Absstract of: AU2024291792A1
The disclosure concerns a process of carbon oxides-free hydrogen production is disclosed. The process comprises the following steps: - heating a gas stream of a reacting compound including hydrogen atoms in absence of oxidizing agents, to thermally decompose the reacting compound into smaller product compounds, including hydrogen molecules, obtaining a stream of decomposition product compounds; - separating hydrogen molecules from other product compounds of the stream of decomposition product compounds; - reacting a portion of the stream of separated hydrogen molecules with a stream of an oxidizing agent, in particular oxygen or air, to obtain combustion product compounds, including steam and heat, in a stream of combustion product compounds; - providing heat obtained in the previous step to the step of heating the reacting compound; and wherein the process can comprise a step of - recovering energy from the stream of decomposition product compounds and/or from the stream of combustion product compounds. Additionally, a system of hydrogen production is also disclosed, the system being configured to operate according to the above process.
Absstract of: CN116439627A
The invention is applicable to the technical field of cleaning appliances, and discloses an integrated water tank capable of cleaning and separating, which comprises a clean water tank, a sewage tank and a water tank cover, the clean water tank contains and outputs clean water to a cleaning tool, the top wall is provided with a water outlet, and the inner wall of the bottom wall is connected with a water pumping joint; the sewage tank collects sewage output by the cleaning tool, the peripheral wall and the bottom wall of the sewage tank are closed, and only the top is open; the water tank cover can cover the clear water tank and the sewage tank from the top at the same time, a clear water outlet and a sewage inlet are formed in the water tank cover, the water tank cover is directly or indirectly connected with a water pumping pipe which is arranged in the clear water tank and communicated with the clear water outlet, and the other end of the water pumping pipe is communicated with a water pumping connector. The clean water tank and the sewage tank of the water tank can be detached independently, and the whole water tank is convenient to assemble and maintain; the clear water outlet and the sewage inlet arranged on the water tank cover are far away from the water tank electricity-taking interface, so that short circuit of the electricity-taking interface caused by water tank leakage can be avoided.
Absstract of: WO2025028379A1
Provided is an ammonia decomposition catalyst that has a high ammonia decomposition activity even at a low reaction temperature and a low reaction pressure, and has stable catalyst characteristics even when repeatedly used in reactions after being exposed to water or the atmosphere. A barium nitride according to the present invention is represented by general formula (1). (1): BaAN2-x (In general formula (1), A is at least one type of element selected from the group consisting of Si, Fe, Ni, Mo, and Zr, and x represents a numerical value represented by 0≤x<2.0.)
Absstract of: AU2024357053A1
Provided is a control device including: a step in which a current command value regarding current to be applied to an electrolytic stack is determined; and a step in which pure-water adjustment amount command values for adjusting the pressure or/and flow rate of water to be supplied to the electrolytic stack are determined on the basis of the current command value. The control device further includes a step A in which, when the current command value is changed from a first current command value (current command value c1) to a second current command value (current command value c2), which is a different value, and the pure-water adjustment amount command value is changed from a first pure-water adjustment amount command value (pure-water adjustment amount command value w1) to a second pure-water adjustment amount command value (pure-water adjustment amount command value w2), which is a different value, measured values of the pressure or/and flow rate are caused to reach the second pure-water adjustment amount command value from the first pure-water adjustment amount command value before a measured value of current applied from a power converter to the electrolytic stack reaches the second current command value from the first current command value.
Absstract of: US20260043158A1
An electrolytic cell and an anion-exchange conductive hollow fiber tube matrix thereof are disclosed. The anion-exchange conductive hollow fiber tube matrix includes a plurality of conductive hollow fiber tubes arranged adjacent to each other in a matrix. The conductive hollow fiber tubes each have a diffusion surface and two opposite ends defined as an inlet and an outlet. An anode and a cathode of the electrolytic cell are disposed adjacent to the diffusion surface. Water in an electrolysis tank flows into the conductive hollow fiber tubes from the inlet, water molecules enter the cathode from the diffusion surface and decompose to produce hydrogen and hydroxide ions, the hydrogen is discharged from the cathode, the hydroxide ions return to the conductive hollow fiber tubes from the diffusion surface and then enter the anode from the diffusion surface to produce oxygen, the oxygen is discharged from a surface of the anode.
