2025
Applicant: 
EVOQUA WATER TECH LLC [US]
Evoqua Water Technologies LLC
CN_120882907_PA

Absstract of: CN120882907A

A system and method for generating hydrogen from a liquid source comprising water is disclosed. The system comprises: a high fluid velocity electrolysis cell comprising an inlet and an outlet, the inlet of the high fluid velocity electrolysis cell being fluidly connected to a liquid source; and a gas fractionation system fluidly connected to the outlet of the high fluid velocity electrolysis cell.

HYDROGEN PRODUCTION SYSTEM AND METHOD FOR OPERATING HYDROGEN PRODUCTION SYSTEM

Publication No.:  EP4667623A1 24/12/2025
Applicant: 
MITSUBISHI HEAVY IND LTD [JP]
Mitsubishi Heavy Industries, Ltd
EP_4667623_PA

Absstract of: EP4667623A1

This hydrogen production system comprises: a solid oxide electrolysis cell (SOEC) that electrolyzes water vapor; a water vapor generation device that heats supply water to generate water vapor; and a combustor that partially burns hydrogen included in water vapor discharged from a hydrogen electrode of the SOEC. The water vapor generation device is configured such that the supply water is at least partially heated through heat exchange between at least part of the supply water and gas including combustion gas generated in the combustor so as to produce at least part of the water vapor.

ELECTRODE CATALYST LAYER AND MEMBRANE ELECTRODE ASSEMBLY

Publication No.:  EP4667624A1 24/12/2025
Applicant: 
TOPPAN HOLDINGS INC [JP]
Toppan Holdings Inc
EP_4667624_PA

Absstract of: EP4667624A1

An electrode catalyst layer 2 includes catalyst particles 12, an ionomer 13, and ionomer-adsorptive carbon fibers 14α. The ionomer-adsorptive carbon fibers 14α may have an adsorption amount of the ionomer of 10 mg or more per 1 g of the ionomer-adsorptive carbon fibers, may have a diameter in a range of 50 nm or more and 1 µm or less, and may be vapor-grown carbon fibers (VGCF) subjected to hydrophilic treatment.

Hydrogen extraction system and method

Publication No.:  GB2641899A 24/12/2025
Applicant: 
TOKAMAK ENERGY LTD [GB]
Tokamak Energy Ltd
GB_2641899_PA

Absstract of: GB2641899A

A hydrogen extraction system for extracting hydrogen from a liquid electrolyte 102 comprising at least one isotopologue of lithium hydride, the system including an electrolysis cell 100 comprising: a first electrode for generating hydrogen from the liquid electrolyte 102; a second electrode spaced apart from the first electrode; and a solid-state electrolyte 112 comprising a high entropy oxide (HEO) material for physically isolating one of the electrodes from the liquid electrolyte 102 and conducting ions from the liquid electrolyte 102 and the electrode thus physically isolated. The HEO material may comprise five or more different metal cations, comprising magnesium (Mg), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn), and may comprise lithium (Li). A method of extracting hydrogen using the extraction system is defined. A tritium breeding system is defined, comprising the hydrogen extraction system and a breeder blanket, the breeding system configured to supply liquid electrolyte comprising at least one tritium-containing isotopologue of lithium hydride to the electrolysis cell from the breeder blanket and to return liquid electrolyte to the breeder blanket from the electrolysis cell following electrolysis of the at least one tritium-containing isotopologue of lithium hydride.

ELECTROLYZER WITH VARIABLE NUMBER OF ACTIVE ELECTROLYSIS CELLS

Publication No.:  EP4665888A2 24/12/2025
Applicant: 
HYDROGEN WAVES LTD [GB]
Hydrogen Waves Ltd
CN_121057844_PA

Absstract of: AU2024222987A1

A system, comprising: an electrolyzer having a plurality of electrolysis cells arranged in a cell stack, wherein the electrolysis cells are electrically connected in series and grouped into two or more cell groups, each cell group having an electrical contact at either end; an electrical circuit having one or more switches, each switch coupled between the electrical contacts of a respective one of the cell groups and configured to selectively disconnect the cell group from the cell stack by electrically bypassing the cell group via a lower resistance path, to thereby vary the number of active electrolysis cells in the cell stack; and a controller configured to determine the number of active electrolysis cells based on a variable amount of direct current (DC) electrical energy supplied to the cell stack by an electrical energy source, and to control the one or more switches based on the determination.

