Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Noticias

Resultados 434 results.
LastUpdate Updated on 30/06/2025 [07:12:00]
pdfxls
Solicitudes publicadas en los últimos 15 días / Applications published in the last 15 days
previousPage Results 100 to 125 of 434 nextPage  

Unterwasserturbine

Publication No.:  DE102023213223A1 26/06/2025
Applicant: 
SKF AB [SE]
Aktiebolaget SKF

Absstract of: DE102023213223A1

Offenbart wird Unterwasserturbine (1) mit einer Rotornabe (2), die drehfest mit einer Rotorhauptwelle (6) verbunden ist und dazu ausgelegt ist, die Rotorhauptwelle (6) anzutreiben, wobei sich die Rotorhauptwelle (6) in eine über die Rotorhauptwelle (6) mit der Rotornabe (2) verbundenen Gondel (8) erstreckt und dort einen darin aufgenommenen Generator (10) antreibt, wobei die Rotornabe (2) weiterhin dazu ausgelegt ist, zumindest ein Rotorblatt (4) zu tragen, wobei das mindestens eine Rotorblatt (4) an einer Rotorblattwelle (204) befestigt ist und wobei die Rotorblattwelle (204) drehbar an der Rotornabe (2) gelagert ist und ein erstes rotornabenseitiges Ende (208), das in einen Innenraum der Rotornabe (2) ragt, und ein zweites seeseitiges Ende (207), das drehfest an dem jeweiligen Rotorblatt (4) befestigbar ist, aufweist, wobei jeweils das rotornabenseitige Ende (208) der Rotorblattwellen (204) dazu ausgelegt ist, mit einer Rotorblattverstellanordnung (300) zusammenzuwirken, um die mindestens eine Rotorblattwelle (204) zu drehen, wobei die Rotorblattverstellanordnung (300) weiterhin eine translatorisch bewegbare Schubstange (332) aufweist, die ein erstes rotornabenseitiges Ende (334) aufweist, das dazu ausgelegt ist, in die Rotornabe (2) der Unterwasserturbine (1) hineinzuragen und mindestens eine Verbindungsvorrichtung (340) aufweist, die dazu ausgelegt ist, mit der Rotorblattwelle (204) derart verbindbar zu sein, dass die translatorische Bewegung der Schubstange (332) in ein

Windkraftanlage

Publication No.:  DE102023136038A1 26/06/2025
Applicant: 
KOHLER ERIK [DE]
Kohler, Erik

Absstract of: DE102023136038A1

Die Erfindung betrifft eine Windkraftanlage (10) mit einem Gehäuse (12) und mit einer Anordnung aus zwei in dem Gehäuse (12) gegenläufig um vertikale Rotorachsen (14, 15) drehbar gelagerten, jeweils eine Mehrzahl von Rotorblättern (18) aufweisenden Rotoren (16, 17), wobei die Rotorachsen (14, 15) in einer Ebene (24) liegen, wobei das Gehäuse (12) auf beiden Seiten der Anordnung der Rotoren (16, 17) in den außenliegenden Bereichen (32, 33) jeweils ein vertikales Luftleitelement (34, 35) aufweist, wobei das Gehäuse (12) im mittigen Bereich (30) und anströmseitig vor der Anordnung der Rotoren (16, 17) einen vertikalen Windteiler (40) aufweist, wobei der vertikale Windteiler (40) so ausgestaltet und relativ zu den vertikalen Rotorachsen (14, 15) angeordnet ist, dass beide Rotoren (16, 17) in den außenliegenden Bereichen (32, 33) angeströmt werden und wobei der vertikale Windteiler (40) beidseitig in die außenliegenden Bereiche (32, 33) hineinragt.

SYSTEMS AND METHODS FOR REDUCING LOADS INDUCED IN A FLOATING OFFSHORE STRUCTURE

Publication No.:  WO2025136363A1 26/06/2025
Applicant: 
GENERAL ELECTRIC RENOVABLES ESPANA S L [ES]
TEMPLETON BRIAN ANDREW HORRELL [US]
GENERAL ELECTRIC RENOVABLES ESPANA, S.L,
TEMPLETON, Brian Andrew Horrell

Absstract of: WO2025136363A1

A floating offshore wind turbine includes a buoyant tension leg platform with radially extending braces. A tensioned mooring line and tensioning device is connected to each brace. A control system in communication with the tensioning devices determines determine a wind condition of wind acting on the wind turbine and, based on the wind condition, determines a set length of the mooring lines to induce a pitch offset in the tension leg platform and a lean angle of the tower into the wind The lean angle is computed to generate a gravity moment in the wind turbine that offsets a bending moment induced in the tower from the wind.

