Absstract of: CN120593414A
本发明提供了一种地热能开发装置及方法,地热能开发装置包括第一地热井、酸性气体存储单元及第二地热井;第一地热井具有用于伸入至地热储层内的水平井段,水平井段上开设有多个压裂开口;酸性气体存储单元的输出端与第一地热井的进口端连通,用以向第一地热井内通入酸性气体;第二地热井的一端部用于伸入至地热储层内并位于多个压裂开口的上方,以使经多个压裂开口流入至地热储层内的酸性气体与经第二地热井流入至地热储层内的水反应形成酸性物质,以对地热储层的裂缝进行清堵。本发明解决了现有技术中的利用压裂单井换热容易出现堵塞,导致换热效率较低的问题。
Absstract of: CN120593415A
本发明涉及地源热泵地埋管施工技术领,特别是涉及一种地源热泵埋入式下井与抗浮装置及其施工工艺,装置包括竖直地埋管、固管器、自动式抗浮机构和连锁式抗浮机构;竖直地埋管包括第一竖直地埋管和第二竖直地埋管;第二竖直地埋管上固定有自动式抗浮机构,第一竖直地埋管上固定有连锁式抗浮机构,固管器滑动套接于所有的竖直地埋管的外侧,且和连锁式抗浮机构连接。施工工艺包括:将自动式抗浮机构和连锁式抗浮机构分别固定安装于不同的竖直地埋管上,控制连接件连接挂钩和第三管卡;安装固管器,控制竖直地埋管下井;使连锁式抗浮机构展开;换热井回填,对定位管进行固定。通过上述技术方案,解决了竖直地埋管下管深度控制以及地埋管上浮的问题。
Absstract of: CN120597776A
本发明公开了一种缓解碳酸岩型地热储层裂隙堵塞的采热过程调控方法,属于深部地热能开发利用技术领域。其中,该方法包括:确定模拟区范围、边界条件以及模型参数,建立场地人工裂隙结构模型;考虑采热流体与储层岩体之间的化学反应,构建人工裂隙型热储层采热过程数学模型;以注入流量、注入流体pH值作为输入数据,计算裂隙渗透率和开采井温度及采热量;对比不同注入流量、注入流体pH值条件下的裂隙结构堵塞程度和系统采热量,以堵塞程度最小化和采热量最大化为目标,确定优选的注入策略;采用所述优选的注入策略应用于实际的地热能开采过程中。通过本发明,可以减缓深部地热储层裂隙堵塞,提高采热效率。
Absstract of: CN120593416A
本发明涉及基于多级压裂增渗的增强型地热系统U型井换热方法,涉及地热开发技术领域,包括以下步骤:裂缝网络构建;换热介质优化;热交换控制。创新性地将油气藏压裂技术移植至地热开发领域,核心在于:在U型井的水平换热段实施多级定向水力压裂,构建高密度分支裂缝网络,形成“毛细血管式”换热结构。相较于传统的地热开发技术,换热面积指数级增长:裂缝网络使有效换热面积提升至传统光滑井壁的10倍以上;取热效率突破:单井热能提取率提高40%‑70%,尾水温度提升15‑25℃;系统寿命延长:裂缝网络延缓热突破现象,延长经济开采周期;成本优势:利用成熟压裂工艺,较钻探超长水平井降低成本30%以上。
Absstract of: CN120589769A
本发明公开了一种片状氧化铝纳米颗粒的制备方法,将铝源溶解在溶剂中得到前驱体溶液,调节pH值至8‑10,将分子筛模板剂加入到前驱体溶液中搅拌分散均匀;在室温下静置使铝源前驱体在分子筛模板剂表面沉积,高温老化处理后过滤、洗涤并干燥产物;所得产物在高温下煅烧去除剩余的有机物同时促进氧化铝的结晶,随后使用模板清除剂去除分子筛模板剂,得到片状氧化铝纳米颗粒;本发明制备出的纳米流体在静置48h后未出现沉淀絮凝现象,分散稳定性优异;同时粘度低,粘度受温度梯度变化的影响小,在地热储层裂缝中不易沉淀和堵塞,因此在地热能开发中具有广阔的应用前景,有助于提高地热能的利用效率,减少能源消耗和环境污染。
Absstract of: CN120589885A
本发明公开了一种废弃矿井水地热提取的多相流优化装置,涉及地热资源处理技术领域,包括分离腔组件及分别安设在分离腔组件左右两端的第一旋转接头和第二旋转接头,第一旋转接头和第二旋转接头用于实现分离腔组件的可旋转连接及流体密封传输,通过在分离腔组件配合下,利用主分离腔破碎聚团与副分离腔四级分形导流结合,实现气液固“初步分离、精细分离、精准分离、细颗粒控制”的全流程处理,使得分离效率较传统旋流器得到提升,并提高固体颗粒截留率,并利用主分离腔旋转与翼型凸棱阵列协同,使气液分离效率得到极大提升,使得整体大幅减少换热器结垢速率和气体阻塞,并提升了传热系数,使得整体设备的使用寿命长。
Absstract of: WO2025181085A1
A computer-implemented method of determining configuration parameters for a nested fluid transport pipe consisting of an inner and outer pipe. The method involves receiving design constraints for the pipe and performing a computational fluid dynamics simulation to determine a swirl number that represents the swirling motion of the fluid stream. The simulation is performed under the condition that the inner pipe is centred with respect to the outer pipe. Based on the determined swirl number, the method calculates at least one configuration parameter for the nested fluid pipe to achieve the desired level of swirl in the fluid.
Absstract of: WO2025021161A1
