Absstract of: US2025206420A1
A marine structure includes a jacket-structure including at least one float element having a first buoyancy, and a linear guide sleeve; a sub-structure including a counterweight structure having a second buoyancy and a leg extending through the guide sleeve, the leg having a lower end connected to the counterweight structure and having an upper end provided with a stop element, where the leg is movable through the corresponding guide sleeve between a towing position, where the stop element is remote from the guide sleeve and where the guide sleeve allows linear motion of the at least one leg with respect to the support structure, and an operating position, where the stop element engages a corresponding counter element of the guide sleeve and wherein the at least one leg is fixated with respect to the at least one guide sleeve.
Absstract of: WO2025129247A1
The present invention relates to a tower for the mounting thereon of at least one wind turbine, each turbine comprising at least one set of rotor blades, the tower comprising: a periphery which is defined, at least in part, by: a plurality of peripheral beams, each of which extends substantially horizontally around at least a portion of the periphery of the tower; and a plurality of columns, each of which extends substantially vertically in the region of the periphery of the tower, and a plurality of radial beams, each of which extents substantially horizontally from a central region of the tower to the periphery of the tower, in which tower, at a plurality of vertically-spaced levels, a radial beam, a column, and at least two peripheral beams are connected in the region of the periphery of the tower FIG. 1
Absstract of: US2025206170A1
An electricity generator includes a wind tunnel positioned on the vehicle. The wind tunnel has an open first end and an open second end. The open first end is in communication with ambient air. A turbine chamber is fluidly coupled to the open second end of the wind tunnel. At least one wind turbine is positioned in the turbine chamber. The at least one wind turbine includes a housing. A rotor is positioned in the housing along an axis that is substantially perpendicular to an axis of the wind tunnel.
Absstract of: US2025205976A1
A method of manufacturing a root ring for a wind turbine blade comprising winding metal sheet material onto a mandrel to form a metal section proximate a hub end of the root ring. Sheet fibre material is also wound onto the mandrel to form a fibre section of the root ring proximate a tipwards end of the root ring. The metal sheet material is interleaved with the sheet fibre material to form a transition section of the root ring between the metal section and the fibre section.
Absstract of: US2025205980A1
A wind turbine blade mold including a first mold surface, at least one aperture located within the first mold surface, the at least one aperture configured to receive at least one pin, the least one pin having a first end and a second end defining a length extending therebetween, the second end of the pin disposed within a pin driver, the pin driver disposed on a second mold surface, the pin driver configured to displace the at least one pin from a retracted position wherein the first end of the at least one pin is disposed below the first mold surface, to an extended position wherein the first end of the at least one pin is disposed above the first mold surface.
Absstract of: US2025207560A1
A torque transmitting coupling assembly for a wind turbine is provided configured to couple a first coupling part to a second coupling part, wherein the first coupling part and the second coupling part are configured to rotate about a longitudinal axis of the torque transmitting coupling assembly, wherein the first coupling part is supported by a first bearing and a second bearing distributed along the longitudinal axis, wherein the first coupling part is enclosed by a bearing housing and the first and second bearings are arranged between the first coupling part and the bearing housing, wherein the second coupling part is enclosed by a second coupling part housing, wherein the first coupling part and the second coupling part are rigidly coupled by a plurality of fastening means.
Absstract of: US2025207557A1
Methods, systems and apparatuses including systems and methods that can be used for operating a hydrokinetic turbine such as along one or more flow channels of an ocean tidal region for power generation is disclosed. The hydrokinetic turbine can be positioned within the one or more flow channels or can be shaped to form one or more flows and can be turned by the flow of the ocean tidal region.
Absstract of: US2025207561A1
A method of disengaging a rotor-lock of a wind turbine, the rotor comprising one or more blades, which due to the gravitational pull, generates a rotor torque which is opposed by a rotor-lock counter-torque from the rotor-lock, the method comprising: a) determining a direction of the rotor torque with a sensor system; b) applying a rotor-drive counter-torque to the rotor with a rotor-drive system, wherein the rotor-drive counter-torque acts to oppose the determined rotor torque and causes the rotor-lock counter-torque to reduce; c) during or after the application of the rotor-drive counter-torque, disengaging the rotor-lock mechanism; wherein the step of determining a direction of the rotor torque comprises applying a torque restriction to the rotor-drive based on the determined direction of the rotor torque, the torque restriction preventing the application of torque to the rotor by the rotor-drive system in the same direction as the rotor torque.