Rotorblattlagerung für Unterwasserturbine

Publication No.:  DE102023213225A1 26/06/2025
Applicant: 
SKF AB [SE]
Aktiebolaget SKF

Absstract of: DE102023213225A1

Offenbart wird Rotorblattlageranordnung (214) für eine Unterwasserturbine (1), wobei die Rotorblattlageranordnung (214) dazu ausgelegt ist, eine Rotorblattwelle (204) drehbar in einem Rotornabengehäuse (202) zu lagern, wobei die Rotorblattwelle (204) ein seeseitiges Ende (207), das dazu ausgelegt ist drehfest mit einem Rotorblatt (4) verbunden zu werden, und ein rotornabenseitiges Ende (208), das dazu ausgelegt ist von einer Rotornabe (2) aufgenommen zu werden, aufweist, und wobei die Rotorblattlageranordnung (214) die Rotorblattwelle (204) und eine erste seeseitige Lagereinheit (220) und eine zweite rotornabenseitige Lagereinheit (230) aufweist, wobei die erste und die zweite Lagereinheit (220; 230) voneinander in einem Abstand W angeordnet sind, wobei die erste und die zweite Lagereinheit (220; 230) als Gleitlager (225; 235) ausgebildet sind, die jeweils eine innere Gleitfläche (282; 292) und eine äußere Gleitfläche (281; 291) aufweisen, wobei die innere Gleitfläche (292) des ersten Gleitlagers (225) an dem seeseitigen Ende (207) der Rotorblattwelle (204) ausgebildet ist und die innere Gleitfläche (282) des zweiten Gleitlagers (235) an dem rotornabenseitigen Ende (208) der Rotorblattwelle (204) ausgebildet ist, und wobei die äußeren Gleitflächen (281; 291) des ersten und des zweiten Gleitlagers (225; 235) von einem Rotornabengehäuseabschnitt (252; 262) ausgebildet sind, wobei der Rotornabengehäuseabschnitt (252; 262) hohlrohrförmig ausgeformt ist und ein seese

Adam'S Motor

Publication No.:  DE102023005376A1 26/06/2025
Applicant: 
SADOWSKI ADAM [DE]
Sadowski, Adam

Absstract of: DE102023005376A1

Volumenkörper, zum Beispiel Zylinder mit einem Beweglichen Kolben, die ihr Spezifisches Gewicht oder Ihren Schwerpunkt ändern können, werden an einem Halter befestigt, die einen rototischen Freiheitsgrad hat, zum Beispiel ein Rad oder ein Seil, dass um zwei Umlenkrollen geführt wird. Die Zusammensetzung aus Halterung und Volumenkörper, wird als System bezeichnet.

Unterwasserturbine

Publication No.:  DE102023213227A1 26/06/2025
Applicant: 
SKF AB [SE]
Aktiebolaget SKF

Absstract of: DE102023213227A1

Offenbart wird Unterwasserturbine (1) mit einer Rotornabe (2), die drehfest mit einer Rotorhauptwelle (6) verbunden ist und dazu ausgelegt ist, die Rotorhauptwelle (6) anzutreiben, wobei sich die Rotorhauptwelle (6) in eine über die Rotorhauptwelle (6) mit der Rotornabe (2) verbundenen Gondel (8) erstreckt und dort einen darin aufgenommenen Generator (10) antreibt, wobei die Rotornabe (2) weiterhin dazu ausgelegt ist, zumindest ein Rotorblatt (4) zu tragen, wobei das mindestens eine Rotorblatt (4) an einer Rotorblattwelle (204) befestigt ist und wobei die Rotorblattwelle (204) drehbar an der Rotornabe (2) gelagert ist und ein erstes rotornabenseitiges Ende (208), das in einen Innenraum der Rotornabe (2) ragt, und ein zweites seeseitiges Ende (207), das drehfest an dem jeweiligen Rotorblatt (4) befestigbar ist, aufweist, wobei jeweils das rotornabenseitige Ende (208) der Rotorblattwellen (204) dazu ausgelegt ist, mit einer Rotorblattverstellanordnung (300) zusammenzuwirken, um die mindestens eine Rotorblattwelle (204) zu drehen, wobei die Rotorblattverstellanordnung (300) weiterhin eine translatorisch bewegbare Schubstange (332) aufweist, die ein erstes rotornabenseitiges Ende (334) aufweist, das dazu ausgelegt ist, in die Rotornabe (2) der Unterwasserturbine (1) hineinzuragen und mindestens eine Verbindungsvorrichtung (340) aufweist, die dazu ausgelegt ist, mit der Rotorblattwelle (204) derart verbindbar zu sein, dass die translatorische Bewegung der Schubstange (332) in ein