Embodiments of the present application provide a geothermal energy utilization system, comprising a cold working medium tank, a geothermal well, a thermal working medium storage apparatus, a steam generator, a high-pressure processor and a steam turbine generator. The cold working medium tank is communicated with the geothermal well, and a cold working medium in the cold working medium tank is output into the geothermal well for heat exchange to form a first thermal working medium; the geothermal well is communicated with the thermal working medium storage apparatus, and the first thermal working medium in the geothermal well is output into the thermal working medium storage apparatus; the thermal working medium storage apparatus is communicated with the steam generator, and the first thermal working medium in the thermal working medium storage apparatus is output into the steam generator, so that water in the steam generator is evaporated into steam; the steam generator is communicated with the high-pressure processor, and the steam in the steam generator is output into the high-pressure processor; and the high-pressure processor is communicated with the steam turbine generator, so as to output the steam in the high-pressure processor into the steam turbine generator to drive the steam turbine generator to generate power. The geothermal energy utilization system provided by the embodiments of the present application improves the utilization efficiency of geothermal energy an
Absstract of: US2025277318A1
The present disclosure is directed to a geothermal hydrogen production system, comprising; a primary liquid circuit circulating a liquid into a geothermal well and returning heated liquid from a well head of the geothermal well, the primary liquid circuit passing through a desalination plant; a first turbine driven by the heated liquid to produce a first mechanical output; and a second turbine driven by the heated liquid to produce a second mechanical output, wherein the first mechanical output drives an electrical generator, configured to power an electrolyser generating hydrogen via electrolysis of fresh water, and the second mechanical output drives an air compressor to provide at least one of a first, a second and a third compressed air supply, wherein the first compressed air supply drives a supply pump to supply salt water to the desalination plant, the second compressed air supply drives a start-up pump to initiate the primary liquid circuit, and the third compressed air supply drives a fresh water pump to deliver fresh water from the desalination plant to the electrolyser.
Absstract of: EP4610872A1
A computer-implemented method of determining configuration parameters for a nested fluid transport pipe consisting of an inner and outer pipe. The method involves receiving design constraints for the pipe and performing a computational fluid dynamics simulation to determine a swirl number that represents the swirling motion of the fluid stream. The simulation is performed under the condition that the inner pipe is centred with respect to the outer pipe. Based on the determined swirl number, the method calculates at least one configuration parameter for the nested fluid pipe to achieve the desired level of swirl in the fluid.
