Resumen de: US2025379225A1
An all-solid-state-battery (ASSB) cell includes C cathode electrodes, S separators, and A anode electrodes, where A, C and S are integers greater than zero. Each of the A anode electrodes comprises an aluminum-iron (Al—Fe) layer and a prelithiated Al—Fe layer on the Al—Fe layer.
Resumen de: US2025379294A1
The present disclosure provides a prismatic battery that includes a laminated electrode assembly having positive electrode plates and negative electrode plates. The negative electrode plate has a negative electrode active material layer including a Si-containing material. The negative electrode active material layer has a closing plate side region provided at one end portion thereof on the closing plate side and a central region provided in a band shape at a center thereof in a first direction. The closing plate side region is free of the Si-containing material or has a content of the Si-containing material lower than that in the central region.
Resumen de: US2025379268A1
A metal-carbon dioxide battery with an electrolyte regeneration system, in which battery performance and durability can be improved by providing the electrolyte regeneration system to an anode side of the metal-carbon dioxide battery.
Resumen de: US2025379269A1
A battery management system is used to discharge an input capacitor of a load, and the battery management system includes a battery pack, a main discharge loop, a pre-discharge loop, and a controller. The pre-discharge loop sets a rated current, and the controller selectively controls a conduction of the main discharge loop or the pre-discharge loop to provide a battery power from the battery pack to the load. When the load is coupled to the battery management system, the controller first turns on the pre-discharge loop for a specific time, and then turns on the main discharge loop. The pre-discharge loop limits a current to be approximately equal to the rated current according to the current flowing through reaching the rated current at a specific time.
Resumen de: US2025379287A1
A battery thermal management module for a work machine includes a housing. The housing includes a first side wall, a second side wall disposed opposite the first side wall along a first axis, a top wall extending along the first axis and connecting the first side wall with the second side wall, and a bottom wall disposed opposite the top wall and connecting the first side wall with the second side wall. The battery thermal management module is adapted to be removably coupled with the work machine, proximal to a front end of the work machine, via at least one of the first side wall, the second side wall, the top wall, and the bottom wall of the housing. The battery thermal management module also includes a cooling assembly disposed within the housing and adapted to supply a coolant to a battery system associated with the work machine.
Resumen de: US2025379280A1
A cell includes a cell housing, at least one end cap, at least three terminals, the at least three terminals including at least one positive terminal and at least one negative terminal. The cell further includes a coupling device for each of the at least three terminals, the coupling device including a busbar and a thermal interface material, the busbar being in contact with and disposed between the terminal and the thermal interface material, the busbar and the thermal interface material thermally coupling the terminal to a top or bottom cold plate. The thermal interface material further electrically insulates the top or bottom cold plate from the terminal.
Resumen de: US2025379276A1
A battery cooling system may be configured for use with a battery. The battery may include a battery core. The battery cooling system may include a structured surface surrounding the battery core. The battery cooling system may include a plurality of wicking structures arranged axially around the structured surface. Each of the plurality of wicking structures may be arranged a distance apart from one another such that a space exists between each of the plurality of wicking structures. A battery case may surround the plurality of wicking structures.
Resumen de: US2025379266A1
Embodiments described herein relate to electrochemical cells with dendrite prevention mechanisms, and methods of producing and operating the same. In some aspects, an electrochemical cell can include an anode and a cathode material disposed on a cathode current collector, the cathode material and the cathode current collector forming a cathode. The electrochemical cell further includes a first separator disposed on the anode, a second separator disposed on the cathode, and an interlayer disposed between the first separator and the second separator, the interlayer including electroactive material, the interlayer including a source of lithium ions, the lithium ions configured to migrate toward the anode upon a voltage difference between the interlayer and the anode exceeding a threshold value. In some embodiments, the anode can include an anode material disposed on an anode current collector. In some embodiments, the anode material can include graphite, silicon, and/or hard carbon.
Resumen de: US2025379285A1
The present disclosure relates to a battery assembly according to an embodiment of the present disclosure includes: a plurality of battery cells, each of which includes a first tab and a second tab, arranged along a predetermined stacking direction; at least one plate arranged between the plurality of battery cells; and a flow path formed inside at least one plate through which fluid moves, wherein the at least one plate may be electrically connected to a battery cell facing at least one side among the two sides including one side and the other side respectively formed along the predetermined stacking direction.
