Absstract of: US2025316736A1
A method for preparing a new polyelectrolyte multilayer coated proton-exchange membrane has been developed for electrolysis and fuel cell applications. The method comprises: applying a polyelectrolyte multilayer coating to a surface of a cation exchange membrane, the polyelectrolyte multilayer coating comprising alternating layers of a polycation polymer and a polyanion polymer to form the polyelectrolyte multilayer coated proton-exchange membrane and optionally treating the polyelectrolyte multilayer coated proton-exchange membrane in an acidic solution. The polycation polymer layer is in contact with the cation exchange membrane.
Absstract of: US2025316720A1
A novel microfabricated Titanium-based porous transport layer (PTL) is described, for use in a hydrogen electrolytic fuel cell. The novel structure may have improved properties and enable improved utilization of the catalyst layer, which is a key metric for hydrogen fuel systems. The structure is intended to be used with a polymeric membrane and is disposed directly adjacent to the catalytic layer on the cathode side of the structure. The improved performance result from is three dimensions microfabricated design, which allows a large number of tightly controlled through hole structure, which increases the surface area available for the electrolytic reaction.
Absstract of: AU2024262429A1
A method by which an environmental energy (e.g., wave energy) is harvested, converted into electrical power, and thereafter used to electrolyze seawater into hydrogen and chlorine gases. Those gases are recombined into hydrogen chloride from which is formed hydrochloric acid solution which is diluted and deposited at a depth sufficient to ensure its neutralization and sequestration for a significant period of time (e.g., for over a millennium). By removing chloride ions from a portion of the sea adjacent to its upper surface and depositing them into a portion of the sea more adjacent to its bottom, acidity is shifted from the surface to base of the sea, and the surface ocean is given a greater ability to absorb and buffer atmospheric carbon dioxide without a corresponding increase in acidity.
Absstract of: JP2025150785A
【課題】高純度かつ高圧の水素を製造すると共にエネルギ効率の向上を図る。【解決手段】電解システムは、水蒸気電解により水素を生成する固体酸化物形の電解セルと、電解セルを収容する断熱性の収容容器と、を有する電解モジュールと、電解セルに水蒸気を供給する水蒸気供給ラインと、収容容器に収容された電気化学ポンプと、を備える。電気化学ポンプは、固体電解質とアノードとカソードとを含むポンプセルを有し、電解セルで生成された水素と未反応の水蒸気とを含むオフガスをアノードの入口に導入するよう電解セルに接続され、カソードの出口から昇圧された水素を収容容器外へ出力するよう水素回収ラインに接続され、アノードの出口から残余の水素と水蒸気とを収容容器内で水蒸気供給ラインに出力するよう水素供給ラインに接続される。【選択図】図1
Absstract of: JP2025150865A
【課題】空気極の周縁へのクラックの発生を抑制できる技術を提供する。【解決手段】固体酸化物形電解セルは、空気極と、燃料極と、前記空気極と前記燃料極との間に配置された固体電解質層と、を備え、前記空気極の周縁は、一部又は全周において、凹凸が交互に繰り返す凹凸部を有し、前記凹凸部において、頂部と底部はいずれも円弧状であり、前記底部の円弧半径R2に対する前記頂部の円弧半径R1の割合(R1/R2)は、3.0以上である。【選択図】図5
Absstract of: JP2025150862A
