Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 129 results.
LastUpdate Updated on 01/05/2025 [07:14:00]
pdfxls
Solicitudes publicadas en los últimos 60 días (excluida automoción) / Applications published in the last 60 days (Automotion publications excluded)
previousPage Results 100 to 125 of 129 nextPage  

负极复合材料及其制备方法和电池

Publication No.:  CN119764378A 04/04/2025
Applicant: 
江苏正力新能电池技术股份有限公司
CN_119764378_PA

Absstract of: CN119764378A

本发明涉及新能源电池领域,具体涉及一种负极复合材料及其制备方法和电池,所述负极复合材料包括多孔碳球骨架和金属碳化物纳米颗粒;其中,至少部分所述金属碳化物纳米颗粒分布于所述多孔碳球骨架的孔隙内;所述金属碳化物纳米颗粒中的金属元素包括第ⅤB族元素中的至少一种。本发明的负极复合材料具有优异的均匀性和固体结构,有利于电极材料的容重密度和在反复充放电循环过程中保持电极的结构完整性,能够显著提升钠离子电池的容量和循环稳定性。

一种制备碳化聚合物纳米点的方法

Publication No.:  CN119750554A 04/04/2025
Applicant: 
衢州化工新材料创新研究院北京化工大学
CN_119750554_PA

Absstract of: CN119750554A

本发明属于材料制备技术领域,尤其涉及一种制备碳化聚合物纳米点的方法,包括以下步骤:将抗坏血酸与聚乙烯亚胺按比例加入到去离子水中,然后放入超声机中,使抗坏血酸与聚乙烯亚胺完全溶解且均匀混合得到混合液;将纳米氧化锆加入到步骤S1得到的混合液中,超声配置成均匀分散液;将分散液置于球磨机中进行研磨后所得到的浆料,通过喷雾干燥机进行反应、干燥制备出氧化锆掺杂碳化聚合物纳米点;将步骤S3得到的掺杂物进行溶解、分离、冷冻干燥后得到碳化聚合物纳米点。本发明通过喷雾干燥法的方法制备得到的碳化聚合物纳米点相比水热法方法可以大大节省时间,提高效率,同时能提高碳化聚合物纳米点产量。

一种基于高熵材料纳米颗粒的核壳结构复合材料及其高效制备方法和应用

Publication No.:  CN119750664A 04/04/2025
Applicant: 
哈尔滨工业大学
CN_119750664_PA

Absstract of: CN119750664A

一种基于高熵材料纳米颗粒的核壳结构复合材料及其高效制备方法和应用。本发明属于高熵材料纳米颗粒技术领域。本发明的目的是为了解决现有高熵材料纳米颗粒制备方法存在的适用性受限、设备成本高、工艺复杂以及难以实现连续高效制备和结构精准控制的技术问题。本发明的方法:将组成高熵材料的金属元素以金属盐制成前驱体溶液,然后将氧化石墨烯浸泡其中,得到负载金属盐的氧化石墨烯;将负载金属盐的氧化石墨烯和具有尖端的金属导体置于微波装置中加热,加热结束后洗涤、真空干燥,得到核壳结构复合材料。将核壳结构复合材料高温加热,得到高熵材料纳米颗粒。所得材料用于光热转换、电催化、柔性电子、生物医疗、微电子互连领域。

一种可降解、荧光自修复的聚氨酯薄膜的制备方法及应用

Publication No.:  CN119751935A 04/04/2025
Applicant: 
江南大学
CN_119751935_PA

Absstract of: CN119751935A

本发明公开了一种可降解、荧光自修复的聚氨酯薄膜的制备方法及应用,属于高分子材料技术领域。本发明通过席夫碱反应将碳量子点封装在聚乳酸基聚氨酯中,具体为:将邻苯二胺和色氨酸溶解在溶剂中,加入酸溶液和去离子水,溶解得到混合液,将混合液转移到特氟龙内衬高压釜中进行反应,得到碳量子点;(2)以异氰酸酯、多元醇和分散溶剂为原料,加入有机锡类催化剂,再加入扩链剂反应得到聚氨酯溶液;(3)在聚氨酯溶液中加入碳量子点,搅拌后将其溶液浇铸到聚四氟乙烯基材上进行自流平、干燥即得可降解、荧光自修复的聚氨酯薄膜,该聚氨酯材料具有良好的化学稳定性分散性以及光学性能,同时赋予聚氨酯材料自修复能力,并保持良好的生物降解性。

