Absstract of: CN121355239A
本发明提供一种硒化锰‑碳纳米管复合多孔碳材料及其制备方法,该制备方法将具有优异导电性能的碳纳米管、纳米硒粉、锰盐和聚乙烯吡咯烷酮作为反应原料,通过程序升温实现硒化和碳化一步完成,缩短了反应流程,降低了生产的经济和时间成本,克服了目前负极材料制备过程中需要添加各种化学试剂、制备工艺复杂的问题,并且本发明所采用的制备方法,无污染物排放,符合绿色化学的原则,有利于环境保护。
Absstract of: CN121355205A
本发明提供一种锂电池负极材料及其制备方法,涉及锂电池技术领域。具体制备步骤包括:(1)将黄腐酸加入碱性溶液浸渍,过滤,冷冻干燥,得到处理后黄腐酸;(2)将处理后黄腐酸和三聚氰胺加入缓冲溶液中,振荡,等离子体处理,过滤,在惰性气氛下梯度煅烧,得到层状氮/碳纳米片;(3)将层状氮/碳纳米片和马来酸酐加入到正己烷中反应,得到酸酐接枝的层状氮/碳纳米片;(4)将纤维素纳米晶、柠檬酸钠和(3‑氨丙基)三乙氧基硅烷加入缓冲溶液中,微波处理,得到改性纤维素纳米晶;(5)将酸酐接枝的层状氮/碳纳米片和改性纤维素纳米晶复合得到锂电池负极材料。本发明的负极材料显著增加锂离子扩散效率,增强储锂性能,提高倍率性能。
Absstract of: CN121342006A
一种碳纳米管气凝胶及其制备方法,属于碳基气凝胶材料领域。所述碳纳米管气凝胶主要由高长径比碳纳米管和原位生成的玻璃碳固结节点构成三维多孔网络;玻璃碳主要分布在碳纳米管的搭接节点处。所述方法为:利用碳源在催化剂的条件下沉积碳纳米管,形成三维气凝胶网络;反应温度为600℃~1200℃,碳源和催化剂溶液进给速率控制在0.1~10 mL/min,反应时间为5min~48h。本发明制备得到的碳纳米管气凝胶兼具高强度与高弹性变形能力。碳纳米管网络提供了优异的可逆弹性,能够实现超过50%甚至90%的大幅度可逆压缩应变;玻璃碳固结节点则显著提高了节点结合强度,使材料整体压缩强度可达MPa级别,从而突破了现有碳纳米管气凝胶仅有kPa级强度的瓶颈。
Absstract of: CN121342581A
本发明提供了一种碳点纳米酶在果蔬保鲜和作物生长中的应用。本发明还提供一种碳点纳米酶的制备方法,该碳点纳米酶以农业废弃物为主要碳源,通过引入氮掺杂剂及抑菌增强剂,采用水热法合成制得。本发明所得碳点纳米酶可通过叶面喷施或采后处理方式应用于多种果蔬保鲜,有效延长保鲜期、降低失重率并维持营养成分;同时,该碳点纳米酶可作为生物肥料通过叶面喷施促进作物生长、提高作物产量。本发明制备的碳点纳米酶的原料来源广泛、成本低廉,制备工艺简单,具有良好的生物相容性和多功能效果,适配果蔬保鲜与作物生长促进的规模化需求,同时能够清除作物中的活性氧,实用性较强,有利于推广。
Absstract of: CN121344646A
本发明提供了一种基于水滑石前体构建Ru点缀Co7Fe3电催化剂的制备方法,该方法包括制备CoFe‑LDH/GO前驱体和制备Ru/Co7Fe3/rGO。还提供了应用,该电催化剂用于碱性KOH电解液中电解水制氢。本发明在GO上均匀分散的Ru颗粒和Co7Fe3合金颗粒,促进反应活性位点与碱性电解质的充分接触,提升了电催化活性,Ru的引入促进了合金水分解的过程,提升了OER和HER的反应动力学,达到优化CoFe合金HER性能的目的。
Absstract of: CN121355269A
本发明提出了一种多孔碳纳米纤维及其制备方法与应用,属于钠金属电池技术领域。本发明先将聚丙烯腈溶于N,N‑二甲基甲酰胺中,然后加入氯化亚锡二水合物,得到含锡的纺丝溶液,随后通过高压静电纺丝机纺丝后得到Sn@PAN,经过固化以及高温氧化后得到SnO2@NC,最后经过碲化处理后得到SnO2/SnTe@NC的多孔碳纳米纤维材料。该材料的纤维结构均匀分布SnO2/SnTe异质结构,电激活后产生的Na2O和Na2Te可作为无机组分参与SEI的形成,增强SEI的机械强度并且加快钠离子传输;均匀分布的Na15Sn4可作为亲钠位点,诱导钠均匀沉积,有效抑制钠枝晶的生长,显著提高钠金属电池的循环寿命和稳定性。
Absstract of: CN121342002A
本发明公开了一种金属掺杂碳点纳米酶及其制备方法、应用,所述制备方法包括:(1)采用固相热解法对含有多元酸和多元胺的混合物进行脱水、聚合反应,得到粗产物碳点;(2)将所述粗产物碳点溶于溶剂中,反相沉淀得到纯化后的碳点;(3)将所述纯化后的碳点与金属盐混合溶解,反相沉淀得到所述金属掺杂碳点纳米酶。此制备方法简单快捷,产率高,可以用于水果保鲜。
Absstract of: CN121342003A
本发明提供一种单分散环糊精衍生炭纳米球及其制备方法,涉及材料领域。单分散环糊精衍生炭纳米球的制备方法包括:将环糊精、表面活性剂和水混合,进行水热炭化反应;所述水热炭化反应结束后,将混合物冷却、离心分离,并在所述离心分离的过程中加入电解质,再洗涤、收集固体产物,干燥得到所述单分散环糊精衍生炭纳米球。该方法基于水热炭化过程,制备出具有单分散特性的炭纳米球,整个工艺简单、条件温和、环境友好,所制得的材料在储能、吸附剂及催化剂载体等多个领域展现出广泛的应用潜力。
Absstract of: CN121338896A
本发明涉及石墨烯加工技术领域,具体公开了一种纳米石墨烯粉制备方法,所述制备方法包括称取石墨原料;打开投料舱的卸料阀,将石墨原料投入稳压舱;将石墨原料由稳压舱吸入一级气流磨高压舱,进行一级气磨,得到一级磨料;将厚度不大于10微米的一级磨料输送至二级气流磨高压舱;由二级气流磨高压舱对一级磨料进行加工,得到二级磨料;将厚度不大于100纳米的二级磨料输送至流能解聚舱;由流能解聚舱对二级磨料进行加工,筛选得到纳米石墨烯粉;本发明通过三级梯度化加工架构对高纯石墨原料进行加工,在每一加工环节中引入负反馈调节方案,对不同阶段的产物质量进行把控,构建了一种递进式的加工工艺,极大地提高了产物率。
Absstract of: WO2026013585A1