DETERMINING AERODYNAMIC ROTOR IMBALANCE IN A WIND TURBINE

Publication No.:  WO2025131318A1 26/06/2025
Applicant: 
GENERAL ELECTRIC RENOVABLES ESPANA S L [ES]
GENERAL ELECTRIC RENOVABLES ESPA\u00D1A S.L

Absstract of: WO2025131318A1

The present disclosure is related to methods (100, 200) for determining an aerodynamic imbalance in a wind turbine rotor (18). A method (100) comprises determining (110) a fore-aft oscillation of the wind turbine (10), determining (120) an azimuth angle of a blade (22) of the wind turbine (10), and based on the fore-aft oscillation and based on the azimuth angle, determining (130) a magnitude of the aerodynamic imbalance and determining a location of the aerodynamic imbalance. A controller (36) suitable for carrying out such methods (100, 200) and a wind turbine (10) comprising such a controller (36) are also provided.

METHODS FOR OPERATING WIND TURBINES AND WIND TURBINES

Publication No.:  WO2025131277A1 26/06/2025
Applicant: 
GENERAL ELECTRIC RENOVABLES ESPANA S L [ES]
GENERAL ELECTRIC RENOVABLES ESPA\u00D1A S.L

Absstract of: WO2025131277A1

The present disclosure relates to wind turbines (10) and methods (100) for operating wind turbines (10). A method (100) for operating a wind turbine (10) comprises determining (140) a voltage below a predetermined level between the power converter (104) and the main transformer (105); and in response to determining (140) the voltage below the predetermined level, an auxiliary energy source (84) may supply power to one or more of the auxiliary components (108, 109). The auxiliary transformer (106) may be de-energized (160) and the auxiliary transformer (107) may be changed (170) to a different transformer ratio and then power may be delivered (180) to the auxiliary components (108, 109) using the auxiliary transformer (107) with the changed transformer ratio. Suitable control systems (36) and wind turbines (10) are disclosed as well.

Rotornabe für Unterwasserturbine

Publication No.:  DE102023213220A1 26/06/2025
Applicant: 
SKF AB [SE]
Aktiebolaget SKF

Absstract of: DE102023213220A1

Offenbart wird Rotornabe (2) für eine Unterwasserturbine (1) mit einem Rotornabengehäuse(202), das dazu ausgelegt ist, mindestens eine Rotorblattwelle (4) aufzunehmen, wobei die Rotorblattwelle (4) ein erstes rotornabenseitiges Ende (208) aufweist, das dazu ausgelegt ist, in einem Innenraum (210) des Rotornabengehäuses (202) aufgenommen zu sein, und ein zweites seeseitiges Ende (207) aufweist, das dazu ausgelegt ist, drehfest an einem Rotorblatt (4) befestigbar zu sein, wobei weiterhin die Rotorblattwelle (4) mittels einer ersten Lagereinheit (220) und einer zweiten Lagereinheit (230) in dem Rotornabengehäuse (202) gelagert ist, wobei die erste Lagereinheit (220) und die zweite Lagereinheit (230) in einem Lagerabstand W zueinander angeordnet sind, und dass die Rotornabe (2) weiterhin eine Rotorblattverdrehantriebsvorrichtung (316) aufweist, die eine senkrecht zu den Rotorblattwellen (4) ausgerichtete, drehbare Antriebswelle umfasst, die mit zumindest einem ihrer Enden in dem Innenraum (210) des Rotornabengehäuses (202) aufgenommen ist und an dem in dem Rotornabengehäuse (202) aufgenommenen Ende (208) drehfest mit einem zentralen Antriebskegelrad (314) verbunden ist, und die Rotorblattwelle (4) an ihrem ersten Ende (208) ein Kegelrad (312) aufweist, das mit dem zentralen Antriebskegelrad (314) derart zusammenwirkt, dass bei Betrieb des Antriebskegelrads (314), die Rotorblattwelle (4) gedreht wird.