电解器

Publication No.:  CN121195089A 23/12/2025
Applicant: 
德诺拉工业有限公司
CN_121195089_PA

Absstract of: AU2024291248A1

The present invention refers to an electrolyzer (1) for the production of hydrogen from an alkaline electrolyte. The electrolyzer (1) comprises a first header (11) and a second header (12) between which a plurality of elementary cells (20) and a plurality of bipolar plates (5, 5', 5'') are stacked. Each bipolar plate (5) separates two adjacent elementary cells. According to the invention, each of said bipolar plates (5, 5',5'') comprises two plate-form components (5A, 5B) coupled together and configured so as to define one or more inner cavities (66) for the circulation of a cooling fluid. Furthermore, each bipolar plate (5, 5', 5'') comprises an inlet section (SI) and an outlet section (SV) respectively for the inlet and outlet of said cooling fluid in said one or more inner cavities (66).

用于工具的气体发生器、气体发生器的用途、以及具有气体发生器的工具

Publication No.:  CN121175453A 19/12/2025
Applicant: 
喜利得股份公司
CN_121175453_PA

Absstract of: WO2024240539A1

The invention discloses a gas generator (20) for a tool comprising an electrolytic cell (30) for producing oxyhydrogen gas with a hollow cell body (31) and an electrode pair (32) with a first electrode (33) and a second electrode (35). Said first electrode (33) and said second electrode (35) are separated by a non-conductive separator (37) in said hollow cell body (31). A gas extraction tube (55) is arranged in the hollow cell body (31). Furthermore, said invention disclose a usage of such a gas generator in a tool and a tool with such a gas generator.

包括多个单独的电解槽堆的电解槽单元以及用于连接电解槽堆以形成单元的方法

Publication No.:  CN121175454A 19/12/2025
Applicant: 
蒂森克虏伯新纪元股份有限及两合公司
CN_121175454_PA

Absstract of: AU2024221020A1

The invention comprises a method for connecting a pair of electrolyser stacks with electrolyte, electric current and gas drain piping. Accordingly, each pair of stacks of the electrolyser: - through interconnection endplates are supplied with alkaline electrolyte at elevated pressure by common electrolyte supply pipes and further, - through the interconnection endplate drain off oxygen gas containing electrolyte, and hydrogen gas containing electrolyte, to common gas separation vessels for oxygen and hydrogen respectively, - pull first electrically interconnected current injection electrodes adjacent to interconnection endplates to zero electrical potential through a zero potential conductor, and - supply second current injection electrodes placed adjacent to distal endplates with electric current at potentials equally higher and lower respectively than the zero potential at the first electrodes.

ELECTROCHEMICAL SEPARATION OF WATER INTO HYDROGEN AND OXYGEN

Publication No.:  WO2025256864A1 18/12/2025
Applicant: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
SIEMENS ENERGY GLOBAL GMBH & CO. KG
WO_2025256864_A1

Absstract of: WO2025256864A1

The invention relates to an electrolysis cell (12) for electrochemically separating water into hydrogen and oxygen, comprising: - an anode-side half-cell (16) for providing the oxygen, - a cathode-side half-cell (18) for providing the hydrogen, and - a separator element (20) between the anode-side half-cell (16) and the cathode-side half-cell (18). According to the invention, the electrolysis cell (12) has - a frame unit (10) having an anode-side frame part (22), on which the anode-side half-cell (16) is provided, and a separate cathode-side frame part (24), on which the cathode-side half-cell (18) is provided, and - at least one first sealing element (26), which is provided between the anode-side frame part (22) and the cathode-side frame part (24).

THERMAL ENERGY STORAGE SYSTEM WITH STEAM GENERATION SYSTEM INCLUDING FLOW CONTROL AND ENERGY COGENERATION

Publication No.:  US2025382898A1 18/12/2025
Applicant: 
RONDO ENERGY INC [US]
Rondo Energy, Inc
US_2025179941_PA

Absstract of: US2025382898A1

An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.

改良された水電解用多層プロトン交換膜

Publication No.:  JP2025541284A 18/12/2025
Applicant: 
ダブリュ.エル.ゴアアンドアソシエイツ,インコーポレイティド
JP_2025541284_PA

Absstract of: CN120604367A

There is provided a multi-layer proton exchange membrane for water electrolysis, comprising: at least two reconstitution catalyst layers, each of which comprises a reconstitution catalyst and a first ion exchange material, and at least two reinforcement layers, each of which comprises a reconstitution catalyst and a second ion exchange material, wherein the at least two reconstitution catalyst layers are separated by regions free of or substantially free of reconstitution catalyst, each of the at least two reinforcement layers comprising a microporous polymer structure and a second ion exchange material at least partially absorbed within the microporous polymer structure.