According to embodiments of the present invention, a device is provided. The device includes a substrate, a plurality of carbon nanotubes arranged in a two-dimensional layer with a thickness of between about 1 nm and about 40 nm on the substrate, the plurality of carbon nanotubes being arranged with gaps between the carbon nanotubes, and a conducting polymer arranged over the plurality of carbon nanotubes and in the gaps, wherein the device is configured for, in response to an electrical signal applied to the device, formation of conductive channels in the gaps and through the conducting polymer, and in response to removal of the electrical signal, dissolution of the conductive channels. A device arrangement for an artificial neural network is also provided, having the device, and an electrode arrangement electrically coupled to the device, the electrode arrangement being configured for electrical signal measurements.
Absstract of: US20260018314A1
Described are methods for preparing radionuclides, such as radionuclides having a high specific activity. The disclosed methods include irradiating a target material with a neutron source. The target material can be prepared by dissolving a target nuclide salt in an aqueous solution including solid carbon nanostructured material that is suspended using a surfactant, allowing the target nuclide ions to be positioned proximal to the solid carbon nanostructured material. The solution can be dried to remove excess water, to form a dry or powdered material. Upon irradiation, the target nuclide ions are activated and can recoil, driving adsorption of produced radionuclides onto the solid carbon nanostructured material. After irradiation, the solid carbon nanostructured material can be washed to remove non-adsorbed components, like surfactant molecules and the target nuclide salt, and then the treated with an acid to release the radionuclides to solution.
Nº publicación: AU2024288121A1 15/01/2026
Applicant:
UNIV DE SANTIAGO DE COMPOSTELA
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
Absstract of: WO2025012300A1
It relates to a material comprising a plurality of nanorods encapsulated within open-ended hollow carbon nanostructures, wherein the plurality of nanorods is composed of either a) a transition metal oxide of the formula AzM'2 yMn1 -xO2 (A), or alternatively, b) a transition metal oxide of the formula M''3m/nM2-mO3 (B), as defined herein, wherein the transition metal oxide of the formula (A) or formula (B) is in an amount from 20 to 60% by weight with respect to the total material weight; and the volume of the nanorods encapsulated within hollow carbon nanostructures is equal to or less than 50% with respect of the total cavity volume of the hollow carbon nanostructures, in particular, wherein the hollow carbon nanostructures are tubular and their internal average diameter is at least 2 times the average thickness of the nanorods. It also relates to a process for preparing this material, to a precursor material RtM'''3-tO4 (C) as defined herein from which the material is obtained, and to the use of the material as electrocatalyst in different applications.