Absstract of: CN119615185A
本公开涉及一种电解水制氢的方法,其中,该方法包括:使水在电解槽进行电解;使阴极产物进入氢气冷却器与冷却介质进行换热后进入氢洗涤塔进行分离处理;使阳极产物进入氧气冷却器与冷却介质进行换热后进入氧洗涤塔进行分离处理;氢洗涤塔的塔釜设有第一升气塔盘和第一降液管;氧洗涤塔的塔中设有第一填料层;氧洗涤塔的塔顶设有第一气液分离装置;氧洗涤塔的塔釜设有第二升气塔盘和第二降液管;氧洗涤塔的塔中设有第二填料层;氧洗涤塔的塔顶设有第二气液分离装置。本公开提供的方法有效实现设备的优化、能耗低,能够有效分离氢气和氧气中夹带的碱液,工艺流程简单且整体运行安全性和稳定性高,制备得到的氢气和氧气产品纯度高。
Absstract of: CN119612927A
本发明公开了一种氧气综合利用系统及控制方法,属于玻璃生产线技术领域;包括第一供氧管路,连接于分馏塔和窑炉之间,用于将分馏塔产出的第一气体传输至窑炉,第一供氧管路上设有稳压阀和位于稳压阀输出侧的第一节点,稳压阀用于调节第一气体的压力;储氧罐,用于存储水电解后产生的第二气体;第二供氧管路,连接于储氧罐和第一节点之间,用于将第二气体传输至窑炉,第二供氧管路上设有减压阀组,减压阀组用于调节第二气体的压力。上述技术方案的有益效果是:能够保证氧气的压力和流量稳定,减少氧气的浪费,充分利用水电解产生的氧气,达到节能的目的。
Absstract of: WO2024057608A1
An electrode comprising: a substrate having a surface formed of at least one of nickel, nickel oxide, and nickel hydroxide; and scale-like protruding parts provided on the surface of the substrate.
Absstract of: CN119612885A
本发明属于水处理技术领域,尤其是氢能源电解水净化装置,针对现有设备在清理过程中需要停机,导致处理效率降低的问题,以及内壁需要人工清理,清理效率较低的问题,现提出如下方案,其包括两个安装座,两个所述安装座的顶部依次贯穿固定设有第一储存桶、沉淀桶、第一转换桶、第二转换桶、第三转换桶和第二储存桶,所述第一储存桶和沉淀桶、沉淀桶和第一转换桶以及第三转换桶和第二储存桶之间均通过进水管相连通,通过多级转换桶和搅拌轴的配合,实现了对水源的高效净化和电解水制备前的预处理,提高了电解效率和氢气纯度,通过灵活的搅拌系统、自动化的位置调节、智能的升降控制以及优化的搅拌匙设计,确保了搅拌效果和内壁清理的彻底性。
Absstract of: CN119615241A
本发明属于水电解制氢领域,具体涉及一种NiMC自生长析氢阴极的薄层制备工艺,其中,M为Cu、Mo、Co、Fe、Mn。本发明是在经过前期预处理后的多孔镍基材料表面自生长形成薄层析氢阴极。自生长过程通过自动喷涂、丝网印刷、刷涂、浸渍等工艺实现,可实现析氢活性组分NiMC在多孔镍基底上的原位生长。优势有:在高温加热条件下,自动喷涂到多孔镍基材料表面的瞬时过程中原位生长形成NiMC自支撑结构,所形成的析氢阴极无贵金属负载;具有较高的精度与重复性;在碱性介质中具有较高的HER活性与稳定性;制备工艺过程简单、易于实现质量控制、工艺重复性好,制备的电极具有较高重复性与均匀性,适合大面积HER电极的批量制备。
Absstract of: CN119615262A
本发明涉及电催化剂制备技术领域,具体是涉及一种超亲水强疏硫双功能催化剂及其制备方法与应用,包括:CoMoFe‑LDF/NF氢氧化物前驱体的合成、水热硒化制备CoMo‑Fe3Se4/NF以及该催化剂在SOR和HER中的应用。该催化剂结构展现出超亲水性能,能显著改善电解液与电极之间的浸润性,促使氢气泡更易于从电极表面释放,从而保证了充足的活性位点供给,大幅提高了HER的效率。此外,该材料还表现出强烈的疏硫特性,可有效避免SOR过程中硫元素在催化剂表面的沉积,减少催化剂失活的风险。综上所述,这种新型催化剂不仅拥有出色的电催化活性,而且在析氢反应以及硫离子氧化反应中展现出广阔的应用。