一种生物基球形多孔碳的制备方法、生物基球形硅碳负极材料的制备方法以及一种电池

Publication No.:  CN119750575A 04/04/2025
Applicant: 
山东圣泉电池材料科技有限公司
CN_119750575_PA

Absstract of: CN119750575A

本申请提供了一种生物基球形多孔碳的制备方法、生物基球形硅碳负极材料的制备方法以及一种电池。其中,生物基球形多孔碳的制备方法包括:前驱体合成步骤;干燥脱水步骤;碱活化造孔步骤;气相脱灰步骤。生物基球形硅碳负极材料的制备方法进一步包括对生物基球形多孔碳进行硅气相沉积、碳气相包覆的步骤。通过上述生物基球形多孔碳的制备方法,能够得到孔径大小合适、孔径均一、呈规则球形(流动性好)、单颗粒强度等特点的生物基球形多孔碳;生物基球形硅碳负极材料的制备方法所得到生物基球形硅碳负极材料具有电阻率更低、内部硅嵌锂膨胀具备更强的限制能力等优异效果,以能够用于得到性能更好的电池。

一种碳包覆二氧化钒纳米材料及其制备方法和应用

Publication No.:  CN119750646A 04/04/2025
Applicant: 
成都先进金属材料产业技术研究院股份有限公司
CN_119750646_PA

Absstract of: CN119750646A

本发明涉及纳米材料技术领域,尤其涉及一种碳包覆二氧化钒纳米材料及其制备方法和应用。所述碳包覆二氧化钒纳米材料的制备方法包括以下步骤:将钒源在还原剂的作用下,还原得到4价钒溶液;将上述4价钒溶液和海藻酸钠混合进行水热反应,得到碳包覆二氧化钒纳米颗粒。本发明采用海藻酸钠作为碳源,同时其可以限制VO2晶体的生长,制备的碳包覆二氧化钒纳米材料具有高比表面积、优异的电导率,可以有效提升水系锌离子电池的倍率性能和循环稳定性,在800mA/g电流密度下,比容量可达到90mAh/g,具有较好的推广应用前景。

一种石墨复合材料及其制备方法与应用

Publication No.:  CN119750553A 04/04/2025
Applicant: 
福建杉杉科技有限公司
CN_119750553_A

Absstract of: CN119750553A

本发明公开了一种石墨复合材料及其制备方法与应用。该制备方法包括以下步骤:S1:将石墨与包覆剂进行融合处理,得融合物;所述包覆剂的用量为1%~15%;所述包覆剂包括质量百分比为70%~75%的酚醛树脂、5%~9%的苯酚和17%~21%的水;S2:将所述融合物进行碳化处理,得硬碳包覆物;所述碳化处理的温度为800~1300℃;S3:将所述硬碳包覆物进行表面处理使其平均粒径为10~20μm,得石墨复合材料。本发明提供的石墨复合材料的制备方法能够通过控制包覆剂的用量以及融合处理的参数制得包覆均匀、整体结构稳定的石墨复合材料,其后续制备的电池的容量和首效得到显著提升,且具有良好的循环性能及稳定的快充性能。

一种红外隐身杂化Mxene气凝胶、制备方法及应用

Publication No.:  CN119746737A 04/04/2025
Applicant: 
江苏大学
CN_119746737_A

Absstract of: CN119746737A

本发明属于隐身技术领域,提供了一种红外隐身杂化Mxene气凝胶、制备方法及应用,所述红外隐身杂化Mxene气凝胶为掺杂了改性碳化硅纳米线(SiCnw)、改性碳纳米管(CNTs)与改性还原氧化石墨烯(RGO)的红外隐身杂化MXene气凝胶。以MXene气凝胶为主体,利用Mxene材料低红外发射特性,可减少气凝胶烟幕与周围环境的红外辐射差异;通过添加改性RGO提升气凝胶烟幕的中远红外消光性能;通过引入CNTs作为交联剂实现RGO与MXene结合,改善Mxene弱凝胶化现象;通过引入改性SiCnw提高MXene气凝胶机械强度,利用其高热导率特性实现烟幕散热均匀。所述红外隐身杂化MXene气凝胶材料具备良好的红外消光性能,适合作为隐身烟幕材料中的红外消光剂,实现红外隐身。

