Absstract of: CN120172398A
本申请公开了一种石墨烯的制备方法,属于石墨材料生产领域。一种石墨烯的制备方法,包括以下步骤:S1.将氧化剂分散于水中,加入石墨粉体,分散均匀后加入气泡稳定剂,分散均匀后得到预分散液;S2.搅拌并超声波震荡预分散液,产生气泡,对石墨进行氧化剥离;S3.结束超声波震荡,得到石墨烯分散液,中和石墨烯分散液,过滤、清洗,干燥得到石墨烯。本申请具有获得尺寸均匀的石墨烯,发挥石墨烯的导电性能的效果。
Absstract of: CN120172391A
本发明提供了一种电弧法生产单壁碳纳米管的方法,属于碳纳米管制备技术领域。本发明提供的方法包括以下步骤:将主催化剂、硫粉和氧化硒粉混合后进行煅烧,得到催化剂粉末;将所述催化剂粉末与多孔硬碳混合,得到复合催化剂;将碳源、所述复合催化剂和还原性气体在等离子体电弧炉的反应管内进行碳原子重组反应,得到单壁碳纳米管。本发明先制备催化剂粉末,并将其与多孔硬碳混合形成复合催化剂,能够使催化剂在反应管的高温区形成均匀的催化剂核,提高催化剂的利用率、单壁碳纳米管的质量;此外,多孔硬碳易于去除,不易向产物中引入杂质,提高碳纳米管的纯度。
Absstract of: CN120172397A
本发明公开了一种石墨烯纳米片及其制备方法,属于石墨烯技术领域。本发明石墨烯纳米片的制备方法,包括:以含氟化盐溶液为电解液,通过电化学双极剥离含石墨原料,获得石墨烯纳米片。本发明的制备方法操作简单,安全可控,低成本、高效率,绿色环保,对电化学剥离装置腐蚀性小。
Absstract of: CN120184229A
本发明涉及锂电池材料技术领域,具体公开了一种球形硅碳负极材料及其制备方法和应用,所述球形硅碳负极材料包括内核以及包覆在所述内核外的包覆层;所述内核包括掺杂有氮元素的多孔硬碳以及包覆在所述多孔硬碳外的碳层,所述多孔硬碳内沉积有硅纳米颗粒;所述包覆层为三甲基铝功能化聚环氧乙烷交联网络包覆层。本发明提供的球形硅碳负极材料通过甲基铝功能化聚环氧乙烷交联网络包覆,该包覆层能够为离子提供传输通道,促进离子的传输,有利于增强负极材料的储锂性能,高强度的三维网络结构可以有效抑制硅碳负极材料的体积膨胀,防止颗粒裂纹或粉化。
Absstract of: CN120172448A
本发明涉及负极材料技术领域,尤其涉及一种多孔石墨烯/过渡金属氧化物复合微米棒及其制备方法和其在锂离子电池负极中的应用。制备方法:将氧化石墨烯与有机小分子配体组成的混合浆料通过针管注入包含有过渡金属盐溶液凝固浴的旋转转盘中,获得复合凝胶微米棒悬浮液;将悬浮液进行水热反应后冷却,过滤,洗涤,干燥,研磨;将石墨烯/MOF复合微米棒粉体与强碱混合物保护气氛下高温煅烧处理,同步实现微米棒的活化刻蚀及高温碳化。本发明制备的复合微米棒有效缓解了过渡金属氧化物在充放电过程中的体积效应,显著降低界面电阻,加速锂离子传输和电解液渗透,从而大幅提升电极的循环稳定性和倍率性能,显著提高了电极的结构稳定性和循环寿命。
Absstract of: CN120172393A
本发明公开了一种双壁碳纳米管及其制备方法,所述方法包括如下步骤:(1)配制反应液:将噻吩、催化剂加入到无水乙醇中后,超声分散均匀,得反应液,备用;(2)空气置换:向石英管反应器中通入氩气进行空气的置换;(3)待置换完成后,进行升温并通入载气,当升温至反应温度后,将经预热后的反应液注入到石英管反应器中,开始反应;(4)待反应结束后,停止注入反应液,维持反应温度反应一段时间,最后冷却至室温,取出反应物,即得双壁碳纳米管产品。本发明制得的碳纳米管的纯度较高,缺陷少,有利于碳纳米管的综合利用。
Absstract of: CN120184223A
本申请涉及钠离子电池正极材料技术领域,尤其涉及一种钛掺杂高密度球形纳米焦磷酸磷酸铁钠钠离子电池正极材料及其制备方法。一种钛掺杂高密度球形纳米焦磷酸磷酸铁钠钠离子电池正极材料,其化学通式为Na₄Fe3‑xTix(PO₄)₂P₂O₇,其中0.05≤x≤0.2,且正极材料的颗粒粒径为20‑300 nm,表面包覆一层碳。通过材料‑工艺‑结构的多维度创新,本申请为钠离子电池商业化提供了高性能正极解决方案,兼具技术先进性与工程化潜力。
Absstract of: CN120173601A
本发明公开了一种荧光碳量子点及其制备方法与应用,方法包括步骤:步骤1、对废弃乳胶或丁腈手套进行预处理,得到干净的碎片,取干净的碎片放入陶瓷坩埚,将陶瓷坩埚置于管式炉,在空气气氛中,于255~295℃的温度下,煅烧4~6h,冷却后,研磨,得到黑色粉末;步骤2、将黑色粉末加入稀释后的磷酸溶液中,搅拌均匀,然后转移到水热釜,将水热釜置于245℃的烘箱中,加热10~12h,得到黑色液体,过滤数次,得到黄棕色透明的荧光碳量子点水溶液;步骤3、将荧光碳量子点水溶液冷冻干燥,得到荧光碳量子点粉末。本发明开发的荧光碳量子点合成方法,不仅具有低成本和绿色环保的优点,而且合成的荧光碳量子点具有高的量子产率,能够用于防伪打印和信息加密。