SUPPORT STRUCTURES FOR OFFSHORE WIND TURBINES

Publication No.:  WO2025133705A1 26/06/2025
Applicant: 
ACERGY FRANCE SAS [FR]
ACERGY FRANCE SAS

Absstract of: WO2025133705A1

A bottom-fixed offshore wind turbine installation comprises a support column that is landed on the seabed in an upright orientation, resting on or slightly self-embedded into the seabed. The support column has buoyancy above its centre of gravity and ballast below its centre of buoyancy. Inclined tensioned tethers extend upwardly from the seabed to the support column. An operational wind turbine is supported atop the tethered support column to generate electricity for export. The support column can be towed horizontally, uprighted and held buoyantly above the seabed to position the support column above an installation point before being ballasted, landed, optionally further ballasted and then tethered before assembling or erecting the wind turbine on top. Buoyancy and/or ballasting of the tethered support column and/or tensioning of the tethers can be adjusted to control interaction with the seabed soil. Buoyancy and ballasting of the support column also cooperate to prevent the installation capsizing in the event of mooring failure.

SYSTEMS, METHODS, AND DEVICES FOR INTEGRATING RENEWABLE ENERGY SOURCES

Publication No.:  WO2025133990A1 26/06/2025
Applicant: 
BP INTERNATIONAL LTD [GB]
BP INTERNATIONAL LIMITED

Absstract of: WO2025133990A1

A method is provided. The method includes determining (202) a power requirement of a power grid. The method also includes determining (204) a power output of each of a wind power generation system, a geothermal energy system, and a compressed air energy storage (CAES) system. The CAES system is configured to store energy from the wind power generation system and supply the stored energy to the power grid. The CAES system is thermally coupled to the geothermal energy system such that thermal energy transfers between the CAES system and the geothermal energy system. The method further includes supplying (206) power to the power grid from at least one of the wind power generation system, the CAES system, and the geothermal energy system.

WIND TURBINE

Publication No.:  WO2025132599A1 26/06/2025
Applicant: 
KOHLER ERIK [DE]
KOHLER, Erik
DE_102023136038_PA

Absstract of: WO2025132599A1

The invention relates to a wind turbine (10) having a housing (12) and having an arrangement of two rotors (16, 17), which are mounted rotatably in opposite directions about vertical rotor axes (14, 15) in the housing (12) and each have a plurality of rotor blades (18), wherein the rotor axes (14, 15) lie in one plane (24), wherein the housing (12) in each case has a vertical air-guiding element (34, 35) in the outer regions (32, 33) on both sides of the arrangement of the rotors (16, 17), wherein the housing (12) has a vertical wind divider (40) in the central region (30) and on the approach flow side upstream of the arrangement of the rotors (16, 17), the vertical wind divider (40) being configured and arranged relative to the vertical rotor axes (14, 15) in such a way that the flow approaches the two rotors (16, 17) in the outer regions (32, 33), and the vertical wind divider (40) projecting on both sides into the outer regions (32, 33).

METHOD AND SYSTEM FOR MONITORING THE CONDITION OF BLADES AND TOWERS OF WIND TURBINES

Publication No.:  WO2025133803A1 26/06/2025
Applicant: 
SZWEDOWICZ DOROTA [PL]
MONETA GRZEGORZ [PL]
SZWEDOWICZ, Dorota,
MONETA, Grzegorz
PL_447269_A1

