Absstract of: WO2026022841A1
The present invention discloses a radial mixing system (100) and method (800) designed to enhance carbon conversion and selectively synthesize semiconducting single-walled carbon nanotube (SWCNT) fibers via floating catalyst chemical vapor deposition (FC-CVD). A mixed solution of a carbon source, catalyst precursor, and promotor in specified atomic ratios, is prepared. This solution is vaporized in a preheater (106) and the resulting vapors are introduced into a reactor (102) maintained at predefined temperatures. A fan (104), rotating at a defined RPM, facilitates mixing in the evaporation and re-nucleation zones. The process yields cylindrical SWCNT aerogels (108) in the re-nucleation zone, which exit the reactor via carrier gas flow. Subsequent condensation in a water bath unit (112) converts the aerogels into SWCNT fibers (114), collected efficiently on a rotating roller (120).
Absstract of: US20260023317A1
Provided is a carbon sheet for pellicle that includes a bundle composed of a plurality of carbon nanotubes, and a ratio (P/D) of porosity P to linear density D (in grams per kilometer g/km) is within a range of 0.2 to 10. Also provided is a pellicle that includes the carbon sheet and a pellicle frame configured to support it. The carbon sheet is free-standing and exhibits excellent transmittance with respect to ultraviolet rays, including extreme ultraviolet radiation. Further provided is a method for manufacturing the carbon sheet, which includes forming the bundle of carbon nanotubes by reacting a source material under controlled conditions. This method enables the formation of a carbon sheet that maintains mechanical stability while achieving high ultraviolet transmittance, suitable for use in photolithography processes.
Absstract of: EP4685109A1
The present invention discloses a plasma modification preparation method of a silicon-carbon composite material, and a silicon-carbon composite material and a use thereof. The preparation method includes at least operation steps of: S10). placing aminated porous carbon in a deposition chamber, introducing a silane gas into the deposition chamber, and depositing nano-silicon in the aminated porous carbon, to obtain a silicon-carbon precursor material; S20). transferring the silicon-carbon precursor material to a plasma method modification chamber, introducing a halogen gas in a plasma manner, and depositing generated halide ions on a surface of the silicon-carbon precursor material, to obtain a silicon-carbon precursor material coated with halogenated carbon; and S30). stopping introducing the halogen gas, and introducing a carbon source gas in the plasma manner, to obtain the silicon-carbon composite material. The obtained silicon-carbon composite material has a stable core-shell structure, which can significantly alleviate silicon expansion problems and significantly improve cycle performance of a battery to which the silicon-carbon composite material is applied. In addition, the present application has a simple process, the silicon-carbon material is modified according to a plasma method, and the silicon-carbon composite material is easily prepared in batches and is easily industrialized on a scale.
Absstract of: CN121002657A
A method of manufacturing a thermal interface film, the method comprising: providing a stack (100) (200) of graphene-based films (101); pressing the stack of graphene-based films (202) between a first mold (102, 402) and a second mold (104, 404) to form a compressed film (106) wherein at least one of the first and second molds has a profiled surface; infiltrating (204) a polymer (108) in the compressed membrane, forming an infiltrated membrane (110); curing (206) the permeated membrane (110); and cutting the cured and permeated membrane (208) in a direction perpendicular to the plane of the graphene-based membrane to form a graphene-enhanced thermal interface pad (116).
Absstract of: EP4685839A1
Disclosed is a method and a system for chemical vapor deposition. A collection valve between a reactor and a collection chamber and a purge valve between the collection valve and the collection chamber is open while a bypass valve for the collection chamber is open for purging debris from between the collection valve and the bypass valve through the bypass valve. Thereafter, the purge valve is closed and the collection valve open for directing the deposition product from the reactor to the collection chamber for treatment.
Absstract of: CN121416442A
提供了负电极活性物质、包括该负电极活性物质的可再充电锂电池和用于制备该负电极活性物质的方法。负电极活性物质包括其中聚集至少两个复合体的聚集体和环绕(例如,围绕)聚集体的涂覆层,复合体均包括硅(Si)和碳(C),其中,复合体均包括包含结晶硅的核、在核上包含非晶硅的第一壳和在第一壳上包含第一非晶碳的第二壳,并且其中,涂覆层包含第二非晶碳。
Absstract of: US2025230049A1
Provided is a method of manufacturing a carbon nano material based on a machine learning model. The method includes obtaining first control information on a process of synthesizing carbon nano material. The method includes obtaining analysis information on the synthesized carbon nano material in real time based on the first control information. The method includes managing the first control information and the analysis information in a database. The method includes training a machine learning model using information managed in the database. The method includes synthesizing the carbon nano material by applying second control information in which the first control information for the process is adjusted based on the trained machine learning model.