Vorrichtung zur Herstellung flüssiger Kohlenwasserstoffe

Publication No.:  DE102024116793A1 18/12/2025
Applicant: 
PIERBURG GMBH [DE]
Pierburg GmbH
DE_102024116793_PA

Absstract of: DE102024116793A1

Eine Vorrichtung zur Herstellung flüssiger Kohlenwasserstoffe, mit einem Mischer (3), der einen ersten Eingang (16) für Wasserstoff (8b), einen zweiten Eingang (26) für Kohlendioxid und Kohlenmonoxid sowie einen Ausgang (31) für ein Wasserstoff-Kohlendioxid/Kohlenmonoxid-Gemisch (27) aufweist; ferner mit einem Reaktor (4) zur Durchführung einer rückwärtigen Wassergas-Shift-Reaktion (RWGS-Reaktor) für die Erzeugung von Synthesegas (35), das Kohlenmonoxid und Wasserstoff enthält, wobei der RWGS-Reaktor (4) einen Eingang (32) aufweist, der mit dem Ausgang (31) des Mischers (3) in Strömungsverbindung steht, und einen Ausgang (36) für das Synthesegas (35) aufweist; und mit einem Reaktor (5) zur Durchführung einer Fischer-Tropsch-Synthese (FT-Reaktor) für die Erzeugung flüssiger Kohlenwasserstoffe, der einen Eingang (38) aufweist, der mit dem Ausgang (36) des RWGS-Reaktors (4) in Strömungsverbindung steht, und einen Ausgang (40) für die flüssigen Kohlenwasserstoffe ()39 aufweist; weist einen elektrochemischen Wasserstoffkompressor (2) auf, der einen Eingang (10) für Niederdruck-Wasserstoff (8a) und/oder für ein Wasserstoff (8a) umfassendes Niederdruck-Gasgemisch aufweist und einen Ausgang (11) für Hochdruck-Wasserstoff (8b) aufweist, wobei der Ausgang (11) mit dem ersten Eingang (16) des Mischers (3) in Strömungsverbindung steht.

SYSTEM AND METHOD FOR GENERATING HYDROGEN USING GEOTHERMAL ENERGY

Publication No.:  WO2025259900A1 18/12/2025
Applicant: 
SYNTHOLENE ENERGY CORP [US]
SYNTHOLENE ENERGY CORP
WO_2025259900_A1

Absstract of: WO2025259900A1

A system and method for generating hydrogen using thermal energy in a geothermal fluid are disclosed. An electrical power generation subsystem is configured to receive geothermal fluid from a geothermal fluid source and use thermal energy in the geothermal fluid to generate electrical power. A steam generation subsystem is configured to receive water and produce steam using thermal energy in the geothermal fluid and the electrical power generated by the electrical power generation subsystem. A hydrogen generation subsystem is configured to disassociate hydrogen from the steam using the electrical power generated by the electrical power generation subsystem.

HYDROGEN OXYGEN DEVICE AND METHOD OF USE

Publication No.:  WO2025259118A1 18/12/2025
Applicant: 
RUMENAUT LTD [NZ]
RUMENAUT LIMITED
WO_2025259118_A1

Absstract of: WO2025259118A1

The present invention is concerned with device that is configured to be administered to the gut digestate of a ruminant animal, which device is capable of generating electrical energy from a gut digestate and/or measuring the concentration of hydrogen (H2) and/or oxygen (O2) that is present in the gut digestate. Further, the device according to the present invention may be modified to include an electrical load adjustment means (e.g. resistor, variable resistor etc) which may be used to adjust the electrical load of the device sufficient to cause the prescribed removal of H2, and in particular dissolved hydrogen (dH2), from the gut digestate. As such the device according to the present invention may be employed to adjust the amount of dH2 available to methanogenic archaea while at least not compromising animal productivity, thereby reducing the amount of methane released in the atmosphere which has an important environmental impact in terms of reducing greenhouse gas emissions.

STACK, HOT MODULE, AND HYDROGEN PRODUCTION DEVICE

Publication No.:  WO2025258318A1 18/12/2025
Applicant: 
NITERRA CO LTD [JP]
\u65E5\u672C\u7279\u6B8A\u9676\u696D\u682A\u5F0F\u4F1A\u793E
WO_2025258318_A1

Absstract of: WO2025258318A1

Provided are: a stack (10, 80) with which it is possible to ensure a flow of gas between a passage and a cell; a hot module (71); and a hydrogen production device (70). This stack comprises: cells (30) including an electrolyte (31) that isolates a fuel electrode (32) and an air electrode (33) from each other in the thickness direction; first separators (27) fixed to the cells; inter-connectors (34) in contact with the air electrodes; second separators (29) fixed to the inter-connectors; electrically insulating frames (28) disposed between the first separators and the second separators; and gas passages (24, 25) extending in the thickness direction of the first separators, the frames, and the second separators. The passages are connected to spaces (37) between the first separators and the second separators. The stack also comprises insulators (50) disposed between the passages and the cells within the spaces. The spaces in which the insulators are disposed each include a gas passage part (52) through which gas passes between the passages and the cells.