Resumen de: US2025379262A1
A battery cell includes an electrode assembly, a separator, and a support member. The electrode assembly includes a first electrode plate body and a second electrode plate body that have opposite polarities and are stacked in a first direction. The first electrode plate body includes a body portion and flange portions. A projection of the body portion onto the second electrode plate body in the first direction overlaps at least part of the second electrode plate body. The flange portions are connected to at least part of a peripheral side of the body portion and protrude from an outer edge of the second electrode plate body. The separator wraps the electrode assembly. The support member is located in the separator. The support member is disposed on at least one side of the electrode assembly in the first direction.
Resumen de: US2025379260A1
A solid-state battery includes a solid-state electrolyte, a first electrode layer disposed against a first major side of the electrolyte, and a gasket disposed against a second major side of the electrolyte. The gasket defines an opening. A second electrode layer is disposed within the opening such that the gasket completely circumscribes the second electrode. The second electrode is disposed against the second major side of the electrolyte.
Resumen de: US2025379270A1
Discussed is an energy storage system to transmit battery cell information including voltage information about all battery cells from a battery management system (BMS) to an upper-level controller, store voltage information about any N battery cells among all battery cells managed by the BMS, transmit a number of the N battery cells to the upper-level controller, generate, by the upper-level controller, authentication key information using the number of the N battery cells, generate a first authentication key using the battery cell information and the authentication key information, transmit the first authentication key and the authentication key information to the BMS, generate, by the BMS, a second authentication key using the number of the N battery cells about which the voltage information is stored and the authentication key information, and determine authenticity of a control command from the upper-level controller by comparing the first authentication key with the second authentication key
Resumen de: US2025379278A1
Provided herein are systems and methods for managing a temperature of a battery pack. For example, the method may include detecting, by one or more processors, a charge event for the battery pack, and, responsive to detecting the charge event, determining, by the one or more processors, a heat load for the battery pack, based on a current demand corresponding to the charge event of the battery pack, and transmitting, by the one or more processors, a signal to a thermal management system, to modify a condition of the thermal management system for cooling the battery pack, responsive to determining the heat load.
Resumen de: US2025379274A1
Thermal runaway event detection includes measuring, using an expansion sensor layered over a battery device, a rate of expansion of the battery device based on time series detections of volumetric expansion by the expansion sensor; detecting, based on the rate of expansion, conditions for a thermal runaway event; and performing a thermal runaway remediation action in response to detecting the conditions for the thermal runaway event.
Resumen de: US2025379263A1
Provided is a non-aqueous electrolyte secondary battery having excellent safety when an impact from the outside is received. A non-aqueous electrolyte secondary battery according to one aspect of the present disclosure comprises: an electrode body in which a band-shaped positive electrode and a band-shaped negative electrode are wound via a separator; a non-aqueous electrolyte; and an external body accommodating the electrode body and the non-aqueous electrolyte. The positive electrode has a positive electrode current collector and a positive electrode mixture layer formed on both surfaces of the positive electrode current collector. The positive electrode has, near a winding inner end, a tapered portion from the surface of one positive electrode mixture layer to the positive electrode current collector, the tapered portion becoming thinner toward the winding inner end.
Resumen de: US2025379284A1
A rechargeable energy storage system includes a housing including a tray and a sidewall structure. A plurality of beam assemblies extends in parallel across the housing. The plurality of beam assemblies each include a first face plate and a second face plate. The first face plate includes an elongated body having an upper flange extending generally perpendicular to an upper end of the elongated face body. The second face plate includes an elongated body having a lower flange extending generally perpendicular to a lower end of the elongated face body. A pair of coolant plates are sandwiched between the first face plate and the second face plate.
Resumen de: US2025379296A1
A honeycomb-immersed heating and cooling integrated battery system includes a box with a top cover, multiple matrix arranged cells, a honeycomb structure, an upper cover plate, a lower cover plate and a coolant circulation component, where the honeycomb structure has multiple hexagonal close-packed special-shaped cylindrical chambers, each cylindrical chamber contains a cell, the upper cover plate and the lower cover plate are placed on the upper and lower surfaces of the honeycomb structure, respectively, the upper cover plate and the lower cover plate are provided with dense through-holes, the upper chamber is formed between the upper cover plate and the top cover, the lower chamber is formed between the lower cover plate and the bottom of the box, and the coolant circulation component is used to pump the coolant in the lower chamber to the upper chamber.
