Absstract of: CN121426097A
本发明涉及一种含磷纳米碳点材料及其制备方法与应用,该含磷纳米碳点材料的制备方法包括以下步骤:先合成磷源(R)‑2,3‑二羟基丙基膦酸,之后将(R)‑2,3‑二羟基丙基膦酸与柠檬酸钠、尿素混合进行水热反应,最后经透析处理得到所述含磷纳米碳点材料。所述含磷纳米碳点材料能有效抑制铜绿假单胞菌、金黄色葡萄球菌、肺炎克雷伯菌等菌株的生长,具有显著的抑菌作用。因此该含磷纳米碳点材料可用于制备抗菌药物。另外,本发明提供的含磷纳米碳点材料的制备方法操作简便、成本低廉,能够实现含磷纳米碳点材料的高效制备。
Absstract of: CN121426096A
本发明公开了一种铁观音茶渣碳点的制备方法,包括如下步骤:S1.茶渣预处理:将铁观音茶叶按照质量体积比2.5g/ml~5g/ml放入蒸馏水浸泡后,过滤,收集茶渣,将茶渣烘干后,得到茶渣粉末;S2.茶渣碳点合成:将步骤S1所得的茶渣粉末与水按质量体积比1g:(25~30)ml混合均匀,得到茶渣悬浮液,将茶渣悬浮液转入聚四氟乙烯反应釜中,通过水热反应后,冷却至室温,得到反应溶液;S3.茶渣碳点第一次纯化:将步骤S2所得的反应溶液抽滤,得到澄清透明溶液,经浓缩,离心,得到上清液。S4.茶渣碳点第二次纯化:将步骤S3所得的上清液过滤,透析,冷冻干燥,得到铁观音茶渣碳点。本发明还公开了以上方法制备得到的茶渣碳点及其应用。本发明原料廉价易得,工艺简单,绿色环保,制备的铁观音茶渣碳点对金黄色葡萄球菌、单增李斯特菌、沙门氏菌、大肠杆菌具有良好的抑菌效果和较好的抗氧化活性,能够用于制备抑菌材料。
Absstract of: CN121426083A
本发明公开了一种一种高活性的氮掺杂硬碳负极材料及其制备方法,获得了高的比容量,解决了现有硬碳首次库伦效率不高的难题,制备的产品导电性好、活性高,用作锂离子电池容量高、所获得材料主要有以下特点:①比容量高,190~260mAh/g;③首次库伦效率>80%。
Absstract of: CN121426109A
本发明涉及锂离子电池负极材料技术领域,具体涉及一种同时改善安全性和倍率性能的硅碳复合负极材料的制备方法,包括以下步骤:间苯二酚,强心酚,甲醛水溶液和异丙醇加入到反应容器中,加入碱性催化剂和磺化剂,反应后得到半固态树脂;半固态树脂转移至固化反应器,进行固化,之后破碎、过筛,超声条件下浸渍于过渡金属盐溶液中,干燥,预氧化、热解碳化,得到热解碳;热解碳进行活化造孔得到多孔碳,多孔碳进行气相硅沉积和碳包覆得到产品硅碳复合负极材料。本发明通过上述制备方法可以同时改善硅碳复合负极的安全性和倍率性能。
Absstract of: CN121427520A
一种碳量子点及其制备方法与在全氟化合物检测中的应用,属于分析检测技术领域。碳量子点以邻苯二胺和四氟对苯二甲酸为原材料,以磷酸为溶剂,经过水热反应,离心透析获得。碳量子点荧光淬灭程度与全氟化合物浓度呈线性相关趋势,碳量子点荧光强度能够被全氟化合物特异性淬灭,能够作为检测全氟化合物的荧光探针。检测范围为0~16μM,检测限为34nM,线性相关系数为0.999。本发明制备简便,成本低廉;碳量子点通过“亲氟相互作用”增强检测的灵敏度和选择性,能够实现对多种全氟化合物的灵敏识别,具有荧光稳定性好、灵敏度高、抗干扰能力强等优点;检测方法快速可靠,适用于实际水样中全氟化合物的快速、准确、灵敏检测,在环境监测领域具有广阔的应用前景。
Absstract of: CN121426103A
本发明涉及一种石墨烯膜的制备方法,具体涉及一种双面卷式制备单层石墨烯膜的方法。本发明公开了一种双面卷式制备单层石墨烯膜的方法,包括以下步骤:(1)将金属基底与柔性多孔隔离材料围绕卷心交替绕卷,形成层叠结构的金属基底/柔性多孔隔离材料卷材;(2)使用还原性气体对金属基底/柔性多孔隔离材料卷材进行高温退火;(3)退火结束后,通入还原性气体/碳源气体混合气体在金属基底两侧同步进行石墨烯膜生长,生长阶段压力控制在500Pa以内。
Absstract of: CN121426100A
本发明属于洗护用品制备技术领域,主要涉及一种碳量子点纳米复合物的制备,具体为一种碳量子点纳米复合物的制备及其在洗护美妆用品中的应用。本发明以天然植物提取物为碳源,利用微波快速升温的特性,合成了碳量子点;本发明中选用尿素和柠檬酸属于氮掺杂碳源组合,提供富碳氮骨架;抗坏血酸引入还原性羧酸基团,抑制氧化副反应减少制备的碳量子点表面缺陷;葡萄糖属于多羟基碳源,促进碳核交联提高碳点尺寸均一性,避免过度碳化。本发明通过“多组分协同掺杂‑定向组装‑分级纯化”策略,实现了高性能多功能碳量子点的可控制备。在开发新一代高效、智能、多功能的洗护美妆产品中具有广阔的工业应用前景。
Absstract of: CN121426178A
本发明涉及钠离子电池正极材料技术领域,具体为一种Na2Fe2(SO4)3@Na3Fe2(SO4)3F@CNT正极材料。本发明将Na2Fe2(SO4)3和Na3Fe2(SO4)3F前驱体进行混合烧结,并通过CNT包覆,显著提高了Na2Fe2(SO4)3的电化学性能,改善了材料的导电性,具备作为钠离子电池正极材料,具有较高的放电比容量,循环性能和倍率性能。
Absstract of: CN121426102A
本申请实施例涉及一种碳纳米管的纯化方法及碳纳米管,包括:将氯化铵固体与含有金属杂质和碳杂质的碳纳米管进行混合并压缩,形成压缩混合物;在惰性气体氛围下,将压缩混合物置于预设温度中进行纯化处理,使得碳杂质溶于金属杂质中,金属杂质与氯化铵固体反应生成金属氯化物气体;其中,预设温度的范围为800℃至1400℃。由此,保障纯化效果的同时,简化纯化工序,提高纯化效率。
Absstract of: CN121426189A
本发明属于电化学储能材料与制备方法技术领域,公开了一种放射状石墨烯/磁性金属氧化物/硬碳复合材料及其制备方法和应用,用以解决现有硬碳负极材料电化学性能差的技术问题。通过对钛酸四丁酯热解、刻蚀与热处理得到富含介孔的硬碳材料,再通过金属盐吸附与焦耳热冲击在介孔内原位生成尺寸小于10 nm的磁性金属化合物纳米颗粒,之后通过化学气相沉积的方法在硬碳材料表面生长放射状石墨烯,从而得到放射状石墨烯/磁性金属氧化物/硬碳复合材料。本发明的制备方法兼顾创新性、可重复性与工业放大可能,有效克服了传统硬碳基负极材料电荷传输效率低下的难题。
Absstract of: AU2025271175A1
