Absstract of: WO2025061716A1
The invention relates to a method for operating an electrolysis plant (1), comprising a stack (2) having an anode (3) and a cathode (4), wherein in normal operation of the electrolysis plant (1), water is supplied to the anode (3) via a water circuit (5) with an integrated pump (6), said water being split in the stack (2) by electrolysis into hydrogen and oxygen, and wherein the hydrogen produced by electrolysis is supplied to a gas-liquid separator (8) via a cathode outlet (10) of the stack (2) and a media line (7) connected thereto. According to the invention, a) when the electrolysis plant (1) is switched off, a shut-off valve (11) in an inert gas line (12) is opened, said line connecting an inert gas container (13) to the cathode (4), and the cathode (4) is rinsed with the inert gas, while the water supply to the anode (3) is stopped, and b) when the electrolysis plant (1) is started up again, the following steps are carried out: (i) closing the shut-off valve (11) integrated in the inert gas line (12), (ii) supplying the anode (3) with fresh water via a fresh water supply (14) connected to the water circuit (5) while the power is still turned off, (iii) supplying the stack (2) with the power needed for electrolysis and (iv) producing an amount of hydrogen which corresponds at least to the amount of inert gas present in the cathode (4), preferably corresponds to 1.5 to 10 times the amount of inert gas present in the cathode (4). The invention further relates to an electro
Absstract of: WO2025061610A1
The invention relates to a water recirculation loop (30) for a hydrogen producing electrolysis plant (30) that comprises an electrolysis stack (10). The water recirculation loop (30) comprises: at least one, preferably one, circulation pump (6); a water inlet section (9) connectable to the electrolysis stack (10), wherein the water inlet section (9) can be supplied with water by the pump (6); a water feed section (91) leading to the water inlet section (9);a water outlet section (11) connectable to the electrolysis stack (10), wherein the water at the outlet section (11) being pressurized within the electrolysis stack (10) and/or in the water feed section (91) leading to the water inlet section (9); at least one energy recovery device (8) for transferring water pressure and/or flow energy from the water outlet section (11) to said water feed section (91); and a recirculating section (31) connecting an output of the energy recovery device (8, 28) with an input port of the pump (6).
Absstract of: WO2025061814A1
The invention relates to a system and method for controlling the operation of the gas-liquid separators (GLSan, GLSca) of an electrolyser comprising a stack (10), and anode and cathode gas-liquid separators that separate the electrolyte and the gas along an alkaline solution level (lan, lca), wherein the dioxygen and dihydrogen gases flow from their respective chambers through a gas control valve (V <sb /> an <sb />, V <sb /> ca <sb />), such that the control system uses control data representative of the anode gas pressure (p <sb /> an <sb />), the cathode gas pressure (p <sb /> an <sb />), the anode alkaline solution level (lan) and the cathode alkaline solution level (lca) to control each of the two gas control valves (V <sb /> an <sb /> , V <sb /> ca <sb /> ), and wherein each of the sensors transmits operating signals to the two gas control valves (Van, Vca) in order to control the gas pressures (p <sb /> an <sb />, p <sb /> ca <sb />) and the alkaline solution levels (lan, lca) in the anode gas-liquid separator (GLSan) and the cathode gas-liquid separator (GLSca).
Absstract of: WO2025061540A1
The invention relates to an electrochemical hydrogen compressor (1) comprising at least one compressor unit (4), wherein an electrode arrangement (4c, 4d, 4e) which is disposed between two gas flow regions (4a, 4b) in the at least one compressor unit (4) comprises a gas-tight proton-permeable layer (4d) which is contacted by a gas-permeable cathode layer (4e) on one side of the layer, and which is contacted by a gas-permeable anode layer (4c) on the other side of the layer, wherein the at least one compressor unit (4) forms a compressor arrangement (3) which is arranged in a housing (2) around the interior of a hollow, preferably tubular, gas-permeable core element (5), wherein the interior of the core element (5) is fluidically connected to the radially innermost gas flow region (4b) of the compressor arrangement (3), and the interior of the housing (2) is fluidically connected to the radially outermost gas flow region (4b) of the compressor arrangement (3).
