Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Electrolytic hydrogen

Resultados 755 results.
LastUpdate Updated on 19/11/2025 [07:11:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
Results 1 to 25 of 755 nextPage  

电解质溶液及其制造方法

Publication No.:  CN120981608A 18/11/2025
Applicant: 
马来西亚国家石油公司
CN_120981608_A

Absstract of: WO2024162841A1

An electrolyte solution comprising an electrolyte, wherein the electrolyte is used in an amount ranging between 1 wt% to 10 wt% of the electrolyte solution; an ionic liquid, wherein the ionic liquid is used in an amount ranging between 1 wt% to 5 wt% of the electrolyte solution; and a solvent, wherein the solvent is used in an amount ranging between 75 wt% to 99 wt% of the electrolyte solution.

アンモニア分解用触媒及びこの製造方法

Publication No.:  JP2025537382A 14/11/2025
Applicant: 
ポスコホールディングスインコーポレーティッド
JP_2025537382_PA

Absstract of: CN120418004A

The present invention relates to an ammonia decomposition catalyst and a method for producing the same, and more particularly, to an ammonia decomposition catalyst comprising alumina (Al2O3), cerium (Ce), lanthanum (La), ruthenium (Ru), and potassium (K), and a method for producing the same.

AEM电解槽

Publication No.:  CN120945395A 14/11/2025
Applicant: 
苏州莒纳新材料科技有限公司上海莒纳新材料科技有限公司
CN_120945395_PA

Absstract of: CN115948757A

The invention provides an electrolytic bath which comprises a cathode end plate, a cathode insulating layer, an electrolytic unit, an anode insulating layer and an anode end plate which are sequentially arranged in the same direction, each small electrolysis chamber comprises a cathode plate, a cathode sealing ring, a cathode gas diffusion layer, a diaphragm, an anode gas diffusion layer and an anode plate which are sequentially arranged in the same direction, the cathode plate and the anode plate at the series connection part between the small electrolysis chambers are combined to form a bipolar plate, the cathode plate comprises a cathode surface, the anode plate comprises an anode surface, and the bipolar plate comprises a cathode surface and an anode surface; a concave area and an outer frame area are arranged on the cathode surface and the anode surface, the outer frame area is arranged around the concave area, a plurality of raised lines are arranged in the concave area, a diversion trench is formed between the raised lines, confluence trenches are arranged in the concave area at two ends of the diversion trench, and the confluence trenches are communicated with the diversion trench. According to the scheme, uniform diffusion of the electrolyte is realized.

水素及び一酸化炭素の電気化学的同時生成

Publication No.:  JP2025537354A 14/11/2025
Applicant: 
ユティリティ・グローバル・インコーポレイテッド
JP_2025537354_PA

Absstract of: CN120167017A

A process for co-production of carbon monoxide and hydrogen is discussed herein, the process comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a hybrid conductive membrane positioned between the anode and the cathode; (b) introducing a first stream into the anode, wherein the first stream comprises a fuel; (c) introducing a second stream into the cathode wherein the second stream comprises carbon dioxide and water wherein carbon monoxide is electrochemically generated from carbon dioxide and hydrogen is electrochemically generated from water. In an embodiment, the anode and the cathode are separated by the membrane, and both are exposed to a reducing environment during the entire operating time.

PRODUCTION APPARATUS AND METHOD FOR HIGH PURITY HYDROGEN

Publication No.:  US2025346486A1 13/11/2025
Applicant: 
KOREA INST ENERGY RES [KR]
KOREA INSTITUTE OF ENERGY RESEARCH

Absstract of: US2025346486A1

An embodiment of the present disclosure provides a production apparatus for high purity hydrogen, the production apparatus including: a decomposition reaction unit configured to decompose ammonia through ammonia decomposition reaction and discharge reaction products including hydrogen and nitrogen produced from the ammonia decomposition reaction and non-reacting ammonia; an adsorption refinement unit configured to discharge intermediate refined products by separating or removing ammonia from the reaction products; and a hydrogen separation membrane configured to discharge a high-purity hydrogen product by refining high-purity hydrogen by separating and filtering the intermediate refined products.