Carbon nanotube (CNT) hybrid materials and methods of making such materials. A carbon nanotube (CNT) hybrid powder material includes a mesh of CNTs intimately interspersed with particles of a second material. In an example the material includes a blend that itself includes particles of a metal oxide supported catalyst and particles of a second material, and a mesh of CNTs is grown on the supported catalyst in the blend. The mesh of CNTs is effective to disperse the particles of the second material. ov o v
Absstract of: CN121428595A
本发明公开了一种表面氧化单原子纳米合金催化剂及其制备方法和应用,属于先进纳米能源材料与电催化技术领域。一种表面氧化单原子纳米合金催化剂,包括羟基化碳纳米管载体,负载于羟基化碳纳米管载体上的双金属纳米合金颗粒,双金属纳米合金颗粒中,非贵金属元素以单原子形式分散于贵金属纳米颗粒中,双金属纳米合金颗粒的尺寸为3‑4nm,且双金属纳米合金颗粒表面具有0.3‑0.6 nm厚的氧化层;贵金属的负载量为5‑15 wt%。本发明将钌与其他非贵金属元素合金化并锚定在碳材料基底上,可以大幅提升催化剂的导电性,而将合金颗粒尺寸精准控制在3‑4 nm范围内,可最大限度地暴露活性位点并兼顾结构稳定性。
Absstract of: CN121426075A
本发涉及锂离子电池正极材料领域,公开了一种以工业草酸除铁锈副产物为原料制备磷酸铁锂的方法及其应用。将工业草酸除锈废液中加入还原剂将草酸亚铁沉淀,经洗涤、干燥后,得到纯度≥ 98%的草酸亚铁FeC2O4·2H2O;按Li:Fe:P的摩尔比为(1.05‑1.1):1:1的比例,将草酸亚铁、锂源、磷源、聚乙二醇二丙烯酸酯混合后,加水在100‑120℃下水热反应1‑2h;将混合原料加入碳源与溶剂进行湿法球磨,得到前驱体浆料;在惰性气氛下,以5‑10℃/min升温至650~750℃,保温8‑12小时,得到磷酸铁锂前驱体;将烧结产物粉碎后过400目筛,得到磷酸铁锂成品。本发明利用低成本的工业草酸除铁锈副产物作为原料,通过简便的处理方法制备出电性能优异的磷酸铁锂材料,降低了原料成本,提高了制备磷酸铁锂的经济性。
Absstract of: CN121426098A
本发明属于化妆品原料制备的技术领域,公开了一种拥有生物亲和性的保湿碳点的工业化制备方法及其应用。所述保湿碳点的制备方法包括:将水仙粉在静态空气气氛中焙烧得到碳化产物;将所述碳化产物与超纯水混合后,经超声、分离、干燥后得到保湿碳点。本方法以水仙粉作为碳源,无需经过繁琐的预处理与纯化步骤,制备具备良好的保湿性、生物亲和性与抗氧化性能的生物基碳量子点,且产率高达16.4%,适用于产业化大规模生产。
Absstract of: WO2026022841A1
The present invention discloses a radial mixing system (100) and method (800) designed to enhance carbon conversion and selectively synthesize semiconducting single-walled carbon nanotube (SWCNT) fibers via floating catalyst chemical vapor deposition (FC-CVD). A mixed solution of a carbon source, catalyst precursor, and promotor in specified atomic ratios, is prepared. This solution is vaporized in a preheater (106) and the resulting vapors are introduced into a reactor (102) maintained at predefined temperatures. A fan (104), rotating at a defined RPM, facilitates mixing in the evaporation and re-nucleation zones. The process yields cylindrical SWCNT aerogels (108) in the re-nucleation zone, which exit the reactor via carrier gas flow. Subsequent condensation in a water bath unit (112) converts the aerogels into SWCNT fibers (114), collected efficiently on a rotating roller (120).
Absstract of: WO2026020402A1
The present invention provides a black phosphorus/carbon nanotube composite material, a preparation method therefor, and a use thereof. The preparation method comprises the following steps: (S101) preparing a black phosphorus nanosheet solution by means of a stepwise centrifugation-assisted liquid-phase exfoliation method; (S102) preparing a carbon nanotube solution by means of a liquid-phase exfoliation method; and (S103) preparing a black phosphorus/carbon nanotube composite material by means of a hydrothermal method, wherein the black phosphorus/carbon nanotube composite material prepared by means of a chemical synthesis method comprises black phosphorus