Resumen de: US2025207279A1
A method for operating an electrolysis device, having a converter which is connected on an AC voltage side to an AC voltage grid via a decoupling inductance and draws an AC active power from the AC voltage grid, and an electrolyzer, which is connected to the converter on the DC voltage side, is provided. The method includes operating the electrolysis device, when a grid frequency corresponds to a nominal frequency of the ACT voltage grid and is substantially constant over a time period, with an electrical power which is between 50% and 100% of a nominal power of the electrolyzer, and operating the converter in a voltage-impressing manner, such that an AC active power drawn from the AC voltage grid is changed on the basis of a change and/or a rate of change of the grid frequency in the AC voltage grid.
Resumen de: US2025207277A1
A catalytic material comprising at least one group VIB metal at least partly in sulfide form, at least one group IVB metal at least partly in sulfide form, and an electrically conductive support wherein said group VIB metal is chosen from molybdenum and/or tungsten, said group IVB metal is chosen from titanium, zirconium and/or hafnium.
Resumen de: US2025207274A1
An electrode for water electrolysis cell includes a conductive base, a first layer, and a second layer. The conductive base includes a transition metal. The first layer is disposed on the conductive base, and includes two or more transition metals and oxygen. The second layer is disposed on the first layer and includes a layered double hydroxide (LDH) including two or more transition metals. The first layer is disposed between the conductive base and the second layer in a thickness direction of the first layer. The first layer includes a first transition metal that is the same as the transition metal included in the conductive base, and a second transition metal that is the same as the transition metal included in the second layer and different from the first transition metal. The first transition metal exists in the first layer at a concentration higher than a concentration of the first transition metal in the second layer.
Resumen de: KR20250094950A
본 발명은, 스택 하우징의 면들을 각각 복수의 영역들로 구획하고, 각 영역마다 열선과 온도 센서가 구비됨으로써, 영역별 온도 측정 및 제어가 가능하여, 구조가 간단하면서도 온도 제어 및 관리가 용이하여 에너지 효율을 향상시킬 수 있다. 또한, 스택 하우징의 면들에 열선과 온도 센서가 구비되고, 스택에는 열선이나 온도 센서가 구비되지 않기 때문에, 상기 스택의 개수나 형상을 설계 변경하거나 상기 스택을 교체하더라도 상기 스택 하우징을 그대로 적용할 수 있으므로, 설치 편의성 및 확장성을 확보할 수 있다. 또한, 복수의 온도 센서들에서 측정된 영역별 온도에 따라 복수의 열선들을 선택적으로 작동시킬 수 있으므로, 상기 스택의 온도를 보다 정밀하게 제어할 수 있다. 또한, 미리 학습된 인공지능 알고리즘을 이용하여 복수의 온도 센서들로부터 측정된 영역별 온도에 따라 복수의 스택들의 온도를 도출하고, 상기 스택들의 온도에 따라 각 열선들의 작동 여부와 작동 시간을 포함한 개별 작동 데이터를 도출할 수 있으므로, 보다 신속하고 정밀하게 스택들의 온도를 제어할 수 있다.
Resumen de: WO2025135428A1
The present technology relates to a water electrolysis system having a power supply control function capable of protecting a water electrolysis stack from instability of renewable energy power. The water electrolysis system comprises: a renewable energy production device for producing renewable energy; a renewable energy storage device for storing the produced renewable energy; a water electrolysis device for electrolyzing water by using at least one of the renewable energy and stored energy supplied from the renewable energy storage device; a gas storage device for storing gas produced by electrolysis in the water electrolysis device; and a power supply control device which controls power supply to the water electrolysis device so as to, if a gradient of power change of the renewable energy is greater than a preset power increase reference gradient, charge the renewable energy storage device by distributing at least a portion of the renewable energy, and if the gradient of power change of the renewable energy is less than a preset power decrease reference gradient, supplement the renewable energy by distributing at least a portion of the stored energy of the renewable energy storage device.
Resumen de: AU2023284373A1
The present invention relates to the technical field of hydrogen energy power generation, and provided is a hydrogen energy uninterruptible power system. Said system comprises a hydrogen production unit, a power storage unit, a power generation apparatus, and a control unit, wherein the hydrogen production unit is able to utilize electrolysis to prepare hydrogen and oxygen gases; the power storage unit can supply power to the hydrogen production unit, and can output power to the outside; the power generation apparatus can receive the hydrogen and oxygen gases output by the hydrogen production unit and generate power, and the power generation apparatus can output power to the outside or transfer power to the power storage unit; and the control unit communicates with the hydrogen production unit, the power storage unit, and the power generation apparatus by means of electrical signals.