【課題】空気極へのクラックの発生を抑制できる技術を提供する。【解決手段】固体酸化物形電解セルの空気極は、主成分としてのペロブスカイト構造を有する複合酸化物と、クロムを含有する第1の物質と、前記複合酸化物とは異なる物質であって、コバルトと鉄との少なくとも一方を含有する第2の物質と、を含み、前記空気極の断面における前記第1の物質と前記第2の物質との面積占有率の合計は、0.02%以上10.5%以下である。【選択図】図2
Absstract of: JP2025150864A
【課題】空気極へのクラックの発生を抑制できる技術を提供する。【解決手段】固体酸化物形電解セルの空気極は、一般式A1xA2yBO3-δ(ただし、0.9≦x+y<1、δは酸素欠損量)で表され、主成分としてのペロブスカイト構造を有する複合酸化物と、クロムを含有する第1の物質と、硫黄を含有する第2の物質と、前記複合酸化物とは異なる物質であって、コバルトと鉄との少なくとも一方を含有する第3の物質と、を含み、前記空気極の断面における前記第1の物質と前記第2の物質と前記第3の物質との面積占有率の合計は、0.02%以上10.5%以下である。【選択図】図2
Absstract of: JP2025150951A
【課題】 光触媒を用いた水素ガス製造装置1に於いて、水槽2内の水の純度の低下に伴う水素発生量の低下を補償できるようにする。【解決手段】 水素ガス製造装置は、水を貯留する水槽部2と、水槽部内の水中に分散又は配置された光触媒体にして、光が照射されると、励起電子と正孔を発生し、水分子を水素と酸素とに分解する水の分解反応を起こし水素ガスを発生する光触媒物質を有する光触媒体3aと、光触媒体へ照射されて水の分解反応を惹起する光を発する光源装置4と、水槽部内の水の純度を検知する手段16aと、水の純度の低下に応答して水素ガスの発生量の低下を補償する手段16とを含む。水素ガス発生量低下の補償は、照射光量の増大、光触媒体の量の増大又は水の交換のいずれかにより達成されてよい。【選択図】 図1
Absstract of: JP2025150863A
【課題】空気極へのクラックの発生を抑制できる技術を提供する。【解決手段】固体酸化物形電解セルは、一般式A1xA2yBO3-δ(ただし、0.9≦x+y<1、δは酸素欠損量)で表されるペロブスカイト構造を有する複合酸化物を主成分として含有する空気極と、燃料極と、前記空気極と前記燃料極との間に配置された固体電解質層と、を備え、前記空気極は、硫黄を含有する第1の物質と、前記複合酸化物とは異なる物質であって、コバルトと鉄との少なくとも一方を含有する第2の物質と、を含み、前記空気極の断面における前記第1の物質と前記第2の物質との面積占有率の合計は、前記固体電解質層側の界面から10μm以内の界面領域よりも、前記固体電解質層側とは反対の表面から10μm以内の表面領域の方が大きい。【選択図】図2
Absstract of: JP2025150521A
【課題】水電解システムにおける循環水を適切に冷却する。【解決手段】制御装置(5)は、水を電気分解する電解槽(1)と当該電解槽(1)で発生した酸素と水とを分離する酸素気液分離器(3)との間を循環する循環水の温度変化を予測し、温度予測結果に基づいて、循環水を冷却する熱交換器(82)を制御する。【選択図】図1
Absstract of: JP2025151272A
【課題】優れた触媒性能を持つ触媒材料を提供すること。【解決手段】ここに開示される触媒材料は、Ni元素を主体とするNi粒子を含み、上記Ni粒子は、O元素を含有し、不活性ガス融解-非分散型赤外線吸収法による元素分析に基づく、上記触媒材料に含まれる上記Ni粒子全量に対するO元素の含有率は2mass%以上5mass%以下であり、X線光電子分光法により測定される上記Ni粒子表面の光電子スペクトルにおいて、Ni2p軌道を示す領域における金属NiとNiOとNi(OH)2の合計ピーク面積に対する、上記金属Niのピーク面積の比率が20%以上40%以下である。【選択図】図2
Absstract of: JP2025151271A
【課題】優れた触媒性能を持つ触媒材料を提供する。【解決手段】ニッケル酸化物と、鉄酸化物と、金属ニッケルとを含有する合金粒子1、を含む触媒材料であって、合金粒子1の表面1sから深さ方向に、Feの原子濃度が漸減し且つNiの原子濃度は漸増する傾斜組成を有しており、合金粒子の表面から深さ方向に、SiO2換算でのスパッタ深さ5.5nmまでX線光電子分光法による測定を行ったとき、表面における、FeとNiとの合計に対するFeの原子濃度が10at%以上50at%以下であり、スパッタ深さ5.5nmにおける、FeとNiとの合計に対するFeの原子濃度が3at%以上17at%以下であり、表面からスパッタ深さ5.5nmにかけての、合金粒子のFeの原子濃度の減少割合が0.5at%/nm以上6at%/nm以下である。水電解における酸素発生極として用いられる。【選択図】図1
Absstract of: JP2025151792A
【課題】酸化還元反応の効率を高めることができる光触媒装置を提供する。【解決手段】基板と、前記基板に設けられ、c面および半極性面の少なくとも一方である第1面と、m面である第2面と、を有し、InxGa1-xN(0≦x<1)を含む複数の柱状部と、前記第2面を避けて前記第1面に設けられ、InyGa1-yOz(0≦y<1、0<z)を含む第1酸化物層と、を含む、光触媒装置。【選択図】図1
Absstract of: JP2025150086A
【課題】水電解スタックの劣化状態に応じて、安全性と経済性を考慮した運用条件を策定することができなかった。【解決手段】水電解スタック21と、水電解スタック21に直流電力を供給する直流電源22と、水電解スタックに流れる電流を計測する電流監視装置24と、水電解スタック21に印加される電圧を計測する電圧監視装置23と、を有する水電解システム1の運用装置10において、時系列の電流計測値と電圧計測値を用いて劣化状態に応じて変化する水電解スタック21の電気抵抗を推定し、推定した電気抵抗を閾値と比較して水電解スタック21の劣化状態を判定し、水電解スタック21の劣化状態に応じて水電解スタック21の運用条件を定める演算部13と、演算部13が定めた水電解スタック21の運用条件を表示装置12に出力する表示制御部11と、を備える。【選択図】図4
Absstract of: US2025243053A1
