Absstract of: CN120519157A
本发明提供了一种色氨酸基聚合物碳点缓蚀剂及其制备方法和应用,涉及碳量子点缓蚀剂技术领域。所述色氨酸基聚合物碳点缓蚀剂是以色氨酸和苯丙氨酸为反应前驱体,通过溶剂热反应使所述反应前驱体的分子之间发生缩合反应,再通过透析和冻干后即得到所述色氨酸基聚合物碳点缓蚀剂。采用本发明技术方案制备得到的所述色氨酸基聚合物碳点缓蚀剂可与金属离子发生相互作用,在金属表面形成吸附膜,进而有效地抑制金属在酸性介质中的腐蚀,且还具有缓蚀效率高、合成方法简单、成本低廉,绿色环保等优点,适宜于大规模的推广和应用,尤其地,在pH~0的酸性环境中,缓蚀效率最高达96%。
Absstract of: CN120518062A
本发明公开了一种具有抗菌和抗炎特性的槲皮素基碳点、其制备方法及应用。该槲皮素基碳点的制备方法包括以下步骤:①S1:槲皮素和4‑氨基苯酚加入纯水中,混合,超声,将所得混合溶液转移到高压反应釜中,加热下反应;②S2:为反应结束后,冷却至室温,过滤,滤液冷冻干燥,获得槲皮素基碳点(QA‑CDs)。本发明提供的QA‑CDs表现出了显著的ROS清除能力,并有效调节炎症相关因子的表达水平;QA‑CDs在有效发挥了抗菌活性的同时能调节炎症微环境,从而表现出显着的双重功能特性。本发明为基于黄酮的化合物的应用建立了新方案,而且为开发具有双重治疗效果的创新生物活性材料提供了有前途的研究框架,能极大地推动细菌感染治疗领域创新策略的发展。
Absstract of: CN120518047A
本发明涉及钠离子电池正极材料技术领域,具体涉及一种高导电复合磷酸铁钠材料制备方法,包括以下步骤:S1、将碳源分散于乙醇溶液中,然后加入硝酸铁、磷酸二氢钠和柠檬酸,混合搅拌形成前驱体溶液;S2、将步骤S1中分散于乙醇溶液中的碳源置于大气压射流等离子体装置中,以氮气‑氧气混合气体为工作气体,在功率400W、处理时间40分钟下进行表面改性,获得改性碳源;S3、将步骤S2中改性碳源与模板剂按质量比1:3加入前驱体溶液中,超声分散后喷雾干燥,得到前驱体粉末。
Absstract of: CN120518067A
本申请涉及医用纳米复合材料技术领域,具体公开了一种纳米二氧化硅插层改性石墨烯复合材料的制备方法,包括以下步骤:(1)采用NaOH溶液在40‑60℃处理石墨烯,然后稀释至pH为9‑10,得到石墨烯悬浮液;(2)在步骤(1)的石墨烯悬浮液中滴加预水解TEOS溶液,进行分阶段控温操作;分阶段控温操作为:首先在30‑40℃下水解,再升温至50‑60℃完成缩聚,过程中同步添加两亲性嵌段共聚物;且在缩聚过程中进行pH值从9到7到5的梯度调节;(3)将步骤(2)得到的最终产物经喷雾干燥,煅烧处理后,得到纳米二氧化硅插层改性石墨烯复合材料。本申请能够获得在透光率、硬度、导电性、耐腐蚀性和界面结合性上表现优异的纳米二氧化硅插层改性石墨烯复合材料。
Absstract of: CN120518081A
本发明涉及锂离子电池领域,公开了一种制备硅碳负极材料的方法。该方法包括:(1)在溶剂存在下,将微米硅、石墨烯和沥青进行超声处理,得到混合液I;(2)将所述混合液I进行喷雾干燥,得到物料I;(3)在惰性气体氛围下,将所述物料I进行煅烧,得到所述硅碳负极材料。该方法能够提高硅碳负极材料的导电性,制得的硅碳负极材料的结构稳定性优异,能够提高电池首次库伦效率。
Absstract of: CN120527387A
本发明涉及电池负极材料领域,具体涉及一种碳基负极集流体及其可控制备方法与应用。本发明解决了现有技术中生物质硬碳的制备成本高且作为碱金属电池负极载体性能不佳的问题。本发明利用木质素的两亲性自组装特性得到纳米球前驱体,然后高温碳化得到改性的木质素基硬碳纳米球。本发明中的木质素基硬碳纳米球具有可灵活调控的尺寸、孔结构、晶格间距以及石墨化程度。本发明方法可以通过改变木质素溶液的初始浓度、温度、pH和搅拌速度调控改性木质素基硬碳纳米球的结构和球体尺寸。具有大空腔的BLM0.5材料作为钠金属负极载体,表现出优异的电化学性能,为缓解碱金属负极枝晶生长和体积膨胀问题提供了载体几何结构设计的新角度。
Absstract of: CN120518061A
本发明属于电池材料领域,公开了一种原位交联‑曲率诱导制备多孔炭材料及其方法和应用,其制备方法具体包括:将生物质粉末与含有丙烯酸酯基团的溶液混合后进行水热反应,得到碳纳米点悬浮液,旋转蒸发,得到碳纳米点粉末;将碳纳米点粉末进行紫外光照射;将照射后的碳纳米点粉末分散于溶剂中,形成悬浮液,置于外场装置中曲率诱导,诱导后的碳纳米点分离、清洗并干燥,得到多孔炭前驱体;将多孔炭前驱体煅烧,随后酸洗、干燥,得到多孔炭材料。本发明的多孔炭材料具有类蛇鳞状结构,独特的结构为硅颗粒在充电过程中的体积膨胀提供了缓冲空间,能够有效分散应力,减少因体积膨胀导致的机械破坏,提高材料的循环稳定性。
Absstract of: CN120518063A
本发明公开一种金属钼掺杂红色碳点的制备方法,属于纳米材料合成与生物医学检测领域。针对传统金属掺杂碳点制备中存在的金属前驱体与碳源混合效率低、掺杂不均、反应条件缺乏优化、产物粒径分布宽及稳定性差等问题,该制备方法包括:将摩尔比1:1‑5的对苯二胺与4‑氨基甲酰苯硼酸溶于超纯水中,加入钼酸铵四水合物超声处理,转移至高压反应釜于150‑200℃反应,经离心、过滤、透析及冷冻干燥得到固体粉末。该方法通过控制原料配比、反应条件及纯化步骤,实现金属钼的高效均匀掺杂。所得碳点可用于体外癌细胞可视化检测,通过激光共聚焦显微镜采集荧光图像判定癌细胞,还可作为近红外激光依赖型抗癌药物成分,在生物医学领域具有重要应用价值。
Absstract of: US2025236521A1
Flash Joule heating (FJH) for production of one-dimensional (1D) carbon and/or boron nitride nanomaterials, and 1D materials integrated with 0D, 1D, 2D, and 3D nanomaterials, composites, nanostructures, networks, and mixtures thereof. Such materials produced by FJH include 1D carbon and hybrid nanomaterials, boron nitride nanotubes (BNNTs), turbostratic boron-carbon-nitrogen (BCN), doped (substituted) graphene, and heteroatom doped (substituted) re-flashed graphene.
Absstract of: US2025266090A1
A complex nanostructure, which includes a first nanostructure component having at least one aperture in a side thereof; at least one second nanostructure component having a first end and a second end, wherein the first end of each of the at least one second nanostructure is inserted through a corresponding one of the at least one aperture in the first nanostructure, thereby forming at least one junction. Embodiments of the complex nanostructure include a bifurcated nanostructure transistor constructed of linear carbon nanotubes, a multiplexer constructed of a circular carbon nanotube and multiple linear carbon nanotubes, and an information unfolder constructed of linear or a combination of linear and circular carbon nanotubes. The nanotubes may optionally be decorated with genetic material such as single-strand or double-strand human DNA segments and/or may be modified by e-beam or ozone gas to add defects into the nanotubes to alter electrical/functional characteristics.