Absstract of: US2025207562A1
A method of lubricating a main bearing of a wind turbine, the method comprising providing the main bearing. The main bearing comprises a main bearing housing having one or more pre-existing lubrication ports, an outer race, an inner race radially disposed inwardly from the outer race, and a first row of roller bearings and a second row of roller bearings. The first and second rows of roller bearings are radially disposed between the inner race and the outer race. The first row of roller bearings is axially disposed on the upwind side of the second row of roller bearings. The method includes forming one or more alternate lubrication ports in the main bearing housing. The alternate lubrication ports are configured to deliver a lubricant between the first row of roller bearings and the second row of roller bearings. The method includes supplying the lubricant to the alternate lubrication ports.
Absstract of: US2025207558A1
A wind turbine with a retractable blade and a thrust force transmission structure provides an adjustable blade length system that maintains the airfoil shape and does not negatively impact aerodynamic efficiency. Thrust Force Transmission Structure that directly transfers the thrust forces from the blade tip to the hub, thereby reducing bending stresses and acting as a damper. This system significantly reduces the torque experienced at the root section, leading to a lighter blade design and extended blade lifespan.
Absstract of: US2025207559A1
A wind turbine comprising a control network is provided. The control network comprising control-network nodes with one or more control-network nodes in the rotor and one or more control-network nodes in the nacelle. A monitoring network is also provided, comprising monitoring-network nodes with one or more monitoring-network nodes in the rotor and one or more monitoring-network nodes in the nacelle. An optical fibre is shared by the two networks and extends between the nacelle and the rotor. First and second wavelength division multiplexer/demultiplexers are provided in the rotor and in the nacelle.
Absstract of: WO2024139197A1
A gearbox, comprising: a first end cap (100), which is annular and comprises a first body (110) and a first annular portion (120) located at one side of the first body; a second end cap (200), which is arranged at one side of the first end cap, is arranged in a rotatable manner relative to the first end cap, is annular and comprises a second body (210) and a second annular portion (220) located at one side of the second body, the second annular portion and the first annular portion being located between the first body and the second body, and the second annular portion and the first annular portion being sleeved with each other and being arranged spaced apart from each other; and a sealing component (300), which abuts between the first annular portion and the second annular portion and is arranged spaced apart from the first body in a first direction (X). The first end cap further comprises a first oil discharge hole (130); and the first body, the sealing component, the first annular portion and the second annular portion are enclosed to form a first cavity (Q1) which is in communication with the first oil discharge hole, such that a sealing effect of the gearbox can be effectively improved. The present invention further relates to a wind turbine generator set comprising the gearbox.
Absstract of: WO2025131192A1
A tower support arrangement comprises a wind turbine base tower section that is joinable to an offshore foundation, such as a monopile. An annular foundation wall has an axis (X), and a foundation flange disposed at an end of the foundation wall. The foundation flange is substantially orthogonal to the foundation wall. A first end face portion of the foundation wall disposed at the upper end of the foundation is substantially orthogonal to the axis (X).A second end face portion of the foundation flange is downwardly inclined. The base tower section comprises: an annular tower wall and a tower flange that is configured to be joinable to the foundation flange, wherein the tower flange has a first end face portion and wherein the tower wall has a second end face portion. The base tower section and the offshore foundation are configured such that a clearance (C) is defined between i) the first end face portion (62) of the tower flange (48) and the second end face portion (64) of the tower wall (46), and ii) the first end face portion (54) of the foundation wall (50) and second end face portion (56) of the foundation flange (52). Advantageously, the presence of the clearance channel provides tolerance to ovalities between the tower flange and the foundation flange that could otherwise lead to stress concentrations at the joined surfaces.
Absstract of: WO2025136392A1
A superconducting generator includes an armature assembly and a segmented field winding assembly having a plurality of interconnected field winding modules. Each field winding module includes a vacuum vessel and a plurality of superconducting field coils carried by a coil support structure within the vacuum vessel. The superconducting field coils are in direct thermal contact with a thermal bus network. At least one cryocooler is in direct thermal contact with the thermal bus network. The superconducting field coils are maintained at a cryogenic temperature via direct thermal conduction cooling by the cryocoolers and the thermal bus bar network.
