Resumen de: AU2024245553A1
The invention relates to the coating of anion exchange membranes with catalytically active substances. The catalytically actively coated anion exchange membranes are used in electrochemical cells, especially for water electrolysis. The problem addressed by the invention is that of specifying a process for coating an anion exchange membrane which can be conducted at relatively low temperatures. This problem is solved by a swelling step. Aside from the swelling step and the processing temperature, the sequence of the process according to the invention resembles a decal process. However, the use of the partly liquid swelling agent means that the process according to the invention can be considered to be a wet process. The process enables the processing of anion-conducting polymers at moderate temperatures. The anion-conducting polymers may be present in the anion exchange membrane and/or in the composition that is applied to the anion exchange membrane. The advantage of the process according to the invention is that it can be conducted at comparatively low temperatures, namely below 100°C.
Resumen de: CN120225461A
The process for cracking ammonia is improved by using heat generated in a compression unit for compressing PSA off-gas recycled to a PSA unit to preheat liquid ammonia prior to gasification and cracking. Heat is transferred using a heat transfer fluid, such as an aqueous solution comprising from about 50% to about 60% by weight of a diol, such as ethylene glycol or propylene glycol.
Resumen de: CN120322494A
The present invention relates to a basic anion exchange membrane precursor (pAAEM) comprising a blend of at least one first polymer (P1) comprising recurring units derived from acrylonitrile and at least one second polymer (P2) comprising recurring units derived from vinyl lactam; and to an alkaline anion exchange membrane (AAEM) obtained therefrom.
Resumen de: WO2024115474A1
The aim of the invention is to transport energy produced in an environmentally friendly manner by means of an offshore wind turbine to land in a simple and reliable manner. This is achieved by a method (100) for transporting hydrogen from a floating wind turbine (10) to a water vehicle (11), wherein hydrogen is provided in a storage tank (31) of a floating wind turbine (10), and a water vehicle (11) with a transport tank (36) is positioned by the floating wind turbine (10). The hydrogen is transported from the storage tank (31) to the transport tank (36) using a line (35) which is designed to transport the hydrogen.
Resumen de: WO2025244402A1
The present invention relates to an electrolytic cell. According to one aspect of the present invention, the electrolytic cell for electrolyzing a reaction solution comprises: a reaction chamber having a reaction space through which a reaction solution flows; an electrode extending in the vertical direction from a side portion of the reaction space such that an electric potential for electrolyzing the reaction solution can be applied; and a baffle plate disposed in the reaction space so as to partition the reaction space, wherein a flow hole through which the reaction solution can pass can be formed to pass through the baffle plate.
Resumen de: ZA202300558B
Disclosed is a combined electrical current carrier, circulation chamber and frame (CCF) formed as a single or double part (CCF) for use in unipolar electrochemical devices, such as a filter press electrolyser apparatus. The CCF is structured to define an internal circulation chamber for circulation of electrolyte, products, and reactants as well as apertures which form flow passageways when the filter press device is assembled. Affixed on opposed surfaces of the CCFs are electrically conductive planar electroactive structures which are in electrical contact with the CCF. The circulation chamber is formed by the depth of the CCF itself between opposing electroactive structures. Multiple CCFs are assembled and compressed together to form the filter press electrolyser apparatus. The flow passageway apertures within the assembled filter press electrolyser are aligned to form flow pathways, located above and below the circulation chambers. Reactants and electrolyte are input along the bottom flow pathways. When power is applied to the CCFs and electroactive structures, the reactants, once they flow into the circulation chamber with the electrolyte, undergo redox reactions to produce the products which are then collected and exit the electrolyser in the upper flow pathways.