Absstract of: WO2024157274A1
The invention provides a reaction apparatus arrangement for generation of single wall carbon nanotubes, the arrangement includes an injector tube having a broad end and a narrow end, an injector and an inner tube. The injector includes a first end, a means for circulation of gas formed on the walls of the injector, a hollow chamber for the reaction to occur and a second end. The first end of the injector is configured to receive the narrow end of the injector tube. The diameter of the inner tube is lesser than the diameter of the second end of the injector to allow thermal expansion of the inner tube into the hollow chamber of the injector. The hollow chamber of the injector is configured for mixing of the stream of CO maintained at temperature of 850°C to 1200°C and the stream of CO along with the catalyst maintained at a temperature ranging from 6°C to 100°C and generating single wall carbon nanotubes.
Absstract of: CN121406151A
本发明公开一种碳纳米管层、光伏玻璃、石蜡/碳纳米管复合物及其制备方法,属于光伏技术领域。该石蜡/碳纳米管复合物的制备方法,包括:将多壁碳纳米管置于混合酸溶液中,之后在60℃~90℃下回流反应得到羧基化碳纳米管;所述混合酸溶液为浓硝酸和浓硫酸的混合酸溶液;将石蜡在高于其相变点的油浴或水浴中加热熔融;将羧基化碳纳米管加入至熔融的石蜡,在超声作用下搅拌得到石蜡/碳纳米管复合物。本发明还提出一种光伏玻璃,从上往下依次包括:导光层、碳纳米管层、发电层和密封层。本发明提出的石蜡/碳纳米管复合物有效提升光伏玻璃的转化效率。
Absstract of: CN121405071A
本发明涉及钠离子电池负极材料技术领域,具体涉及一种氮硫共掺杂碳纳米微球及制备方法和应用。制备方法包括:将可溶性铁盐、碳源和咪唑二腈胺盐类离子液体共同溶解于水中,进行水热反应,得到富氮核芯;将富氮核芯和咪唑硫酸氢盐类离子液体混合,得到混合物;将可溶性钴盐负载于混合物表面,并进行热解,得到核壳结构前驱体;在NH3氛围中,将核壳结构前驱体进行热处理,得到具有核壳分区掺杂结构和梯度扩展的层间距的氮硫共掺杂碳纳米微球,解决了现有钠离子电池碳负极层间距不足、掺杂分布随机、结构稳定性差的问题;此外,本发明通过分步热解和双金属催化,克服了现有工艺复杂,不适合规模化制备的缺陷。
Absstract of: CN121405072A
本发明公开了一种反应及工程一体化的多壁碳纳米管制备方法,该制备方法包含以下步骤:(1)将板材均匀涂覆氧化铝溶液,将涂覆后的氧化铝薄膜基材进行干燥、高温烧结,使其转化为具备载体功能的基材;(2)配置前驱体溶液,将前驱体溶液喷射在步骤(1)制备得到的具备载体功能的基材上,烘干液膜后进行焙烧处理;(3)将步骤(2)制备得到的基材制成具备特定长度恒温区的反应器;(4)在载气保护下,将反应器升温,通入碳源,反应后得到碳纳米管产品。本发明降低了催化剂堆积密度,明显提高了活性金属层分布的均一性,进而提高了碳纳米管产品纯度,降低了碳纳米管产品缺陷产生。
Absstract of: CN121405073A
本发明公开了一种原位生长氮掺杂碳纳米管的镍钴双金属磷化物的制备方法及应用,其制备方法包括以下步骤:配置氧化石墨烯分散液;向所述氧化石墨烯分散液中依次加入钴源、镍源、嵌段共聚物、磷源和氮源,混合均匀得到混合溶液;将混合溶液烘干得到前驱体;将前驱体在惰性气氛下退火,即得。本发明通过调控Ni、Co的比例使碳源在石墨烯上原位生长出碳纳米管,其镍钴双金属磷化物纳米颗粒均匀分布在氮掺杂碳材料上形成氮掺杂碳材料包覆磷化物纳米颗粒复合材料,将其作为锂硫电池的改性隔膜材料。本发明制备方法具有反应条件温和、易于放大和调控的优点,所制备的复合材料且具有较高的比表面积,在能源领域尤其是锂硫电池领域得以应用。
Absstract of: CN121405075A
本申请公开了一种碳纳米管、导电浆料、涂碳箔及制备方法,属于导电材料技术领域。该碳纳米管包含聚吡咯改性的碳纳米管或含双性离子基团聚吡咯接枝的碳纳米管,将该碳纳米管与含苯磺酸基团功能化的粘接剂及其他成分混匀形成导电浆料。该导电浆料即使是久置后也不易沉降,该不易沉降的浆料能够均匀的涂布于金属箔表面,形成流平性好的导电碳层,该导电碳层可以显著降低(正负极材料与金属箔之间的)接触电阻,改善导电性。
Absstract of: FI20245918A1
Disclosed are a chemical vapor deposition system, a gas curtain module for a gas distribution system of a chemical vapor deposition system, and a method of valve control for such system. The gas distribution system for transferring the deposition product from the reactor to the collection chamber comprises a gas curtain module positioned in the pipeline between the gas flow inlet and the collection valve, wherein the gas curtain module comprises one or more purging gas inlets and is configured to introduce a purging gas into the pipeline at its position.