Absstract of: CN119615283A
本发明提供了一种适用于多水口制氢电解堆的分水器,包括:水腔,包括直筒结构,其一端与水源连接;电解堆水口接头,数量为多个且沿所述水腔长度方向排列,其一端连接所述水腔,其另一端连接电解堆水口;调节锥杆组件,设置于所述水腔的另一端,通过调节所述调节推杆组件在所述水腔中的深度,调节所述电解堆水口接头中的流量;所述水腔一端连接有水源另一端连接调节推杆组件通过所述调节推杆组件在所述水腔中的深度从而改变所述水流流入的电解堆水口实现分流,有效地解决电解堆不同功耗及水流量下进水端各水口水量分配不均的问题,分流后的水经过所述电解堆水口进入电解堆制氢,满足电解堆不同工况下运行过程中各水口对应流道内的水管理需求。
Absstract of: CN119615247A
一种Ni掺杂纳米花结构Ni‑V2O5@NC及其制备方法与应用,属于电解水制氧技术领域。具体步骤如下:将偏钒酸铵、二水合草酸和六水合硝酸镍依次加入去离子水中,搅拌至溶解,通过水热和碳化处理得到纳米花状结构Ni‑V2O5@NC。本发明利用Ni掺杂的方法,抑制了V2O5的团聚现象,从而提供了高的比表面积和丰富的活性位点;Ni掺杂优化了V2O5的缺陷结构,有利于激发活性位点使得催化剂具有高的反应活性。Ni具有高的导电率,掺杂V2O5后提高了材料的导电性。此外,Ni掺杂有助于形成更稳定的氧化态,从而提高了结晶度和稳定性。基于以上优势,Ni‑V2O5@NC在析氧反应(OER)中展现出良好的电化学性能。
Absstract of: CN119615200A
本发明涉及电解水制氢的技术领域,提供一种降低生产负荷下限的电解制氢系统及控制方法,系统包括:电解槽、氢分离器、氧分离器和纯氧模块;电解槽的阴极侧设有氢侧出口,氢分离器与氢侧出口连接;电解槽的阳极侧设有氧侧出口,氧分离器与氧侧出口连接;纯氧模块适用于向氧分离器内输出高纯氧,高纯氧用以和氧侧出口的初氧混合,使初氧中氢含量不满足设定条件的情况下,氧分离器出口的混合氧中的氢含量满足设定条件。如此设置,可大幅提高氧侧出口处初氧中的氢含量上限,从而降低了电解制氢系统的生产负荷下限,使其能充分适应可再生能源处理的宽幅快速波动。
Absstract of: CN119615204A
本发明实施例提供一种高压差质子交换膜电解槽的电解液循环系统,包括:电解槽1、氧分离器2、氢分离器3、水箱4、气水分离器5、氧气排放系统6、氢气排放系统7、换热器8、树脂罐9、循环泵10、补水泵11及水循环系统12。针对高压质子交换膜电解槽的运行情况,在氢分离器和氧分离器中间取消连通管,在氢分离器通过气水分离器与水箱相连,避免氢分离器在排出液体过程中,从液体中逸散出过多的氢气进入氧分离器中,降低氧中氢的纯度。
Absstract of: WO2024028762A1
The invention relates to a method for heating a furnace comprising radiant tubes and being able to thermally treat a running steel strip comprising the steps of: i. supplying at least one of said radiant tubes with H2 and O2 such that said H2 and said O2 get combined into heat and steam, ii. recovering said steam from said at least one of said radiant tubes, iii. electrolysing said steam so as to produce H2 and O2, iv. supplying at least one of said radiant tubes with said H2 and O2 produced in step iii, such that they get combined into heat and steam.
