Absstract of: FR3164061A1
La présente divulgation concerne un dispositif de gestion thermique (200) pour batterie électrique, le dispositif de gestion thermique comprenant une structure (202) réalisée dans un matériau compressible comprenant un ou plusieurs logements (204) aménagé(s) dans au moins une surface de ladite structure, et dans lequel dans chaque logement est rempli d’un isolant (205), ledit isolant présentant une isolation thermique supérieure à l’isolation thermique du matériau de ladite structure. Figure de l’abrégé : Figure 2
Absstract of: FR3164068A1
La présente invention a pour objet une batterie (10) comprenant une branche (B) et une pluralité d’unités de capacité (12a-12d) interposées en séries dans la branche, chaque unité de capacité comportant une voie principale (16p) et une voie auxiliaire (16s) montées en parallèle et équipées chacune d’un interrupteur (24p, 24s) ;la batterie comportant pour chaque unité de capacité une carte électronique (26a-26d) incluant une unité de commande (27a-27b) des interrupteurs et une circuiterie de mesure (28a-28d) incluant pour chaque cellule associée : - un amplificateur différentiel (30) doté d’une entrée reliée à la borne positive de cellule et d’une entrée reliée à la borne négative de cellule, et - deux sources de courant pilotable (32u, 32g) pour tirer le potentiel de la cellule vers la valeur positive en tension ou vers la masse. Figure pour l'abrégé : Fig. 7
Absstract of: FR3163970A1
Procédé de détection d'une anomalie de fonctionnement d'une pompe à eau et de reconfiguration d'un groupe électromoteur, dans un véhicule automobile électrique ou hybride comprenant un circuit caloporteur (CC1) de la batterie de traction (1), le circuit caloporteur comprenant une pompe de circulation pour faire circuler du fluide caloporteur dans un échangeur (11) au niveau de batterie de traction, le procédé comprenant :1- une étape d’identification d’une défaillance de la pompe à eau (3) du circuit caloporteur (CC1) de la batterie de traction,2- couper un sous-ensemble de consommateurs électriques non essentiels à la mobilité,3- mettre la batterie de traction en mode de limitation de performance,4- inhiber la recharge électrique de la batterie de traction à une borne de recharge, 5- fournir une indication à au moins un utilisateur du véhicule à propos d’un dysfonctionnement du véhicule. Figure 1
Absstract of: FR3164071A1
La présente invention a pour objet une batterie (10) comprenant une branche (B) et une pluralité d’unités de capacité (12a-12b) interposées en séries dans la branche, chaque unité de capacité comportant une voie principale (16p) et une voie auxiliaire (16s) montées en parallèle, au moins une cellule (14) interposée dans la voie principale, un premier interrupteur (24p) interposé dans la voie principale et un deuxième interrupteur (24s) interposé dans la voie auxiliaire ; la batterie comportant pour chaque unité de capacité (12a-12b) une carte électronique (26a-26b) pour piloter sélectivement l’ouverture et la fermeture de chacun des interrupteurs (24p, 24s), dont au moins une est alimentée suivant une logique de redondance par prélèvement de courant (ia, ib) sur ladite au moins une cellule (14) d’au moins deux unités de capacité (12a,12b), l’un des courants (ia) étant converti par un convertisseur DC/DC (44) pour le rendre compatible avec l’autre (ib). Figure pour l'abrégé : Fig.8
Absstract of: FR3164069A1
La présente invention a pour objet une batterie (10) comprenant une branche (B) et une pluralité d’unités de capacité (12a-12d) interposées en série dans la branche, chaque unité de capacité comportant une voie principale (16p) et une voie auxiliaire (16s) montées en parallèle, au moins une cellule (14) interposée dans la voie principale, un premier interrupteur (24p) interposé dans la voie principale et un deuxième interrupteur (24s) interposé dans la voie auxiliaire ;la batterie comportant pour chaque unité de capacité (12a-12d) une carte électronique (26a-26d) pour piloter sélectivement l’ouverture et la fermeture de chacun des interrupteurs (24p, 24s), et au moins un circuit de contournement (70) associé à une unité de capacité (12a-12d) ou associé à une série de plusieurs unités de capacité juxtaposées le long de la branche, ce circuit de contournement comportant une voie électrique (72) le long de laquelle est interposée un interrupteur (74). Figure pour l'abrégé : Fig.11
Absstract of: FR3164034A1