and single-walled carbon nanotubes which are closely attached to each other, a three-dimensional network constructed by the carbon nanotubes well covers the surface of black phosphorus nanosheets, and the surfaces of the carbon nanotubes are filled with active electrons, so that a more sensitive detection result can be acquired, the Raman detection limit can be reduced, and the black phosphorus/carbon nanotube composite material is suitable for the detection of urinary tract bacteria.
Absstract of: US20260028229A1
The present invention relates to a carbon nanotube dispersion to which an auxiliary dispersant containing polyethylene glycol, polystyrene, and a cellulose-based component is applied, and a method for preparing the same, and the carbon nanotube dispersion of the present invention has excellent viscosity stability during room-temperature and high-temperature storage.
Absstract of: EP4685839A1
Disclosed is a method and a system for chemical vapor deposition. A collection valve between a reactor and a collection chamber and a purge valve between the collection valve and the collection chamber is open while a bypass valve for the collection chamber is open for purging debris from between the collection valve and the bypass valve through the bypass valve. Thereafter, the purge valve is closed and the collection valve open for directing the deposition product from the reactor to the collection chamber for treatment.
Absstract of: EP4685109A1
The present invention discloses a plasma modification preparation method of a silicon-carbon composite material, and a silicon-carbon composite material and a use thereof. The preparation method includes at least operation steps of: S10). placing aminated porous carbon in a deposition chamber, introducing a silane gas into the deposition chamber, and depositing nano-silicon in the aminated porous carbon, to obtain a silicon-carbon precursor material; S20). transferring the silicon-carbon precursor material to a plasma method modification chamber, introducing a halogen gas in a plasma manner, and depositing generated halide ions on a surface of the silicon-carbon precursor material, to obtain a silicon-carbon precursor material coated with halogenated carbon; and S30). stopping introducing the halogen gas, and introducing a carbon source gas in the plasma manner, to obtain the silicon-carbon composite material. The obtained silicon-carbon composite material has a stable core-shell structure, which can significantly alleviate silicon expansion problems and significantly improve cycle performance of a battery to which the silicon-carbon composite material is applied. In addition, the present application has a simple process, the silicon-carbon material is modified according to a plasma method, and the silicon-carbon composite material is easily prepared in batches and is easily industrialized on a scale.