The present disclosure provides systems and methods for processing ammonia (NH3). A heater may heat reformers and NH3 reforming catalysts therein. NH3 may be directed to the reformers from storage tanks, and the NH3 may be decomposed to generate a reformate stream comprising hydrogen (H2) and nitrogen (N2). At least part of the reformate stream may be used to heat the reformers.
Absstract of: EP4628629A2
The present application provides an electrolytic unit, comprising: a plate having a first side and a second side opposite each other, the first side being an anode side, and the second side being a cathode side; an anode porous transport layer and a cathode porous transport layer respectively disposed at the first side and the second side; an exchange membrane; an anode catalyst layer and a cathode catalyst layer respectively disposed at two sides of the exchange membrane; an anode gas diffusion electrode positioned on the anode catalyst layer; and a cathode gas diffusion electrode positioned on the cathode catalyst layer; wherein the cathode porous transport layer, the plate and the anode porous transport layer are formed as an integral mechanical portion, and the anode gas diffusion electrode, the anode catalyst layer, the exchange membrane, the cathode catalyst layer and the cathode gas diffusion electrode are formed as an integral electrochemical portion. The present application also provides an electrolytic stack comprising the electrolytic unit described above. The technical solutions of the present application facilitate the assembly and maintenance of the electrolytic unit and the electrolytic stack.
Absstract of: CN120303449A
The present invention relates to a symmetric separator membrane for electrolyzing alkaline water and having a uniform pore distribution.
Absstract of: WO2024115781A1
The invention concerns a water sealed tank, comprising : a tank body and a heat conducting pipe. The tank body comprises a gas-liquid inlet, a water outlet and a gas outlet, wherein the gas outlet is close to or located on a top portion of the tank body and communicates with the tank body, the water outlet is close to or located on a bottom portion of the tank body, the gas-liquid inlet communicates with the tank body and is used for feeding a gas-water mixture into the tank body, and a gas separated from the gas-water mixture inside the tank body is discharged from the gas outlet. At least a part of the heat conducting pipe is located inside the tank body, and used for a liquid to flow through, so as to allow the heat conducting pipe to exchange heat with water inside the tank body and heat the water inside the tank body. A water electrolysis process for preparing hydrogen generates a lot of additional heat. By using the heat generated by electrolysis to heat the water inside the water sealed tank, the heat is effectively utilized without adding additional heating facilities in the water sealed tank to increase the water temperature, thereby reducing the waste of energy.