L’invention a pour objet un ensemble (500) comportant une pluralité d'installations (501), chaque installation comportant un pilier (2), les piliers étant notamment disposés suivant au moins une rangée, l’un au moins des piliers loge un ou plusieurs modules de centre de calcul et/ou de données (300) et un autre au moins des piliers loge un ou plusieurs modules de batterie (43), le ou les modules de centre de calcul et/ou de données (300) étant reliés au(x) module(s) de batterie pour être alimentés électriquement, et chaque pilier étant notamment pourvu d’un circuit de fluide caloporteur (310) configuré pour refroidir le ou les modules de centre de calcul et/ou de données (300), ce fluide caloporteur étant notamment de l’eau récupérée telle que de l’eau de pluie. Figure pour l’abrégé : Fig. 22
Absstract of: EP4672377A1
A negative electrode active material is provided. The negative electrode active material includes a carbon-based material, where particle surface of the carbon-based material includes an alkali metal element, and the alkali metal element includes element sodium and/or element potassium. In this application, the surface of carbon-based material such as a graphite material is treated to obtain an organic substance layer similar to an SEI film on the particle surface, which can effectively improve the quality of the SEI film, thereby improving the initial coulombic efficiency and cycling performance of the secondary battery. A secondary battery including the negative electrode active material is further provided.
Absstract of: MX2025009405A
Systems and methods provide for battery conditioning for high voltage (HV) electrical vehicles. Battery temperatures are monitored, and responsive to one or more battery temperatures falling within designated ranges, one or more battery temperatures may be increased via heating in order to provide for more uniform battery performance and conditioning.
Absstract of: CN120642168A
Systems and methods for charging a rechargeable electronic device having a USB interface are provided. An example method includes comparing a charging voltage level of a charging device to a charging voltage range. The method may also include charging the battery with the charging current based on the charging voltage level being within the charging voltage range. The method may also include comparing the charging current to a charging current range, and increasing the charging current based on determining that the charging current is within the charging current range. The method may include again comparing the charging voltage level to the charging voltage range and comparing the charging current to the charging current range, and based on determining that the charging voltage level is within the charging voltage range and the charging current is within the charging current range, continuing to charge the rechargeable electronic device with the charging current.
Absstract of: EP4672382A1
The present invention relates to an all-solid battery comprising: a casing comprising a tubular body comprising a first through hole, an outer tubular surface and an inner tubular surface defining an internal volume of the tubular body, first and planar case portions each comprising a through hole arranged to match the first through hole of the tubular body; a first and second metallic conductors comprising a hollow tubular body and provided coaxially within the internal volume of the tubular body of the casing and provided adjacent to the outer tubular surface and the inner tubular surface of the tubular body of the casing, respectively; a first cell unit comprising a first cathode current collector, a first cathode adjacent to the cathode current collector, a first solid state electrolyte (SSE) adjacent to the first cathode, optionally a first anode adjacent to the first SSE, and a first anode current collector adjacent to the first anode, wherein each component of the first cell unit comprises a hollow tubular body and is provided coaxially within the internal volume of the tubular body of the casing.
Absstract of: EP4671512A1
A device (1) for exchanging vehicle fluids (111, 121), comprising- a first fluid port (10) to connect to a first assembly (110) of a vehicle (100), the first assembly (110) containing a first vehicle fluid (111),- a second fluid port (20) to connect to a second assembly (120) of the vehicle (100), the second assembly (120) containing a second vehicle fluid (121),- a first fluid control arrangement (12) configured to selectively permit fluid flow from the first assembly (110) to the first fluid port (10) and to selectively permit fluid flow from the first fluid port (10) to the first assembly (110), and- a second fluid control arrangement (22) configured to selectively permit fluid flow from the second assembly (120) to the second fluid port (20) and to selectively permit fluid flow from the second fluid port (20) to the second assembly (120).
