Absstract of: EP4653577A1
A hydrogen generator with detachable filter comprises a water tank, an electrolysis module configured in the water tank, a filter channel device coupled to the water tank, a humidifying module, vertically configured above the water tank, an integrated channel device vertically configured above the humidifying module, and a condenser configured on the integrated channel device. The electrolysis module is configured to electrolyze water contained in the water tank to generate gas comprising hydrogen. The humidifying module includes a humidifying chamber and a gas channel isolated from the humidifying chamber. The filtering device is arranged in the gas channel to receive and filter the gas comprising hydrogen generated by the electrolysis module. The condenser is configured to condense the gas comprising hydrogen outputted by the filtering device. The integrated channel device includes a gas input channel for guiding the gas comprising hydrogen outputted from the condenser into the humidifying chamber.
Absstract of: MX2025008404A
The invention provides devices, systems, and methods for providing hydrogen gas mixtures to a subject. The invention allows hydrogen gas mixtures to be provided at a rate that does not restrict normal or even elevated breathing.
Absstract of: EP4653517A1
Eine Anlage zur Herstellung von synthetischen Kraftstoffen, insbesondere von Flugturbinenkraftstoff (Kerosin), Rohbenzin und/oder Diesel, umfasst:a) eine Synthesegasherstellungseinrichtung zur Herstellung eines Kohlenmonoxid, Wasserstoff und Kohlendioxid umfassenden Rohsynthesegases aus i) Kohlendioxid, ii) Wasser, iii) Methan und/oder Wasserstoff und iv) Sauerstoff, wobei die Synthesegasherstellungseinrichtung mindestens einen autothermen Reformer umfasst, wobei der mindestens eine autotherme Reformer mindestens eine Zufuhrleitung i) für Kohlendioxid, ii) für Wasser, iii) für Methan und/oder für Wasserstoff und iv) für Sauerstoff sowie eine Abfuhrleitung für Rohsynthesegas umfasst,b) eine Trenneinrichtung zur Abtrennung von Kohlendioxid aus dem in der Synthesegasherstellungseinrichtung hergestellten Rohsynthesegas mit einer Abfuhrleitung für Kohlendioxid und einer Abfuhrleitung für Synthesegas,c) eine Fischer-Tropsch-Einrichtung zur Herstellung von Kohlenwasserstoffen durch ein Fischer-Tropsch-Verfahren aus dem Synthesegas, aus dem in der Trenneinrichtung Kohlendioxid abgetrennt wurde,d) eine Raffinationseinrichtung zur Raffination der in der Fischer-Tropsch-Einrichtung hergestellten Kohlenwasserstoffe zu den synthetischen Kraftstoffen undei) eine Elektrolyseeinrichtung zur Auftrennung von Wasser in Wasserstoff und Sauerstoff umfasst, wobei die Elektrolyseeinrichtung eine Wasserzufuhrleitung, eine Sauerstoff- oder Luftabfuhrleitung und eine Wasserstoffabfuhrleitung a
Absstract of: CN118028861A
The invention relates to the technical field of solid oxide electrolytic cells, and discloses a solid oxide electrolytic cell cathode material and a preparation method and application thereof. The molecular formula of the solid oxide electrolytic cell cathode material is La < 0.6 > Sr < 0.4 > Fe < 0.8 > Cu < x > Ni < y > O < 3-delta >, x is greater than or equal to 0.01 and less than or equal to 0.2, y is greater than or equal to 0.01 and less than or equal to 0.2, and x + y is equal to 0.2. According to the electrolytic tank prepared by using the cathode material, the raw material CO2 or H2O can be efficiently converted into synthesis gas through electrochemical catalysis, continuous and stable electrolysis operation on high-temperature water vapor or carbon dioxide can be realized under the conditions that the temperature is 800 DEG C and the electrolysis current density is 0.5 A/cm < 2 > or above, and the cathode material has a relatively good industrial application prospect.