Absstract of: CN118871622A
The invention relates to a method for operating an electrolysis device (10) for producing hydrogen and oxygen, having a membrane (22) which is permeable to OH ions and which separates an anode chamber (14) and a cathode chamber (16) from one another, comprising at least the following method steps: a) temporarily dry operating the cathode chamber (16), b) a diffusion of water molecules through the membrane (22) from the anode chamber (14) into the cathode chamber (16) occurs temporarily, c) a differential pressure (42) between the cathode chamber (16) and the anode chamber (14) is varied by means of a throttle valve (46), and d) the humidification/wetting of the cathode chamber (16) is adjusted by adjusting the defined differential pressure (42).
Absstract of: WO2025053761A1
The present invention relates to a water electrolyser system for production of compressed hydrogen, comprising a water electrolyser stack, a multiphase pump arranged downstream of the electrolyser stack and a hydrogen gas/liquid separator. The multiphase pump is arranged between the water electrolyser stack and the hydrogen gas/liquid separator. The present invention also relates to a method for production of compressed hydrogen in a water electrolyser system including: supplying deionized water or liquid electrolyte to a water electrolyser stack; producing hydrogen in a water electrolyser stack; compressing a mixture of produced hydrogen and entrained deionized water or liquid electrolyte in a multiphase pump; and separating the compressed mixture of produced hydrogen and entrained deionized water or liquid electrolyte in a hydrogen gas/liquid separator.
Absstract of: JP2025035258A
【課題】水電解セルの異常検知と、検知した異常の判別が可能な水電解システムを提供する。【解決手段】水電解セルを備える水電解システムと、水電解システムの異常モードを判別する異常判別システムとを備える水素製造システムを構成する。異常判別システムは、水電解セルの温度、水供給量、電流、及び、電圧の少なくとも1つ以上の時間変化のデータを取得するデータ取得部を備える。また、異常判別システムは、データ取得部が取得したデータを基に、水電解セルの異常を検知する異常検知部と、異常が発生した水電解セルの異常モードを判別する異常モード判別部とを備える。異常モード判別部は、複数の異常モードにおける電流又は電圧の挙動を学習させて得られた機械学習モデルと、データ取得部が取得したデータとから異常モードを判別する。【選択図】図1
Absstract of: JP2025033746A
【課題】水蒸気電解装置の安全性を向上させる。【解決手段】水蒸気電解装置は、水蒸気を電解して水素および酸素を生成する電解セルスタックと、電解セルスタックを収容する空間を有し、電解セルスタックを加熱する加熱炉と、空間の電解セルスタックの外側の領域における酸素濃度を測定する酸素濃度計と、測定された酸素濃度に応じて電解セルスタックの運転を制御する制御装置と、を含む。【選択図】図1
Absstract of: CN118843597A
The present invention relates to a process for reforming ammonia wherein the process comprises (i) providing a reactor containing a catalyst comprising Ru supported on one or more support materials wherein the one or more support materials show a BET surface area of 20 m2/g or greater, and wherein the catalyst contains 1 wt.-% or less Ni and Co; (ii) preparing a feed gas stream comprising NH3; (iii) feeding the feed gas stream prepared in (ii) into the reactor and contacting the feed gas stream with the catalyst at a pressure greater than 10 abar and a temperature in the range of 200 DEG C to 750 DEG C; (iv) removing an effluent gas stream comprising H2 and N2 from the reactor.
Absstract of: JP2025033890A
【課題】本発明は、アルカリ水を電気分解することで水素を製造する方法において、陽極反応を酸素発生反応からヨウ素酸イオン生成反応へ転換し、アルカリ水電解方法を高効率かつ省電力で行うことを目的とする。【解決手段】本発明は、ヨウ化物イオンを含み、濃度が1mol/L以上のアルカリ金属水酸化物水溶液を電気分解し、陰極で水素ガスを生成し、陽極でヨウ素酸イオンを生成する、無隔膜式アルカリ水電解方法及び無隔膜式アルカリ水電解装置に関する。【選択図】図9
Absstract of: US2025075353A1
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region.
Absstract of: WO2025053532A1
The present invention relates to a membrane electrode assembly manufacturing method comprising the steps of: (S1) forming a first catalyst layer on the other surface of a separation membrane having a first carrier film attached to one surface thereof; (S2) attaching a second carrier film to the other surface of the separation membrane on which the first catalyst layer is formed; (S3) removing the first carrier film attached to one surface of the separation membrane; and (S4) forming a second catalyst layer on one surface of the separation membrane from which the first carrier film is removed, wherein the second carrier film includes a first area corresponding to the first catalyst layer on the other surface of the separation membrane, and a second area, which is the remaining area that excludes the first area, and the second area of the second carrier film is coated with an adhesive on a surface facing the other surface of the separation membrane on which the first catalyst layer is formed.