Resumen de: US2025379298A1
An assembly includes a housing defining an internal volume. An electrochemical cell is disposed in the internal volume. A barrier layer disposed on at least a portion of the housing, the barrier layer including a metal and configured to inhibit fluid communication between the inner volume of the housing and the external environment. The barrier layer may include a plurality of layers, at least one of the plurality of layers including the metal. The plurality of layers may include a first layer disposed on a surface of the housing, the first layer formed of a first material, and a second layer disposed on the first layer, the second layer formed from a second material including the metal.
Resumen de: US2025379279A1
A battery unit comprises an arrangement of a plurality of discrete, stacked battery cells that implement one or more thermal management techniques. The arrangement of the stacked battery cells generates sufficient cooling within the battery unit during operation of the battery such that external cooling mechanisms are not implemented. In addition, the battery unit can comprise thermal management component that includes one or more materials to transfer heat away from the battery unit and/or one or more materials for storing and releasing heat that is produced during the operation of the battery.
Resumen de: US2025379282A1
A battery system includes a housing and a plurality of battery cells accommodated in the housing, with each of the battery cells including cell terminals. The cell terminals of neighboring battery cells are electrically interconnected via electrical connecting elements. Each electrical connecting element includes a first layer contacting neighboring cell terminals and a second layer disposed on top of the first layer. The melting point of the first layer is greater than a melting point of the second layer.
Resumen de: US2025379265A1
The present application provides a separator, a battery and an electric device. The separator includes a porous base material, and a first coating and a second coating which are respectively located on the two surfaces of the porous base material; when the separator is used for a battery, the first coating faces a negative electrode, and the second coating faces a positive electrode; the first coating includes first particles, the first particles include a solid electrolyte, and the content of the first particles in the first coating is greater than 50 wt %; the second coating includes second particles, the second particles include inorganic particles capable of reacting with lithium dendrites, and the content of the second particles in the second coating is greater than 50 wt %.
Resumen de: US2025379261A1
A lithium ion battery comprises an electrolyte solution and a stacked electrode assembly. The stacked electrode assembly includes a positive electrode layer and a negative electrode layer. The positive electrode layer and the negative electrode layer are alternately stacked in a stacking direction. In the stacking direction, the stacked electrode assembly includes a first region, a second region, and a third region in this order. The second region includes an intermediate point in the stacking direction. The first region includes a first positive electrode active material having a first particle size. Each of the second region and the third region includes a second positive electrode active material having a second particle size and a third positive electrode active material having a third particle size. A relationship of “d2
Resumen de: US2025379257A1
An electrode assembly includes: a separator structure including a first separator and a second separator; a plurality of negative electrode plates spaced from each other along a first direction between the first separator and the second separator; and a plurality of positive electrode plates on the negative electrode plates with the first separator or the second separator therebetween. The separator structure includes a bending portion where the first separator and the second separator are bonded to each other, and the bending portion has a cutaway portion through which the first separator and the second separator are cut in a second direction perpendicular to the first direction.
Resumen de: US2025379267A1
A separator, a preparation method therefor, a lithium-ion battery, and an electric device. The separator includes a separation film and a coating provided on at least one side of the separation film; and the coating includes a metal salt, the metal salt includes metal ions, and the metal ions have a reduction potential higher than that of lithium ions.
Nº publicación: DE102024205182A1 11/12/2025
Solicitante:
VOLKSWAGEN AG [DE]
VOLKSWAGEN AKTIENGESELLSCHAFT
Resumen de: DE102024205182A1
Eine erfindungsgemäße Kühlmittelheizvorrichtung (10) weist mindestens einen Einströmbereich und mindestens einen Ausströmbereich auf, über welche bedarfsweise zu beheizendes Kühlmittel ein- und ausströmen kann. Ferner ist ein Isolierelement vorgesehen, welches funktional mit mindestens einem elektrischen Heizelement in Form eines elektrischen Leiters (16) verbunden ist, wobei der Leiter mit einer Energiequelle derart funktional verbunden ist, dass der Leiter (16) bei Aktivierung der Energiequelle von elektrischem Strom durchflossen wird, um Heizleistung abzugeben. Dabei weist der Leiter (16) einen ersten Teilbereich mit einem ersten elektrischen Teilwiderstand und mindestens einen zweiten Teilbereich mit einem zweiten elektrischen Teilwiderstand auf, wobei sich der erste elektrische Teilwiderstand und der zweite elektrische Teilwiderstand unterscheiden.