一种半导体型单壁碳管新型催化剂的制备方法和应用

Publication No.:  CN119746929A 04/04/2025
Applicant: 
无锡六号元素新材料科技有限公司
CN_119746929_PA

Absstract of: CN119746929A

本发明提供的一种半导体型单壁碳管新型催化剂的制备方法,其利用倍半硅氧烷独特的分子结构,能够接枝多个反应性基团或者金属原子,提高了不同相的相容性,增加了分子结构的规整性和可控性,且端基包含多个活性反应位点,连接多个活性反应位点,结合更多的活性金属,极大地提高了碳纳米管产率。通过控制催化剂活性组分中金属的比例,控制单壁碳纳米管的直径,实现单壁碳纳米管尺寸可控生产。本方法中的催化剂制备工艺可控且便于实施,原料来源广泛,价格低廉,后期单壁碳管处理及仪器保养更加简便,能够实现单壁碳纳米管的批量生产。

一种氮掺杂纤维素基碳纳米载体材料及其制备方法及应用

Publication No.:  CN119750551A 04/04/2025
Applicant: 
中南林业科技大学
CN_119750551_PA

Absstract of: CN119750551A

本发明的属于纳米材料储能技术领域,提供一种氮掺杂纤维素基碳纳米载体材料及其制备方法及应用,制备方法包括以下步骤:(1)预处理纳米纤维素溶胶,得到分布均匀的纳米纤维素溶液;(2)将纳米纤维素溶液冷冻,真空干燥,得到纳米纤维素气凝胶;(3)将纳米纤维素气凝胶惰性氛围下预炭化处理,冷却得到纳米纤维素碳气凝胶;(4)将步纳米纤维素碳气凝胶置于尿素粉末中,惰性氛围下高温气相沉积,得到氮掺杂纳米纤维素基碳纳米载体材料。本发明选用的碳纳米载体材料原材料为植物纤维,具有很强的力学强度,来源广泛,成本低廉,制备得到的氮掺杂纤维素基碳纳米载体材料有良好的表面润湿性能,优异的导电性和稳定性能。

一种钒掺杂氮氟掺杂垂直石墨烯材料和钙钛矿太阳能电池

Publication No.:  CN119750559A 04/04/2025
Applicant: 
青岛科技大学
CN_119750559_PA

Absstract of: CN119750559A

本发明公开了一种钒掺杂氮氟掺杂垂直石墨烯材料和钙钛矿太阳能电池,涉及钙钛矿太阳能电池技术领域,技术方案为,将氧化石墨加入去离子水超声处理,加入氨水和乙二醇进行水热反应,冷冻干燥得到三维石墨泡沫;将三维石墨泡沫浸泡于钒离子溶液中吸附钒;干燥后氩气热处理,得到V‑3D‑G0材料;在CVD系统中升温通入甲烷,得到垂直石墨烯生长的VG@V‑3D‑GF;进行氮氟等离子体反应,得到钒掺杂氮氟掺杂垂直石墨烯材料。本发明采用三维石墨烯泡沫代替海绵镍通过钒掺杂氮氟掺杂实现三元共掺杂,提升导电性和稳定性。使用CVD工艺简化制备过程,提高生产效率和一致性。该材料在钙钛矿太阳能电池中提升光电转换效率和稳定性。

一种铁酸锂补锂剂及其制备方法、正极和锂离子电池

Publication No.:  CN119764454A 04/04/2025
Applicant: 
比亚迪股份有限公司
CN_119764454_PA

Absstract of: CN119764454A

本公开涉及一种铁酸锂补锂剂及其制备方法、正极和锂离子电池。该铁酸锂补锂剂包括铁酸锂内核以及包覆于所述铁酸锂内核表面的碳包覆层;所述铁酸锂补锂剂的D50粒径为100‑350nm。本公开提供的铁酸锂补锂剂尺寸均匀,且具有纳米尺寸,提高了锂离子电池性能。

