Absstract of: CN120505635A
本发明申请公开了一种PEM电解槽,涉及电解槽技术领域,PEM电解槽,包括端板组件、极板组件和膜电极,其中极板组件、膜电极上设有与端板组件的分流通道分别连通的阳极侧进出水通道、阴极侧进出水通道。本申请的PEM电解槽所包含的部件少,结构简单,加工成本较低,可以保证具备良好的密封性,同时其可以从两侧的端板分别进水,则进水量更大,具备良好的散热性能,能够均匀分配反应物、生产物,提高了电解效率。
Absstract of: CN120504436A
本发明涉及富氢水机技术领域,具体为一种便于更换物理式制氢机滤芯的设备,包括机体底板、腔体、滤芯安装筒、滤芯,所述腔体内部设有五组圆形滑道,后侧中心处具有螺杆,圆形滑道中设有内推板,内推板具有五组伸出臂,每组伸出臂端部都具有伸出圆板,内推板中心具有中心孔,内推板具有五组安装孔一,每组伸出圆板都具有安装孔二,伸出圆板安装在圆形滑道内,安装孔一内分别设有传动齿轮轴,中心孔内设有驱动齿轮轴,传动齿轮轴一端具有齿轮一,另一端具有链轮一,驱动齿轮轴一端具有齿轮二,另一端具有圆形卡板,驱动齿轮轴中心处具有螺纹孔一,螺纹孔一安装在螺杆上;本发明可进行更换滤芯,保证滤芯的顺利脱离与安装。
Absstract of: CN120505651A
本发明公开的碱性电解槽用流道密封双极板,通过设置相互交错的多通道氢碱、氧碱气道孔,氢碱、氧碱气道槽,碱液阴极、阳极进液孔和的碱液阴极、阳极进液槽,可为各电解小室提供多个交错分布碱液流通分配通道,使碱液快速充满各个电解小室,确保了各处碱液浓度的均匀一致性,电解小室内的气液两相流场分布更加均匀,上升的气泡能以最快的速度在最近的出口快速排出,降低了气体集聚,消除了电解小室气体死区,降低了碱液电阻电压降,从而降低了碱性电解槽的电解能耗,提高了电解效率;同时通过设置相应流道密封结构,杜绝了各电解小室中氢气、氧气的互串,从而提高了碱性电解槽的氢气、氧气纯度,保障碱性电解槽高安全性、长寿命稳定运行。
Absstract of: CN120505656A
本发明提供了一种电解水催化剂浆料及其制备方法与膜电极及电化学装置和电解水制氢方法。该制备方法包括:将催化剂、树脂、溶剂混合,得到中间溶液;将造孔剂加入所述中间溶液中搅拌,得到电解水催化剂浆料;造孔剂包括碳材料,搅拌的转速小于等于1000转/分钟,所述搅拌的时间小于等于30min。本发明还提供了上述制备方法得到的电解水催化剂浆料,由该电解水催化剂浆料制成的膜电极,包含该膜电极的电化学装置和电解水制氢的方法。上述电解水催化剂浆料可以通过添加造孔剂获得多孔催化层、同时避免造孔剂去除过程引起的催化剂流失,提高膜电极的催化性能和耐久性。
Absstract of: CN120505653A
本发明公开了利用废金属屑制备铁基电化学催化剂的方法及电化学催化剂,具体过程为:将废金属屑进行酸浸,得到浸出液;用树脂吸附浸出液中的金属离子,得到饱和树脂;用硝酸对饱和树脂进行解吸,得到无杂溶液;在无杂溶液中加入过量的还原剂进行还原,得到固液混合物;将固液混合物进行离心分离,得到沉淀,将沉淀清洗干净、烘干,得到铁基催化剂粉末;将预处理后的泡沫镍在无杂溶液中电镀,得到催化剂基底;将铁基催化剂粉末涂覆至催化剂基底上,真空烘干,得到铁基电化学催化剂。本发明制备方法利用废金属屑作为原料,大大降低了制备成本,同时对废金属屑进行了回收利用且本发明制备得到的电催化剂在析氧反应中表现出优异的催化效果。