Resumen de: ZA202307565B
A method for manufacturing hydrogen is disclosed. The method may include placing a water-borne structure into a body of water. The water-borne structure may comprise a buoy including a water collection reservoir in fluid communication with an effluent conduit, a liquid pressurizing columnar conduit depending from the buoy configured to inject water into the water collection reservoir, an electrical energy generator operatively coupled to the effluent conduit to generate electrical energy from a flow of water through the effluent conduit, and an electrolyzer electrically coupled to the electrical energy generator. The method may further include vertically displacing water from the body of water to the water collection reservoir via the liquid pressurizing columnar conduit, evacuating water from the water collection reservoir through the effluent conduit to energize the electrical energy generator, electrolyzing water by electricity generated by the electrical energy generator to evolve hydrogen, and storing the hydrogen in a tank. A ware engine and a self-propelled oceanic energy storage apparatus adapted to float at a surface of a body of water and oscillate vertically in response to ocean waves are also disclosed.
Resumen de: NZ788420A
A process for preparing synthetic hydrocarbons from a biomass feedstock is provided. The process involves electrolyzing water in an electrolyzer to produce oxygen and hydrogen, using the generated oxygen to gasify a biomass feedstock under partial oxidation reaction conditions to generate a hydrogen lean syngas, adding at least a portion of the generated hydrogen to the hydrogen lean syngas to formulate hydrogen rich syngas, which is reacted a Fischer Tropsch (FT) reactor to produce the synthetic hydrocarbons and water. At least a portion of the water produced in the FT reaction is recycled for use in the electrolysis step, and optionally using heat generated from the FT reaction to dry the biomass feedstock.
Resumen de: JP2025173908A
【課題】飛行体内の酸素濃度を制御することができる飛行体用気体供給システムを得る。【解決手段】飛行体用気体供給システム10は、飛行機12内に配置されて空気に含まれる水分を吸着しかつ光が照射されることで水を分解して酸素を発生させる光触媒作用を有する多孔性配位高分子を含んで構成された吸着体14と、飛行機12内に配置されて飛行機12内の酸素濃度を測定可能な酸素濃度センサ16と、飛行機12内に配置されて吸着体14に光を照射可能とされると共に光の光量を調整可能とされた照明装置18とを備えている。【選択図】図1
Resumen de: US2025354277A1
A water electrolysis cell according to an embodiment includes: an anode electrode including an anode catalyst layer in which anode catalyst sheets are stacked via a gap, each anode catalyst sheet containing iridium oxide and being in the form of a nanosheet; a cathode electrode including a cathode catalyst layer in which cathode catalyst sheets are stacked via a gap, each cathode catalyst sheet containing platinum and being in the form of a nanosheet; and an electrolyte membrane containing a hydrocarbon-based material, placed between the anode electrode and the cathode electrode.
Resumen de: CN120225638A
The invention relates to a device/method for capturing/converting CO2. The present invention relates to a process for producing CO and water, comprising/using a CO2 capture unit (2) that produces a CO2-rich effluent (3), a water electrolysis unit (5) that converts water (4) into oxygen (6) and hydrogen (7), an RWGS unit (8) that treats the CO2-rich effluent with hydrogen (7) and produces an RWGS gas (9) enriched in CO and water, an FT unit (13) that converts the RWGS gas and produces an FT effluent (14), a first separation unit (15) that treats the FT effluent and produces a hydrocarbon effluent (17) and a gas effluent (33), a second separation unit (34) separating the first gas (33) producing a CO2-lean gas (18) and a CO2-rich gas (35) fed to the RWGS unit, a hydrogen unit (20) treating the hydrocarbon effluent to produce a hydrocarbon fraction (21).
Resumen de: WO2025241835A1
The present invention relates to a method and system for hydrogen production from chemical wastewater with co-production of freshwater. The system of the present invention comprises a wastewater guiding-out unit and a water electrolysis and low-temperature distillation coupled integrated system, wherein the water electrolysis and low-temperature distillation coupled integrated system comprises an alkaline electrolytic cell unit, an oxygen separation and cooling unit, a hydrogen separation and cooling unit, a hydrogen purification and cooling unit, an alkaline-solution filtration and circulation unit and a wastewater-to-freshwater unit; the wastewater guiding-out unit is used for supplying wastewater into the water electrolysis and low-temperature distillation coupled integrated system; the wastewater-to-freshwater unit is used for heating the wastewater into steam, removing purities from the steam and then condensing the steam to produce freshwater; and an output end of the wastewater-to-freshwater unit is connected to the alkaline electrolytic cell unit, and freshwater in the alkaline electrolytic cell unit is decomposed into hydrogen and oxygen under the action of a direct current. The present invention involves a short technological process and occupies a small area, the quality of produced freshwater is much better than that of conventional wastewater that meets discharge standards, and the resource utilization of chemical wastewater is achieved.