Absstract of: WO2025133803A1

The invention relates to a method for monitoring the condition of the blades and the tower of a wind turbine (1), particularly a wind turbine with a vertical or horizontal axis of rotation, and the method involves continuously measuring the distance of at least one point on each of the rotating blades (5) of the wind turbine (1) from at least one device (10) measuring distance and/or velocity, which is mounted at least at one point on the circumference of the tower (2) and at least at one height of the tower (2), for each blade rotation in front of the tower, and/or the velocity of at least one point of each of the rotating blades (5) of the wind turbine (1) for each blade rotation in front of the tower (2) in directions perpendicular and/or oblique to the vertical y axis of the tower (2), as well as the acceleration of at least one point of the tower (2) in at least one direction and the rotational velocity of the wind turbine (1) Subsequently, the amplitudes of displacements and/or velocities of each rotating blade of the wind turbine are determined, along with the vibration frequencies of each rotating blade (5) of the wind turbine (1) for each blade rotation in front of the tower, or the amplitudes of accelerations and the vibration frequencies of at least one point of the tower (2) are determined by transforming the measured distances, velocities, and accelerations from the time domain to the amplitude-frequency domain. Then, the determined acceleration amplitudes of at

A METHOD OF MANUFACTURING AT LEAST A PART OF A WIND TURBINE SHELL

Publication No.:  WO2025131211A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131211A1

The present disclosure relates to a method of manufacturing at least a part of a shell of a wind turbine blade The method comprising the steps of: impregnating fabrics of fibres with a curable matrix to provide a plurality of pre-pregs, the plurality of pre-pregs comprising at least a first pre-preg and a second pre-preg; providing a shell mould having a shell layup area; placing the first pre-preg at the shell layup area; locally applying heat to the first pre- preg and/or to the second pre-preg; compressing the second pre-preg onto the first pre-preg at the shell layup area to consolidate the first pre-preg and the second pre-preg such that the first pre-preg and the second pre-preg form a skin laminate; cooling the first pre-preg and/or the second pre-preg of the skin laminate; and heating the shell mould to cure the curable matrix of the pre-pregs of the skin laminate.

IMPROVEMENTS RELATING TO THE MANUFACTURE OF WIND TURBINE BLADES

Publication No.:  WO2025131209A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131209A1

Improvements relating to the manufacture of wind turbine blades A method of making a wind turbine blade component is described. The method comprises: providing a rigid mould (20) shaped to form the wind turbine blade component; arranging fibrous reinforcing material (36) in the mould; covering the fibrous reinforcing material with a vacuum bag (14); sealing the vacuum bag against a surface (12) of the mould or against another surface to create a closed space (18) between the mould and the vacuum bag in which the fibrous reinforcing material is encapsulated; removing air from the closed space to create a negative pressure within the closed space; supplying resin to the fibrous reinforcing material; and curing the resin. The method further comprises providing a sealed bag (10) in the closed space. The sealed bag is at least partially filled with a gas. The pressure inside the sealed bag is greater than the pressure within the closed space outside the sealed bag. The sealed bag shapes and/or supports a portion of the fibrous reinforcing material during the moulding process.

A WIND TURBINE BLADE

Publication No.:  WO2025131215A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131215A1

A first aspect of the invention provides a wind turbine blade comprising an inboard wind turbine blade portion and an outboard wind turbine blade portion for joining together by a joint, each of the inboard and outboard wind turbine blade portions having an end with an aerofoil profile, the end of each of the respective wind turbine blade portions having a plurality of inserts embedded therein, each insert comprising an end portion having a connection for coupling the insert to another of the inserts across the joint and an extension portion which extends away from the end portion to an insert tip, each connection having a connection centre, wherein the plurality of inserts are sandwiched between fibre reinforced composite layers forming a shell of the wind turbine blade, the shell having a shell thickness between inner and outer surfaces of the shell, wherein a shell half thickness value is defined as half of the shell thickness just beyond a respective insert tip in a direction away from the joint, wherein at least one of the inserts has its connection centre located a first distance from a neutral axis of the blade, and the shell half thickness is located a second distance from the neutral axis, where the first distance is at least the second distance.

LIGHTNING CURRENT TRANSFER SYSTEM

Publication No.:  WO2025131199A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131199A1

The present disclosure relates to a lightning current transfer system for a wind turbine. The lightning current transfer system comprises a contact device having a mounting part, an elastic non-conducting arm having a first end attached to the mounting part and a second end to which a contact part is attached. The arm has a length extending between the first end and the second end and a width which tapers from the first end towards the second end. It has been found that by tapering the width of the arm between the first and second end, the stress distribution across the arm can be improved.