Absstract of: KR20240063313A
One embodiment of the present invention provides a metal composite catalyst for an ammonia decomposition reaction, which comprises: a metal-containing support; and metal nanoparticles dispersed on the surface of the metal-containing support or inside pores, wherein the particle diameter of the metal nanoparticles is 1.5 to 7 nm. more specifically, the metal composite catalyst according to one embodiment of the present invention is manufactured by a polyol process, and can exhibit a great advantage in ammonia decomposition efficiency.
Absstract of: WO2025239002A1
Provided is a method for manufacturing an electrochemical reaction device (1) comprising: an electrochemical cell (2) that includes an electrolyte layer (20), a first electrode (21), and a second electrode (22); a frame (3) that includes a support section (31) and a frame body section (32); and a sealing plate (4) that hermetically separates a second space (122) and an outer peripheral cavity (11) from each other. The sealing plate (4) includes an outer peripheral plate section (42), an inner peripheral plate section (41), and a coupling section (43). The coupling section (43) includes a flexed section (430) flexed so as to protrude in a normal direction Z of the electrolyte layer (20). When forming the flexed section (430), the sealing plate (4), in which the flexed section (430) has not yet been formed, is fixed to the electrochemical cell (2) and the frame (3), and then a buckling step is performed for causing the coupling section (43) to buckle so as to form the flexed section (430) by causing a volume change of at least one of the electrochemical cell (2), the frame (3), or the sealing plate (4).
Absstract of: EP4653579A1
A hydrogen production system is provided with: a solid oxide electrolysis cell (SOEC) for electrolyzing water vapor; a power supply device for applying a voltage equal to or higher than a thermoneutral voltage to the SOEC; and a water vapor generation device for generating at least part of the water vapor supplied to the SOEC by heating water using surplus heat of the SOEC.
Absstract of: WO2024200434A1
The invention relates to a membrane electrode assembly (1) for a water electrolysis cell, comprising an anode (2), a cathode (3) and a hydrocarbon membrane lying between the anode (2) and the cathode (3), further comprising a first gas recombination layer (5) which is arranged between the anode (2) and the hydrocarbon membrane (4), wherein the first gas recombination layer (5) comprises a noble metal (6), a ceramic material (7) and a proton-conductive polymer (8), and wherein a volume portion of proton-conductive polymer (8) is 24 to 84 volume %, in particular 35 to 75 volume % and in particular 46 to 65 volume %, based on the total volume of the gas recombination layer (5).
Absstract of: DE102024204777A1
Elektrochemisches System mit einem elektrochemischen Stack (1), wobei der Stack (1) einen Einlass (201; 301) aufweist, über den eine Flüssigkeit eingeleitet werden kann, und einen Auslass (202; 302), über den eine Flüssigkeit ausgeleitet werden kann. Der Einlass (201; 301) ist mit einem ersten Flüssigkeitsbehälter (25) verbindbar und der Auslass (202; 302) mit einem zweiten Flüssigkeitsbehälter (32).
Absstract of: KR20220009803A
The present invention relates to an energy production complex system based on a liquid compound, including: a water electrolysis device unit for electrolyzing water to produce hydrogen; a hydrogen storage device unit for reacting the hydrogen produced by the water electrolysis unit with a first liquid compound to allow the first liquid compound to become a second liquid compound in which hydrogen is stored; a hydrogen desorption device unit for desorbing the hydrogen stored in the second liquid compound into hydrogen and the first liquid compound; and a fuel cell unit for generating power by receiving the hydrogen desorbed from the hydrogen desorption device unit.
Absstract of: KR20250164500A
본 발명은 용매열 합성을 통해 코발트 기반의 금속유기골격체 상에 Cu(OH)2가 나노 시트의 형태로 성장된 복합체를 포함하는 수전해 촉매 및 이의 제조 방법에 관한 것이다.
Absstract of: KR20250164535A
본 발명은 MOF 기반 삼중 금속 복합체를 포함하는 광촉매 및 이를 이용한 수소의 생산방법에 관한 것으로, 더욱 상세하게는 한 가지의 전이금속을 사용하는 것이 아닌 다양한 전이금속을 사용함으로써 에너지 준위를 변화시켜 밴드갭을 감소시키고, 더 적은 빛으로 많은 수소를 생산할 수 있는 효과가 있다.