Absstract of: US2025101601A1
Microorganisms and bioprocesses are provided that convert gaseous C1 containing substrates, such as syngas, producer gas, and renewable H2 combined with CO2, into nutritional and other useful bioproducts.
Absstract of: US2025101618A1
A method for performing electrolysis with an electrolysis installation, including recording a respective measurement value of the electrolysis for multiple points of time and from the points of time, selecting multiple reference points of time, which define a reference period. Fitting a mathematical function to the measurement values recorded for the reference points of time. Performing at least one of the following sub-steps: from the mathematical function, determining an ageing coefficient that is a measure of the ageing of the electrolysis installation, and/or recording a respective measurement value of the electrolysis for at least one point of time that lies after the reference period, comparing this measurement value with a corresponding value calculated with the mathematical function and issuing an indication in case a result of this comparison violates a tolerance criterion.
Absstract of: US2025101617A1
An object is to provide a cathode that maintains high energy conversion efficiency over a long period of time without increase in overvoltage even when hydrogen generation is repeatedly started and stopped. In order to achieve the above-mentioned object, the present disclosure is a cathode for generating hydrogen including a conductive substrate and a catalyst layer including, on a surface of the conductive substrate: at least one of Pt, a Pt oxide, and a Pt hydroxide; and at least one of a metal, an oxide, and a hydroxide of a lanthanoid element that becomes electrochemically stable as trivalent ions within the potential window of water of pH 7 or higher and pH 16 or lower. The molar ratio of the Pt element to the lanthanoid element (Pt:lanthanoid) in the catalyst layer is 95:5 to 65:35.
Absstract of: US2025101619A1
It is described a high-pressure alkaline electrolyzer for splitting water into hydrogen and oxygen, said electrolyzer comprising a stack of electrolysis cells (1), with channels supplying lye to the cathodes and anodes and channels conducting hydrogen from the cathodes and oxygen from the anodes. The electrolyzer includes first and second lye inlet channels (4a, 4b), a multitude of first intermediate lye channels (5a) conducting lye from the first lye inlet channel (4a) to each cathode (3a) in the stack, a multitude of second intermediate lye channels (5b) conducting lye from the second lye inlet channel (4b) to each anode (3b) in the stack, wherein the hydrogen conducting channels include a common hydrogen outlet channel (7a) and a multitude of intermediate hydrogen channels (8a) conducting hydrogen from each cathode (3a) to the common hydrogen outlet channel (7a), and the oxygen conducting channels include a common oxygen outlet channel (7b) and a multitude of intermediate oxygen channels (8b) conducting oxygen from each anode (3b) to the common oxygen outlet channel (7b).
Absstract of: US2025104935A1
An electrode including a substrate, zinc (Zn) doped CrV spinel oxide (ZCVO) nanoparticles, a conductive carbon compound, and a binding compound. A mixture of the ZCVO nanoparticles, the conductive carbon compound, and the binding compound at least partially coats a surface of the substrate. A supercapacitor including the electrode. A method of generating hydrogen with the electrode.
Absstract of: US2025101613A1
An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro-porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.
Absstract of: US2025105308A1
A sulfur-containing platinum-carbon catalyst, a preparation method thereof, and an application thereof are provided. The sulfur-containing platinum-carbon catalyst contains sulfur-containing conductive carbon black and a platinum metal loaded thereon. The total sulfur content in the sulfur-containing conductive carbon black is greater than or equal to the surface sulfur content, and the weight fraction of platinum is 20-70% by weight based on the total weight of the catalyst. The sulfur-containing platinum-carbon catalyst of the invention has a lower overpotential and a higher weight specific activity.
Absstract of: US2025101615A1
A ruthenium-based nano-catalyst for a hydrogen generation reaction having excellent catalytic activity and efficiency by the catalyst surface structure, a method for preparing the same, a hydrogen generation electrode and a water electrolysis system.