Absstract of: WO2025053690A1
The present invention relates to an electrode for hydrogen evolution and a manufacturing method therefor, the electrode comprising a molybdenum-ruthenium-titanium composite oxide layer formed on a porous titanium metal substrate.
Absstract of: WO2025054276A1
Solid oxide electrochemical cells (SOECs) stand out as a highly promising clean energy technology that offers several benefits, showing significant potential to play a pivotal role in the transition towards a sustainable and low-carbon energy future. SOECs can efficiently convert the chemical energy stored in fuels to electricity in fuel cell mode, and produce various chemicals from abundant feedstocks (e.g., CO2, H2O, N2) and intermittent solar/wind-based renewable electricity. In-situ formed hybrid oxygen electrode materials have been developed from solid composite materials comprising a double perovskite phase and a single perovskite phase, which significantly improve the surface oxygen exchange coefficient and bulk oxygen-ion diffusion coefficient, enhancing the OER and ORR electrocatalytic activities. The SOECs equipped with these newly-developed oxygen electrode materials achieve exceptional performance for power generation using both hydrogen and propane as fuels. Additionally, the SOECs attain unprecedented performance in steam electrolysis mode. The SOECs also deliver remarkable stability during the accelerated stability testing, highlighting the great potential the solid composite materials as a high-performance oxygen electrode for next generation SOECs.
Absstract of: WO2025053690A1
The present invention relates to an electrode for hydrogen evolution and a manufacturing method therefor, the electrode comprising a molybdenum-ruthenium-titanium composite oxide layer formed on a porous titanium metal substrate.
Absstract of: WO2025053532A1
The present invention relates to a membrane electrode assembly manufacturing method comprising the steps of: (S1) forming a first catalyst layer on the other surface of a separation membrane having a first carrier film attached to one surface thereof; (S2) attaching a second carrier film to the other surface of the separation membrane on which the first catalyst layer is formed; (S3) removing the first carrier film attached to one surface of the separation membrane; and (S4) forming a second catalyst layer on one surface of the separation membrane from which the first carrier film is removed, wherein the second carrier film includes a first area corresponding to the first catalyst layer on the other surface of the separation membrane, and a second area, which is the remaining area that excludes the first area, and the second area of the second carrier film is coated with an adhesive on a surface facing the other surface of the separation membrane on which the first catalyst layer is formed.
Absstract of: WO2025052013A1
The present invention relates to a method for producing hydrogen by means of thermochemical water dissociation cycles under (quasi-)isothermal conditions, wherein said method comprises arranging a large amount of active material (104) inside a reaction volume (109) of a reactor (103); heating the active material (104), reducing the active material (104) and generating oxygen in the reaction volume; evacuating the oxygen produced via a first evacuation path (111) of the outlet (106) of the reactor (103); injecting water into the reaction volume (109) of the reactor, oxidating the active material (104) and producing hydrogen; evacuating the hydrogen produced via a second evacuation path (112) of the outlet (106) of the device (100); and separating the evacuated hydrogen and remaining water. The invention further relates to a device for producing hydrogen.
Nº publicación: WO2025052016A1 13/03/2025
Applicant:
UNIV POLITECNICA DE MADRID [ES]
UNIVERSIDAD POLIT\u00C9CNICA DE MADRID
Absstract of: WO2025052016A1
The present invention relates to a method for obtaining hydrogen through water molecule dissociation using thermochemical reactions under (quasi-)isothermal conditions, which comprises the following steps: placing active material (103) in the reaction chamber (109) of a reactor (101); reducing the active material (103) by supplying heat; evacuating the oxygen produced through a first outlet (106); injecting water into the reaction chamber (109); oxidising the active material (103), thereby producing hydrogen; filtering the hydrogen produced through a selective filter (104) during the oxidisation of the active material (103); and evacuating the filtered hydrogen through a second outlet (107), thereby obtaining a flow of high-purity hydrogen. The invention also relates to a device for carrying out the method.