Absstract of: US20260043159A1
A solid oxide electrolyzer cell (SOEC) includes a solid oxide electrolyte, a fuel-side electrode disposed on a fuel side of the electrolyte, and an air-side electrode disposed on an air side of the electrolyte. The air-side electrode includes a barrier layer disposed on the air side of the electrolyte and including a first doped ceria material, and a functional layer disposed on the barrier layer and including an electrically conductive material and a second doped ceria material.
Absstract of: US20260043160A1
This control device is for a hydrogen production facility and comprises: a plurality of electrolysis cells for electrolyzing water or steam; and a plurality of rectifiers for supplying DC power to each of the plurality of electrolysis cells. The control device is provided with: a degradation coefficient acquisition unit configured to acquire a plurality of degradation coefficients indicating the degrees of deterioration of the respective electrolysis cells, an individual necessary current calculation unit configured to calculate, on the basis of a total necessary current corresponding to a hydrogen generation volume required for the hydrogen production facility and the plurality of degradation coefficients, a plurality of individual necessary currents indicating necessary currents required for the electrolysis cells; and a control unit configured to control the respective rectifiers on the basis of the plurality of individual necessary currents.
Absstract of: US20260043151A1
A method of operating an electrolyzer system includes providing steam to a stack of electrolyzer cells through a steam filter, electrolyzing the steam into a hydrogen product in the stack of electrolyzer cells, receiving data from one or more sensors indicating that the filter requires cleaning or replacement, and cleaning or replacing the steam filter in response to the receiving the data from the one or more sensors indicating that the steam filter requires cleaning or replacement.
Absstract of: WO2026035442A1
A system includes at least one electrochemical device including a proton exchange membrane situated between an anode and a cathode. An oxygen separator is fluidly connected to an inlet to the anode and a hydrogen separator is fluidly connected to an outlet from the cathode. A separator tank fluidly interconnects an outlet from the hydrogen separator to an inlet to the oxygen separator.
Absstract of: US20260043150A1
A photocatalytic cell of the disclosure is installed in an inclined manner at an angle of 5° or more and 45° or less with respect to a horizontal plane. The photocatalytic cell includes: a translucent member; an electrolytic solution; a photocatalytic sheet including photocatalytic particles; an injection port through which the electrolytic solution is injected into an inside of the photocatalytic cell; a discharge port through which the electrolytic solution is discharged to an outside of the photocatalytic cell; and an exhaust port through which gas inside the photocatalytic cell is discharged, at least a part of the photocatalytic sheet is immersed in the electrolytic solution, a position of the exhaust port is higher than a position of the injection port, a gap between a surface of the translucent member and a surface of the photocatalytic sheet is 5 mm or more and 50 mm or less in width, and the injection port and the discharge port allow the electrolytic solution to flow from an upper part toward a lower part in the gap between the translucent member and the photocatalytic sheet.
Absstract of: AU2026200498A1
A power generator is described that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for reactions involving atomic hydrogen hydrogen products identifiable by unique analytical and spectroscopic signatures, (ii) a molten metal injection system comprising at least one pump such as an electromagnetic pump 5 that provides a molten metal stream to the reaction cell and at least one reservoir that receives the molten metal stream, and (iii) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the at least one steam of molten metal to ignite a plasma to initiate rapid kinetics of the reaction and an energy gain. In some embodiments, the power generator may comprise: (v) a source of H2 and O2 supplied to the 10 plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high-power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter. an a n
Absstract of: AU2024398260A1
Provided according to exemplary embodiments of the present invention is an ammonia decomposition system capable of minimizing the generation of iron nitride, which is a by-product.