CONTROLLING A WIND TURBINE WITH MODIFIED CONTROL PARAMETER IN RELATION TO A SPECIAL GRID OPERATION

Publication No.:  WO2025131198A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131198A1

The present invention relates to a control of a wind turbine during special grid operation. The wind turbine comprises a damping system that can reduce vibrational movement of a component of the wind turbine. The damping system is dependent on at least one preset damping control parameter. Upon obtaining a requirement for special grid operation the preset damping control parameter is modified and vibrational movement of the component is monitored. Upon determining a requirement to damp the vibrational movement of the component, the damping system is actuated using the modified control parameter.

DETERMINING ROTOR AZIMUTH ANGLE OF A WIND TURBINE

Publication No.:  WO2025131201A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131201A1

The invention relates to determining rotor azimuth angle of a wind turbine. A rotor speed of the wind turbine is obtained, a gain is applied thereto to obtain a gain-adjusted rotor speed signal, and a rotor speed integrator is applied to the gain-adjusted rotor speed signal to determine rotor azimuth angle. The invention involves receiving an acceleration sensor signal, from an acceleration sensor located in a rotor hub of the wind turbine, indicative of gravitational acceleration of the rotor hub relative to a rotation axis of the rotor hub, and determining a reference rotor azimuth angle based on the received acceleration sensor signal. The invention involves determining an azimuth angle error between the reference rotor azimuth angle and the rotor azimuth angle determined by the rotor speed integrator, and determining the gain to be applied to the obtained rotor speed signal based on the determined azimuth angle error.

LIGHTNING PROTECTION SYSTEM

Publication No.:  WO2025131208A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131208A1

A wind turbine blade comprising: a first blade portion having a shell that defines a suction side, a pressure side, a leading edge, a trailing edge, and a first spar cap portion, the first blade portion further including a first blade portion end surface at one end of the first blade portion; a second blade portion having a shell that defines a suction side, a pressure side, a leading edge, a trailing edge, and a second spar cap portion, the second blade portion further including a second blade portion end surface at one end of the second blade portion, wherein the first blade portion and the second blade portion are configured to be coupled together at the first and second blade portion end surfaces; a connection joint for coupling the first and second blade portions together, wherein the connection joint includes a connector for connecting to the first blade portion end surface and to the second blade portion end surface, the connector including electrically conductive material; and a lightning protection system including a down conductor portion in each of the first and second blade portions, wherein there is a gap between the connector and at least one of the down conductor portions, the lightning protection system further comprising an electrical cable electrically bonding the connector to the at least one down conductor portion across the gap.

COATING APPLICATOR TOOL WITH A CURVED APPLICATOR NOZZLE

Publication No.:  WO2025131205A1 26/06/2025
Applicant: 
BLADEROBOTS AS [DK]
BLADEROBOTS A/S

Absstract of: WO2025131205A1

An applicator tool (42) for repairing damage (26) to a leading edge (22) of a wind turbine blade (20) is disclosed The applicator tool (42) includes a tool frame (70) and an outer spatula (76) operatively supported by the tool frame (70). The outer spatula (76) is configured to engage with an exterior surface (34) of the wind turbine blade (20) to form a gap (86) between the leading edge (22) of the wind turbine blade (20) and the outer spatula (76). A feed tube (94) of the applicator tool (42) is supported by the tool frame (70) to supply a coating material to the gap (86) and an applicator nozzle (88) of the applicator tool (42) that is located within the gap (86). The applicator nozzle (88) is operatively connected to the feed tube (94) and includes an applicator head (156) that is configured to distribute the coating material onto the wind turbine blade (20). The applicator head (156) includes at least three passageways (176-180) that define at least three distinct flows of coating material from the applicator nozzle (88). The applicator head (156) is curved along a transverse axis (A3) that is perpendicular to a longitudinal axis (A2) of the applicator nozzle (88) to generally conform the applicator head (156) to a curved contour of the leading edge (22) of the wind turbine blade (20). (Figure 5)

A WIND TURBINE BLADE SPAR CAP

Publication No.:  WO2025131207A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131207A1