Absstract of: CN120814081A
A solid state polymer electrolyte is provided, the solid state polymer electrolyte comprising a cross-linked polytriazolium matrix. The invention also provides a method for preparing the solid polymer electrolyte. Further provided is a battery comprising the solid polymer electrolyte as described herein.
Absstract of: EP4671211A1
Provided is a method for manufacturing a precursor for a lithium secondary battery, the method comprising: preparing a metal raw material; and forming a reaction solution comprising the metal raw material to coprecipitate a metal hydroxide precursor, wherein the reaction solution further comprises an additional additive, and the additive comprises a colloidal flocculant.
Absstract of: EP4670837A1
The present invention relates to an apparatus and method for manufacturing a positive electrode active material precursor for a lithium secondary battery. The apparatus for manufacturing a positive electrode active material precursor for a lithium secondary battery comprises: a reactor into which reaction raw materials are introduced to produce a reaction product; an agitator for agitating the reaction raw materials; a solid-liquid separation member disposed between a sidewall of the reactor and the agitator to perform solid-liquid separation of the reaction product; and a filtrate outlet disposed above the solid-liquid separation member to separate and discharge the filtrate to the outside of the reactor.
Absstract of: EP4671210A1
The present invention relates to a method for manufacturing a positive electrode active material precursor for a lithium secondary battery, the method comprising: a first coprecipitation step of introducing a first transition metal-containing solution, a first chelating agent-containing solution, and a first pH-adjusting agent-containing solution into a first reactor to form a first reaction solution, and performing a coprecipitation reaction at a first stirring speed; and a second coprecipitation step of transferring the first reaction solution to a second reactor, introducing a second transition metal-containing solution, a second chelating agent-containing solution, and a second pH-adjusting agent-containing solution to form a second reaction solution, and performing a coprecipitation reaction at a second stirring speed to form a positive electrode active material precursor, wherein the second stirring speed is lower than the first stirring speed.
Absstract of: EP4670836A1
The embodiments may include an apparatus and a method for manufacturing a positive electrode active material precursor. An apparatus for manufacturing a positive electrode active material precursor according to one embodiment may include: a reaction unit (100) comprising a first reactor (110), an input pipe (120) configured to supply a raw material into the first reactor, and a first stirring means (130) located at the center inside the first reactor and configured to stir the raw material introduced from the input pipe to perform a coprecipitation reaction; a first connection pipe (300) through which a reaction product generated in the first reactor is discharged; a solid-liquid separation unit (200) comprising a second reactor (210), a second stirring means (230) located at the center inside the second reactor and configured to stir the reaction product introduced from the first connection pipe, and a filtrate discharge section (220) located at an upper portion of the second reactor; and a control unit connected to the reaction unit and the solid-liquid separation unit and configured to control the reaction unit and the solid-liquid separation unit to operate continuously.
Absstract of: WO2025237524A1
Provided is a battery module, comprising a housing including at least one double-walled portion, wherein a channel is integrally formed for a flow of a first tempering liquid; a second tempering liquid included in the housing; and a plurality of battery cells included in the housing and arranged in alignment with each other, wherein at least one terminal of each battery cell is located adjacent to the at least one double walled portion.
Absstract of: EP4670832A1
A positive electrode active material precursor manufacturing apparatus according to an embodiment may include: a reactor (100) to accommodate reactants; a supply unit (200) to supply the reactants into the reactor (100); and a solution discharge unit (300) to continuously discharge, outside the reactor (100), a precursor and a solution generated by reaction of the reactants. The solution discharge unit (300) may include: a solution discharge pipe (310) connected to a side wall (110) of the reactor (100) extending outside; a metal filter unit (320) in the solution discharge pipe (310) to separate the precursor from the solution; a nitrogen purge unit (330) to purge nitrogen into the metal filter unit (320); a shut-off unit (340) downstream of the nitrogen purge unit (330); and a vacuum pump (350) downstream of the shut-off unit (340), wherein the metal filter unit (320) is at one end of the solution discharge pipe (310).
Absstract of: EP4670835A1
A method for manufacturing a positive electrode active material precursor according to the present invention includes: a reaction vessel; at least one feed pipe configured to feed a reaction solution into the reaction vessel; and a stirring means disposed at a central portion inside the reaction vessel to stir the reaction solution fed through the feed pipe. The stirring means comprises a shaft and two stages of impellers, and the impellers are inclined at an angle of 5° to 90° with respect to a horizontal direction.