Catalysts and processes for the direct production of liquid fuels from carbon dioxide and hydrogen

Publication No.:  US2025346542A1 13/11/2025
Applicant: 
INFINIUM TECH LLC [US]
Infinium Technology, LLC
AU_2025202662_A1

Absstract of: US2025346542A1

Embodiments of the present invention relates to two improved catalysts and associated processes that directly converts carbon dioxide and hydrogen to liquid fuels. The catalytic converter is comprised of two catalysts in series that are operated at the same pressures to directly produce synthetic liquid fuels or synthetic natural gas. The carbon conversion efficiency for CO2 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as “drop-in” fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly, applicable to the conversion of CO2 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement.

HYDROGEN GENERATION

Publication No.:  WO2025233484A1 13/11/2025
Applicant: 
ORIGIN21 LTD [GB]
ORIGIN21 LTD
WO_2025233484_PA

Absstract of: WO2025233484A1

An apparatus (1) for generating hydrogen, the apparatus (1) comprising a housing (10) containing a first electrode (11) and a second electrode (12), each of the first electrode (11) and second electrode (12) being for submersion within water located within the housing (10), the first electrode (11) surrounding the second electrode (12), wherein the first electrode (11) is of cylindrical form and the second electrode (12) is of at least part-conical or frusto-conical form.

OXYGEN EVOLUTION REACTION CATALYST AND METHOD FOR ITS PREPARATION

Publication No.:  AU2024276790A1 13/11/2025
Applicant: 
JOHNSON MATTHEY PLC
JOHNSON MATTHEY PUBLIC LIMITED COMPANY
AU_2024276790_PA

Absstract of: AU2024276790A1

The specification describes a process for preparing an oxygen evolution reaction catalyst, comprising the steps of: (i) combining iridium powder and a peroxide salt to produce a powder mixture; (ii) carrying out thermal treatment on the powder mixture; (iii) dissolving the product from (ii) in water to produce a solution; (iv) reducing the pH of the solution from (iii) to affect a precipitation and form a solid and a supernatant; (v) separating the solid from the supernatant; and (vi) drying the solid. An oxygen evolution catalyst obtainable by the process is also described.

ELECTROLYTIC METHOD, ELECTROLYSIS CELL, AND SYSTEM

Publication No.:  AU2024249829A1 13/11/2025
Applicant: 
PHLAIR GMBH
PHLAIR GMBH
AU_2024249829_PA

Absstract of: AU2024249829A1

The invention relates to an electrolytic method for producing carbon dioxide, having the following steps: a. anodically oxidizing hydrogen gas within an electrolysis cell, an acidic oxidation product being obtained; b. reacting the acidic oxidation product with an aqueous electrolyte solution within the electrolysis cell, an acidic aqueous solution being obtained; c. cathodically reducing water within the electrolysis cell, an alkaline aqueous solution and hydrogen gas being obtained; d. reacting the alkaline aqueous solution outside of the electrolysis cell with a gas which contains carbon dioxide, wherein the gas is air in particular, in order to obtain a carbonate-containing aqueous solution; and e. reacting the carbonate-containing alkaline aqueous solution with the acidic aqueous solution outside of the electrolysis cell in order to obtain dissolved carbon dioxide gas.

Adhesive-fixed Electrolysis Module

Publication No.:  AU2025202385A1 13/11/2025
Applicant: 
TECHCROSS INC
TECHCROSS Inc
AU_2025202385_A1

Absstract of: AU2025202385A1

The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, 5 the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wherein the bipolar plates are adhered and fixed to the cell frame using an adhesive, thereby simplifying product assembly 10 and reducing assembly costs compared to a single stack fixing method using welding, riveting, bolting, etc. between conventional parts. The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of 5 diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wher

SYSTEM AND METHOD FOR USING BOILER HOT FLUE GAS TO DECOMPOSE HYDROGEN IODIDE

Publication No.:  WO2025232928A1 13/11/2025
Applicant: 
HUANENG CHONGQING LUOHUANG POWER GENERATION CO LTD [CN]
XIAN THERMAL POWER RES INSTITUTE CO LTD [CN]
\u534E\u80FD\u91CD\u5E86\u73DE\u749C\u53D1\u7535\u6709\u9650\u8D23\u4EFB\u516C\u53F8,
\u897F\u5B89\u70ED\u5DE5\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8
WO_2025232928_PA