Absstract of: CN120502800A
本发明属于电解槽设备技术领域,公开了碱性制氢电解槽的紧固方法,组装完电解槽的零部件结构后,通过液压拉伸器以间隔的方式对拉紧螺栓的顶部进行拉伸预紧,以防止电解槽的各部件窜动;预紧完成后再对电解槽进行多次冷紧和热紧,完成对电解槽的紧固。预紧、冷紧和热紧过程中,液压拉伸器的泵站按照3~8MPa/次的差值进行升压,对拉紧螺栓进行拉伸紧固,将电解槽的零部件压紧,尽可能将缝隙消除,并挤压密封垫圈使其产生形变,提升电解槽的密封效果。本发明的技术方案,增强了对大型碱性制氢电解槽的紧固效果,使电解槽的长期使用状态更加稳定。
Absstract of: CN120505660A
本发明公开了一种固体氧化物电解池片阳极材料及其制备方法和应用,所述固体氧化物电解池片阳极材料包括LSCF颗粒以及在LSCF颗粒表面沉积生长的LNO颗粒,简称为LSCF‑LNO材料;LSCF的化学式为La0.6Sr0.4Co0.2Fe0.8O3,LNO的化学式为La2NiO4,所述LSCF‑LNO材料上LNO的质量是LSCF质量的10%‑50%。本发明充分利用LSCF的优良电子导电率以及LNO的优良氧离子传输性能,并通过两步合成法在以LSCF为主体在其表面形成LNO颗粒增强材料氧表面交换传输能力并增大反应三相界面和氧离子传输通道,以提高高温固体氧化物电解池电化学性能。
Absstract of: CN120505643A
本发明涉及氢能制备技术领域,具体是涉及一种基于光伏发电的集装箱电解水制氢系统,包括有电解结构、正极板和负极板,所述电解结构夹设于所述正极板和所述负极板之间;所述制氢系统还包括用以夹紧所述电解结构的夹紧机构,所述夹紧机构包括有固定设置的正极压板及可沿正极压板轴向移动的负极压板;所述夹紧机构还包括有缩进控制单元,用于在电解结构产生泄漏时缩小正极压板和负极压板之间间距恢复电解结构的密封性。本发明通过压力传感器实时监测电解结构的夹紧力,当发生泄漏导致夹紧力下降时,能够自动触发缩进控制单元,实现极板间距的调整,恢复电解结构的密封性,无需人工干预,大大提高了制氢系统的可靠性和响应速度。
Absstract of: CN120505665A
本发明属于电解水制氢技术领域,公开了碱性水电解槽用PPS复合纤维隔膜及其制备方法,该方法包括采用PPS树脂通过熔喷工艺制备PPS非织造布;将PPS非织造布置于硝酸溶液中进行硝化处理;对硝化后的PPS非织造布进行热压处理得到PPS纤维膜;将PPS纤维膜置于硝酸锌‑二甲基咪唑‑甲醇混合溶液中进行原位生长,得到PPS复合纤维隔膜。本发明采用的硝化、热压和原位自生相结合的方式,不仅在疏水的PPS纤维膜上引入亲水基团提升了其亲水性,还通过纤维间的热交联提高了PPS纤维膜的拉伸强度,同时利用原位自生的具有三维网状结构的ZIF‑8提高了PPS纤维膜的隔气性,本发明制备工艺简单、操作简便,能够满足工业碱性水电解制氢的需求。
Absstract of: US2025250688A1
An electrolysis system includes: an electrolysis cell configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.