Absstract of: WO2025123847A1
The present application provides a precursor of a positive electrode active material. A particle of the precursor comprises a core and a shell covering the core. The material of each of the core and the shell is nickel cobalt manganese oxide or nickel cobalt manganese hydroxide. The core is doped with a fluxing agent, and the fluxing agent is selected from one or more of oxides, carbonic acid compounds, and hydroxides of Sr, Li, Mg, Ni, Co, and Zr. The shell is doped with a reaction inhibitor. The reaction inhibitor is selected from one or more of lithium compounds, oxides, carbonic acid compounds, hydroxides, and other compounds of Ta, W, Al, Mn, Mo, and La. A fluxing agent is disposed in the core of the particle of the precursor, and the reaction inhibitor is disposed in the shell, so that subsequent crystallization of the precursor develops from inside to outside. The present application further provides a positive electrode active material and a preparation method therefor, a positive electrode comprising the positive electrode active material, a lithium-ion battery, and a preparation method for the precursor.
Absstract of: US2025201661A1
Systems, apparatus, articles of manufacture, and methods to dissipate heat within and/or from integrated circuit packages using carbon nanotubes are disclosed. An example integrated circuit package includes: a first metal layer; a second metal layer; and an array of carbon nanotubes extending from the first metal layer toward the second metal layer.
Absstract of: US2025197223A1
A carbon nanotube dispersion includes multi-walled carbon nanotubes having between 0.1 and 13% by weight of iron-free catalytic remnants, the remnants including one or more iron-free metal oxide compound(s) of at least three metals selected from aluminum, vanadium, cobalt, and molybdenum. The dispersion further includes an amide-based solvent, polyvinylpyrrolidone, and an amine-based compound. The present disclosure is further related to a method for the preparation of MWCNT dispersions and their use in batteries.