Absstract of: GB2638665A
A ground source thermal energy transfer device comprising: a conduit 1 (such as a wastewater pipe) having an inner surface (defining a conduit for carrying a fluid) and an outer surface; one or more reinforcement ribs 14 project from and extend around the outer surface of the conduit, the one or more ribs form one or more channels 28 at the outer surface; at least one thermal transfer pipe 34 is arranged within at least one of the one or more channels 28 to exchange thermal energy with a medium surrounding the conduit and/or medium carried within the conduit. The one or more channels may have a height and a width and the diameter of the at least one thermal transfer pipe is substantially equal to the width of the one or more channels. As such, the thermal transfer pipe is received and restrained within the channels and therefore protected by the ribs from compression forces when the conduit is buried in use. The thermal energy transfer device is configured for exchanging thermal energy with another medium such as the surrounding earth or the fluid medium within the conduit.
Absstract of: MX2025009333A
The aspects of the invention include a geothermal system obtains heated heat transfer fluid via heat transfer with an underground reservoir of magma, a wellbore extending between a surface and into the underground reservoir of magma, and a partially cased wellbore having a first borehole portion extending from a surface into an underground magma reservoir. A chamber is located within the borehole and extends at least partially into the underground reservoir of magma. An inlet conduit allows flow of heat transfer fluid from the surface and into the chamber. An outlet conduit allows.flow of heated heat transfer fluid from the chamber toward the surface. The system includes steps of providing a molten salt down a wellbore extending from a surface and into an underground reservoir of magma, receiving heated molten salt from the wellbore, and providing the heated molten salt to a heat-driven process.
Absstract of: CN120576496A
本发明涉及系统耦合与控制技术领域,具体涉及一种聚光太阳能地热储能实验系统,包括聚光与地表源子系统、井身热流交换子系统、地热源和能储子系统以及地层等效矩阵子系统。聚光与地表源子系统,用于将汇聚的太阳能转换为热能,利用该热能加热指定类型流体工质至预设温度后,将其输送至井身热流交换子系统,由该子系统进行热能传递、地层热交换;地热源和能储子系统,用于对传递的热能进行储集,以保障热能的稳定供应与灵活调配;地层等效矩阵子系统,用于基于地层物理模型和相关参数,进行地层渗流实验、热交换实验、米级储能实验、压裂实验的数值模拟,以辅助剖析地层的渗透性、热导率、热容这些关键物理特性,以及它们对热能存储与传递的影响。
Absstract of: CN120575832A
本申请实施例提供一种立体U形井结构及其构建方法,属于地下资源开发领域。包括:注入井和生产井,设置为从地表延伸至目标地层深度,其中,所述注入井与所述生产井位于第一平面;以及U形连接井,用于连接所述注入井和所述生产井,位于与所述第一平面不共面的第二平面,其中,所述第二平面与水平面平行或者呈第一设定角度。该结构突破了传统井型平面布置的限制,能够根据地质条件在三维空间中灵活布置,最大化资源接触面积。本申请适用于石油、天然气、地热能、页岩气等多种地下资源的开发利用,能够显著提高资源采收率,缩短投资回收期,提高项目整体经济效益。
Absstract of: CN120557816A
本发明公开了一种干热岩闭式循环井组取热‑发电一体化系统及方法,包括工质注入系统、地下取热系统、跨临界发电系统和冷却水系统;工质注入系统与地下取热系统相连,并为地下取热系统提供加压后的混合工质;地下取热系统与跨临界发电系统相连,地下取热系统将换热后的混合工质输入跨临界发电系统中进行发电作业;跨临界发电系统与冷却水系统相连。本发明利用闭式同轴套管作为井下换热器提取干热岩热量,不需要开展大规模水力压裂制造地下热储空间,避免诱发地震、节省了水资源消耗和建造成本;并采用四斜井井组作为地下取热装置,井口距离较近,节省了地面发电设备与井口之间的管道连接,同时避免了传统单井长期运行温度衰减快的缺点。
Absstract of: US2025271178A1
A borehole is bored to a borehole target depth in a site and a geothermal heat exchanger is inserted into and then secured in the borehole at the desired depth. Once the heat exchanger has been secured in the borehole, the heat exchanger has a closed distal end and an open proximal end and has at least one fluid path between the closed distal end and the open proximal end, with installation fluid disposed in the fluid path(s). After securing the heat exchanger in the borehole and before excavation of a portion of the site immediately surrounding the borehole, the heat exchanger is temporarily sealed by installing, through the open proximal end, at least one respective internal seal in each fluid path. For each fluid path, the internal seal(s) will be disposed below a respective notional subgrade depth and excavation of the site immediately surrounding the borehole can proceed.