Resumen de: CN119403758A
A process for dissociating ammonia into a dissociated hydrogen/nitrogen stream in a catalyst tube within a radiant tube furnace and an adiabatic or isothermal unit containing a catalyst, and a downstream purification process unit for purifying the dissociated hydrogen/nitrogen stream into a high purity hydrogen product.
Resumen de: US2025207266A1
A water electrolysis cell has: an oxygen generating electrode; a hydrogen generating electrode; and a membrane, and electrolyzes water to generate oxygen on the oxygen generating electrode and generate hydrogen on the hydrogen generating electrode. A control device includes: a potential-maintaining mode where the water electrolysis cell is supplied with electric current; and a complete stop mode where the water electrolysis cell is shut out from electric current supply, each of the modes is optionally implemented during an operation stop, wherein which of the modes is implemented is determined based on a duration time of the operation stop, a first deterioration rate of the water electrolysis cell when the complete stop mode is implemented, and a second deterioration rate of the water electrolysis cell when the potential-maintaining mode is implemented.
Resumen de: US2025210678A1
An electrochemical cell module includes a module housing and electrochemical cells located in the module housing and configured to generate power or hydrogen and to output an exhaust. The module also includes a vent housing attached to the module housing, an exhaust duct located in the vent housing, and a filter cartridge located in the exhaust duct. The exhaust duct contains an inlet that is configured to receive the exhaust from the module housing, and an outlet that is configured to direct the exhaust away from the module housing. The filter cartridge contains a particulate filter.
Resumen de: AU2023383044A1
An electrolysis system 1 is provided with an electrolysis cell 2 and a mediator reduction tank 4. The electrolysis cell 2 comprises: an anode electrode 10 which electrochemically oxidizes a mediator reduction body M
Resumen de: WO2024133652A1
A corrugated heat transfer plate (5, 90, 92). It has opposing front and back sides (7, 9) and comprises a first end portion (11), a center portion (13) and a second end portion (15). It further comprises first and third portholes (17, 19) arranged within the first end portion (11), second and fourth portholes (27, 29) arranged within the second end portion (15), and a heat transfer area (4) comprising alternately arranged elongate ridges (6) and valleys (8) and being arranged within the center portion (13). An outer front field gasket groove (36) extends on the front side (7) and encloses the heat transfer area (4), while a back field sealing area (40) extends on the back side (9) and encloses the heat transfer area (4). The heat transfer plate (5, 90, 92) is characterized in that it further comprises a fifth porthole (21) arranged within the first end portion (11), a first transfer hole (25) arranged within a first half (h1) of the heat transfer plate (5, 90, 92), and a second transfer hole (35) arranged within a second half (h2) of the heat transfer plate (5, 90, 92). The first and second transfer holes (25, 35) are arranged within the outer front field gasket groove (36) and outside the back field sealing area (40). The first and second portholes (17, 27) are arranged within the back field sealing area (40), the third, fourth and fifth portholes (19, 29, 21) are arranged outside the back field sealing area (40), and the first, second, third, fourth and fifth portholes (17,
Resumen de: KR20250094789A
본 발명은 수전해 시스템의 수명 예측 방법 및 장치에 관한 것이다. 본 발명에 따른 수전해 시스템의 수명 예측 방법은, 수전해 시스템에 설치된 센서들을 통해 측정된 과거의 각 시계열 데이터를 수집하는 단계; 인공신경망 모델을 이용하여 과거의 각 시계열 데이터로부터 수전해 스택의 성능 데이터를 산출하는 단계; 수전해 스택의 산출된 성능 데이터를 실제 성능 데이터와 비교하여 오차 값을 구하는 단계; 및 오차 값을 이용하여 인공신경망 모델의 파라미터를 조정하는 단계를 포함할 수 있다.