Absstract of: AU2024300028A1
The compression arrangement comprises a hydrogen compressor and a return circuit having an inlet, which is fluidly coupled with the discharge side of the centrifugal compressor, and an outlet, which is fluidly coupled with the suction side of the centrifugal compressor. A head-loss control valve is positioned in the return circuit. The head-loss control valve is adapted to generate a controlled head loss in the return circuit when the compressor operates at a flowrate below the surge control line.
Absstract of: AU2024396946A1
According to exemplary embodiments of the present invention, a hydrogen production system is provided. The present invention comprises: a hydrogen generation unit configured to receive reduced iron from a reduced iron generation unit configured to generate reduced iron by reducing powdered iron ore in a reducing gas atmosphere, and to generate hydrogen from ammonia by bringing the reduced iron into contact with the ammonia; and a regeneration unit configured to receive the reduced iron from the hydrogen generation unit and to regenerate the reduced iron by reducing the reduced iron in a hydrogen gas atmosphere. According to other exemplary embodiments of the present invention, a method for producing hydrogen is provided.
Absstract of: US20260043154A1
An alkaline water electrolysis apparatus includes: a separation membrane including a first main surface and a second main surface opposite to the first main surface; a first electrode including a third main surface and a fourth main surface opposite to the third main surface, the third main surface being provided to face the first main surface of the separation membrane; and a first bipolar plate including a fifth main surface, the fifth main surface being provided in contact with the fourth main surface of the first electrode, wherein the first electrode consists of a first metal porous body having a three-dimensional mesh structure.
Absstract of: CN120981421A
A hydrogen production system comprising: a first electrode having an electrocatalyst, a second electrode having an electron donor material comprising a plurality of active sites, the second electrode configured to release electrons from the active sites within a predetermined working potential range below a working potential triggering an oxygen evolution reaction; a first electrolyte in contact with the first and second electrodes, the electrolyte being a source of hydrogen protons; and a power source configured to provide the system with the predetermined operating potential range to release electrons from the second electrode and transfer electrons to the first electrode such that hydrogen protons combine with the electrons to produce hydrogen gas.
Absstract of: WO2024208792A1
A methanol plant and a process for the production of methanol is provided. A hydrogen recovery section receives off-gas stream from the methanol synthesis section and outputs a hydrogen-rich stream, which is recycled upstream the methanol synthesis section.
Absstract of: EP4691992A1
Provided is a method for producing a highly active oxygen carrier at low cost, and a method for producing hydrogen and an apparatus for producing hydrogen using the highly active oxygen carrier.SolutionA method for producing an oxygen carrier of the present invention is a method for producing an oxygen carrier formed of an activated iron titanate containing an alkali titanate and an iron oxide by calcining a mixture of iron titanate particles and an alkali component. The mixture of the iron titanate particles and the alkali component is prepared by any of: physically mixing the iron titanate particles and an alkaline compound; and spraying an aqueous solution of the alkaline compound to the iron titanate particles or impregnating the iron titanate particles with the aqueous solution of the alkaline compound and then drying the sprayed or impregnated iron titanate particles.
Absstract of: EP4692424A1
It is an object of the present invention to provide a steam electrolysis device and a steam electrolysis method, which have high energy efficiency. The present invention relates to: a steam electrolysis device, comprising an anode electrode chamber, a cathode electrode chamber, and an ion conductor disposed between these electrode chambers, wherein steam in an amount more than twice the amount of hydrogen generated is supplied to at least one selected from the anode electrode chamber and the cathode electrode chamber, and 50% or less of the supplied steam is electrolyzed; and a steam electrolysis method using the steam electrolysis device.
Absstract of: EP4693486A1
The invention relates to an electrocatalytic electrode comprising a coating film on an electrically conductive base substrate that includes a non-stoichiometric mixed oxide dispersed in the film, including a mixture of iron and vanadium, in a metal-organic matrix, the organic part of which includes the mixed oxide dispersed therein. The electrocatalytic electrode can be used for the production of molecular hydrogen.The invention also relates to a method for producing the electrocatalytic electrode and the use of the electrocatalytic electrode for the improved production of molecular hydrogen by means of at least water hydrolysis, alkaline water electrolysis, alkaline electrolysis via ion exchange, as a selective electrode and as an electrode for the oxidation of organic compounds in an aqueous solution.