Absstract of: JP2024102507A
To provide a water electrolysis stack capable of improving durability.SOLUTION: A water electrolysis stack has a cell laminate in which a plurality of water electrolysis cells are laminated. In the cell laminate, inter-cell regions are formed in adjacent water electrolysis cells, and gas flows in the inter-cell regions during water electrolysis.SELECTED DRAWING: Figure 6
Absstract of: CN120504346A
本发明提供了一种溴掺杂的二维镍铁氧化物的制备方法及其应用,属于纳米材料制备技术领域。本发明通过将琥珀酸,乙二醇与金属盐,溴盐在混合溶液中反应,结合焦耳热快速升降温技术,形成了溴离子掺杂的二维多孔结构,该方法合成工艺简单,制备的催化剂在碱性海水电解中实现了较低的过电位优异的稳定性,显著提升了OER反应效率,为海水制氢技术提供了高效、耐用的电化学催化剂。
Absstract of: CN120505670A
本发明公开了一种用于碱水电解制氢的高效低耗长寿命碱液循环系统,包括阴极侧和阳极侧,对于阳极侧,碱水电解制氢装置连接催化转化模块,催化转化模块连接至气液分离模块,气液分离模块液体依次通过碱液循环模块、碱液循环换热器和碱液过滤器连接至电解槽;对于阴极侧,碱水电解制氢装置连接气液分离模块,所述气液分离模块液体的液体输出端依次通过碱液循环模块、碱液循环换热器和碱液过滤器连接至电解槽;阳极侧和阴极侧分别设置相应的碱液控制模块。本发明提高了碱性电解水系统宽负荷波动范围下的适应性,消除了氧自由基对系统设备的腐蚀以及降低了碱液循环泵的功耗,提升了碱水电解制氢系统的经济性。
Absstract of: CN120502331A
本发明公开了一种Ni/Al1.8Ce0.2Ox催化剂及其制备方法和在热催化氨分解制氢中的应用,将可溶性Ni盐、Al盐、Ce盐均匀分散在水中得混合液,再加入络合剂,通过溶胶凝胶法得到络合物前体,然后热解得到氧化物前体,再然后氧化物前体超声分散于水中,加入碱液进行刻蚀,得到刻蚀氧化物前体,最后刻蚀氧化物前体于H2/Ar气氛下焙烧,得到Ni/Al1.8Ce0.2Ox催化剂,用于热催化氨分解制氢。本发明的催化剂具有结构稳定、金属Ni高度分散的特点,通过碱刻蚀处理后,有效抑制了载体对金属Ni的包覆作用,溶出的金属Ni呈金字塔状形貌,具有更多不饱和配位的活性位点,催化剂的催化活性与稳定性显著提高。
Absstract of: CN120505657A
本发明公开了一种钨/氮化钒异质结电催化材料及其制备方法,将氯化钒、氯化钨和草酸溶解在乙醇中,其中氯化钒和氯化钨的摩尔比为(0.5‑3):(1‑3),得到混合液;将混合液的pH值调至1‑4后进行水热处理,得到反应液,将反应液中的产物洗涤后干燥,得到粉体;按(200‑600)mg:(0.5‑1.2)mol的比例,将粉体和碳源在氩气气氛下煅烧处理,得到钨/氮化钒异质结电催化材料,简单易行,原料成本低,绿色无污染,在碱性环境中电催化析氢活性高,稳定性强。
Absstract of: CN120505642A
本发明公开的用于撬装碱性水电解制氢系统的辅助设备,包括箱体,箱体内设置有用于供电的配电柜间,配电柜间通过线路与设置在箱体内的水处理设备间、空压机设备间和输出设备间分别连接;箱体相对配电柜间位置设有连接外部电源的电源输入口;箱体相对水处理设备间位置设有水源输入口;箱体相对空压机设备间位置设有空气输入口;箱体相对输出设备间位置设有仪表气输出口、原料水输出口、碱液输出口和吹扫气输出口。本发明将纯水制备系统、配碱系统、压缩空气系统、氮气系统进行集成,提高了空间利用率,降低了辅助设备的占用空间。
Absstract of: WO2024257430A1
The present invention reduces unburned ammonia when ammonia is used as fuel. A combustor (10) comprises: a burner (11) that injects fuel containing ammonia into a combustion space (S); and a refractory material (12) that defines at least a portion of the combustion space (S). The refractory material (12) blocks passage of combustion gas, and the refractory material (12) contains a catalyst (C), which decomposes ammonia into hydrogen and nitrogen, on a surface (1b) that defines at least a portion of the combustion space (S).
Absstract of: WO2025169081A1
PRODUCTION OF HYDROGEN USING METHANOL The present disclosure relates generally to processes for producing hydrogen. In particular, the disclosure relates to a process comprising: providing a first feed stream comprising H2 and CO2; contacting the first feed stream with a hydrogenation catalyst (e.g., in a hydrogenation reaction zone) to hydrogenate at least a portion of the CO2 to form a first product stream comprising methanol; storing at least a portion of the methanol of the first product stream; providing a second feed stream comprising at least a portion of the stored methanol; in a methanol dehydrogenation reaction zone, dehydrogenating at least a portion of the methanol of the second feed stream to form a second product stream comprising H2 and CO2; providing a third feed stream comprising at least a portion of H2 of the second product stream; in a hydrogen reaction zone, reacting hydrogen of the third feed stream with one or more co-reactants to provide a third product stream comprising one or more products including reacted hydrogen atoms from hydrogen of the third feed stream.