Absstract of: KR20250165094A
본원 발명은 수전해용 고내구성 저수소투과성 복합 전해질막의 제조방법 및 이로부터 제조된 수전해용 복합 전해질막에 대한 것으로, 보다 구체적으로는 고분자 전해질, 라디칼 스캐빈저(radical scavenger); 및 용매를 포함하는 혼합물을 준비하는 단계; 상기 혼합물을 볼밀(ball-mill)하여 고분산 혼합물을 제조하는 단계; 및 상기 고분산 혼합물로 전해질막을 제조하는 제막 단계를 포함하는 것을 특징으로 하는 수전해용 복합 전해질막의 제조방법에 대한 것이다.
Absstract of: PL448633A1
Przedmiotem zgłoszenia jest generator wodoru i tlenu dla zastosowań medycznych, wytwarzający gaz HHO na drodze reakcji utleniania-redukcji elektrolitu po doprowadzeniu do elektrod potencjału anody i katody. Generator ma dwie płaskie anody (13) i jedną katodę (14) oraz między nimi blachy neutralne (15), odseparowane od siebie dielektrycznymi przekładkami (3), połączone poprzez dwa współosiowe otwory w jeden zespół śrubami scalającymi elektrody (9) i na każdą śrubę (9) nasunięta jest rurka izolacyjna (16) separująca śrubę od katody (14) oraz przekładek (3) i śruby (9) łączą elektrycznie ze sobą obie anody (13) i generator umieszczony jest w szklanym pojemniku na elektrolit (1), zamkniętym szczelnie od dołu pokrywą dolną (5), a do górnej części pojemnika (1) przymocowana jest szczelnie pokrywa górna (4), gdzie w pokrywie górnej (4) umieszczone są szczelnie w dedykowanych otworach śrubowe przyłącza anody (6), katody (7) oraz przewód odprowadzający gaz HHO, przy czym katoda (14) oraz jedna z anod (13) posiadają sztywne wyprowadzenia elektrycznie połączone odpowiednio z przyłączem katody (7) oraz przyłączem anody (6) i śrubowe przyłącza anody (13) i katody (14), odpowiednio (6 i 7), stanowią mocowanie generatora do pokrywy górnej (4).
Absstract of: WO2025239623A1
The present invention relates to a photoelectrode and a photoelectrochemical water splitting system using same, and more specifically, to a photoelectrode in which a lower electrode, an electron transport layer including SnO2, a light absorption layer including FAPbI3, a hole transport layer, an upper electrode, and a Ni passivation thin film layer are sequentially stacked and can operate when immersed in water, and an efficient and stable large-area water splitting system capable of splitting water and producing hydrogen without an external voltage by using the photoelectrode.
Absstract of: KR20250163681A
본 발명은 CCS 구조 및 CCM 구조가 동시에 적용되고, 원자막 증착법을 이용하여CCS 구조에서 다공성 기재의 일부 영역만이 코팅되도록 함으로서 적은 양의 촉매 사용량으로도 우수한 활성을 구현할 수 있는 수전해용 전극 및 이를 포함하는 수전해 셀에 관한 것이다.
Absstract of: AU2025203497A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y
Absstract of: US2025354272A1
Provided is an electrochemical system comprising a water electrolysis stack with an anode and a cathode. The system includes a reaction fluid supply line that supplies a reaction fluid to the anode, a first gas-liquid separator located in the reaction fluid supply line to separate the reaction fluid into gaseous and liquid components, and a first filter part positioned upstream of the first gas-liquid separator to filter the reaction fluid. The system further includes a first circulation line that circulates the liquid reaction fluid from the anode back to the first gas-liquid separator. Additionally, a second gas-liquid separator in a discharged fluid discharge line is connected to the cathode, with a second circulation line configured to maintain the ionic purity of the discharged fluid. The system also includes a mechanism to monitor ionic conductivity and selectively control the operation of the water electrolysis stack based on detected ionic levels.