Absstract of: WO2025136363A1
A floating offshore wind turbine includes a buoyant tension leg platform with radially extending braces. A tensioned mooring line and tensioning device is connected to each brace. A control system in communication with the tensioning devices determines determine a wind condition of wind acting on the wind turbine and, based on the wind condition, determines a set length of the mooring lines to induce a pitch offset in the tension leg platform and a lean angle of the tower into the wind The lean angle is computed to generate a gravity moment in the wind turbine that offsets a bending moment induced in the tower from the wind.
Absstract of: DE102023213223A1
Offenbart wird Unterwasserturbine (1) mit einer Rotornabe (2), die drehfest mit einer Rotorhauptwelle (6) verbunden ist und dazu ausgelegt ist, die Rotorhauptwelle (6) anzutreiben, wobei sich die Rotorhauptwelle (6) in eine über die Rotorhauptwelle (6) mit der Rotornabe (2) verbundenen Gondel (8) erstreckt und dort einen darin aufgenommenen Generator (10) antreibt, wobei die Rotornabe (2) weiterhin dazu ausgelegt ist, zumindest ein Rotorblatt (4) zu tragen, wobei das mindestens eine Rotorblatt (4) an einer Rotorblattwelle (204) befestigt ist und wobei die Rotorblattwelle (204) drehbar an der Rotornabe (2) gelagert ist und ein erstes rotornabenseitiges Ende (208), das in einen Innenraum der Rotornabe (2) ragt, und ein zweites seeseitiges Ende (207), das drehfest an dem jeweiligen Rotorblatt (4) befestigbar ist, aufweist, wobei jeweils das rotornabenseitige Ende (208) der Rotorblattwellen (204) dazu ausgelegt ist, mit einer Rotorblattverstellanordnung (300) zusammenzuwirken, um die mindestens eine Rotorblattwelle (204) zu drehen, wobei die Rotorblattverstellanordnung (300) weiterhin eine translatorisch bewegbare Schubstange (332) aufweist, die ein erstes rotornabenseitiges Ende (334) aufweist, das dazu ausgelegt ist, in die Rotornabe (2) der Unterwasserturbine (1) hineinzuragen und mindestens eine Verbindungsvorrichtung (340) aufweist, die dazu ausgelegt ist, mit der Rotorblattwelle (204) derart verbindbar zu sein, dass die translatorische Bewegung der Schubstange (332) in ein
Absstract of: DE102023136038A1
Die Erfindung betrifft eine Windkraftanlage (10) mit einem Gehäuse (12) und mit einer Anordnung aus zwei in dem Gehäuse (12) gegenläufig um vertikale Rotorachsen (14, 15) drehbar gelagerten, jeweils eine Mehrzahl von Rotorblättern (18) aufweisenden Rotoren (16, 17), wobei die Rotorachsen (14, 15) in einer Ebene (24) liegen, wobei das Gehäuse (12) auf beiden Seiten der Anordnung der Rotoren (16, 17) in den außenliegenden Bereichen (32, 33) jeweils ein vertikales Luftleitelement (34, 35) aufweist, wobei das Gehäuse (12) im mittigen Bereich (30) und anströmseitig vor der Anordnung der Rotoren (16, 17) einen vertikalen Windteiler (40) aufweist, wobei der vertikale Windteiler (40) so ausgestaltet und relativ zu den vertikalen Rotorachsen (14, 15) angeordnet ist, dass beide Rotoren (16, 17) in den außenliegenden Bereichen (32, 33) angeströmt werden und wobei der vertikale Windteiler (40) beidseitig in die außenliegenden Bereiche (32, 33) hineinragt.