Absstract of: WO2025232928A1

Disclosed in the present invention are a system and method for using boiler hot flue gas to decompose hydrogen iodide. The system comprises a mixed liquid container, a mixed liquid pump, a pump outlet regulating valve, a boiler high-temperature flue gas zone and a temperature control valve, wherein an outlet of the mixed liquid container is connected to an inlet of the mixed liquid pump; an outlet of the mixed liquid pump is connected to an inlet of the pump outlet regulating valve; an outlet of the pump outlet regulating valve is connected to an inlet of the boiler high-temperature flue gas zone; and an outlet of the boiler high-temperature flue gas zone is connected to an inlet of the temperature control valve. In the present invention, heat is obtained from flue gas from a power station boiler; it is only necessary to place a hydrogen iodide heating device in a high-temperature zone of a furnace of the boiler, and two sides of the hydrogen iodide heating device are at low pressure, thereby greatly improving the safety; in addition, obtaining heat directly from the flue gas is more economical than obtaining heat via steam and electric energy.

LOW-HYDROGEN-PERMEABILITY PROTON EXCHANGE MEMBRANE, AND PREPARATION METHOD THEREFOR AND USE THEREOF

Publication No.:  WO2025232473A1 13/11/2025
Applicant: 
SHANDONG DONGYUE FUTURE HYDROGEN ENERGY MAT CO LTD [CN]
\u5C71\u4E1C\u4E1C\u5CB3\u672A\u6765\u6C22\u80FD\u6750\u6599\u80A1\u4EFD\u6709\u9650\u516C\u53F8
WO_2025232473_PA

Absstract of: WO2025232473A1

The present invention relates to the technical field of the electrolysis of water, and specifically relates to a low-hydrogen-permeability proton exchange membrane, and a preparation method therefor and the use thereof. The proton exchange membrane comprises a Pt-containing additive layer and a matrix membrane, wherein the Pt-containing additive layer is composed of a Pt additive and a fluorine-containing proton exchange resin, the Pt-containing additive layer comprises an array layer and a flattening layer, the thickness ratio and the active-component ratio of the array layer to the flattening layer are respectively within the ranges of 1:(0.5-30) and 1:(1-50), and the array layer is composed of arrays arranged in order and an array layer resin coating the arrays. In the low-hydrogen-permeability proton exchange membrane provided by the present invention, by providing the Pt-containing additive layer consisting of the array layer and the flattening layer, the specific surface area of the Pt-containing additive layer is effectively increased by means of the arrays in the array layer, thereby achieving the efficient utilization of an additive; moreover, the hydrogen permeability improvement effect is further improved by controlling the thickness ratio and the active-component ratio of the array layer to the flattening layer and the parameters of the arrays.

MEMBRANE-FREE CHEMICAL-LOOPING CYCLIC WATER ELECTROLYSIS HYDROGEN PRODUCTION DEVICE AND METHOD BASED ON INTRINSIC SAFETY

Publication No.:  WO2025232414A1 13/11/2025
Applicant: 
SOUTHEAST UNIV [CN]
\u4E1C\u5357\u5927\u5B66
WO_2025232414_PA

Absstract of: WO2025232414A1

The present invention relates to a membrane-free chemical-looping cyclic water electrolysis hydrogen production device and method based on intrinsic safety. The device comprises two electrolytic cells, a normal-temperature alkali liquor buffer tank, a high-temperature alkali liquor buffer tank, an oxygen separation device, a hydrogen separation device, a storage tank, and an external power supply, wherein at least one electrolytic chamber is formed in each electrolytic cell, an anode plate and a cathode plate are provided in each electrolytic chamber, a porous partition plate is provided between the anode plate and the cathode plate, and the anode plate material contains a chemical-looping oxygen carrier. The method comprises: each electrolytic cell alternately operating in first and second working conditions, and the two electrolytic cells in the same time period being in different working conditions, so as to realize synchronous and continuous production of hydrogen and oxygen in different spaces. The first and the second working conditions are respectively as follows: under the conditions of a normal-temperature alkali liquor and circuit connection, a cathode performs electrochemical hydrogen production, and the chemical-looping oxygen carrier of an anode is oxidized into an oxidized-state chemical-looping oxygen carrier; and under the conditions of a high-temperature alkali liquor and circuit disconnection, the oxidized-state chemical-looping oxygen carrier of the anode i