Absstract of: AU2023365839A1
The present disclosure relates to a hydrogen production control system and method, and a storage medium. The hydrogen production control system comprises: a safety controller; a first valve and a second valve, which are respectively connected to the safety controller; a hydrogen production controller; a third valve and a fourth valve, which are respectively connected to the hydrogen production controller; an oxygen-side gas-liquid separation apparatus, which is respectively connected to the first valve and the third valve; and a hydrogen-side gas-liquid separation apparatus, which is respectively connected to the second valve and the fourth valve, wherein the hydrogen production controller is used for controlling the pressure of the oxygen-side gas-liquid separation apparatus by means of the third valve and controlling the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the fourth valve; and the safety controller is used for adjusting the pressure of the oxygen-side gas-liquid separation apparatus by means of the first valve and/or adjusting the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the second valve when a hydrogen production parameter is greater than or equal to a preset parameter alarm threshold value. In this way, the system safety is effectively ensured, and the production efficiency is improved.
Absstract of: AU2023340993A1
The disclosure pertains to a plant for the production of ammonia. The ammonia is produced from hydrogen obtained by electrolysis of water. The electrolysis is powered by a renewable source of energy, complemented with power obtained from the plant during periods of low or no availability of the renewable energy. To this end, the plant is configured such that it can be operated in a charge configuration (obtaining and storing power) and a discharge configuration (employing said power).
Absstract of: DE102023209359A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angeschlossene Wasserversorgungseinrichtung (7), die einen Wassersammler (13) aufweist, der derart ausgestaltet ist, dass meerwasserunabhängig Wasser mit keinen oder nur sehr geringen Mengen von Salzen gewinnbar ist, das als Edukt-Wasser zum Betrieb der Elektrolyseanlage (5) verwendbar ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Wassersammler (13) meerwasserunabhängig Wasser in einer Qualität gewonnen wird, bei der das gewonnene Wasser keine oder nur sehr geringe Mengen von Salzen aufweist.
Absstract of: DE102023209364A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angekoppelte Wärmeversorgungseinrichtung (7), die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage Wärme übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage (5) Wärme übertragen, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Absstract of: DE102023209363A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte Wärmeversorgungseinrichtung (7), die eine Verbrennungseinrichtung aufweist (13), wobei ein Brennstoffreservoir (15) an die Wärmeversorgungseinrichtung (7) angeschlossen ist, so dass in einem Stillstandsbetrieb mittels der Verbrennungseinrichtung (13) erzeugte Wärme auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Stillstandsbetrieb Wärme mittels der Wärmeversorgungseinrichtung (7) erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Absstract of: DE102023209361A1
Die Erfindung betrifft ein Elektrolysesystem (100) umfassend eine Windkraftanlage (1) und eine Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, wobei ein Inselnetz ohne Anschluss an ein Versorgungsnetz realisiert ist, weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte und mit einem Arbeitsmedium (23) betreibbare Wärmeversorgungseinrichtung (7), die einen Verdampfer (13) und einen Kondensator (11) aufweist, und die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels des Kondensators (11) Kondensationswärme des Arbeitsmediums (23) auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) ein Arbeitsmedium (23) verdampft und verdampftes Arbeitsmedium (23) kondensiert, wobei Kondensationswärme erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Absstract of: US2025101609A1
The invention relates to a method, an electrolyte membrane, and a corresponding electrolysis cell or an electrolysis stack for producing hydrogen and oxygen from water vapor using electric energy and/or a corresponding fuel cell or a fuel cell stack in order to produce electric energy using hydrogen and oxygen by means of a redox reaction of lithiated iron oxide iron which is dissolved in a liquid alkali carbonate salt. The membrane for splitting water vapor into hydrogen and oxygen consists, in the embodiment according to the invention, of a novel lithiated iron oxide electrolyte which is dissolved in a liquid alkali carbonate salt mixture, generally also referred to as a carbonate melt, which includes lithium carbonate among others. The electrolyte and the liquid carbonate salt are bonded in a heat-resistant non-conductive matrix, for example consisting of lithium aluminate LiAlO2 and/or another heat-resistant material with a capillary effect.
Absstract of: US2025101608A1
An illustrative example embodiment of an apparatus and method includes providing a weave body downstream of an electrolyzer, purifying hydrogen by demisting a hydrogen stream exiting the electrolyzer via flow through the weave body; and de-oxidizing the hydrogen stream during flow through the weave body.
