Absstract of: WO2025244602A1
This invention relates to the manufacture and fabrication process of graphene-enhanced carbon nanotube (Gr-CNT) reinforced magnesium oxide (MgO) nanocomposite material and its preparation method. Consequently, this material has led to the introduction of a novel nanocomposite with enhanced characteristics.
Absstract of: US2025361603A1
The present invention discloses a fibrous silicon-carbon composite material and a preparation method therefor. The fibrous silicon-carbon composite material includes a core-shell structure, where a core of the core-shell structure includes a porous carbon fiber and nano-silicon, and a shell of the core-shell structure includes an inorganic lithium salt and amorphous carbon. The present invention has a characteristic of high electronic conductivity, and a lithium-ion battery to which the present invention is applied exhibits an excellent rate capability and excellent cycle performance.
Absstract of: TW202440760A
Disclosed herein are graphene compositions and methods of use and making thereof. The graphene compositions may comprise graphene and a polymer. The graphene compositions may be used in fiber sizing.
Absstract of: CN121005384A
本申请公开了一种磷酸盐正极活性材料及其制备方法、正极极片、电池单体和用电装置;该方法包括:提供包括锂源、金属源、磷源、表面活性剂的混合溶液,所述金属源为铁源和/或锰源;将混合溶液进行水热反应,制得反应颗粒;将反应颗粒与碳源混合并进行湿法研磨,制得浆料;将浆料进行热处理,制得磷酸盐正极活性材料,其中,热处理的温度为650℃至1300℃。本实施例的方法改善了碳包覆的磷酸盐正极活性材料的导电性和克容量,提高了电池单体的充放电容量以及循环容量保持率;此外,生产过程的连续性也得到大幅提高。本申请还旨在提供能够实现包含该正极活性材料的有益效果的正极极片、电池单体和用电装置。
Absstract of: CN121005393A
本发明涉及荧光纳米材料制备领域,具体涉及氨基化木质素荧光碳量子点及其制备方法与应用,该制备方法包括:S1、向木质素、三乙烯四胺、NaOH的混合溶液中滴加甲醛,进行第一反应,抽滤去除水分,真空干燥,得到氨基化木质素;S2、将S1得到的氨基化木质素与水混合至完全溶解,进行第二反应,得到氨基化木质素碳量子点溶液;S3、将S2得到的氨基化木质素碳量子点溶液离心分离,取上清液依次进行滤膜过滤和透析,得到纯净的氨基化木质素碳量子点水溶液,冷冻干燥,得到氨基化木质素荧光碳量子点,该方法制得的碳量子点表面功能团丰富,尺寸均匀、荧光强度高和量子产率优异。
Absstract of: CN121005395A
本申请公开了一种基于低能量离子注入调控石墨烯纳米带结构的方法,包括:在基底表面制备本征石墨烯纳米带;将基底转移至腔室内,在真空环境下,向本征石墨烯纳米带表面注入Ar离子,得到边缘和/或内部具有缺陷的石墨烯纳米带。本申请能够实现掺杂位点和种类的多样化,可将掺杂原子精确地注入到目标位置,不受前驱体分子的限制,实现对杂质深度和浓度的精准调控;离子注入作为一种低温工艺,可以减少因高温处理带来的热效应和晶体缺陷,有助于提高材料的质量和稳定性;可以适应不同的衬底材料,从而扩大了GNR的应用范围;具有较高的均匀性和重复性,能够确保每批次的产品具有相同的掺杂分布,有助于大规模生成的质量控制。
Absstract of: PL448589A1
Przedmiotem zgłoszenia jest sposób wytwarzania superparamagnetycznych nanocząstek z ciekłych odpadów przemysłowych zawierających amoniak oraz związki węgla, pochodzących z niepełnego spalania podczas wytwarzania nanostruktur węglowych, uzyskiwanych metodą osadzania z fazy gazowej, który obejmuje: rozpuszczenie soli żelaza (III) i soli żelaza(II); współstrącanie tlenku żelaza(II) roztworem wodnym amoniaku; co najmniej jednokrotne płukanie otrzymanego tlenku żelaza(II) wodą destylowaną do uzyskania odczynu obojętnego oraz odzyskiwanie tlenku żelaza(II).
Nº publicación: KR20250164298A 24/11/2025
Applicant:
중국과학원쑤저우나노기술및나노바이오닉스연구소
Absstract of: WO2024198803A1
The present application discloses a post-treatment method for greatly improving the performance of a carbon nanotube film, and an application thereof. The post-treatment method comprises: infiltrating an original carbon nanotube film in chlorosulfonic acid for standing, then placing the carbon nanotube film in air such that chlorosulfonic acid molecules inside the carbon nanotube film can react with water molecules in the air, and then generating sulfuric acid molecules inside the carbon nanotube film so as to promote the water molecules to enter the carbon nanotube film; then placing the carbon nanotube film in the chlorosulfonic acid again so as to chemically react with the water molecules to generate a hydrogen chloride gas, resulting in expansion of the carbon nanotube film; and infiltrating the carbon nanotube film in a chlorosulfonic acid solution again after drafting treatment, and finally carrying out high-temperature vacuum annealing heat treatment. The carbon nanotube film prepared in the present application has a tensile strength at the magnitude of GPa and an electrical conductivity at the level of 106S/m, and has a higher surface flatness, such that the compounding of the carbon nanotube film with other materials is facilitated, and a composite interface having a stronger binding force is constructed, thereby greatly improving the final mechanical and electrical properties of a composite material.