REACTOR AND METHOD FOR HYDROGEN PRODUCTION FROM WASTEWATER

Publication No.:  WO2025232351A1 13/11/2025
Applicant: 
HUANENG CLEAN ENERGY RES INSTITUTE [CN]
HUANENG ZHANGYE ENERGY CO LTD [CN]
\u4E2D\u56FD\u534E\u80FD\u96C6\u56E2\u6E05\u6D01\u80FD\u6E90\u6280\u672F\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8,
\u534E\u80FD\u5F20\u6396\u80FD\u6E90\u6709\u9650\u516C\u53F8
WO_2025232351_PA

Absstract of: WO2025232351A1

A reactor and method for hydrogen production from wastewater. The reactor for hydrogen production from wastewater comprises: an electrolytic cell (1), a gas-liquid separation assembly (2), a desorption unit (3), a first control valve, and a second control valve, wherein the electrolytic cell (1) has an electrolyte inlet (11) and an electrolyte outlet (12); the gas-liquid separation assembly (2) comprises a gas-liquid separation unit (21), the gas-liquid separation unit (21) has a separation inlet (211) and a separation outlet (212), and the separation inlet (211) is in communication with the electrolyte outlet (12); the desorption unit (3) has a liquid inlet (31), a liquid outlet (32), a carrier gas inlet (33), and a carrier gas outlet (34), the liquid inlet (31) is connected to the separation outlet (212), and the liquid outlet (32) is connected to the electrolyte inlet (11); the first control valve is connected to the separation outlet (212) to control the liquid discharge rate at the separation outlet (212); and the second control valve is connected to the carrier gas inlet (33) to control the gas inlet rate at the carrier gas inlet (33). In hydrogen production using the reactor, the purity can be conveniently adjusted.

TITANIUM ALLOY BIPOLAR PLATE WITH HIGH PITTING POTENTIAL AND LOW RESISTIVITY AND PREPARATION METHOD THEREFOR

Publication No.:  WO2025231966A1 13/11/2025
Applicant: 
ANSTEEL BEIJING RES INSTITUTE CO LTD [CN]
ANGANG STEEL COMPANY LTD [CN]
\u978D\u94A2\u96C6\u56E2\u5317\u4EAC\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8,
\u978D\u94A2\u80A1\u4EFD\u6709\u9650\u516C\u53F8
WO_2025231966_A1

Absstract of: WO2025231966A1

Disclosed in the present invention are a titanium alloy bipolar plate with a high pitting potential and a low resistivity and a preparation method therefor. The titanium alloy bipolar plate comprises the following components in percentages by mass: 3.0-5.0% of Mo, 0.1-0.3% of Ni, 0.005-0.05% of Ru and the balance being Ti, and the total content of impurity elements (Fe, O, C, N and H) does not exceed 0.01%. According to the titanium alloy bipolar plate of the present invention, on the basis of meeting the electrical conductivity requirement, the pitting potential of the titanium alloy bipolar plate can be improved, such that the problems of a relatively poor corrosion resistance and a low hydrogen production efficiency caused due to the relatively low pitting potential of the titanium alloy bipolar plate in a service environment of a water electrolysis hydrogen production electrolytic bath are fundamentally solved.

ELECTRICALLY ISOLATED ELECTROCHEMICAL CELL AND METHOD OF MANUFACTURING THE SAME

Publication No.:  WO2025235885A1 13/11/2025
Applicant: 
EVOLOH INC [US]
EVOLOH, INC
WO_2025235885_PA

Absstract of: WO2025235885A1

The present application relates to components for use in an electrolysis cell and/or stack comprising features, geometry, and materials to overcome prior art limitations related to cell electrical isolation, fluid sealing, and high speed manufacturing. The electrolysis cell comprises a membrane, an anode, a cathode, an anode flow field, a cathode flow field, and a bipolar plate assembly comprising an embedded hydrogen seal and both conductive and non-conductive areas. The components are cut using two-dimensional patterns from substantially flat raw materials capable of being sourced in roll form. These substantially two-dimensional components are processed to create a fully unitized, three- dimensional electrolysis cell with a hermetically sealed cathode chamber.