Absstract of: US2025197224A1
The present invention provides a carbon nanotube dispersion including carbon nanotubes; a first dispersant including a nonionic polymer having a weight average molecular weight of 4,000 g/mol to 30,000 g/mol; and a second dispersant including an anionic polymer having a sulfonic acid (salt) group, wherein a weight ratio of the first dispersant to the second dispersant is 5:1 to 1:5; a method of preparing the carbon nanotube dispersion; and an electrode slurry composition and secondary battery including the carbon nanotube dispersion.
Absstract of: US2025201857A1
A manufacturing method of a carbon nanotube dispersion liquid containing carbon nanotubes, a dispersant, and a solvent includes at least the following steps. A dispersion treatment is performed on the carbon nanotubes having a BET specific surface area (m2/g) of 220 to 800, 20 parts by mass to 100 parts by mass of the dispersant relative to 100 parts by mass of the carbon nanotube, and the solvent using a homogenizer or a paint conditioner. A fiber length of the carbon nanotubes in the carbon nanotube dispersion liquid obtained from the dispersion treatment ranges from 0.8 μm to 3.5 μm.
Absstract of: US2025201856A1
The embodiments of the present disclosure provide a carbon nanotube dispersion, a method of preparing the same, an electrode slurry composition and secondary battery including the carbon nanotube dispersion, wherein the carbon nanotube dispersion includes carbon nanotubes, the first dispersant surrounding the surface of the carbon nanotubes, the second dispersant for introducing charges to the surface of the carbon nanotubes, and a storage stabilizer having electrostatic repulsion against the charges.
Absstract of: EP4570752A1
The present invention relates to a carbon nanotube dispersion and a preparation method therefor, the dispersion having a co-dispersant, comprising polyethyleneglycol, polystyrene and cellulose-based components, that is applied thereto. The carbon nanotube dispersion of the present invention has excellent viscosity stability during room-temperature and high-temperature storage.
Absstract of: EP4570749A1
Disclosed is a composite lithium iron phosphate material, and a positive electrode and a lithium ion battery using the same. The composite lithium iron phosphate material is made of a composition comprising an iron phosphate precursor, a lithium source, and a carbon source, the carbon source covers the iron phosphate and the lithium source, the carbon source includes a synthetic polymer carbon source and a biomass carbon source, and the biomass carbon source includes carbon fibers.
Absstract of: AU2023321889A1
This disclosure relates to novel lithium ion battery structures and methods of manufacture. One particular method includes a method of coating a porous glass substrate. The method includes: providing a porous glass substrate; flowing gaseous hydrocarbon onto a porous glass substrate in a reaction zone; and exposing the porous glass substrate to a concentrated solar irradiation in the reaction zone such that the porous substrate and gases surrounding the porous substrate absorb the concentrated solar irradiation producing heat. The heat chemically reduces glass fibers in the porous glass substrate into silicon fibers, and the heat decomposes the gaseous hydrocarbon into a carbon coating on the silicon fibers.
Absstract of: EP4570754A1
The present invention relates to a carbon nanotube dispersion in which the size of particles contained therein is small, the carbon nanotube dispersion comprising carbon nantotubes, a dispersant, and a dispersion medium, wherein the dispersant comprises a first dispersant and a second dispersant in a weight ratio of 100:10 to 100:115, the first dispersant is a dispersant containing N atoms, the second dispersant includes a compound having a molecular weight of 400 g/mol or less and having one aromatic ring and two or more hydroxyl groups in the molecular structure thereof, and the weight ratio of the carbon nanotubes and the dispersant is 100:50 to 100:500.
Absstract of: EP4570750A1
Provided are a carbon sheet having excellent performance in terms of inhibiting lithium dendrite growth and a method of producing this carbon sheet. Also provided are a laminate and an electrical storage device that include a carbon sheet having excellent performance in terms of inhibiting lithium dendrite growth. The carbon sheet is a carbon sheet containing carbon nanotubes, wherein the carbon nanotubes and the carbon sheet each have pores, and the distribution states of these pores satisfy specific requirements.