Absstract of: US2025101620A1
A solar-powered ammonia and oxygen production system is disclosed. The system includes an electrolyzer, a PV cell unit, an absorption cooling unit (ACU), a solar parabolic trough collector (PTC), a cryogenic air separation unit (CSU), a cooler, an air compressor, a hydrogen compressor and a nitrogen compressor, an air turbine, and a catalytic converter. The system utilizes these components to co-produce ammonia and oxygen while generating surplus power. The PTC is thermally coupled with the ACU to cool the air coming from the air compressor. The cold air is supplied to the CSU. The nitrogen output from the CSU feeds into the nitrogen compressor, and from there, to the catalytic converter. The hydrogen from the electrolyzer is compressed by the hydrogen compressor, and supplied to the catalytic converter. The catalytic converter further produces ammonia based on the hydrogen and nitrogen received therein.
Absstract of: US2025101602A1
Methods and apparatuses for converting metal carbonate salts to metal hydroxides are disclosed. The methods involve electrochemical production of hydrogen ions (H+) for decarbonating the metal carbonate salt to generate metal ions in a chemical compartment of the electrochemical cell. The metal ions are transported to a cathode compartment where they combine with hydroxide (OH−) to form metal hydroxides. The methods and apparatus may be applied to produce calcium hydroxide which may be used as a precursor for cement clinker. In some embodiments electrochemically produced hydrogen and oxygen are burned to produce heat for production of cement clinker.
Absstract of: WO2025062828A1
Problem To provide: a catalyst having excellent hydrogen generation efficiency and a method for producing the same; a hydrogen generator comprising the catalyst; and a fuel cell system comprising the hydrogen generator. Solution According to an aspect of the present invention, provided is a catalyst for use in generating hydrogen from a borohydride salt. The catalyst comprises: a core that has interlayer anions and interlayer water molecules and that includes, as the main component, a layered double hydroxide containing iron; and a tripod ligand that is coordinated on the surface of the core in a state of having three hydrophilic groups located on the core side.
Absstract of: US2025105323A1
An integrated hydrogen-electric engine includes a hydrogen fuel-cell; a hydrogen fuel source; an electric motor assembly disposed in electrical communication with the fuel-cell; an air compressor system configured to be driven by the motor assembly, and a cooling system having a heat exchanger radiator in a duct of the cooling system, and configured to direct an air stream including an air stream from the air compressor through the radiator, wherein an exhaust stream from a cathode side of the fuel-cell is fed via a flow control nozzle into the air stream in the cooling duct downstream of the radiator.
Nº publicación: WO2025063428A1 27/03/2025
Applicant:
KYOSUN CO LTD [KR]
\uC8FC\uC2DD\uD68C\uC0AC \uAD50\uC120
Absstract of: WO2025063428A1
The present invention relates to a composite electrolysis device for producing hydrogen and hypochlorous acid water, having a novel configuration for generating hydrogen and hypochlorous acid water by electrolyzing dilute hydrochloric acid, the device comprising: an electrolytic cell (100) which has + and - electrodes (110, 120) disposed therein so as to electrolyze dilute hydrochloric acid inputted from the outside, and has formed in the upper end thereof a chlorine gas discharge hole (130) and a hydrogen discharge hole (140) for discharging chlorine gas and hydrogen generated from the electrolysis of the dilute hydrochloric acid; a dilution tank (200) which is provided on the upper side of the electrolytic cell (100) so as to communicate with the chlorine gas discharge hole (130), has dilution water flowing thereinto from the outside, and has hypochlorous acid water generated therein by means of the chlorine gas, entering through the chlorine gas discharge hole (130), being dissolved in the dilution water; an auxiliary electrolytic cell (300) which is provided on one side of the electrolytic cell (100) so that the end portions on one side of the + and - electrodes (110, 120) are inserted therein, has hydrochloric acid, contained in the hypochlorous acid water, electrolyzed therein by having a portion of the hypochlorous acid water generated in the dilution tank (200) flowing thereinto through a hypochlorous acid water inflow line (310) of which one end is connected to the d