In a first aspect of the present invention there is provided a wind turbine blade spar cap. The spar cap has an upper spar cap surface, a lower spar cap surface, and a spar cap thickness defined between the upper and lower spar cap surfaces. The spar cap has a middle portion throughout which the spar cap thickness is substantially constant, and a tapered end portion in which the spar cap thickness decreases towards an end of the spar cap. The spar cap comprises a plurality of pultrusion layers arranged in a stack. Each pultrusion layer has an upper pultrusion layer surface, a lower pultrusion layer surface, and a layer thickness defined between the respective upper and lower pultrusion layer surfaces. The stack comprises a first substack comprising a plurality of pultrusion layers and a second substack comprising a plurality of pultrusion layers. The stack further comprises an intermediate pultrusion layer comprising a tapered end section in which the layer thickness of the intermediate pultrusion layer decreases towards the end of the spar cap. The tapered end section is located in the tapered end portion of the spar cap. The intermediate pultrusion layer is sandwiched between the first and second substacks such that, in the tapered end portion of the spar cap, the tapered end section of the intermediate pultrusion layer is sandwiched between a plurality of pultrusion layers of the first substack and a plurality of pultrusion layers of the second substack.

A WIND TURBINE BLADE SPAR CAP

Publication No.:  WO2025131206A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131206A1

In a first aspect of the present invention there is provided a wind turbine blade spar cap. The spar cap has an upper spar cap surface, a lower spar cap surface, and a spar cap thickness defined between the upper and lower spar cap surfaces. The spar cap also has a middle portion throughout which the spar cap thickness is substantially constant, and a tapered end portion in which the spar cap thickness decreases towards an end of the spar cap. The spar cap comprises a plurality of pultrusion layers arranged in a stack, each pultrusion layer having an upper pultrusion layer surface, a lower pultrusion layer surface, and a layer thickness defined between the respective upper and lower pultrusion layer surfaces. The layer thickness of each pultrusion layer in the stack is substantially the same throughout the middle portion of the spar cap. The stack comprises an upper pultrusion layer defining at least part of the upper spar cap surface, a lower pultrusion layer defining at least part of the lower spar cap surface, and an intermediate pultrusion layer arranged between the upper and lower pultrusion layers. The intermediate pultrusion layer comprises a tapered end section in which the layer thickness of the intermediate pultrusion layer decreases towards the end of the spar cap. The tapered end section is located in the tapered end portion of the spar cap. The tapered end section comprises a non-uniform rate of taper, and the tapered end section is sandwiched between at least tw

A METHOD AND A CONTROL ARRANGEMENT FOR CONTROLLING A RENEWABLE POWER PLANT

Publication No.:  WO2025131195A1 26/06/2025
Applicant: 
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131195A1

A method (200) for controlling a renewable power plant (100) comprising one or more renewable electric power generating units (103) and one or more power-to-gas units (120), the renewable power plant (100) being connected to a gas transmission network (126), is presented. The method (200) comprises: determining (210) one or more parameters of the gas transmission network (126); based on the one or more determined parameters of the gas transmission network (126), controlling (220) the one or more power-to-gas units (120) to convert electric power at least partly provided by the one or more renewable electric power generating units (103) to gas; and based on the one or more determined parameters of the gas transmission network (126), controlling (230) the renewable power plant (100) to introduce at least a portion of the converted gas into the gas transmission network (126) so as to improve a stability of the gas transmission network (126).

DETERMINING ROTOR AZIMUTH ANGLE OF A WIND TURBINE

Nº publicación: WO2025131200A1 26/06/2025

Applicant:

VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S

Absstract of: WO2025131200A1

The invention relates to determining rotor azimuth angle of a wind turbine. The invention involves obtaining a rotor speed signal indicative of rotor speed of the wind turbine. The rotor speed signal is for input into a rotor speed integrator. The invention involves receiving an acceleration sensor signal, from an acceleration sensor located in a rotor hub of the wind turbine, indicative of gravitational acceleration of the rotor hub relative to a rotation axis of the rotor hub. The invention involves determining a reference rotor azimuth angle based on the received acceleration sensor signal, and generating a reset pulse signal based on the determined reference rotor azimuth angle. Upon receiving the generated reset pulse signal at the rotor speed integrator, the integrator is reset. The invention involves using the reset rotor speed integrator to determine wind turbine rotor azimuth angle based on the obtained rotor speed signal.

traducir