Absstract of: EP4570755A1
The present invention relates to a carbon nanotube dispersion having low viscosity and comprising a small size of particles, the carbon nanotube dispersion comprising carbon nanotubes, a dispersant, and a dispersion medium, wherein the dispersant includes a first dispersant and a second dispersant in a weight ratio of 100:10-100:90, the first dispersant is a dispersant containing a cyclic amide group, the second dispersant is a polymer compound containing both a sulfone group and styrene, and the weight ratio of the carbon nanotubes to the dispersant is 100:50-100:500.
Absstract of: EP4570753A1
The present invention relates to a carbon nanotube dispersion comprising carbon nanotubes, a dispersant and a dispersion medium, wherein the dispersant comprises a first dispersant and a second dispersant in a weight ratio of 100:10 to 100:90, the first dispersant is a dispersant comprising an N atom, the second dispersant is a compound comprising a sulfonic acid group, a hydroxyl group and an aromatic ring in a molecular structure, and a weight ratio of the carbon nanotubes and the dispersant is 100:50 to 100:500, thereby having low viscosity and a little change in viscosity over time.
Absstract of: CN120157115A
本发明公开了一种石墨烯导热膜及其制备方法,本发明涉及改性石墨烯技术领域。该方法通过以下步骤实现:(1)原料预处理:采用机械剪切法制备亚微米级氧化石墨烯分散液,并负载铂量子点;(2)动态流场成膜:通过涂布过程施加动态压力场,形成高取向度的湿膜;(3)梯度协同还原:结合化学预还原、脉冲焦耳还原和等离子体处理,显著降低氧含量和缺陷密度;(4)三维桥接强化:利用气溶胶辅助生长氮化硼纳米片桥接结构,构建垂直导热通道。所制备的石墨烯导热膜具有超高热导率、超薄膜厚、高柔性等优异性能,工艺稳定性高且能耗低,适用于5G通信、柔性电子、高功率器件等领域的热管理需求。
Absstract of: CN120157167A
本发明属于肝病治疗药物技术领域,具体涉及具体涉及一种具备级联酶活性的抗炎抗氧化应激纳米酶Cu5.4O@CNDs及其应用。所述纳米酶Cu5.4O@CNDs由以下步骤制备:将CuCl2溶解于碳点水溶液中,75℃~80℃反应10min~12min,然后加L‑抗坏血酸水溶液,用NaOH溶液调节pH至7.0‑8.0,75℃~80℃反应10h~12h,反应结束后,通过离心除去沉淀,上清液经透析、冻干后得到所述Cu5.4O@CNDs。本发明研究结果证明纳米酶Cu5.4O@CNDs具有治疗多种急性肝损伤疾病的潜力,是一种很有临床应用前景的干预策略。
Absstract of: CN120157116A
本发明公开了一种折叠氧化石墨烯的方法。该方法将氧化石墨烯(GO)溶液与可电纺聚合物溶液混合均匀,再利用混合后的溶液进行静电纺丝,制备成含有折叠状氧化石墨烯的聚合物纤维,再热处理得到折叠状还原氧化石墨烯。通过降低GO在混合溶液中的含量使其能通过静电纺丝实现片片分离;利用GO片冯卡门数较高,极易变形的特点,利用电场对GO和聚合物的混合溶液的拉伸而产生空间压缩使GO片发生折叠。
Nº publicación: CN120157106A 17/06/2025
Applicant:
吉林大学
Absstract of: CN120157106A
本发明的管状多孔硬碳/纳米金刚石低温钠电负极材料及制备方法属于低温钠离子电池负极材料技术领域。本发明以生物质香蒲草为碳源,添加纳米金刚石,通过高温煅烧的方法,合成了管状多孔硬碳复合纳米金刚石(CG‑ND)。当CG‑ND应用于钠离子电池的负极时,在室温和低温下均展示出良好的循环稳定性,具有高比容量以及长循环稳定性。本发明所采用的制备方法具有过程简单、易于实现、容易放大等优点,有望未来大规模生产。