Absstract of: CN121002657A
A method of manufacturing a thermal interface film, the method comprising: providing a stack (100) (200) of graphene-based films (101); pressing the stack of graphene-based films (202) between a first mold (102, 402) and a second mold (104, 404) to form a compressed film (106) wherein at least one of the first and second molds has a profiled surface; infiltrating (204) a polymer (108) in the compressed membrane, forming an infiltrated membrane (110); curing (206) the permeated membrane (110); and cutting the cured and permeated membrane (208) in a direction perpendicular to the plane of the graphene-based membrane to form a graphene-enhanced thermal interface pad (116).
Absstract of: CN121405073A
本发明公开了一种原位生长氮掺杂碳纳米管的镍钴双金属磷化物的制备方法及应用,其制备方法包括以下步骤:配置氧化石墨烯分散液;向所述氧化石墨烯分散液中依次加入钴源、镍源、嵌段共聚物、磷源和氮源,混合均匀得到混合溶液;将混合溶液烘干得到前驱体;将前驱体在惰性气氛下退火,即得。本发明通过调控Ni、Co的比例使碳源在石墨烯上原位生长出碳纳米管,其镍钴双金属磷化物纳米颗粒均匀分布在氮掺杂碳材料上形成氮掺杂碳材料包覆磷化物纳米颗粒复合材料,将其作为锂硫电池的改性隔膜材料。本发明制备方法具有反应条件温和、易于放大和调控的优点,所制备的复合材料且具有较高的比表面积,在能源领域尤其是锂硫电池领域得以应用。
Absstract of: CN121405075A
本申请公开了一种碳纳米管、导电浆料、涂碳箔及制备方法,属于导电材料技术领域。该碳纳米管包含聚吡咯改性的碳纳米管或含双性离子基团聚吡咯接枝的碳纳米管,将该碳纳米管与含苯磺酸基团功能化的粘接剂及其他成分混匀形成导电浆料。该导电浆料即使是久置后也不易沉降,该不易沉降的浆料能够均匀的涂布于金属箔表面,形成流平性好的导电碳层,该导电碳层可以显著降低(正负极材料与金属箔之间的)接触电阻,改善导电性。
Absstract of: CN121416442A
提供了负电极活性物质、包括该负电极活性物质的可再充电锂电池和用于制备该负电极活性物质的方法。负电极活性物质包括其中聚集至少两个复合体的聚集体和环绕(例如,围绕)聚集体的涂覆层,复合体均包括硅(Si)和碳(C),其中,复合体均包括包含结晶硅的核、在核上包含非晶硅的第一壳和在第一壳上包含第一非晶碳的第二壳,并且其中,涂覆层包含第二非晶碳。
Absstract of: CN121406151A
本发明公开一种碳纳米管层、光伏玻璃、石蜡/碳纳米管复合物及其制备方法,属于光伏技术领域。该石蜡/碳纳米管复合物的制备方法,包括:将多壁碳纳米管置于混合酸溶液中,之后在60℃~90℃下回流反应得到羧基化碳纳米管;所述混合酸溶液为浓硝酸和浓硫酸的混合酸溶液;将石蜡在高于其相变点的油浴或水浴中加热熔融;将羧基化碳纳米管加入至熔融的石蜡,在超声作用下搅拌得到石蜡/碳纳米管复合物。本发明还提出一种光伏玻璃,从上往下依次包括:导光层、碳纳米管层、发电层和密封层。本发明提出的石蜡/碳纳米管复合物有效提升光伏玻璃的转化效率。
Nº publicación: CN121405071A 27/01/2026
Applicant:
兰州理工大学
Absstract of: CN121405071A
本发明涉及钠离子电池负极材料技术领域,具体涉及一种氮硫共掺杂碳纳米微球及制备方法和应用。制备方法包括:将可溶性铁盐、碳源和咪唑二腈胺盐类离子液体共同溶解于水中,进行水热反应,得到富氮核芯;将富氮核芯和咪唑硫酸氢盐类离子液体混合,得到混合物;将可溶性钴盐负载于混合物表面,并进行热解,得到核壳结构前驱体;在NH3氛围中,将核壳结构前驱体进行热处理,得到具有核壳分区掺杂结构和梯度扩展的层间距的氮硫共掺杂碳纳米微球,解决了现有钠离子电池碳负极层间距不足、掺杂分布随机、结构稳定性差的问题;此外,本发明通过分步热解和双金属催化,克服了现有工艺复杂,不适合规模化制备的缺陷。