Absstract of: AU2024398260A1
Provided according to exemplary embodiments of the present invention is an ammonia decomposition system capable of minimizing the generation of iron nitride, which is a by-product.
Absstract of: AU2026200498A1
A power generator is described that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for reactions involving atomic hydrogen hydrogen products identifiable by unique analytical and spectroscopic signatures, (ii) a molten metal injection system comprising at least one pump such as an electromagnetic pump 5 that provides a molten metal stream to the reaction cell and at least one reservoir that receives the molten metal stream, and (iii) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the at least one steam of molten metal to ignite a plasma to initiate rapid kinetics of the reaction and an energy gain. In some embodiments, the power generator may comprise: (v) a source of H2 and O2 supplied to the 10 plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high-power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter. an a n
Absstract of: AU2024357053A1
Provided is a control device including: a step in which a current command value regarding current to be applied to an electrolytic stack is determined; and a step in which pure-water adjustment amount command values for adjusting the pressure or/and flow rate of water to be supplied to the electrolytic stack are determined on the basis of the current command value. The control device further includes a step A in which, when the current command value is changed from a first current command value (current command value c1) to a second current command value (current command value c2), which is a different value, and the pure-water adjustment amount command value is changed from a first pure-water adjustment amount command value (pure-water adjustment amount command value w1) to a second pure-water adjustment amount command value (pure-water adjustment amount command value w2), which is a different value, measured values of the pressure or/and flow rate are caused to reach the second pure-water adjustment amount command value from the first pure-water adjustment amount command value before a measured value of current applied from a power converter to the electrolytic stack reaches the second current command value from the first current command value.
Absstract of: AU2024396946A1
According to exemplary embodiments of the present invention, a hydrogen production system is provided. The present invention comprises: a hydrogen generation unit configured to receive reduced iron from a reduced iron generation unit configured to generate reduced iron by reducing powdered iron ore in a reducing gas atmosphere, and to generate hydrogen from ammonia by bringing the reduced iron into contact with the ammonia; and a regeneration unit configured to receive the reduced iron from the hydrogen generation unit and to regenerate the reduced iron by reducing the reduced iron in a hydrogen gas atmosphere. According to other exemplary embodiments of the present invention, a method for producing hydrogen is provided.
Absstract of: AU2024300028A1
The compression arrangement comprises a hydrogen compressor and a return circuit having an inlet, which is fluidly coupled with the discharge side of the centrifugal compressor, and an outlet, which is fluidly coupled with the suction side of the centrifugal compressor. A head-loss control valve is positioned in the return circuit. The head-loss control valve is adapted to generate a controlled head loss in the return circuit when the compressor operates at a flowrate below the surge control line.
Absstract of: CN120981421A
A hydrogen production system comprising: a first electrode having an electrocatalyst, a second electrode having an electron donor material comprising a plurality of active sites, the second electrode configured to release electrons from the active sites within a predetermined working potential range below a working potential triggering an oxygen evolution reaction; a first electrolyte in contact with the first and second electrodes, the electrolyte being a source of hydrogen protons; and a power source configured to provide the system with the predetermined operating potential range to release electrons from the second electrode and transfer electrons to the first electrode such that hydrogen protons combine with the electrons to produce hydrogen gas.
Absstract of: EP4693486A1
The invention relates to an electrocatalytic electrode comprising a coating film on an electrically conductive base substrate that includes a non-stoichiometric mixed oxide dispersed in the film, including a mixture of iron and vanadium, in a metal-organic matrix, the organic part of which includes the mixed oxide dispersed therein. The electrocatalytic electrode can be used for the production of molecular hydrogen.The invention also relates to a method for producing the electrocatalytic electrode and the use of the electrocatalytic electrode for the improved production of molecular hydrogen by means of at least water hydrolysis, alkaline water electrolysis, alkaline electrolysis via ion exchange, as a selective electrode and as an electrode for the oxidation of organic compounds in an aqueous solution.