Resumen de: WO2025241418A1
A system and method for hydrogen production by means of decomposition using array plasma. The system comprises a reactor group, a high-voltage power supply (3), a waste-liquid recovery device (8), a raw-material reservoir group, a filter (13), a membrane separator (14), a waste-gas recovery device (15) and a hydrogen collector (16), wherein reactors (1, 2) are each internally provided with an array electrode and a ring electrode (20), and the array electrode comprises a plurality of high-voltage electrodes (17) arranged in an array; each high-voltage electrode (17) comprises an insulating sleeve (27) and a metal pin electrode (28); the insulating sleeve (27) is sleeved outside the metal pin electrode (28); and the upper end of the insulating sleeve (27) is provided with a porous medium (29) having catalytic properties. The array electrodes are arranged in the reactors (1, 2), and the porous mediums (29) having catalytic properties are coupled to the tips of the array electrodes, thereby achieving a synergistic enhancement effect of catalysts and plasma, and improving hydrogen selectivity and the energy utilization efficiency of the plasma; and a liquid phase discharges by means of a strong electric field to generate plasma, thereby prompting a liquid fuel to rapidly decompose so as to produce hydrogen.
Resumen de: US2025361629A1
A laminate for a water electrolysis device includes a polymer electrolyte membrane and an electrode catalyst layer provided on one surface of the polymer electrolyte membrane. The electrode catalyst layer includes a catalyst, a polymer electrolyte, and a fibrous material. A membrane electrode assembly for a water electrolysis device includes the laminate for a water electrolysis device and a second electrode catalyst layer, and includes an electrode catalyst layer, a polymer electrolyte membrane, and a second electrode catalyst layer in this order.
Resumen de: US2025361626A1
An electrolysis device includes a water electrolysis stack configured to electrolyze water, a gas-liquid separator configured to separate hydrogen gas from water discharged from the water electrolysis stack, and a hydrogen compression stack configured to compress the hydrogen gas separated by the gas-liquid separator. The gas-liquid separator includes a storage tank configured to store water, and a maximum storage water level that is a maximum value of a water level that can be allowed in the storage tank is predetermined, and the hydrogen compression stack is located above the maximum storage water level.
Resumen de: US2025361637A1
A methane synthesis system according to the present disclosure includes: a co-electrolysis part that obtains hydrogen and carbon monoxide by electrolyzing water and carbon dioxide, a methanation reaction part that obtains a product gas containing methane by a methanation reaction that uses the hydrogen and the carbon monoxide, and a cooler having a distribution channel in which a refrigerant capable of phase transition, is distributed. The cooler cools the methanation reaction part using heat of vaporization from vaporizing at least a portion of the refrigerant on an inside of the distribution channel.
Resumen de: US2025361634A1
A pore-filling membrane having excellent chemical durability and mechanical strength, a fuel cell including the pore-filling membrane and having excellent durability, and an electrolysis device are provided. The pore-filling membrane has a porous base material and a polyarylene polymer, in which the polyarylene polymer is filled into pores of the porous base material.
Resumen de: US2025361631A1
A method of generating hydrogen using an electrocatalyst including NiMoxCo2-xO4 nanoparticles deposited on a nickel foam substrate, where x>0 and x≤0.06. A first portion of the NiMoxCo2-xO4 nanoparticles have a nano-needle morphology, where the nano-needles assemble to form a sphere in which the nano-needles project horizontally from the sphere, and the sphere has an average diameter of 1-5 micrometers (μm).