Absstract of: CN120987259A
本发明涉及氢气生成组合物及其制造方法、以及氢气的生成方法。本发明提供能够以高收率和高生成量生成氢气的手段。本发明的一个方式涉及一种氢气生成组合物,其含有粉体形态的氢化镁和粉体形态的柠檬酸,柠檬酸相对于氢化镁的质量比为2.5~3.5的范围,所述氢气生成组合物为加压成型物形态。本发明的另一方式涉及氢气生成组合物的制造方法和氢气的生成方法。
Absstract of: AU2023381476A1
A cell frame adapted for use in a pressurised electrolyser cell stack is provided. From an inner circumferential rim of the cell frame, a circumferential radial shelf with inwardly tapering thickness is provided, such that an annular space between a circumferential radial shelf and a neighbouring circumferential radial shelf is provided when cell frames are stacked in alignment with each other, and that outwardly of the circumferential radial shelf, a mobility link is provided which connects the radial shelf to the remaining cell frame.
Absstract of: US2025361635A1
A control device for an electrolysis system includes a deterioration prediction unit that predicts a degree of deterioration of each of a water electrolysis stack and a compression stack, and a supplied electrical current control unit that controls an electrical current that is supplied to the water electrolysis stack and an electrical current that is supplied to the compression stack, wherein the supplied electrical current control unit controls the electrical current that is supplied to the stack having a larger degree of deterioration from among the water electrolysis stack and the compression stack to be constant, and adaptively controls the electrical current that is supplied to the stack having a smaller degree of deterioration from among the water electrolysis stack and the compression stack.
Absstract of: WO2024189288A1
The invention relates to a part comprising a metal substrate and a layer of material based on amorphous carbon having sp2 hybridised bonds and sp3 hybridised bonds, wherein the layer has: - a first content of sp3 hybridised bonds on the substrate side; and - a second content of sp3 hybridised bonds on the side of an outer surface of the layer; - the first content being greater than the second content, characterised in that an average content within the layer of sp3 hybridised bonds is between 5% and 65%, and preferably between 5% and 45%, and in that the content of sp3 hybridised bonds changes continuously within the layer.
Absstract of: WO2025240133A1
A method utilizing the multi-metal composition is disclosed. The multi-metal composition may comprise: an alloy comprising at least five elements selected from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Mg, Cu, Zn, Zr, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Pd, Au, Ce, Yb, Sn, Ca, Be, Mo, V, W, and Sr. The method may comprise: providing a multi-metal composition comprising an alloy comprising at least five elements selected from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Mg, Cu, Zn, Zr, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Pd, Au, Ce, Yb, Sn, Ca, Be, Mo, V, W, and Sr; and interacting a gas stream comprising hydrogen sulfide with the multi-metal composition.
Nº publicación: WO2025238301A1 20/11/2025
Applicant:
HELSINGIN YLIOPISTO [FI]
HELSINGIN YLIOPISTO
Absstract of: WO2025238301A1
The present invention is providing a nanoparticle, preferably a nano-urchin particle, comprising plasmonic material and a catalytic metal, wherein said plasmonic material comprises tungsten oxide W18O49 and the catalytic metal is selected from a group consisting of: platinum (Pt), iridium (Ir), nickel (Ni), iron (Fe), molybdenum (Mo), ruthenium (Ru), and cobalt (Co), wherein the nanoparticle comprises 0.2 wt. % - 3.0 wt. % of said catalytic metal; and wherein said nanoparticle is capable of catalysing a hydrogen evolution reaction or an oxygen evolution reaction. The present invention is also providing a solvothermal method for producing a nanoparticle product comprising the steps of: a) dissolving a reagent comprising plasmonic material into a first solvent to obtain a first solution; b) adding to said first solution i) a reagent comprising a catalytic metal and ii) α-naphthol to obtain a second solution; c) subjecting said second solution to heat treatment at temperature of at least 150 °C, preferably at 180 °C; and d) collecting the nanoparticle product from the heat treated second solution, preferably by centrifugation.