Absstract of: CN121039917A
Systems and methods are provided for an electrolysis plant interconnecting a renewable energy source (22) and a power grid (20). The system includes a power source (22) and an electrolysis plant (30) including electrolysis equipment (32) connected to the power source (22) to energize the electrolysis equipment to respective operating conditions. The control system (40) is connected to the power source (22) and the power grid (20). Upon detection of a power failure or otherwise insufficient power supply of the renewable power source, the control system is configured to bring the electrolysis device to a corresponding standby condition. The electrolysis device is connected to an electrical grid to energize the electrolysis device to a standby condition. Optionally, a backup power supply (26) is connected to the control system such that the backup power supply is configured to energize the control system upon detecting that the renewable power source and the grid are simultaneously powered off or are simultaneously otherwise insufficient in power supply.
Absstract of: CN121013925A
The invention relates to a membrane electrode assembly (1) for a water electrolyser, comprising an anode (2), a cathode (3) and a hydrocarbon membrane (4) located between the anode (2) and the cathode (3), further comprising a first gas recombination layer (5) arranged between the anode (2) and the hydrocarbon membrane (4) wherein the first gas recombination layer (5) comprises a noble metal (6), a ceramic material (7) and a proton conducting polymer (8), and wherein the volume fraction of the proton-conducting polymer (8) is 24 to 84 vol%, in particular 35 to 75 vol%, and in particular 46 to 65 vol%, based on the total volume of the gas recombination layer (5).
Absstract of: CN120981610A
The invention relates to a membrane electrode assembly (1) for a water electrolyser, comprising an anode (2), a cathode (3) and a hydrocarbon membrane (4) located between the anode (2) and the cathode (3), further comprising a first gas recombination layer (5) arranged between the anode (2) and the hydrocarbon membrane (4), in which at least one adhesion layer (6) is arranged between the gas recombination layer (5) and the hydrocarbon membrane (4), wherein the adhesive layer (6) comprises at least one ceramic material (7) and a proton-conducting polymer (8).
Absstract of: CN119491243A
The invention relates to the technical field of household appliances, and provides a hydrogen peroxide generating device and application thereof. The hydrogen peroxide generating device comprises a shell, a liquid inlet and a liquid outlet, the liquid inlet and the liquid outlet are formed in the shell, the liquid inlet is used for being connected with a water supply component, a cathode piece and an anode piece which are used for electrolyzing water to generate a hydrogen peroxide solution are arranged in the shell, and the liquid outlet is used for discharging the generated hydrogen peroxide solution. According to the hydrogen peroxide generating device provided by the invention, water entering the shell through the liquid inlet can be electrolyzed to generate the hydrogen peroxide solution, and the generated hydrogen peroxide solution is discharged through the liquid outlet; the hydrogen peroxide generating device can be applied to household appliances such as clothes washing equipment, clothes processing equipment, an air conditioner, a dehumidifier, a refrigerator and a dish washing machine, can play a good role in cleaning, odor removal, disinfection, sterilization and the like, reduces the use of detergent, and improves the use experience of a user.
Nº publicación: CN121511328A 10/02/2026
Applicant:
艾蓝腾欧洲有限公司弗劳恩霍夫应用研究促进协会
Absstract of: AU2024304508A1
According to the invention, electrodes are arranged on two opposite surfaces of a separator. Each electrode consists of an open-pore metal structure, in particular a metal foam made of at least one of the chemical elements Ni, Al, Mo, Fe, Mn, Co, Zn, La, Ce, or an alloy of at least two of said chemical elements or an intermetallic compound of at least two of said chemical elements. A continuously decreasing catalytic activity is provided from the surface facing a separator or the respective other electrode of each electrochemical cell to the opposite surface of the respective electrode, and/or a continuously increasing porosity and/or pore size and/or a continuously decreasing specific surface area is provided from the surface facing a separator or the respective other electrode of each electrochemical cell to the opposite surface of the respective electrode.