Absstract of: US2025257022A1
The present invention relates to a process for producing methanol (MeOH) and hydrogen (H2) from methane, comprising the steps: a) providing a gaseous feed stream comprising methane; b) reacting said gaseous feed stream with at least one halogen reactant (X2), under reaction conditions effective to produce an effluent stream comprising methyl halide (MeX), hydrogen halide (HX); c) separating from the effluent stream obtained in step b): (i) a methyl halide (MeX) stream, optionally comprising unreacted methane; and, (ii) a hydrogen halide (HX) stream; d) reacting the methyl halide (MeX) stream separated in step c) with a solid metal hydroxide (MOH(s)) under reaction conditions effective to produce metal halide (MX) and methanol (MeOH); and, e) decomposing by means of electrolysis said hydrogen halide (HX) stream separated in step c) under conditions effective to produce a gaseous hydrogen (H2) stream and a stream comprising halogen reactant (X2).
Absstract of: US2025257489A1
A water electrolysis system includes: a water electrolysis stack that generates oxygen gas and hydrogen gas by electrolyzing water; a gas-liquid separator that separates the hydrogen gas from water; a hydrogen compression stack that compresses the hydrogen gas; a gas tank that stores an inert gas and is connected to a hydrogen flow path that connects the water electrolysis stack and the hydrogen compression stack; a supply valve that, when opened, supplies the inert gas to the hydrogen flow path; and a supply control unit that opens the supply valve in a case where the concentration of the oxygen gas that has flowed into the hydrogen flow path exceeds an oxygen concentration threshold determined in advance.
Absstract of: US2025257487A1
A method of producing hydrogen and/or bromine by electrolysing hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg≥110° C. in an electrolysis of hydrogen bromide, wherein the hydrogen bromide stems from a bromination of a hydrocarbon.
Absstract of: US2025257484A1
An electrode suitable for carrying out oxygen evolution reaction in the electrolysis of water in alkaline conditions. The electrode includes a ceramic material having a stability factor (SF) between 1.67≤SF≤2.8 and which is calculated by formula (II), where rO is the ionic radius of oxide ion (O2−), rB,av is the weighted average ionic radius of a transition metal, nA,Av is the weighted average oxidation state of a rare earth or alkaline earth metal, rA,av is the weighted average ionic radius of a rare earth or alkaline earth metal. An alkaline electrolysis stack includes the electrode, as well as a method for the electrolysis of water in alkaline conditions using the alkaline electrolysis stack.
Absstract of: US2025257483A1
Clean version of Abstract A catalyst and anode for hydrogen production by electrolysis as well as a preparation method, activation method and use thereof are provided. The anode for hydrogen production by electrolysis includes a catalyst which is nickel iron barium hydrotalcite with a nano hexagonal sheet structure and a thickness of 100-200 nm. The catalyst can be prepared by a one-step solvothermal reaction method. Alkaline-earth metal ions are evenly doped in the nickel iron barium hydrotalcite and are in atomic level dispersion, so that the anode for hydrogen production by electrolysis based on the catalyst, when being applied to a process for hydrogen production by electrolysis of an aqueous solution containing chlorine ions, not only can maintain good catalytic performance, but also has greatly improved chlorine ion corrosion resistance, leading to significant improvement of working stability and service life.
Absstract of: US2025257477A1
A method of electrolysing hydrogen bromide comprising the steps i) synthesizing sulfuric acid such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode.
Nº publicación: US2025257488A1 14/08/2025
Applicant:
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
Absstract of: US2025257488A1
An electrolysis system includes at least one electrolyzer for generating hydrogen and oxygen as products, and at least two downstream compressors for compressing at least one of the products produced in the electrolyzer. A method of operating the electrolysis system in a part-load operation of the electrolyzer that is optimized in terms of efficiency and is also cost-effective. During the part load operation of the electrolyzer, a first group of compressors is operated in part-load operation, while the compressor(s) of a second group can be switched on or off individually for full-load operation.