Absstract of: WO2025178161A1
The present invention relates to a seasonal thermal storage system and, specifically, to a dual seasonal thermal storage system capable of storing external heat and cold energy, the system having a seasonal heat energy storage tank and a seasonal cold energy storage tank that employ any one from among aquifer thermal energy storage (ATES), borehole thermal energy storage (BTES), pit thermal energy storage (PTES), and tank thermal energy storage (TTES), so as to store heat emitted from a heat pump or apply heat to the heat pump so that the desired cold energy or heat energy is produced, and being capable of storing external heat energy and cold energy in the seasonal heat energy storage tank and the seasonal cold energy storage tank according to season.
Absstract of: WO2025179156A1
A method of extracting heat from hydrocarbon production or injection wells involves passing heat exchanger tubing down an active production or injection well and securing it. Heat from the formation or from fluids in the production tubing or annulus is extracted and returned to the surface to be used in various ways on a platform, e.g. heating accommodation or water supplies. The heat exchanger tubing may be delivered on coil tubing into the production tubing and anchored above the DHS V, in a retro-fit operation. Alternatively, it may be installed in a sidetrack well via a dedicated kickoff. If installed at the completion of the well, the heat exchanger tubing may be located in the annulus, mounted on the outside of the production tubing; in this event the heat exchanger tubing may extend further into the well to, or even beyond, the production packer.
Absstract of: WO2025178161A1
The present invention relates to a seasonal thermal storage system and, specifically, to a dual seasonal thermal storage system capable of storing external heat and cold energy, the system having a seasonal heat energy storage tank and a seasonal cold energy storage tank that employ any one from among aquifer thermal energy storage (ATES), borehole thermal energy storage (BTES), pit thermal energy storage (PTES), and tank thermal energy storage (TTES), so as to store heat emitted from a heat pump or apply heat to the heat pump so that the desired cold energy or heat energy is produced, and being capable of storing external heat energy and cold energy in the seasonal heat energy storage tank and the seasonal cold energy storage tank according to season.
Absstract of: DE102025104858A1
Um mit einfachen Mitteln einen sicheren langfristigen Betrieb einer Erdwärmesonde zu ermöglichen, schlagen einige Ausführungsformen ein Erdwärmesondenanschlussbauteil (10) zum Anschließen einer Erdwärmesonde (12) an horizontal verlaufende Anschlussrohre (26, 28) vor, das eine Vorlaufrohrverzweigung (40, 40.1, 40.2), eine Rücklaufrohrverzweigung (42, 42.2, 42.2) und eine Revisionsschachtzugangseinheit (44) aufweist. In die Revisionsschachtzugangseinheit (44) münden Verlängerungen eines Sondenvorlaufrohrs (20) und einen Sondenrücklaufrohrs (22), so dass diese einfach mit Messgeräten oder Sanierungsgeräten zugänglich sind.