Absstract of: EP4671225A1
A method for producing a sodium solid electrolyte according to an embodiment of the present invention comprises the steps of: (a) preparing sintered bodies for beta-alumina production and powder pellets comprising a sodium source (or powder packs); (b) laminating the sintered bodies and the powder pellets comprising a sodium source (or powder packs) in alternation to prepare a stack; and (c) heat-treating the stack to subject the sintered bodies to vapor-phase conversion, wherein the powder pellets (or powder packs) may be molded bodies of powder containing a sodium source.
Absstract of: EP4671786A1
A secondary battery unit charging state estimation device, a secondary battery unit charging state estimation method, and a secondary battery unit charging state estimation program, which can estimate the state of charge (SOC) of a secondary battery in real time with good followability based on parameters at the time of measurement, are provided.The secondary battery unit charging state estimation device estimates, by employing the following formula 1 or 2, the state of charge (SOC) or the state of power (SOP) of a secondary battery unit having at least one battery cell. The secondary battery unit charging state estimation device is equipped with a corrected full charge capacity calculation means for calculating the corrected full charge capacity (FCCadj) of the secondary battery unit. The corrected full charge capacity calculation means calculates the corrected full charge capacity (FCCadj) by employing a Weibull function which uses, as variables, indices based on physical quantities at the time of measurement which are obtained from the secondary battery unit.Equation 1 SOC=SOClast+∑k=1niktk−tk−1FCCadj Equation 2 SOP=SOPlast+∑k=1npktk−tk−1FCCadjik: Charge/discharge current of the secondary battery unit, representing a current value of the charge/discharge current being measuredpk: Input/output power of the secondary battery unit, representing a power value of the input/output powertk: Usage time of the secondary battery unit
Absstract of: CN120693723A
The invention relates to a battery (10) comprising a plurality of electrochemical cells (11) arranged within a closed structure (12). The battery (10) is provided with a cooling device comprising at least one heat pipe (1) configured to contain a heat transfer fluid intended to undergo evaporation and condensation cycles, the at least one heat pipe (1) is integrated on a base (13) of the closed structure (12) by overmolding, such that heat is taken through an evaporation end (4) of the heat pipe (1) arranged to be in contact with the battery cell (11) and heat is transferred through a condensation end (5) of the heat pipe (1) to a cold source (F) located outside the closed structure (12).
Absstract of: EP4672351A1
A positive electrode (10) according to the present disclosure includes: a positive electrode active material (11) containing lithium and a transition metal; a first solid electrolyte (12) containing Li, M1, M2, and F; and a second solid electrolyte (13) differing in composition from the first solid electrolyte (12). The M1 is at least one selected from the group consisting of Ti and Nb. The M2 is at least one selected from the group consisting of Ca, Mg, Al, Y, and Zr. The positive electrode (10) has a first face (10a), the first face (10a)forming an interface with a solid electrolyte layer in a state where the positive electrode (10) is incorporated into a battery, and a first volume percentage of the first solid electrolyte (12) to a total amount of solid electrolytes, both present in a surface layer region (10b) including the first face (10a), is 10 vol.% or more.
Absstract of: EP4672436A1
A battery according to one embodiment of the present invention comprises: an electrode body in which a positive electrode plate and a negative electrode plate are stacked with a separator therebetween; an exterior can (16) which houses the electrode body and has an opening at one end; and a sealing body which closes the opening of the exterior can (16). The exterior can (16) has an identification indication (36) formed on the inner surface thereof.
Nº publicación: EP4671017A1 31/12/2025
Applicant:
RESONAC CORP [JP]
Resonac Corporation
Absstract of: EP4671017A1
A frame member has an aluminum-alloy extruded material in which a plurality of nodes are set in a cross-sectional space of an outer peripheral wall and a plurality of ribs connecting the nodes are provided inside the outer peripheral wall, and the frame member has a cross-sectional shape in which a maximum number of the ribs connected to one of the nodes is three or less and there are four or more nodes that are not connected to the ribs.