GAS PRODUCTION SYSTEMS

Publication No.:  WO2025235469A1 13/11/2025
Applicant: 
CUMMINS EMISSION SOLUTIONS INC [US]
CUMMINS EMISSION SOLUTIONS INC
WO_2025235469_PA

Absstract of: WO2025235469A1

A gas production system includes an electrolyzer configured to provide an electrolysis gas including a mixture of hydrogen gas and oxygen gas. The gas production system includes a housing having a housing inlet configured to receive the electrolysis gas from the electrolyzer. The gas production system includes a catalyst member disposed in the housing. The catalyst member includes a first catalyst bed configured to receive the electrolysis gas from the housing inlet. The first catalyst bed includes a first catalyst material. The catalyst member includes a second catalyst bed separated from the housing inlet by the first catalyst bed and configured to receive the electrolysis gas from the first catalyst bed. The second catalyst bed includes a second catalyst material different from the first catalyst material.

HYDROGEN PLASMOLYSIS

Publication No.:  US2025347005A1 13/11/2025
Applicant: 
TETRONICS TECH LIMITED [GB]
Tetronics Technologies Limited
CN_119604645_PA

Absstract of: US2025347005A1

The present invention relates to a method for the combined electrolytic and thermal production of hydrogen gas, the method comprising: (i) providing a plasma treatment unit having a plasma treatment chamber comprising first and second electrodes, and a first gas outlet in fluid communication with said plasma treatment chamber; wherein a base portion of the plasma treatment chamber forms a reservoir of an aqueous electrolyte; wherein the first electrode is comprised within a plasma torch whereby the plasma torch is arranged at a distance above a surface of the reservoir; and wherein the second electrode is submerged in the aqueous electrolyte; (ii) establishing a DC electric potential between the first and second electrodes whilst providing a flow of non-oxidising ionisable gas between the first electrode and the surface of the reservoir to generate and sustain a plasma arc therebetween, thereby producing hydrogen gas in the plasma treatment chamber; and (iii) recovering the hydrogen gas via the first gas outlet. The present invention also relates to a plasma treatment unit.

METHOD FOR MAKING A POLY(TRIAMINO)PYRIMMIDINE PHOTOCATALYST PHOTOELECTRODE

Publication No.:  US2025347014A1 13/11/2025
Applicant: 
KING FAHD UNIV OF PETROLEUM AND MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
US_2023407500_PA

Absstract of: US2025347014A1

A photoelectrode includes a fluorine-doped tin oxide (FTO) substrate, and a layer of graphitic-poly(2,4,6-triaminopyrimidine) (g-PTAP) nanoflakes at least partially covering a surface of the FTO substrate. Further, the g-PTAP nanoflakes have a width of 0.1 to 5 micrometers (μm). In addition, a method for producing the photoelectrode, and a method for photocatalytic water splitting, in which the photoelectrode is used.

ELECTROLYSIS PLANT, METHOD FOR OPERATING AN ELECTROLYSIS PLANT, AND COMBINATION COMPRISING AN ELECTROLYSIS PLANT AND A WIND TURBINE

Publication No.:  US2025347008A1 13/11/2025
Applicant: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
CN_119365633_PA

Absstract of: US2025347008A1

An electrolysis plant includes at least one electrolysis module. The electrolysis module has a plurality of series-connected electrolysis cells. A DC-capable switching device is connected electrically in parallel and has an activatable power resistor such that, in the closed state, a current path through the power resistor can be activated so as to bypass electrolysis cells and to be able to drain excess power through the power resistor. There is also described a method for operating such an electrolysis plant for separating water into hydrogen and oxygen, and to a combination with an electrolysis plant that is connected directly to a wind turbine.

BIMETALLIC RUTHENIUM-COBALT ALLOY ELECTROCATALYST FOR HYDROGEN PRODUCTION

Publication No.:  US2025347011A1 13/11/2025
Applicant: 
UNIV KING FAHD PET & MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Absstract of: US2025347011A1

An electrode includes a bimetallic ruthenium-cobalt (RuCo) alloy electrocatalyst having a metallic substrate and a layer of a RuCo alloy at least partially covering the surface of the metallic substrate. The layer of the RuCo alloy includes spherical-shaped particles having an average particle size of 0.5 to 5 micrometers (μm). The electrode can be used for electrochemical water splitting applications to generate hydrogen and water.