Absstract of: DE102024000622A1
Der Erfindung, welche eine Verfüllanordnung (1) und ein Verfahren zum Verfüllen einer in ein vorbereitetes Bohrloch (29) über eine Bohrlocheingangsöffnung (49) eingebrachten Erdwärmesonde betrifft, liegt die Aufgabe zugrunde, eine Lösung anzugeben, womit ein einfaches Verfüllen einer in ein Bohrloch (29) eingebrachten Erdwärmesonde ohne zusätzlich notwendige einmalig genutzte Verfüllleitungen oder Verpressschläuch realisiert wird und wobei die Verfüllanordnung (1) der Erdwärmesonde robust ausgeführt ist und kostengünstig hergestellt wird. Diese Aufgabe wird anordnungsseitig dadurch gelöst, dass in der vollständig in dem vorbereiteten Bohrloch (29) angeordneten Verfüllanordnung (1) der Erdwärmesonde unterhalb des Sondenfußes (6) ein Rückschlagventil (12) angeordnet ist und dass das Rückschlagventil (12) eingangsseitig mit dem ersten Rohr (7) der Erdwärmesonde und ausgangsseitig mit mindestens einer Austrittsöffnung (20, 22) verbunden angeordnet ist.
Absstract of: WO2025176984A1
A ground source thermal energy transfer device comprises a wastewater pipe having an inner surface defining a conduit for carrying a fluid and an outer surface. One or more reinforcement ribs project from and extend around the outer surface of the wastewater pipe. The one or more ribs form one or more channels at the outer surface. At least one ground source thermal transfer pipe is arranged within at least one of the channels to exchange thermal energy with the ground surrounding the conduit and/or with a medium carried within the conduit. The thermal energy transfer device is configured for exchanging thermal energy with the surrounding earth or the fluid medium within the conduit. The thermal transfer may be used for heating and/or cooling via the exchange of thermal energy between the thermal transfer fluid carried by the thermal transfer pipe and the fluid of a heating/cooling system.
Absstract of: EP4607106A2
Closed loop wellbore configurations with unrestricted geometry for accommodating irregular or challenging thermal gradients within a thermally productive formation are disclosed. A working fluid is utilized in the loop for extraction of thermal energy there from. The loop and the unrestricted geometry are achieved using magnetic ranging of independent drilling operations which intersect from an inlet well and outlet well to form an interconnecting segment. In conjunction with the directional drilling, conditioning operations are incorporated to condition the rock face, cool the entire system, activate the wellbore for treatment to optimize thermal transfer inter alia. The significant degree of freedom in wellbore configuration is further optimized by the absence of mechanical impediments such as casing or liners in the heat transfer areas.
Absstract of: CN120537279A
本发明提供一种基于浅层地热能交换的地铁车站能源底板,包括底板,所述底板上设置有防水节点,所述防水节点处引出有换热管,所述换热管迂回铺设在所述底板的顶部,所述换热管的两端均设置于所述防水节点处;所述底板的顶部铺设有垫层,所述换热管埋覆在所述垫层的内部;本发明中,换热管铺设并埋伏在底板顶部的垫层内部,实现地铁车站地热能规模化采集而不占用额外地下空间,多条散热管路汇聚于同一防水节点处管过底板,能够大幅减少穿底板节点数量;防水节点内部通过遇水膨胀橡胶层在换热管束与穿底板主管之间形成动态密封结构,适应结构变形,实现动态荷载下的长效防水密封。
Nº publicación: CN120538191A 26/08/2025
Applicant:
河北绿泉地热能开发有限责任公司
Absstract of: CN120538191A
本发明涉及地下管组用装置技术领域,尤其涉及一种地热能热量交换装置,包括:换热框,换热框内设有换热管,换热框内通入有换热介质,第一清理机构设置在换热管内,用于清理换热管内沉积的水垢,包括固定连接在换热管两端的安装条;转动连接在安装条之间的螺纹杆;滑动连接在换热管内的安装座头;转动连接在安装座头下方的连接圈;设置在连接圈上的清理刷,固定连接在安装座头下方的安装盘;设置在安装盘上的分离网;以及设置在换热框上的驱动机构。本发明通过在换热管内部配置具备轴向位移清理刷结构,使本发明在持续运行状态下完成管壁结垢清除作业,避免传统清洗工艺必需的停机拆解流程,以实现换热效率的提升以及维护成本的降低。