Resumen de: JP2025095274A
【課題】予備処理を行わなくてもアルカリ水電解時の耐久性(耐金属溶出性)を確保することが可能なアルカリ水電解装置用部材を与える省Ni型のアルカリ水電解装置用ステンレス鋼材を提供する。【解決手段】質量基準で、C:0.100%以下、Si:1.00%以下、Mn:3.00~12.00%、Ni:7.00~9.00%、P:0.0030%以下、S:0.0030%以下、Cr:10.0~18.0%、N:0.01~0.25%、Cu:0.01~1.00%、Mo:0.01~1.00%、Al:0.005~0.080%、B:0.0001~0.0100%、Ca:0.0005~0.0100%、O:0.0100%以下を含み、残部がFe及び不純物からなるアルカリ水電解装置用ステンレス鋼材とする。【選択図】なし
Resumen de: WO2025135740A1
The present invention relates to a device for producing hydrogen from ammonia for a ship. According to the present invention, high-pressure hydrogen can be produced by using liquefied ammonia for a ship, and hydrogen can be economically produced by utilizing unconverted ammonia discharged from a decomposition reactor and off-gas discharged from a pressure swing adsorption device as a heat source for ammonia decomposition through a heat exchange network of the ship.
Resumen de: WO2025135743A1
The present invention provides a water electrolysis stack assembly and a hot box apparatus. In an embodiment, provided is a water electrolysis stack assembly including: a case including an upper surface part, a side surface part, and a gas outflow pipe formed in the side surface part; and a stack accommodated in an inner space of the case, wherein a surface pressure is applied to the stack by the upper surface part of the case.
Resumen de: WO2025135742A1
A control method of a high-temperature water electrolysis system, according to a first embodiment of the present invention, comprises the steps of: determining an operating temperature of a solid oxide water electrolysis stack in a high-temperature water electrolysis system including the solid oxide water electrolysis stack; selecting an operation mode of the solid oxide water electrolysis stack by comparing the operating temperature with a supply temperature of gas supplied to the solid oxide water electrolysis stack; determining a target voltage applied to the solid oxide water electrolysis stack according to the operation mode of the solid oxide water electrolysis stack; and applying the target voltage applied to the solid oxide water electrolysis stack in a step-up manner according to the operation mode of the solid oxide water electrolysis stack.
Resumen de: WO2025133594A1
An energy system (100) for supplying electricity to a load (108) and a method of using said system are provided, the system comprising renewable electricity generation capacity (102) comprising solar and wind generation capacity, a battery (110) with a maximum electricity storage capacity sufficient to meet the mean load for up to 1 hr, an electrolyser (112) configured for hydrogen gas production and capable of operating at from 0.3 to 0.8 times the maximum output of the renewable electricity generation capacity; and gas storage (114) configured to receive the hydrogen gas; wherein the renewable electricity generation capacity is in electrical communication with the electrolyser via the battery and wherein the system is configured to allow electrical communication to the load such that electrical output not consumed by the load is used to generate hydrogen gas.
Resumen de: WO2025132918A1
Disclosed is an electrolysis cell element (1) comprising, a support structure (2) comprising an inner aperture (3), and a bipolar plate (4) being suspended in the inner aperture (3). The support structure (2) comprises a structure core (5) and a coating (6), wherein the coating (6) includes a thermoplastic material at least partly enclosing the structure core (5) and wherein the bipolar plate (4) is suspended in the inner aperture (3) by means of the coating (6). An electrolysis cell stack (10) and use of an electrolysis cell stack (10) is also disclosed.
Resumen de: WO2025132521A1
The present invention refers to an electrochemical system comprising: i. an electrolyte, preferably a liquid electrolyte, more preferably an aqueous electrolyte, comprising a stabilizing anion, wherein said electrolyte comprises > 10 mol/mol % of water; ii. a redox mediator electrode comprising Ga(0) or alloys thereof; iii. a cathode; iv. an anode; and v. a wavefunction generator to alternately polarize the electrical connection between the redox mediator electrode and the cathode or anode; wherein the redox mediator electrode is electrically connected with the cathode and the anode, provided that the anode and the cathode are not electrically connected with each other. The gallium-based redox mediator electrode permits the nearly complete reversibility between dissolution and electroplating of gallium, thus cathodic and anodic reactions can be carried out in an alternating manner by electrically connecting the redox mediator electrode with the cathode or the anode. The present invention also refers to a method for the electrochemical production of H2, and oxidized species, such as O2 and/or Cl2 or H+, with the electrochemical system of the invention. Therefore, the present invention may find application in fuel production, e.g. in combination with fuel cells or internal combustion engines, or in chemical reactions such as hydrogenation reactions, reversible H2 production and H2 oxidation, hydrotreating reactions, hydrocracking reactions, hydroisomerisation reactions, oil
Resumen de: WO2025132418A1
The invention relates to a water electrolysis installation (P) comprising a plurality of electrolysis clusters (Ci) operated at respective electrical power setpoints (Pi k). The installation comprises and a supervision unit (SU) for operating the installation (P) according to an electrical network flexibility signal (FSk), the supervision unit (SU) comprising a modulation controller (MOD) for modulating synchronously the electrical power drawn by the installation (P) from an electrical network (NET) according to a preset arrangement, a priority sequencer (SEQ) to establish the preset arrangement asynchronously to the modulation controller (MOD), and a regulator module (REG) to regulate the actual power (Pk) drawn by the installation.