一种电催化氧还原制备过氧化氢的方法

Publication No.:  CN119753701A 04/04/2025
Applicant: 
南京大学南京大学扬州化学化工研究院
CN_119753701_A

Absstract of: CN119753701A

本发明公开了一种电催化氧还原制备过氧化氢的方法,将寡层石墨烯包裹Ni催化剂分散在溶剂中并滴在旋转环盘玻碳电极的表面,干燥后作为工作电极用于电催化氧还原反应制备过氧化氢。本发明采用寡层石墨烯包裹Ni催化剂电催化氧还原生产过氧化氢,该催化剂的制备方法简单易实施、原材料廉价易得,所得寡层石墨烯包裹Ni催化剂在酸性环境下电催化氧还原制备双氧水过程中具有优异的选择性与稳定性,对酸性环境下电化学制备过氧化氢的工业化具有重要意义。

一种磺化石墨烯和改性正极材料及其制备方法和应用

Publication No.:  CN119750562A 04/04/2025
Applicant: 
厦门凯纳石墨烯技术股份有限公司
CN_119750562_PA

Absstract of: CN119750562A

本发明属于石墨烯改性领域,具体涉及一种磺化石墨烯和改性正极材料及其制备方法和应用。所述磺化石墨烯的制备方法包括以下步骤:S1.将有机材料和磺化剂在无反应介质存在下于30~35℃下进行预反应,得到预反应产物;S2.将预反应产物分散于水中,再将所得分散液升温至160~220℃下进行高压水热反应,得到磺化石墨烯。采用本发明提供的方法所得磺化石墨烯对正极材料进行包覆时可以显著改善锂离子电池的倍率性能和循环性能。

AGGLOMERATES OF CARBON NANOTUBE HYBRID MATERIALS

Publication No.:  WO2025072892A1 03/04/2025
Applicant: 
CHASM ADVANCED MAT INC [US]
CHASM ADVANCED MATERIALS, INC

Absstract of: WO2025072892A1

An agglomeration with fine particles of a hybrid material comprising carbon nanotubes (CNT) and a binder agent that is effective to create an agglomeration comprising the fine particles.

GRAPHITIC-MATERIAL-COATED SILICON PARTICLES, METHODS OF MAKING SAME, AND USES THEREOF

Publication No.:  WO2025072959A1 03/04/2025
Applicant: 
CORNELL UNIV [US]
CORNELL UNIVERSITY

Absstract of: WO2025072959A1

Graphitic-material-coated silicon particles and uses thereof and compositions thereof and methods of making graphitic-material-coated silicon particles. In various examples, a method of forming a plurality of graphitic-material-coated silicon particles comprises milling (e.g., air jet ball milling or the like) a mixture comprising one or more silicon particle(s), one or more graphitic material(s) (e.g., graphite, graphene, or the like, or any combination thereof), and one or more binder(s). In various examples, a graphitic-material-coated silicon particle comprises a silicon particle and one or more graphitic material(s), where the one or more graphitic material(s) is/are disposed on at least a portion, substantially all, or all of one or more surface(s) of the silicon particle. In various examples, an electrode or device (such as, for example, an electrochemical device or the like) comprises a plurality of graphitic-material-coated silicon particles.

METHOD FOR PREPARING MODIFIED CARBON NANOTUBE, MODIFIED CARBON NANOTUBE, NEGATIVE ELECTRODE SLURRY, AND BATTERY

Publication No.:  WO2025065876A1 03/04/2025
Applicant: 
EVE POWER CO LTD [CN]
\u6E56\u5317\u4EBF\u7EAC\u52A8\u529B\u6709\u9650\u516C\u53F8
CN_117401679_PA

Absstract of: WO2025065876A1

A method for preparing a modified carbon nanotube, a modified carbon nanotube, a negative electrode slurry, and a battery. The method comprises: carboxylating a carbon nanotube; placing the carboxylated carbon nanotube in a first mixed acid solution to obtain a first inner-wall carboxylated carbon nanotube; placing the first inner-wall carboxylated carbon nanotube in a second mixed acid solution to obtain a second inner-wall carboxylated carbon nanotube; and mixing the second inner-wall carboxylated carbon nanotube and polyethylene glycol to obtain a modified carbon nanotube.