Absstract of: CN120981610A
The invention relates to a membrane electrode assembly (1) for a water electrolyser, comprising an anode (2), a cathode (3) and a hydrocarbon membrane (4) located between the anode (2) and the cathode (3), further comprising a first gas recombination layer (5) arranged between the anode (2) and the hydrocarbon membrane (4), in which at least one adhesion layer (6) is arranged between the gas recombination layer (5) and the hydrocarbon membrane (4), wherein the adhesive layer (6) comprises at least one ceramic material (7) and a proton-conducting polymer (8).
Absstract of: CN121013925A
The invention relates to a membrane electrode assembly (1) for a water electrolyser, comprising an anode (2), a cathode (3) and a hydrocarbon membrane (4) located between the anode (2) and the cathode (3), further comprising a first gas recombination layer (5) arranged between the anode (2) and the hydrocarbon membrane (4) wherein the first gas recombination layer (5) comprises a noble metal (6), a ceramic material (7) and a proton conducting polymer (8), and wherein the volume fraction of the proton-conducting polymer (8) is 24 to 84 vol%, in particular 35 to 75 vol%, and in particular 46 to 65 vol%, based on the total volume of the gas recombination layer (5).
Absstract of: EP4692424A1
It is an object of the present invention to provide a steam electrolysis device and a steam electrolysis method, which have high energy efficiency. The present invention relates to: a steam electrolysis device, comprising an anode electrode chamber, a cathode electrode chamber, and an ion conductor disposed between these electrode chambers, wherein steam in an amount more than twice the amount of hydrogen generated is supplied to at least one selected from the anode electrode chamber and the cathode electrode chamber, and 50% or less of the supplied steam is electrolyzed; and a steam electrolysis method using the steam electrolysis device.
Absstract of: WO2024208792A1
A methanol plant and a process for the production of methanol is provided. A hydrogen recovery section receives off-gas stream from the methanol synthesis section and outputs a hydrogen-rich stream, which is recycled upstream the methanol synthesis section.
Absstract of: AU2024304508A1
According to the invention, electrodes are arranged on two opposite surfaces of a separator. Each electrode consists of an open-pore metal structure, in particular a metal foam made of at least one of the chemical elements Ni, Al, Mo, Fe, Mn, Co, Zn, La, Ce, or an alloy of at least two of said chemical elements or an intermetallic compound of at least two of said chemical elements. A continuously decreasing catalytic activity is provided from the surface facing a separator or the respective other electrode of each electrochemical cell to the opposite surface of the respective electrode, and/or a continuously increasing porosity and/or pore size and/or a continuously decreasing specific surface area is provided from the surface facing a separator or the respective other electrode of each electrochemical cell to the opposite surface of the respective electrode.
Absstract of: CN119491243A
The invention relates to the technical field of household appliances, and provides a hydrogen peroxide generating device and application thereof. The hydrogen peroxide generating device comprises a shell, a liquid inlet and a liquid outlet, the liquid inlet and the liquid outlet are formed in the shell, the liquid inlet is used for being connected with a water supply component, a cathode piece and an anode piece which are used for electrolyzing water to generate a hydrogen peroxide solution are arranged in the shell, and the liquid outlet is used for discharging the generated hydrogen peroxide solution. According to the hydrogen peroxide generating device provided by the invention, water entering the shell through the liquid inlet can be electrolyzed to generate the hydrogen peroxide solution, and the generated hydrogen peroxide solution is discharged through the liquid outlet; the hydrogen peroxide generating device can be applied to household appliances such as clothes washing equipment, clothes processing equipment, an air conditioner, a dehumidifier, a refrigerator and a dish washing machine, can play a good role in cleaning, odor removal, disinfection, sterilization and the like, reduces the use of detergent, and improves the use experience of a user.