Absstract of: FI20245917A1
Disclosed is a method (800) and a system (100) for chemical vapor deposition. A collection valve (140) between a reactor (110) and a collection chamber (120) and a purge valve (144) between the collection valve and the collection chamber is open while a bypass valve (142) for the collection chamber is open for purging debris (160) from between the collection valve and the bypass valve through the bypass valve. Thereafter, the purge valve is closed and the collection valve open for directing the deposition product from the reactor to the collection chamber for treatment.
Absstract of: CN121372341A
本发明公开了一种新型多壁碳纳米管柱及其制备方法和应用,通过采用羧基化碳纳米管制备得到碳纳米管四氧化三铁,再将羧基化碳纳米管四氧化三铁功能化,制备得到PSA、Fe3O4和N‑甲基‑1‑十八胺键合成一体的新型多壁碳纳米管吸附材料,采用萃取管内装填新型多壁碳纳米管吸附材料制备得到,用于农药残留检测。该方案将新型多壁碳纳米管吸附材料与m‑PFC技术结合使用,可以快速、高效的对紫菀进行农药残留检测,检测结果准确度和精密度也符合要求,为中药材农药残留的快速、高效、微量化检测提供了一种新的技术手段,对于保障中药材的质量和安全具有重要意义。
Absstract of: CN121376981A
本发明公开了一种水蛭碳点及其制备方法与应用,水蛭碳点粒径均一,形貌规整,以水蛭和纯水为原料,经水热反应、离心、透析、冷冻干燥获得。本发明的水蛭碳点更易穿透血脑屏障,毒性低,生物安全性高,抗肿瘤效果好。与传统化疗药物相比,其制作成本低,易于批量生产,作用效果强。可抑制肿瘤细胞增殖、迁移、侵袭,跨血脑屏障等组织屏障,阻滞胶质母细胞瘤细胞周期,抑制胶质母细胞瘤血管新生,促进胶质母细胞瘤的焦亡,逆转乳酸表达,与传统化疗药物联用增强疗效。
Absstract of: CN121377025A
本发明属于纳米粉末材料的技术领域,具体涉及一种碳化锆粉末及其制备工艺。本发明以废弃活性炭为碳源通过酸氧化、碱处理、高温水热钝化等步骤制备得到碳量子点,以硼氢化钠和氧氯化锆为原料通过水相化学还原法制备得到锆量子点,再将纳米尺寸的碳量子点和锆量子点混合后进行焦耳加热高温处理,在极短时间内获得碳化锆粉末,既保证碳化锆粉末具有高纯度,又降低了粉末的粒径,并提升比表面积。
Absstract of: CN121394186A
本发明公开了一种用于超级电容器的多壁碳纳米管及秒级超快制备方法,属于纳米材料制备技术领域。针对现有碳纳米管材料生产周期长与能耗高的问题,本发明提出一种绿色高效且工艺简单的超快制备方法,可在秒级范围内制备多壁碳纳米管。具体涉及金属催化剂前驱体、碳源和促进剂的使用,利用闪速焦耳热技术对催化剂和碳源前驱体进行快速热冲击,在瞬时超高温条件下实现多壁碳纳米管的生长与结构调控。在电化学电容性能研究中,所得碳纳米管表现出优异的倍率特性,在超高倍率超级电容器中具有潜在的应用价值。
Absstract of: CN121394407A