LITHIUM-SUPPLEMENTING ADDITIVE AND PREPARATION METHOD THEREFOR, POSITIVE ELECTRODE MATERIAL, POSITIVE ELECTRODE SHEET, AND BATTERY

Publication No.:  WO2025065880A1 03/04/2025
Applicant: 
HUIZHOU EVE POWER CO LTD [CN]
\u60E0\u5DDE\u4EBF\u7EAC\u52A8\u529B\u7535\u6C60\u6709\u9650\u516C\u53F8
CN_117438575_PA

Absstract of: WO2025065880A1

A lithium-supplementing additive and a preparation method therefor, a positive electrode material, a positive electrode sheet, and a battery. The lithium-supplementing additive comprises a lithium-containing compound, the lithium-containing compound is selected from one or a combination of more compounds as represented by the following chemical formula: aLiFeαMnβM1-α-βO2-γXγ(1-a)Li2FeδMnεN1-δ-εO3-ηXη, where the element M and the element N are each independently selected from one or more of Zr, Co, Sr, Al, Ni, W, Ti, Cu, Mg, Zn, Ca, Ba, Sc, Ga, Y, La, In, Ce, Ge, Hf, Sn, Nb, Ta, V and Sb, the X is the element F, 0.4≤a≤0.9, 0<α≤1, 0≤β≤1, 0<α+β≤1, 0≤γ≤0.1, 0<δ≤1, 0≤ε≤1, 0<δ+ε≤1, and 0≤η≤0.1. The lithium-supplementing additive can stably and uniformly supplement lithium and improve the cycling stability.

EMULSION BLEND FOR COATING CARBONATES

Publication No.:  AU2023356200A1 03/04/2025
Applicant: 
SPECIALTY MINERALS MICHIGAN INC
SPECIALTY MINERALS (MICHIGAN) INC
AU_2023356200_A1

Absstract of: AU2023356200A1

Provided herein are compositions and methods for the coating of nanoparticulates. More specifically, the present invention relates to a coated carbonate, a process for the preparation of such, and its use as an additive in the production of composite.

FACILE PREPARATION OF CARBON NANOTUBE HYBRID MATERIALS BY CATALYST SOLUTIONS

Publication No.:  US2025109023A1 03/04/2025
Applicant: 
WILLIAM MARSH RICE UNIV [US]
William Marsh Rice University
US_2025109023_PA

Absstract of: US2025109023A1

Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.

SEMICONDUCTOR NANOPARTICLE COMPOSITE FILM, COMPOSITE BASE AND DEVICE INCLUDING THE SAME, AND METHOD FOR MANUFACTURING SEMICONDUCTOR NANOPARTICLE COMPOSITE FILM

Publication No.:  US2025109022A1 03/04/2025
Applicant: 
OSAKA UNIV [JP]
OSAKA UNIVERSITY
US_2025109022_PA

Absstract of: US2025109022A1

The present disclosure relates to a semiconductor nanoparticle composite film including semiconductor nanoparticles and diamond-like carbon (DLC), the composite film satisfying at least one selected from the group consisting of: i) the composite film includes mainly the semiconductor nanoparticles; and ii) at least a portion of the semiconductor nanoparticles are arranged in line. The composite film can be obtained by, for example, irradiating a semiconductor nanoparticle-containing film including semiconductor nanoparticles and a carbon source with an ion beam to generate DLC. The carbon source includes an organic compound other than a polymer.

Silicon carbon composite materials and methods for making same

Publication No.:  AU2025201765A1 03/04/2025
Applicant: 
SICONA BATTERY TECH PTY LTD
Sicona Battery Technologies Pty Ltd
AU_2025201765_A1

Absstract of: AU2025201765A1

Abstract The invention relates generally to a method for making a silicon-carbon composite comprising nanoscale silicon and carbon, the method comprising the steps of preparing a dispersion of silicon nanoparticles and the selected forms of carbon; spray drying the dispersion to form essentially spherical silicon nanoparticles; heat treating the silicon nanoparticles to pyrolyse and/or bum off any polymers, and to strengthen the silicon nanoparticles; coating the silicon nanoparticles with carbon to form the Si:C composite; and optionally, adding additional elements such as lithium, magnesium, nitrogen and halogen gases to the composite, either during the heating step (c) or coating step (d) or during a subsequent heat treatment step. The invention relates further to composites made by such method, an anode made of such composite and a batter comprising such anode.