Absstract of: US2025266178A1
A thermal power reactor is provided. The thermal power reactor includes a reactor core arranged to generate thermal energy and a solid state thermal conductor including a graphene based metamaterial. The solid state thermal conductor extends into and is thermally integrated with the reactor core. The solid state thermal conductor is arranged to transfer thermal energy generated by the reactor core away from the reactor core.
Absstract of: US2025266463A1
A composite carbonaceous conductive material including a carbon nanotube, and a coating layer on a surface of the carbon nanotube, and the coating layer including a nitrogen element (N), a boron element (B), and an oxygen element (O) is provided. A weight ratio (B/N ratio) of a content (e.g., amount) of the boron element (B) to a content (e.g., amount) of the nitrogen element (N) in the coating layer is greater than or equal to about 0.7 and less than or equal to about 1.3, and the content (e.g., amount) of the boron element (B) in the coating layer is greater than or equal to about 1.0 wt % and less than or equal to about 21 wt % based on a total 100 wt % of the composite carbonaceous conductive material.
Absstract of: US2025264704A1
Electrical energy generation system with an assembly comprising: a light concentrating funnel; a multilayer photovoltaic cell; a thermos-electric layer: and a thermal stabilization device, wherein each layer of the multilayer photovoltaic cell contains: 5 semiconductor nanoparticles complexed with perovskite, an electrolyte, and a catalyst. The system assembly is arranged so as light can enter at a range of incidence angles at the light concentrating funnel, is directed and concentrated, then exits the light concentrating funnel and irradiates the multilayer photovoltaic cell where a voltage is generated, and the residual heat from these processes is stabilized with a thermal stabilization device.
Absstract of: US2025262894A1
The present invention is directed to additive manufacturing compositions and methods for producing additive manufacturing composite blends with oxidized discrete carbon nanotubes with dispersion agents bonded to at least one sidewall of the oxidized discrete carbon nanotubes. Such compositions are especially useful when radiation cured, sintered or melt fused.
Nº publicación: WO2025171737A1 21/08/2025
Applicant:
HUANENG CLEAN ENERGY RES INSTITUTE [CN]
\u4E2D\u56FD\u534E\u80FD\u96C6\u56E2\u6E05\u6D01\u80FD\u6E90\u6280\u672F\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8
Absstract of: WO2025171737A1
A silicon-based graphene as well as a preparation method therefor and the use thereof. The preparation method for the silicon-based graphene comprises the following steps: (1) mixing graphite, silicon powder and silicon dioxide to obtain a first mixture; (2) carrying out intercalation and exfoliation on the graphite in the first mixture by means of using fluid shearing assisted supercritical carbon dioxide technology, so as to exfoliate the graphite in the first mixture into graphene, thus forming a second mixture of graphene, silicon powder and silicon dioxide; and (3) carrying out high-temperature sintering on the second mixture to obtain the silicon-based graphene in which silicon monoxide is covered with spherical graphene.