POROUS METAL BODY SHEET, FUEL CELL, AND HYDROGEN PRODUCTION APPARATUS

Publication No.:  WO2025257961A1 18/12/2025
Applicant: 
SUMITOMO ELECTRIC IND LTD [JP]
\u4F4F\u53CB\u96FB\u6C17\u5DE5\u696D\u682A\u5F0F\u4F1A\u793E
WO_2025257961_A1

Absstract of: WO2025257961A1

This porous metal body sheet is formed of a porous metal body having a skeleton assuming a three-dimensional network structure. The porous metal body sheet has a first main surface and a second main surface on the opposite side to the first main surface. The first main surface includes a first inclined peripheral edge region, a second inclined peripheral edge region opposite to the first inclined peripheral edge region, and a central region between the first inclined peripheral edge region and the second inclined peripheral edge region. The first inclined peripheral edge region and the second inclined peripheral edge region are set apart from each other in a first direction. The first inclined peripheral edge region and the second inclined peripheral edge region each extend along a second direction intersecting the first direction, and are inclined so as to approach the second main surface as the distance from the central region increases in the first direction.

POROUS METAL SHEET, FUEL CELL, AND HYDROGEN PRODUCTION APPARATUS

Publication No.:  WO2025257962A1 18/12/2025
Applicant: 
SUMITOMO ELECTRIC IND LTD [JP]
\u4F4F\u53CB\u96FB\u6C17\u5DE5\u696D\u682A\u5F0F\u4F1A\u793E
WO_2025257962_A1

Absstract of: WO2025257962A1

This porous metal sheet is formed of a porous metal having a skeleton with a three-dimensional network structure. The porous metal sheet has a main surface in which a plurality of grooves are formed. An upper chamfer is formed on the upper corner of each of the plurality of grooves. A lower chamfer is formed on the lower corner of each of the plurality of grooves.

HYDROGEN PRODUCTION AND DISSOLUTION CONTROL METHOD AND SYSTEM, COMPUTER DEVICE AND STORAGE MEDIUM

Publication No.:  WO2025256113A1 18/12/2025
Applicant: 
TIANJIN FURUIXING HEALTH TECH CO LTD [CN]
\u5929\u6D25\u798F\u745E\u5174\u5065\u5EB7\u79D1\u6280\u6709\u9650\u516C\u53F8
WO_2025256113_A1

Absstract of: WO2025256113A1

Disclosed in the present invention are a hydrogen production and dissolution control method and system, a computer device, and a storage medium. The method comprises: controlling an electrolytic cell to perform a water electrolysis operation; controlling a separation and purification mechanism to perform gas-liquid separation and hydrogen purification on hydrogen prepared by means of the electrolytic cell, so as to obtain purified hydrogen; controlling a booster to pressurize the purified hydrogen and then input same into a reaction tank; acquiring in real time a pressure signal in the reaction tank detected by a pressure sensor; and when the pressure signal satisfies a preset pressure threshold range, controlling an ultrasonic generator in the reaction tank to perform a hydrogen dissolution operation and timing, and when the hydrogen dissolution operation time is equal to a preset operation threshold, controlling the ultrasonic generator and the booster to stop operating. The present invention enables gas-liquid separation and hydrogen purification of the hydrogen prepared by means of the electrolytic cell, and uses ultrasonic vibration to perform a hydrogen dissolution operation on the hydrogen in a high-pressure environment, thereby achieving a rapid hydrogen dissolution operation and high hydrogen dissolution efficiency and dissolved hydrogen content.

A METHOD OF PRODUCING GREEN IRON

Nº publicación: WO2025255634A1 18/12/2025

Applicant:

FORTESCUE LTD [AU]
FORTESCUE LTD

WO_2025255634_A1

Absstract of: WO2025255634A1

A method of producing green iron, the method including the step of using renewable electricity and hydrogen to convert iron ore into iron. The renewable electricity may be produced by solar and/or wind generation. The hydrogen may be in the form of green hydrogen. The method may produce less than 50 kg of carbon dioxide per tonne of iron produced.

traducir