MANGANESE-BASED CARBONATE PRECURSOR, LITHIUM-RICH MANGANESE-BASED POSITIVE ELECTRODE MATERIAL AND LITHIUM-ION SECONDARY BATTERY

Publication No.:  EP4530256A1 02/04/2025
Applicant: 
NINGBO RONBAY NEW ENERGY TECH CO LTD [CN]
Ningbo Ronbay New Energy Technology Co., Ltd
EP_4530256_A1

Absstract of: EP4530256A1

Provided in the present invention is a manganese-based carbonate precursor of a positive electrode material for a secondary battery. In the manganese-based carbonate precursor that has a specific structure and composition and contains a trace amount of uniformly distributed Na element, a content of Na is in a range of 0.5-3 mol%, which range can ensure that the structural integrity and consistency of carbonate crystals are not affected. In addition, the trace amount of Na element is uniformly distributed inside the manganese-based carbonate precursor provided in the present invention, and by means of simple mixing with a lithium source and sintering, a lithium-rich manganese-based material uniformly doped with Na element can be directly obtained without the need for introducing other Na source, whereby uneven doping of Na is effectively avoided, the doping effect is improved, and the electrical properties of the material are significantly improved, without a significant increase in the production cost at the same time. The precursor has a high primary particle crystallinity degree, and a good crystal structure. The lithium-rich manganese-based positive electrode material containing a trace amount of Na element provided in the present invention effectively improves the initial charging-discharging coulombic efficiency, the first-cycle discharge capacity, an average voltage, and the energy efficiency.

一种具有可逆性的快速光响应多色荧光CDs材料的制备方法及所得产品、应用

Publication No.:  CN119736083A 01/04/2025
Applicant: 
曲阜师范大学
CN_119736083_PA

Absstract of: CN119736083A

本发明属于功能材料制备领域,具体涉及一种具有可逆性的快速响应多色荧光CDs材料的制备方法及所得产品、应用。该方法通过以下步骤实现:首先利用萘‑1,4,5,8‑四羧酸、尿素、二乙胺和去离子水制备N‑CDs;然后将N‑CDs溶于不同浓度的四乙烯五胺(TEPA)溶液中,得到不同浓度的N‑CDs/四乙烯五胺(N‑CDs/TEPA)溶液。本发明首次实现了从深红色到浅绿色的宽范围可调谐光响应荧光颜色变化,填补了该项技术空白;实现了可重复动态信息编码的应用,在高级动态信息加密领域显示出巨大应用潜力。该工作的优点在于快速实现CDs材料的光响应可逆多色荧光发射,响应时间最快达0.5s,具有明显优势。本发明采用简单快捷的方法制备了快速响应多色荧光CDs材料,并且制备工艺简单,成本低。

一种石墨烯悬浮液及其制备方法和一种石墨烯增强碲铜复合材料及其制备方法

Nº publicación: CN119736508A 01/04/2025

Applicant:

哈尔滨东大高新材料股份有限公司

CN_119736508_A

Absstract of: CN119736508A

本发明提供了一种石墨烯悬浮液及其制备方法和一种石墨烯增强碲铜复合材料及其制备方法,属于电工材料技术领域。本发明将鳞片石墨、纳米氧化铜和溶剂混合,然后进行超声剥离,得到石墨烯悬浮液;所述纳米氧化铜的平均粒径为1~50nm。本发明通过在超声剥离的过程中加入纳米氧化铜,利用超声过程的空化作用,可实现液‑固相剥离石墨烯,由于纳米氧化铜的尺寸很小,所以在对石墨撞击过程中不会对石墨烯造成严重破坏,而只打开层间的范德华力,保证剥离过程只在石墨烯层间进行,从而获得高质量的单层和少层石墨烯悬浮液;同时纳米氧化铜在制备碲铜复合材料时可以还原为铜,不会引入其他的金属杂质,提高了碲铜复合材料的纯度。

traducir