ELECTROCHEMICAL CELL WITH NIO ELECTRODE

Publication No.:  US2025347010A1 13/11/2025
Applicant: 
KING FAHD UNIV OF PETROLEUM AND MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
US_2025034732_PA

Absstract of: US2025347010A1

A method of making NiO nanoparticles is described, as well as a method of using NiO nanoparticles as an electrocatalyst component to a porous carbon electrode. The carbon electrode may be made of carbonized filter paper. Together, this carbon-supported NiO electrode may be used for water electrolysis. Using a pamoic acid salt in the NiO nanoparticle synthesis leads to smaller and monodisperse nanoparticles, which support higher current densities.

A TRANSITION METAL-DOPED IRIDIUM-BASED COMPOSITE CATALYST AND ITS PREPARATION AND USE

Publication No.:  US2025347009A1 13/11/2025
Applicant: 
CHINA PETROLEUM & CHEM CORP [CN]
SINOPEC RES INSTITUTE OF PETROLEUM PROCESSING CO LTD [CN]
CHINA PETROLEUM & CHEMICAL CORPORATION,
SINOPEC RESEARCH INSTITUTE OF PETROLEUM PROCESSING CO., LTD
JP_2025514283_PA

Absstract of: US2025347009A1

Disclosed are a transition metal-doped iridium-based composite catalyst and its preparation and use. The catalyst is essentially composed of amorphous oxides of iridium and a transition metal. The transition metal is selected from a metal of Group IVB, a metal of Group VB or a combination thereof. In terms of moles, the ratio of the content of iridium to the content of the transition metal in the catalyst is (0.4-0.7):(0.3-0.6). In the XRD spectrum of the catalyst, there is no diffraction peak corresponding to Iridium oxide in rutile phase. There is no diffraction peak corresponding to the crystalline phase of the oxide of the transition metal. The catalyst is in the form of a nano powder, has a uniform bulk structure, high catalytic activity and low usage amount of the precious metal iridium, and has excellent performance when applied to the anode of a proton exchange membrane water electrolyzer.

HYDROGEN ECOSYSTEM FOR UPSTREAM OIL PRODUCTION

Publication No.:  US2025347210A1 13/11/2025
Applicant: 
CONOCOPHILLIPS COMPANY [US]
CONOCOPHILLIPS COMPANY

Absstract of: US2025347210A1

A hydrogen ecosystem for producing oil and gas is described, where land local to an oil field hosts each of the following components: one or more producing oil wells, one or more non-producing oil wells, and optionally one or more new wells; a wind farm or a solar farm, or both, for generating electricity; said wind farm or a solar farm, or both, electrically connected to an electrolyzer for converting water to hydrogen; said electrolyzer fluidly connected to a compressor for producing compressed hydrogen; said compressor fluidly connected to a high pressure injection line for injecting said compressed hydrogen into a hydrogen storage well (HSW), said hydrogen storage well being a non-producing well that has been plugged and fitted for hydrogen storage; said HSW fluidly connected to a pressure reducing regulator for producing uncompressed hydrogen; said pressure reducing regulator fluidly connected to a pipeline for delivering said uncompressed hydrogen to a hydrogen power unit for converting said uncompressed hydrogen to electricity; said electricity electrically connected to oil production equipment for producing hydrocarbons from said oil field.

METHOD FOR CATALYTICALLY SPLITTING WATER

Nº publicación: US2025347013A1 13/11/2025

Applicant:

KING FAHD UNIV OF PETROLEUM AND MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

US_2023407500_PA

Absstract of: US2025347013A1

A photoelectrode includes a fluorine-doped tin oxide (FTO) substrate, and a layer of graphitic-poly(2,4,6-triaminopyrimidine) (g-PTAP) nanoflakes at least partially covering a surface of the FTO substrate. Further, the g-PTAP nanoflakes have a width of 0.1 to 5 micrometers (μm). In addition, a method for producing the photoelectrode, and a method for photocatalytic water splitting, in which the photoelectrode is used.

traducir