本公开提供一种基于拓扑限域模板生长单壁碳纳米管的锂电池。上述的锂电池包括正极片和硅负极片,硅负极片包括负集流体和负极浆料,负极浆料包括负极活性材料、单壁碳纳米管、粘合剂和有机溶剂,单壁碳纳米管沿拓扑限域模板的拓扑大分子嵌环生长;其中,拓扑限域模板的多孔碳基板形成有多个孔隙,每一孔隙由内向外依次负载有过渡金属催化剂和拓扑大分子嵌环,以使每一拓扑大分子嵌环位于相对应的过渡金属催化剂的外表面。该锂电池,由于基于拓扑限域模板生长的单壁碳纳米管的一致性好,有利于构建均匀、导电高、柔韧性好且更稳定的三维导电网,以更好地满足硅碳负极的高膨胀的韧性及高导电需求。
Absstract of: CN121377814A
本发明涉及一种从低质量前驱体大面积制备二维材料单层涂层或膜的方法,所述方法包括:S1二维材料粗制悬浮液的制备;S2基底的预处理;S3单层涂层或膜的制备:粘附‑撕裂过程。本发明利用未纯化的粗制分散液,通过粘附‑撕裂法实现了二维材料单层涂层或膜的直接制备,该涂层具有优异的均匀性和高覆盖率。
Absstract of: CN121394338A
本申请公开了一种具有长循环寿命的复合负极材料及其制备方法,涉及锂离子电池负极材料技术领域,复合负极材料包括以下质量百分含量的原料组分:多孔纳米硅20%‑30%、碳化硅掺杂石墨烯粉30%‑35%和余量的磺酸盐包覆石墨粉;其中,多孔纳米硅优选为25%,碳化硅掺杂石墨烯粉优选为32%,磺酸盐包覆石墨粉优先为43%,磺酸盐包覆石墨粉提升离子传导,多孔纳米硅加快锂离子扩散,碳化硅掺杂石墨烯粉可以有效维持导电性,三者整体协同形成“高容量‑高导电‑高稳定”的复合体系,实现电化学性能的全面优化。
Absstract of: CN121380926A
本发明涉及控制系统技术领域,公开了碳纳米管CVD生长炉温度场多区域协同控制方法及系统,包括获取多个温区的实时温度,计算各温区的温度偏差;计算实际温度梯度,若实际温度梯度的变化率超过预设阈值,则计算梯度维持偏差,否则梯度维持偏差为零;计算增益权重;计算对各温区的预测性热扰动补偿量;计算第一控制项;预测性热扰动补偿量构成第二控制项;梯度前馈校正量构成第三控制项,梯度前馈校正量与温区的梯度维持偏差成比例;将第一控制项、第二控制项与第三控制项的和作为温区的功率控制量。本发明实现了局部温度控制与整体温度的统一协调,为碳纳米管生长提供了稳定的热环境,提高了碳纳米管生长的一致性和均匀性。
Absstract of: CN121376987A
本发明涉及一种氧掺杂锯齿状石墨烯纳米带的制备方法,属于纳米材料技术领域。制备金单晶基底;1,5‑dibromonaphthalene‑2,6‑diol前驱体分子蒸发并沉积在金单晶基底得到基底和沉积在基底上的二维DBNDO自组装网络结构,沉积过程控制基底上的DBBPA自组装结构和金单晶基底温度为25~30℃;将基底和沉积在基底上的DBNDO自组装网络结构进行第一次升温至生长温度保温并进行退火处理以获得乌尔曼反应以及脱氢环化反应后的产物。该方法为精准制备氧掺杂锯齿状石墨烯纳米带提供了新思路,具有较高的科研价值及应用潜力。
Nº publicación: CN121376980A 23/01/2026
Applicant:
中国人民解放军海军军医大学
Absstract of: CN121376980A
本发明涉及生物医药应用领域,本发明提供了一种用于抗菌及成骨的铜掺杂碳点及其制备方法和应用,通过微波辅助水热法,使一价态铜离子惨杂于表面带有负电荷碳点的表面上得到;所述一价态铜离子在所述铜掺杂碳点中的含量为3%~10%。本发明中的铜掺杂碳点不仅具有ROS产生介导的类铜死亡样抗菌性能,其表现出明显的表面负电荷,这能引发铜掺杂碳点与骨髓间充质干细胞之间的静电相互作用,然后触发BMP/SMAD途径的下游激活,负电荷促进的成骨分化和Cu触发的类铜死亡以及CDT的协同抗菌作用,进而实现2个月后使颅骨的感染性骨缺损完全愈合。