Absstract of: DE102023213227A1
Offenbart wird Unterwasserturbine (1) mit einer Rotornabe (2), die drehfest mit einer Rotorhauptwelle (6) verbunden ist und dazu ausgelegt ist, die Rotorhauptwelle (6) anzutreiben, wobei sich die Rotorhauptwelle (6) in eine über die Rotorhauptwelle (6) mit der Rotornabe (2) verbundenen Gondel (8) erstreckt und dort einen darin aufgenommenen Generator (10) antreibt, wobei die Rotornabe (2) weiterhin dazu ausgelegt ist, zumindest ein Rotorblatt (4) zu tragen, wobei das mindestens eine Rotorblatt (4) an einer Rotorblattwelle (204) befestigt ist und wobei die Rotorblattwelle (204) drehbar an der Rotornabe (2) gelagert ist und ein erstes rotornabenseitiges Ende (208), das in einen Innenraum der Rotornabe (2) ragt, und ein zweites seeseitiges Ende (207), das drehfest an dem jeweiligen Rotorblatt (4) befestigbar ist, aufweist, wobei jeweils das rotornabenseitige Ende (208) der Rotorblattwellen (204) dazu ausgelegt ist, mit einer Rotorblattverstellanordnung (300) zusammenzuwirken, um die mindestens eine Rotorblattwelle (204) zu drehen, wobei die Rotorblattverstellanordnung (300) weiterhin eine translatorisch bewegbare Schubstange (332) aufweist, die ein erstes rotornabenseitiges Ende (334) aufweist, das dazu ausgelegt ist, in die Rotornabe (2) der Unterwasserturbine (1) hineinzuragen und mindestens eine Verbindungsvorrichtung (340) aufweist, die dazu ausgelegt ist, mit der Rotorblattwelle (204) derart verbindbar zu sein, dass die translatorische Bewegung der Schubstange (332) in ein
Absstract of: WO2025131318A1
The present disclosure is related to methods (100, 200) for determining an aerodynamic imbalance in a wind turbine rotor (18). A method (100) comprises determining (110) a fore-aft oscillation of the wind turbine (10), determining (120) an azimuth angle of a blade (22) of the wind turbine (10), and based on the fore-aft oscillation and based on the azimuth angle, determining (130) a magnitude of the aerodynamic imbalance and determining a location of the aerodynamic imbalance. A controller (36) suitable for carrying out such methods (100, 200) and a wind turbine (10) comprising such a controller (36) are also provided.
Absstract of: WO2025131277A1
The present disclosure relates to wind turbines (10) and methods (100) for operating wind turbines (10). A method (100) for operating a wind turbine (10) comprises determining (140) a voltage below a predetermined level between the power converter (104) and the main transformer (105); and in response to determining (140) the voltage below the predetermined level, an auxiliary energy source (84) may supply power to one or more of the auxiliary components (108, 109). The auxiliary transformer (106) may be de-energized (160) and the auxiliary transformer (107) may be changed (170) to a different transformer ratio and then power may be delivered (180) to the auxiliary components (108, 109) using the auxiliary transformer (107) with the changed transformer ratio. Suitable control systems (36) and wind turbines (10) are disclosed as well.
Absstract of: DE102023213225A1
Offenbart wird Rotorblattlageranordnung (214) für eine Unterwasserturbine (1), wobei die Rotorblattlageranordnung (214) dazu ausgelegt ist, eine Rotorblattwelle (204) drehbar in einem Rotornabengehäuse (202) zu lagern, wobei die Rotorblattwelle (204) ein seeseitiges Ende (207), das dazu ausgelegt ist drehfest mit einem Rotorblatt (4) verbunden zu werden, und ein rotornabenseitiges Ende (208), das dazu ausgelegt ist von einer Rotornabe (2) aufgenommen zu werden, aufweist, und wobei die Rotorblattlageranordnung (214) die Rotorblattwelle (204) und eine erste seeseitige Lagereinheit (220) und eine zweite rotornabenseitige Lagereinheit (230) aufweist, wobei die erste und die zweite Lagereinheit (220; 230) voneinander in einem Abstand W angeordnet sind, wobei die erste und die zweite Lagereinheit (220; 230) als Gleitlager (225; 235) ausgebildet sind, die jeweils eine innere Gleitfläche (282; 292) und eine äußere Gleitfläche (281; 291) aufweisen, wobei die innere Gleitfläche (292) des ersten Gleitlagers (225) an dem seeseitigen Ende (207) der Rotorblattwelle (204) ausgebildet ist und die innere Gleitfläche (282) des zweiten Gleitlagers (235) an dem rotornabenseitigen Ende (208) der Rotorblattwelle (204) ausgebildet ist, und wobei die äußeren Gleitflächen (281; 291) des ersten und des zweiten Gleitlagers (225; 235) von einem Rotornabengehäuseabschnitt (252; 262) ausgebildet sind, wobei der Rotornabengehäuseabschnitt (252; 262) hohlrohrförmig ausgeformt ist und ein seese
Absstract of: DE102023005376A1
Volumenkörper, zum Beispiel Zylinder mit einem Beweglichen Kolben, die ihr Spezifisches Gewicht oder Ihren Schwerpunkt ändern können, werden an einem Halter befestigt, die einen rototischen Freiheitsgrad hat, zum Beispiel ein Rad oder ein Seil, dass um zwei Umlenkrollen geführt wird. Die Zusammensetzung aus Halterung und Volumenkörper, wird als System bezeichnet.