Resumen de: WO2025132365A1
The invention relates to a device/method for capturing/converting CO2, comprising/using a CO2 capturing unit (2), a water electrolysis unit (5), an RWGS unit (8), an FT unit (13), a unit for converting by-products into syngas (28) and a hydrogen unit (20), in which a carbon dioxide separation unit (34) is arranged to: treat a first syngas (12) and a second syngas (29); produce a gaseous effluent depleted in carbon dioxide (18) and a gaseous effluent rich in carbon dioxide (35); and recycling the gaseous effluent rich in carbon dioxide (35) to the inlet of the RWGS section (8).
Resumen de: WO2025131874A1
The invention relates to a system (120) consisting of at least two catalyzers (100), in particular for use in electrochemical cell devices (10), preferably fuel cell devices (10), wherein the at least two catalyzers (100) are fluidically connected in series, and each of the at least two catalyzers (100) has a catalytically active material (108), each of which is provided on a main part (102). At least one first catalyzer (100a), which is arranged first in the flow direction, has a protective material (110), which is designed to bind chromium and is provided on the main part (102). According to the invention, the first catalyzer (100a) is designed to oxidize hydrogen, and a second catalyzer (100b), which is arranged after the first catalyzer (100a) in the flow direction, is designed to oxidize methane.
Resumen de: WO2025131721A1
The invention relates to a method for producing an electrolysis assembly comprising at least one housing with an interior, and with at least one stack assembly disposed in the interior of the housing, the stack assembly comprising a plurality of electrolytic cells stacked in a stacking direction, at least some of the electrolytic cells each comprising a membrane electrode assembly and an interconnector, and the membrane electrode assembly and the interconnector each having an oxygen side and a hydrogen side, wherein, in a preparation step for producing membrane electrode assemblies, at least one pasty layer is applied to each of the two surfaces of an electrolyte membrane, at least one of the layers on one surface being used to form a first electrode formed on the hydrogen side of the membrane electrode assemblies and at least one of the layers on the other surface being used to form a second electrode formed on the oxygen side of the membrane electrode assemblies, in a preparation step a seal material comprising glass and/or glass-ceramic is applied to the interconnectors, in an assembling step the prepared interconnectors and membrane electrode assemblies are stacked in alternation to form a stack, and in an assembling step the stack is joined under the action of thermal energy and of a mechanical clamping force which is applied to the stack inwardly in the stacking direction.
Resumen de: WO2025131661A1
The invention relates to an electrolysis assembly comprising at least one housing with an interior and at least one stack assembly in the interior of the housing. The stack assembly comprises a plurality of electrolysis cells stacked in a stacking direction, and at least some of the electrolysis cells comprise a respective membrane electrode assembly and a respective interconnector, wherein the membrane electrode assembly and the interconnector each have an oxygen side and a hydrogen side, and at least some of the electrolysis cells have contact elements between the membrane electrode assembly and the interconnector, said contact elements being designed to be viscous in an operating state of the electrolysis assembly and solid in a rest state of the electrolysis assembly.
Nº publicación: WO2025132855A1 26/06/2025
Solicitante:
AGFA GEVAERT NV [BE]
AGFA-GEVAERT NV
Resumen de: WO2025132855A1
A separator for alkaline water electrolysis comprising: - a porous support (100) and on at least one side of the support, in order: - an optional porous layer including a Polymer A (200), and - a non-porous layer including a Polymer B (300), characterized in that the separator is obtainable by coating on the porous support (100) or the optional porous layer (200) a Polymer B solution having a viscosity of at least 400 mPa.s, measured at 20°C and a shear rate of 100 s-1, and wherein the separator has a Bubble Point, measured according to ASTM F316, of at least 5 bar.