Absstract of: AU2023449815A1
A system and method of making hydrogen from water. A cylindrical reaction vessel is provided with an outer shell, a central shaft, and one or more concentric inner tubes separated by annular spaces. Water is delivered to the annular spaces by a water pump through an inlet defined in the reaction vessel. The water courses along a tortuous flow path. That path begins at an inner annular space around a central shaft. It ends at an outer annular space. The water emerges from the reaction vessel through an outlet associated with a manifold. A high-frequency vibratory stimulus is applied to the reaction vessel and water. Water molecules are dissociated into hydrogen molecules and oxygen atoms. These reaction products are delivered through the manifold along an effluent flow path to a receiving pressure vessel before deployment to a sub-assembly for harnessing clean energy.
Absstract of: WO2024231154A1
The present invention relates to a hydrogen gas production assembly comprised of a hydrogen gas production device, a container comprising an aqueous electrolyte solution, a storage container for storing produced hydrogen gas an input providing the aqueous electrolyte solution from the container to the hydrogen gas production device and an output for transferring produced hydrogen gas from the hydrogen gas production device to the storage container. The present invention further relates to methods for the production of hydrogen gas via the hydrogen gas production assembly.
Absstract of: CN119491243A
The invention relates to the technical field of household appliances, and provides a hydrogen peroxide generating device and application thereof. The hydrogen peroxide generating device comprises a shell, a liquid inlet and a liquid outlet, the liquid inlet and the liquid outlet are formed in the shell, the liquid inlet is used for being connected with a water supply component, a cathode piece and an anode piece which are used for electrolyzing water to generate a hydrogen peroxide solution are arranged in the shell, and the liquid outlet is used for discharging the generated hydrogen peroxide solution. According to the hydrogen peroxide generating device provided by the invention, water entering the shell through the liquid inlet can be electrolyzed to generate the hydrogen peroxide solution, and the generated hydrogen peroxide solution is discharged through the liquid outlet; the hydrogen peroxide generating device can be applied to household appliances such as clothes washing equipment, clothes processing equipment, an air conditioner, a dehumidifier, a refrigerator and a dish washing machine, can play a good role in cleaning, odor removal, disinfection, sterilization and the like, reduces the use of detergent, and improves the use experience of a user.
Absstract of: WO2026027472A1
A process or plant for the synthesis of methanol (MeOH). The process comprises: (a) passing a water-containing stream (3) through an electrolysis unit (4) to produce a cathode-side stream (5) comprising hydrogen (H2) and an anode-side stream (6) comprising oxygen (O2); (b) heat-exchanging said cathode-side stream (5) and optionally said anode-side stream (6) in one or more indirect heat exchanger(s) (7, 8, 32, 33) to obtain a cathode-side heat-exchanged stream (9) and optionally an anode-side heat-exchanged stream (10); (c) condensing said cathode-side heat-exchanged stream (9) to separate a liquid condensate product (11) and a syngas (12); said cathode-side stream (5) and/or said syngas (12) comprise carbon dioxide (CO2) and optional carbon monoxide (CO) added through a separate stream (2); (d) compressing said syngas (12) and then feeding compressed syngas (13) to a MeOH synthesis loop (14) wherein catalytic conversion of said compressed syngas (13) into MeOH is carried out under methanol synthesis conditions, thus obtaining a crude methanol stream (15); (e) distilling said crude methanol stream (15) in one or more distillation column(s) (16, 17) to give a refined MeOH product (22); wherein said one or more indirect heat exchanger(s) (7, 8, 32, 33) provide a heat input to said one or more distillation column(s) (16, 17), and/or to said MeOH synthesis loop (14), and/or to said electrolysis unit (4).