Absstract of: DE102023213220A1
Offenbart wird Rotornabe (2) für eine Unterwasserturbine (1) mit einem Rotornabengehäuse(202), das dazu ausgelegt ist, mindestens eine Rotorblattwelle (4) aufzunehmen, wobei die Rotorblattwelle (4) ein erstes rotornabenseitiges Ende (208) aufweist, das dazu ausgelegt ist, in einem Innenraum (210) des Rotornabengehäuses (202) aufgenommen zu sein, und ein zweites seeseitiges Ende (207) aufweist, das dazu ausgelegt ist, drehfest an einem Rotorblatt (4) befestigbar zu sein, wobei weiterhin die Rotorblattwelle (4) mittels einer ersten Lagereinheit (220) und einer zweiten Lagereinheit (230) in dem Rotornabengehäuse (202) gelagert ist, wobei die erste Lagereinheit (220) und die zweite Lagereinheit (230) in einem Lagerabstand W zueinander angeordnet sind, und dass die Rotornabe (2) weiterhin eine Rotorblattverdrehantriebsvorrichtung (316) aufweist, die eine senkrecht zu den Rotorblattwellen (4) ausgerichtete, drehbare Antriebswelle umfasst, die mit zumindest einem ihrer Enden in dem Innenraum (210) des Rotornabengehäuses (202) aufgenommen ist und an dem in dem Rotornabengehäuse (202) aufgenommenen Ende (208) drehfest mit einem zentralen Antriebskegelrad (314) verbunden ist, und die Rotorblattwelle (4) an ihrem ersten Ende (208) ein Kegelrad (312) aufweist, das mit dem zentralen Antriebskegelrad (314) derart zusammenwirkt, dass bei Betrieb des Antriebskegelrads (314), die Rotorblattwelle (4) gedreht wird.
Absstract of: WO2025133705A1
A bottom-fixed offshore wind turbine installation comprises a support column that is landed on the seabed in an upright orientation, resting on or slightly self-embedded into the seabed. The support column has buoyancy above its centre of gravity and ballast below its centre of buoyancy. Inclined tensioned tethers extend upwardly from the seabed to the support column. An operational wind turbine is supported atop the tethered support column to generate electricity for export. The support column can be towed horizontally, uprighted and held buoyantly above the seabed to position the support column above an installation point before being ballasted, landed, optionally further ballasted and then tethered before assembling or erecting the wind turbine on top. Buoyancy and/or ballasting of the tethered support column and/or tensioning of the tethers can be adjusted to control interaction with the seabed soil. Buoyancy and ballasting of the support column also cooperate to prevent the installation capsizing in the event of mooring failure.
Nº publicación: WO2025133990A1 26/06/2025
Applicant:
BP INTERNATIONAL LTD [GB]
BP INTERNATIONAL LIMITED
Absstract of: WO2025133990A1
A method is provided. The method includes determining (202) a power requirement of a power grid. The method also includes determining (204) a power output of each of a wind power generation system, a geothermal energy system, and a compressed air energy storage (CAES) system. The CAES system is configured to store energy from the wind power generation system and supply the stored energy to the power grid. The CAES system is thermally coupled to the geothermal energy system such that thermal energy transfers between the CAES system and the geothermal energy system. The method further includes supplying (206) power to the power grid from at least one of the wind power generation system, the CAES system, and the geothermal energy system.