Absstract of: CN120092333A
A method of recycling a spent catalyst coated membrane, wherein the spent catalyst coated membrane comprises: a membrane comprising a membrane ionomer; a first catalyst layer disposed on one side of the membrane, the first catalyst layer comprising a first catalyst and a first catalyst layer ionomer; and a second catalyst layer disposed on opposite sides of the membrane, the second catalyst layer comprising a second catalyst and a second catalyst layer ionomer. The method is configured to recover the first catalyst layer ionomer and the second catalyst layer ionomer in addition to the catalyst materials and the membrane ionomer.
Absstract of: WO2024115474A1
The aim of the invention is to transport energy produced in an environmentally friendly manner by means of an offshore wind turbine to land in a simple and reliable manner. This is achieved by a method (100) for transporting hydrogen from a floating wind turbine (10) to a water vehicle (11), wherein hydrogen is provided in a storage tank (31) of a floating wind turbine (10), and a water vehicle (11) with a transport tank (36) is positioned by the floating wind turbine (10). The hydrogen is transported from the storage tank (31) to the transport tank (36) using a line (35) which is designed to transport the hydrogen.
Absstract of: US2025305161A1
A differential pressure electrolysis cell for producing a gas having a higher pressure than a fluid at the second electrode by applying a voltage between a first electrode and a second electrode to electrolyze the fluid containing water and supplied to the first electrode, wherein an electrolyte membrane of the differential pressure electrolysis cell includes: a first layer facing the first electrode and having a first ion exchange capacity per unit area; and a second layer facing the second electrode and having a second ion exchange capacity per unit area, and the second ion exchange capacity is larger than the first ion exchange capacity.
Absstract of: GB2639995A
Fluid treatment apparatus 10 for undertaking electrolysis of a fluid to thereby produce hydrogen gas, and/or undertake electro-coagulation of the fluid to thereby reduce the presence of suspended solids in the fluid, and/or to undertake desalination of the fluid, the apparatus comprises a tank 50 containing water, the tank including electrodes 120 connected to an electrical supply 150, wherein the electrodes include an anode and a cathode. The electrical supply is arranged to supply electricity to the electrodes such that the voltage between the anode and a reference point at a constant electric potential varies as a function of time, wherein the time-dependence of the voltage between the anode and the reference point is described by a function V(), defined for any time as the greatest value of 1(), 2() and 3(), which are defined herein. A waveform of the voltage () that is applied between the anode and a reference point is sinusoidal. A method of treating fluid is also described.
Absstract of: GB2639836A
A method of producing hydrogen is disclosed which comprises providing apparatus including a first container having an inlet and a second container having an outlet, wherein the first container and second container contain liquid aluminium or a liquid aluminium alloy, and wherein said liquid has a first surface proximate the inlet; reacting said liquid in the first container with water vapour supplied to the first container via the inlet in order to generate hydrogen which dissolves in the liquid, wherein said reaction takes place either at the surface or in the liquid; causing the hydrogen dissolved in said liquid to move to the second container; extracting hydrogen in the form of gas from liquid in the second container.
Absstract of: EP4629404A1
A method and an apparatus to generate an electric voltage by contacting the inside of a closed mild carbon steel tube at a temperature between 250°C and 1200°C with di-Hydrogen obtained by electrolysis of pure water, said di-Hydrogen being at a pressure between 0 and 10 Bar gauge.
Nº publicación: JP2025149444A 08/10/2025
Applicant:
株式会社アイシン
Absstract of: JP2025149444A
【課題】高純度の水素を製造すると共に電解セルから排出されたオフガスを当該電解セルに還流させる際の熱効率の悪化を抑制する。【解決手段】電解システムは、固体酸化物形の電解セルとこれを収容する断熱性の収容容器とを有する電解モジュールと、電解セルに水蒸気を供給する水蒸気供給ラインと、金属系の水素透過膜を有すると共に収容容器に収容され電解セルから排出された生成水素と水蒸気とを含むオフガスを導入し水素透過膜を透過した生成水素を収容容器外の生成水素ラインへ出力し水素透過膜を透過しなかった生成水素と水蒸気とを収容容器内で水蒸気供給ラインに出力する水素分離ユニットと、を備える。収容容器は、電解セルを収容する第1収容空間と、第1収容空間よりも低い温度に維持された第2収容空間と、を有する。水素分離ユニットは、第2収容空間に収容されている。【選択図】図1