Absstract of: WO2026027476A1
A process for the synthesis of methanol (MeOH) comprising the following steps: (a) passing a water-containing stream (3) through an electrolysis unit (4) to produce a cathode-side stream (5) comprising hydrogen (H2) and an anode-side stream (6) comprising oxygen (O2); (b) heat-exchanging said cathode-side stream (5) and optionally said anode-side stream (6) in one or more indirect heat exchanger(s) (7, 8, 32, 33) to obtain a cathode-side heat-exchanged stream (9) and optionally an anode-side heat-exchanged stream (10); (c) condensing said cathode-side heat-exchanged stream (9) to separate a liquid condensate product (11) and a syngas (12); said cathode-side stream (5) and/or said syngas (12) comprise carbon dioxide and optional carbon monoxide added through a separate stream (2); (d) compressing said syngas (12) in a compressor (27, 28) and then feeding compressed syngas (13) to a MeOH synthesis loop (14) wherein catalytic conversion of said compressed syngas (13) into MeOH is carried out under methanol synthesis conditions, thus obtaining a crude methanol stream (15); (e) distilling said crude methanol stream (15) in one or more distillation column(s) (16, 17) to give a refined MeOH product (19, 22); (i) recycling as feed to the electrolysis unit (4) at least a portion of at least one of: (A) a portion (31) of said compressed syngas (13); and/or (B) a bottom water stream (20) of a distillation column (16, 17).
Absstract of: WO2026028988A1
This ion exchange membrane has a short side and a long side of 80 m or more. A membrane thickness deviation rate A, ion exchange capacity deviation rate B, and ion exchange group residual ratio C, which are calculated by a predetermined method, are within a specific numerical range.
Absstract of: WO2026027698A1
The invention comprises an electrochemical cell stack unit (10) consisting of electrochemical cells, which can be used, for example, as a fuel cell unit for electrochemically generating electrical energy from hydrogen and/or as an electrolysis cell unit for generating hydrogen and oxygen from electrical energy.
Absstract of: WO2026027166A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (ln2, Out2), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Absstract of: WO2026027165A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (In2, Out2), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Absstract of: AU2024291778A1
A method of synthesizing aluminum oxide includes reacting a gallium and aluminum composite in a hydrogen evolution reaction with water to form an aluminum byproduct having at least one of aluminum hydroxide or aluminum oxyhydroxide. The method also includes removing the aluminum byproduct and calcinating the aluminum byproduct to form aluminum oxide.
Absstract of: AU2024291792A1
The disclosure concerns a process of carbon oxides-free hydrogen production is disclosed. The process comprises the following steps: - heating a gas stream of a reacting compound including hydrogen atoms in absence of oxidizing agents, to thermally decompose the reacting compound into smaller product compounds, including hydrogen molecules, obtaining a stream of decomposition product compounds; - separating hydrogen molecules from other product compounds of the stream of decomposition product compounds; - reacting a portion of the stream of separated hydrogen molecules with a stream of an oxidizing agent, in particular oxygen or air, to obtain combustion product compounds, including steam and heat, in a stream of combustion product compounds; - providing heat obtained in the previous step to the step of heating the reacting compound; and wherein the process can comprise a step of - recovering energy from the stream of decomposition product compounds and/or from the stream of combustion product compounds. Additionally, a system of hydrogen production is also disclosed, the system being configured to operate according to the above process.
Nº publicación: AU2024308720A1 05/02/2026
Applicant:
CLEAN HYDROGEN LTD
CLEAN HYDROGEN LIMITED
Absstract of: AU2024308720A1
The disclosure provides a method of producing hydrogen. The method comprises conducting a thermochemical reaction by contacting an active reagent and a basic aqueous solution, to thereby cause water from the basic aqueous solution to react with the active reagent and to produce hydrogen and a basic aqueous solution comprising an oxidised product. The method further comprises disposing the basic aqueous solution comprising the oxidised product in an electrochemical cell comprising an anode and a cathode, such that at least a portion of the cathode contacts the solution; and conducting an electrochemical reaction by applying a voltage across the anode and the cathode to produce hydrogen, oxygen and the active reagent. The active reagent comprises a metal or metal ion in a first oxidation state and the oxidised product comprises the metal or metal ion in a second oxidation state which is higher than the first oxidation state.