Resumen de: US2025361621A1
A method of coating a component of an electrolyser is provided. The method comprises applying an acidic solution of platinum cations to at least a portion of the component and reducing the applied platinum cations with a reducing agent to form a layer of platinum metal on the component.
Resumen de: US2025361635A1
A control device for an electrolysis system includes a deterioration prediction unit that predicts a degree of deterioration of each of a water electrolysis stack and a compression stack, and a supplied electrical current control unit that controls an electrical current that is supplied to the water electrolysis stack and an electrical current that is supplied to the compression stack, wherein the supplied electrical current control unit controls the electrical current that is supplied to the stack having a larger degree of deterioration from among the water electrolysis stack and the compression stack to be constant, and adaptively controls the electrical current that is supplied to the stack having a smaller degree of deterioration from among the water electrolysis stack and the compression stack.
Resumen de: US2025361630A1
An electrolyzer system includes a cathode comprising a cathode catalyst: an anode comprising an anode catalyst configured to promote oxidation of water: and a proton exchange membrane (PEM) between the cathode and the anode, wherein the cathode, anode, and proton exchange membrane are configured such that water at the anode reacts to form oxygen and positively charged hydrogen ions, and the positively charged ions react at the cathode to form hydrogen (H2): wherein the catalyst comprises a Y2Ru2O7—NaBH4 catalyst.
Resumen de: US2025361467A1
Disclosed is a process and system for generating hydrogen from carbon dioxide. The process and system for generating a hydrogen gas stream from a carbon dioxide gas stream comprises converting a first waste carbon dioxide gas stream to an organic feedstock using an algal source in a photosynthesis step. The organic feedstock is then converted using an organism to the hydrogen gas stream and gaseous by-products in a biodecomposition step. The generated hydrogen gas may then be collected.
Resumen de: US2025361178A1
Providing an implementable renewable fuel gas plant processes with management of greenhouse gases with minimal changes to existing plant set ups is a technical challenge to be addressed. Embodiments herein provide a system for renewable fuel gas generation and utilization in industrial plants with carbon dioxide as heat carrier. The system design integrates renewable fuel gas (H2) which is generated within the system and utilized to meet the thermal energy requirements of the production process. CO2 produced as byproduct of calcination in a process equipment, such as during calcination in cement plant is used as a heat-transferring medium to heat the H2. Further, the system provides recycling of the generated byproducts by separating the exhaust gases, comprised of CO2 and H2O. The H2O is recycled to generate H2 via electrolysis. The separated CO2 again serves as a heat-transferring medium, while the excess CO2 is sequestrated.
Resumen de: US2025360480A1
Provided herein are systems and methods for controlling production of low-carbon liquid fuels and chemicals. In an aspect, provided herein is a method controlling a process that produces e-fuels. In another aspect, provided herein is a system for producing an e-fuel.
Nº publicación: AU2024270923A1 27/11/2025
Solicitante:
LIN HSIN YUNG
LIN, Hsin-Yung
Resumen de: AU2024270923A1
A hydrogen generating device provided with a sound insulation cover and a hydrogen generating device provided with a novel power module. The hydrogen generating device comprises a water tank, an electrolytic cell, a humidifier, a refining device, and a sound insulation cover; the water tank is used for containing electrolyzed water; the electrolytic cell is arranged in the water tank and is used for electrolyzing water to generate hydrogen-containing gas; the humidifier is provided with a humidifying chamber for containing supplementary water; the refining device is arranged in the humidifier and is used for refining the hydrogen-containing gas; the sound insulation cover is arranged in the humidifier and is provided with a sound insulation cavity, a connecting tube connecting the water tank and the refining device, and a gas outlet hole; the hydrogen-containing gas passes through the connecting tube and the refining device and flows into the supplementary water in the sound insulation cavity, and then the hydrogen-containing gas flows into the humidifying chamber through the gas outlet hole. Thus, according to the present invention, sound generated when the hydrogen-containing gas flows in the device can be insulated by means of the sound insulation cover, so as to improve the experience effect, and heat dissipation can be effectively carried out on a circuit board, thereby improving the operation efficiency.